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SUFFICIENT CONDITION FOR PARTIAL EFFICIENCY IN A BICRITERIA
NONLINEAR CUTTING STOCK PROBLEM

Manuel Arana-Jiménez1 and L.L. Salles Neto2

Abstract. This work presents a sufficient criteria for partial efficient solutions of the cutting stock
problem with two objectives. We consider two important objectives for an industry: number of processed
objects (cost of raw materials) and number of different patterns (cost of setup). These optimality
results are established through a new approach based on connections between discrete optimization
and continuous vector optimization.
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1. Introduction

The Standard Cutting Stock Problem (CSP) is characterized by cutting stock rolls of size W (called objects)
into smaller pieces of size wi (where W > wi, i = 1, 2, . . . ,m), in order to satisfy the demand di for each one of
these m items. Each combination of items in an object is called cutting pattern and each changing of a cutting
pattern has a setup cost to prepare the cutting machine. In order to illustrate these first concepts, let us consider
the following example which will be use along this paper to illustrate the results.

Example 1.1. Let us suppose an industry that has an unlimited number of rolls with two meters wide and
three types in stock items in three different widths to be produced from these rolls master: 30 centimeters (cm),
40 cm, 50 cm. Among all the possibilities of the arrangement of the items on each roll (cutting pattern), four
are considered and listed below:

• Cutting pattern 1: 6 items of 30 cm;
• Cutting pattern 2: 5 items of 30 cm and 1 item of 50 cm;
• Cutting pattern 3: 2 items of 40 cm and 2 items of 50 cm;
• Cutting pattern 4: 3 items of 50 cm and 1 item of 40 cm.

In each cutting pattern we have the following waste: trim loss is 20 cm in cutting pattern 1; trim loss is 0 in
cutting pattern 2; trim loss is 20 cm in cutting pattern 3; and trim loss is 10 cm in cutting pattern 4.

Keywords. Multiple objective programming, optimality conditions, continuous optimization, cutting stock problem.

1 Department of Statistics and Operational Research, Faculty of SSCC and Communication, University of Cádiz, Av. de la
Universidad, Jerez 11406, Spain. manuel.arana@uca.es
2 Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, Brazil. luiz.leduino@unifesp.br

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2017

https://doi.org/10.1051/ro/2016058
http://www.rairo-ro.org
http://www.edpsciences.org
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The setup number plays an important role in the period of time in which the demand of items has to
be satisfied. At the same time, it is important to minimize the amount of the trim loss, which is equivalent
to minimize the raw material (number of the processed objects). This problem appears in the production of
paper [3, 8], steel [6, 9, 18, 21], window manufacturing [19], etc.

The mathematical model to minimize the number of processed objects and cost of the setup number can be
stated as:

(CSP) Minimize c1
n∑

j=1

xj + c2
n∑

j=1

δ(xj)

s.t.:
n∑

j=1

ajixj ≥ di, i = 1, . . . ,m.

xj ∈ N, j = 1, . . . , n.

where c1 is the cost of the object; aji is the number of times item i appears in the jth cutting pattern; xj is the

number of objects processed with the cutting pattern j; c2 is the setup cost and δ(xj) =
{

1 if xj > 0,
0 if xj = 0.

Recently, Prestwich et al. [16] have dealt with these cutting problems. But, in the literature, Diegel et al. [4]
were the only to mention real-life values for c1 and c2. According to them, an exact relation between c1 and c2
depends on several factors as: demand, deadlines, labor costs, etc. The major advantage of a multiobjective
approach (see [13]) is to give a set of solutions which are not evaluated by a common scalar function, i.e.,
the optimization process is, in theory, not based toward a particular type of solution that depends on c1
and c2. The literature contains some studies using heuristics to generate solutions to (CSP) with multiples
objectives [7,10,20], but there are no papers containing optimality conditions for this problem. More generally,
multiobjective combinatorial optimization has not been studied widely and very few theoretical results are
available about the properties of this type of problems [2,5]. In this paper we present sufficient conditions for a
solution to be partial efficient for a bicriteria cutting stock problem (BCSP):

