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A STOCHASTIC PRODUCTION INVENTORY MODEL FOR DETERIORATING
ITEMS WITH PRODUCTS’ FINITE LIFE-CYCLE
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Abstract. The article deals with a production inventory system for deteriorating items where the
production rate of the system is a random variable within a finite range and the unit production cost
depends on production lotsize as well as the rate of production. In the model, the maximum life-cycle of
the products is finite and all the products are totally expired at the end of the life-time of the product.
Shortages are allowed and partially backlogged. The backlogging rate is depended on length of the
waiting time for the next replenishment. The main objective is to find out the optimal production
lot-size such that the average expected cost per unit time of the inventory system is minimum. The
different cases according to the value of the product’s life-time, production run-time and cycle length of
the system are discussed analytically and numerically. A numerical example and its sensitivity analysis
along with its managerial insights are presented to illustrate the behavior of the proposed production-
inventory model.
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1. Introduction

In the market, deterioration is one of the vital problem for the companies. It is important for any business to
be aware about the deteriorating products for making more profit. Over the last couple of decades, researchers
and practitioners have been working on deterioration that how the companies are managing deteriorating factors
to increases their profit. They have also been facing more challenges to study on deterioration with products’
finite life cycle and to find out the best strategies on marketing decision. A product life cycle refers to the time
period from production to expire of the product. In practice, people are becoming more aware about marketing
and they take decision consciously to buy their commodities. Generally, the deteriorating items (medicine, dairy
products, vegetables, almost every food products, radioactive substances, blood, etc.) have finite life cycle. In a
company, production planning is one of the most important parts for their business strategy. Careful production
planning is necessary to ensure good deliveries and productive efficiencies. The production manager may face the
difficult choice of whether to produce large quantities in bulk, store them and live with expensive financing and
warehousing costs, or to remain flexible, manufacturing to meet orders but paying the penalty of lost economies
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of scale. Now, it is main concern for the industries to find out marketing strategies with the inventories of
deteriorating items with finite life cycle and varying production systems.

In deteriorating inventory literature, Dave and Patel [8] developed a deterministic inventory model for deteri-
orating items considering time proportion demand function. Sachan [23] presented an economic order-quantity
model with constant deteriorating rate of the inventory. Shortages were also allowed for the situation of fixed
cycle time and the time proportional demand were considered by him. Wee [33] studied the inventory man-
agement of deteriorating items with exponentially decreasing demand rate over a fixed time horizon allowing
shortages. Sarkar et al. [27] presented an optimal payment time inventory system with deteriorating items under
the condition that the supplier offers a permissible credit period for payment after the purchase of the goods
and the retailer pays both the interest and the purchase price of the items to the supplier after the permissible
credit period. Wu [37] proposed a deterministic inventory model with Weibull distributed deterioration under
the circumstance of ramp type time dependent demand rate. He also allowed partial backlogging where back-
logging rate depends on waiting time for the next replenishment. Teng et al. [32] developed an inventory model
in which unsatisfied demand is partially backlogged at a negative exponential rate with the waiting time. Teng
and Chang [31] introduced an economic production quantity models for deteriorating items considering price
and stock-dependent demand. Inderfurth et al. [13] presented a deterministic lot-size model for a single product,
focusing on a two-stage imperfect manufacturing system with reworking. Ghosh and Chaudhuri [9] studied an
EOQ inventory model over a finite time-horizon for deteriorating item with quadratic time-dependent demand.
They considered time-proportional rate of deterioration and shortages in every cycle. Hou and Lin [12] studied a
deterministic economic order quantity inventory model taking into account inflation and time value of money. Wu
et al. [38] investigated a inventory problem to determine an optimal replenishment policy for non-instantaneous
deteriorating items with stock-dependent demand. They also allowed shortages considering variable backlogging
rate which is dependent on the waiting time for the next replenishment. Manna and Chaudhuri [17] formulated
a production-