(BCSP) Minimize ψ(x) = (ψ1(x), ψ2(x)) =

(
n∑

j=1

xj ,
n∑

j=1

δ(xj)

)

s.t.:
n∑

j=1

ajixj ≥ di, i = 1, . . . ,m,

xj ∈ N, j = 1, . . . , n,

where ψ1(x) =
n∑

j=1

xj is the number of processed objects and ψ2(x) =
n∑

j=1

δ(xj) represents the setups needed. We

denote the feasible set of (BCSP) as X , that is, X = {x = (x1, . . . , xn) ∈ Nn :
n∑

j=1

ajixj −di ≥ 0, i = 1, . . . ,m}.
Liu et al. [11] present a multiple objective optimization model taking into account trim loss, the number of

cutting patterns and usable leftovers: an improved non-dominated sorting heuristic evolutionary algorithm is
developed for generating the Pareto non-dominated solutions. After, a multi-attribute decision making method
is used for choosing a cutting plan from efficient solutions.

The outline of this paper is as follows. Section 2 gives a general introduction of the multiobjective optimization,
some notions of solutions, and optimality conditions. In this regard, we introduce partial-i efficient solutions,
as well as a new type Kuhn−Tucker optimality condition, called strict Kuhn−Tucker point. It is proposed
a new property of the functions involved in a multiobjective problem by a new definition, called partial-i
SKT-pseudoinvex, so as a characterization of the partial-i SKT-pseudoinvexity. In Section 3 is presented a
sufficient condition for partial-1 efficiency for the bicriteria cutting stock problem through an approach with
an auxiliary nonlinear problem. We prove that every strict Kuhn−Tucker point for the considered auxiliary
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nonlinear problem is a partial-1 efficient solution for the bicriteria cutting stock problem. Finally, in Section 4,
we conclude the paper and give an overview of possible future works.

2. Optimality conditions for vector optimization problem

A classical formulation of a multiobjective mathematical programming problem is as follows:

(MP) Minimize f(x)
s.t. gi(x) � 0, i = 1, . . . ,m,

x ∈ S,

where S is an open subset of Rn, f = (f1, . . . , fp) : S ⊆ Rn → Rp and g = (g1, . . . , gm) : S ⊆ Rn → Rm are
differentiable.

For the definition of the Pareto-optimal solution [15] (efficient solution) for (MP), as well as related efficiency
notions, the following conventions for equalities and inequalities are assumed:

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, then

x = y ⇔ xi = yi, ∀i = 1, . . . , n,

x < y ⇔ xi < yi, ∀i = 1, . . . , n,

x � y ⇔ xi ≤ yi, ∀i = 1, . . . , n,

x ≤ y ⇔ xi ≤ yi, ∀i = 1, . . . , n, and there exist j such that xj < yj ,

x ≤j y ⇔ xi ≤ yi ∀i = 1, . . . , n, and xj < yj , with j ∈ {1, . . . , n}.
Similarly, >,�,≥,≥j.
We can now define efficient solution, partial efficient solution and weakly efficient solution for (MP).

Definition 2.1. A feasible point, x̄, is said to be an efficient solution for (MP) if there does not exist another
feasible point, x, such that f(x) ≤ f(x̄).

Definition 2.2. A feasible point, x̄, is said to be a partial-i efficient solution for (MP), with i ∈ {1, . . . , n}, if
there does not exist another feasible point, x, such that f(x) ≤i f(x̄).

Definition 2.3. A feasible point, x̄, is said to be a weakly efficient solution for (MP) if there does not exist
another feasible point, x, such that f(x) < f(x̄).

It is easy to see that any efficient solution is a partial-i efficient solution for some i ∈ {1, . . . , p}, and a partial-i
efficient solution is a weakly efficient solution. In general, the reverse in not true, such as the following examples
show.

Example 2.4.
Minimize f(x1, x2) =

(
x2

1, x1 + x2

)
s.t. −10 � x1 � 10

−10 � x2 � 10,

Let us consider x̄ = (x̄1, x̄2) = (0, 1). We can check that x̄ is not an efficient solution of the previous problem,
since there exists another feasible point, (0,−1), such that

f(0,−1) = (0,−1) ≤ (0, 1) = f(0, 1) = f(x̄).

On the other hand, x̄ is a partial-1 efficient solution, that is,

f(x1, x2) = (x2
1, x1 + x2) �1 (0, 1) = f(0, 1) = f(x̄),

for all feasible point (x1, x2), since x2
1 > 0.
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Example 2.5.
Minimize f(x1, x2) = (x2

1, x
2
2)

s.t. −1 � x1 � 5

−2 � x2 � 6,

Let us consider x̄ = (x̄1, x̄2) = (2, 0). It is easy to prove that x̄ is a weakly efficient solution of the previous
optimization problem, since there does not exist another feasible point (x1, x2) such that

f(x1, x2) = (x2
1, x

2
1) ≮ (4, 0) = f(2, 0) = f(x̄),

since x2
1 > 0. However, x̄ is not a partial-1 efficient solution:

f(1, 0) = (1, 0) ≤1 (4, 0) = f(2, 0) = f(x̄).

Kuhn−Tucker conditions (see [14], for instance) allow us to obtain efficient and weakly efficient solutions
for (MP):

Definition 2.6. A feasible point x̄ for (MP) is said to be a Kuhn−Tucker point if there exist λ ∈ Rp, μ ∈ Rm

such that
λT∇f(x̄) + μT∇g(x̄) = 0 (2.1)

μT g(x̄) = 0 (2.2)

μ � 0 (2.3)

λ ≥ 0 (2.4)

To obtain the sufficient condition established in the next section we need the following definition.

Definition 2.7. A feasible point x̄ for (MP) is said to be a strict Kuhn−Tucker (SKT for short) point if there
exist λ ∈ Rp, μ ∈ Rm such that

λT∇f(x̄) + μT∇g(x̄) = 0 (2.5)

μT g(x̄) = 0 (2.6)

μ � 0 (2.7)

λ > 0 (2.8)

From previous definitions, it is derived that every strict Kuhn−Tuker point for the multiobjective mathemat-
ical programming problem (MP) is a Kuhn−Tuker point. Osuna et al. [14] proposed a necessary and sufficient
condition for a Kuhn−Tucker point to be a weakly efficient solution, based on generalized convexity properties.
Later, Arana et al. [1] introduced a new formulation for this properties, as well as they extended it to the
location of efficient solutions. To do it, Arana et al. [1] introduced KT-pseudoinvex-I and KT-pseudoinvex-II
problems, as follows.
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Definition 2.8. The problem (MP) is said to be KT-pseudoinvex-I(II) if there exists a vector function η :
S × S → Rn such that for all feasible points x, x̄

f(x) − f(x̄) < (≤)0 ⇒
{∇f(x̄)η(x, x̄) < 0

∇gj(x̄)η(x, x̄) � 0, ∀j ∈ I(x̄),

where I(x̄) = {j = 1, . . . ,m : gj(x̄) = 0}.

Arana et al. [1] established the following characterization theorem for efficient solutions of (MP).

Theorem 2.9. Every Kuhn−Tucker point is an (weakly) efficient solution of (MP) if and only if (MP) is
KT-pseudoinvex-(I)II.

To obtain a sufficient condition for a feasible solution to be partial-1 efficient for (BCSP), we need the
following definition and the subsequent results.

Definition 2.10. Given i ∈ {1, . . . , p}, the problem (MP) is said to be partial-i SKT-pseudoinvex at x̄ if there
exists a vector function η : S × S → Rn such that for all feasible points x

f(x) − f(x̄) ≤i 0 ⇒
{∇f(x̄)η(x, x̄) ≤ 0

∇gj(x̄)η(x, x̄) � 0, ∀j ∈ I(x̄)

where I(x̄) = {j = 1, . . . ,m : gj(x̄) = 0}.

We say that (MP) is partial-i SKT-pseudoinvex if (MP) is partial-i SKT-pseudoinvex at x for all x ∈ X .

Theorem 2.11. Every strict Kuhn−Tucker point is a partial-i efficient solution of (MP) if and only if (MP)
is partial-i SKT-pseudoinvex.

Proof.

(i) Firstly, let us prove that the problem (MP) is partial-i SKT-pseudoinvex if every strict Kuhn−Tucker point
is a partial-i efficient solution. To this end, let us suppose that there exist two feasible points x̄ and x∗ such
that

f(x̄) − f(x∗) ≤i 0

because otherwise, by Definition 2.10, (MP) would be partial-i SKT-pseudoinvex, and the result would be
proved. This means that x∗ is not a partial-i efficient solution, and by using the initial hypothesis, x∗ is not
a strict Kuhn−Tucker point, i.e.,

λT∇f(x∗) + μT∇gI(x∗)(x∗) = 0

has no solution λ > 0 and μ � 0. Therefore, by Tucker’s theorem [12], the system:

{∇f(x∗)η ≤ 0

∇gj(x∗)η � 0, ∀j ∈ I(x∗),

has a solution η(x̄, x∗) ∈ Rn, where I(x∗) = {j = 1, . . . ,m : gj(x∗) = 0}. Therefore, (MP) is partial-i
SKT-pseudoinvex.
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(ii) Let x∗ be a strict Kuhn−Tucker point and (MP) partial-i KT-pseudoinvex. Suppose that there exists a
feasible x̄ such that f(x̄) ≤i f(x∗). In this case f(x̄)−f(x∗) ≤i 0. Since (MP) is partial-i SKT-pseudoinvex,
there exists η : S × S → Rn such that:{∇f(x∗)η(x̄, x∗) ≤ 0

∇gj(x∗)η(x̄, x∗) � 0, ∀j ∈ I(x∗)
(2.9)

where I(x∗) = {j = 1, . . . ,m : gj(x∗) = 0}.
Therefore, there exists 1 ≤ k ≤ p such that ∇fk(x∗)η(x̄, x∗) < 0.
Since x∗ is a strict Kuhn−Tucker point, then there exist λ > 0 and μ � 0 such that:

p∑
k=1

λk∇fk(x∗) +
∑

i∈I(x∗)

μi∇gi(x∗) = 0. (2.10)

However, from (2.9), we have λk∇fk(x∗)η(x̄, x∗) < 0 and λi∇fi(x∗)η(x̄, x∗) ≤ 0 for i ∈ I(x∗). Therefore:

p∑
k=1

λk∇fk(x∗)η(x̄, x∗) +
∑

i∈I(x∗)

μi∇gi(x∗)η(x̄, x∗) < 0

which leads to contradiction with (2.5). Consequently, every strict Kuhn−Tucker point is a partial-i efficient
solution. �

Thus, we get an important characterization that will be used in the next section to obtain a sufficient condition
for a solution to be partial-1 efficient for (BCSP).

3. Necessary and sufficient optimality conditions through a continuous
auxiliary problem

The optimality conditions exposed in Section 2, based on Kuhn−Tucker points, are available for continuous
optimization problems, such as the multiobjective mathematical programming problem (MP). These optimality
conditions can not be applied directly to our discrete problem, the bicriteria cutting stock problem (BCSP).
However, next, we propose a new approach to locate partial-1 efficient solutions for (BCSP) through the efficient
solutions for an auxiliary continuous multiobjective problem. To this purpose, we present the formulation of an
auxiliary problem, inspired from [17], for every M in R, M > 0:

(BPaux)M Minimize ϕ(x) = (ϕ1(x), ϕ2(x))
s.t. x ∈ Xaux,

where ϕ1(x) =
n∑

j=1

xj ; ϕ2(x) =
n∑

j=1

φ(xj), with φ defined as follows,

φ(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t < 0,

(M + 1) sin2(πt), 0 ≤ t < 1/2,

1 + (M) sin2(πt), 1/2 ≤ t,

and Xaux = {x ∈ Rn, x � 0 :
n∑

j=1

ajixj − di � 0, i = 1, . . . ,m}, the feasible set of (BPaux)M .

It is easy to see that the function φ : R → R is differentiable and, from definition of ϕ, ϕ2 is differentiable.
Further, ϕ2(x) = ψ2(x), for all x ∈ Nn. It is worth noting that, under a computational view point, the function ϕ
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penalizes those non integer points with a high value. Thus, the resolution of the problem (BPaux)M can be a
practical approach to get solutions for (BCSP), such as the following theorem establishes.

Theorem 3.1. Let M be in R, M > 0, and x∗ ∈ Zn a feasible point for (BPaux)M . If x∗ is a partial-1 efficient
solution for (BPaux)M , then x∗ is a partial-1 efficient solution for (BCSP).

Proof. Absurdly suppose that there exist M > 0 and x∗ ∈ Zn a partial-1 efficient solution for (BPaux)M , but
x∗ is not a partial-1 efficient solution for (BCSP). That is, there exists x̄ ∈ X such that

(ψ1(x̄), ψ2(x̄)) ≤1 (ψ1(x∗), ψ2(x∗)).

Since x∗ ∈ Zn and x∗ ∈ Xaux, we have that x∗ ∈ X , the feasible set of (BCSP), ϕ2(x∗) =
∑n

i=1 δ(x
∗
i ) = ψ2(x∗)

and ϕ2(x̄) =
∑n

i=1 δ(x̄i) = ψ2(x̄). Then,

(ϕ1(x̄), ϕ2(x̄)) = (ψ1(x̄), ψ2(x̄)) ≤1 (ψ1(x∗), ψ2(x∗)) = (ϕ1(x∗), ϕ2(x∗)),

what implies
(ϕ1(x̄), ϕ2(x̄)) ≤1 (ϕ1(x∗), ϕ2(x∗)),

which stands in contradiction to the assumption that x∗ is a partial-1 efficient solution for (BPaux)M . Therefore,
x∗ is a partial-1 efficient solution for (BCSP). �
Theorem 3.2. Let M be in R, M > 0, and x∗ ∈ Zn a feasible point for (BPaux)M , then (BPaux)M is partial-1
SKT-pseudoinvex at x∗.

Proof. Let x∗ ∈ Zn be a feasible point for (BPaux)M , with M in R, M > 0. We have:

∇ϕ1(x∗) = (1, 1, . . . , 1). (3.1)

For the second component of the multiobjective objective function, ϕ2, it follows

∇ϕ2(x∗) = (φ′(x∗1), . . . , φ
′(x∗n)),

where

φ′(t) =

⎧⎪⎨
⎪⎩

0, t < 0,

2(M + 1)π sin(πt) cos(πt), 0 ≤ t < 1/2,

Mπ sin(πt) cos(πt), 1/2 ≤ t.

Therefore, since x∗ ∈ Z,
∇ϕ2(x∗) = (0, 0, . . . , 0). (3.2)

Let w = (w1, . . . , wm, wm+1, . . . , wm+n) : Rn → Rm+n be a function defined as follows:

wi(x) =

⎧⎨
⎩di −

n∑
j=1

aijxj , i = 1, . . . ,m,

−xi−m, i = m+ 1, . . . ,m+ n.

With this new notation, the feasible set of (BPaux)M is defined as

Xaux = {x ∈ Rn, : wi(x) � 0, i = 1, . . . ,m+ n}.
To prove that (BPaux)M is partial-1 SKT-pseudoinvex let us assume that there exists x̄ ∈ Xaux such that

ϕ(x̄) ≤1 ϕ(x∗). Under this assumption, we have to find η ∈ Rn such that:{∇ϕ1(x∗)η ≤ 0

∇wi(x∗)η � 0, i ∈ I(x∗),
(3.3)

where I(x∗) = {i = 1, . . . ,m + n : wi(x∗) = 0}; ∇wi(x∗) = (−ai1,−ai2, . . . ,−ain ), for i = 1, . . . ,m,
∇wm+1(x∗) = (−1, 0, . . . , 0), ∇wm+2(x∗) = (0,−1, . . . , 0), . . . , ∇wm+n(x∗) = (0, 0, . . . ,−1).
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By assumption, ϕ(x̄) ≤1 ϕ(x∗), then we have that ϕ1(x̄) < ϕ1(x∗) and ϕ2(x̄) � ϕ2(x∗). We define η = x̄−x∗.
It follows:

(i) Since
∑n

j=1 x̄j <
∑n

j=1 x
∗
j , it follows that ∇ϕ1(x∗)η < 0.

(ii) If i = 1, . . . ,m and i ∈ I(x∗), then ∇wi(x∗)η =
∑n

j=1 −aij(x̄j − x∗j ) =
∑n

j=1 −aij x̄j + di ≤ 0. Therefore,
∇wi(x∗)η < 0.

(iii) If i = m + 1, . . . ,m + n, we have that ∇wi(x∗)η = −x̄i + x∗i . If, moreover, i ∈ I(x∗), then x∗i = 0, and
therefore ∇wi(x∗)η = −x̄i � 0.

In consequence, η is a solution for (3.3). Therefore we have that (BPaux)M is partial-1 SKT-pseudoinvex
at x∗. �

As a consequence of the previous result, we present a sufficient condition for a solution to be partial-1 efficient
for (BCSP).

Theorem 3.3. Let M be in R, M > 0, and x∗ ∈ Zn a feasible point for (BPaux)M . If x∗ is a strict Kuhn−Tucker
point for (BPaux)M , then x∗ is a partial-1 efficient solution for (BCSP).

Proof. Let x∗ ∈ Zn strict Kuhn−Tucker point for (BPaux)M . By Theorem 3.2, (BPaux)M is partial-1 SKT-
pseudoinvex at x∗. Therefore, by Theorem 2.11, x∗ is a partial-1 efficient solution for (BPaux)M . Then, by
Theorem 3.1, x∗ is a partial-1 efficient solution for (BCSP). �

Example 3.4. Let us consider our initial Example 1.1, with the following demands: d1 = 102, d2 = 200, d3 =
150. Its formulation is as follows:

Minimize ψ(x) = (ψ1(x), ψ2(x)) =

(
4∑

j=1

xj ,
4∑

j=1

δ(xj)

)

s.t. 6x1 + 5x2 ≥ 102

2x3 + x4 ≥ 200

x2 + 2x3 + 3x4 ≥ 150

x1, x2, x3, x4 ∈ N.

Now, we consider its auxiliary problem (BPaux)M with M = 100, and its feasible point x∗ = (x∗1, x
∗
2, x

∗
3, x

∗
4) =

(17, 0, 100, 0), with x∗ ∈ Z4. By calculus, we have that x∗ is a strict Kuhn−Tucker point for (BPaux)M ,
with the multipliers λ = (λ1, λ2) = (6, 1), associated to the objective function ϕ = (ϕ1, ϕ2), and μ =
(μ1, μ2, μ3, μ4, μ5, μ6, μ7) = (1, 3, 0, 0, 1, 0, 3), associated to the constraints of (BPaux)M . Therefore, by The-
orem 3.3, it follows that x∗ is a partial-1 efficient solution for the bicriteria problem.

4. Conclusions

In this paper we present sufficient conditions for partial-1 efficient solutions of the cutting stock problem with
two objectives: cost of raw material and cost of setup. Such optimality conditions can be used in computational
tests of methods that seek to obtain the solutions for this problem. Moreover, the auxiliary problems can be
used in exact or heuristic methods.
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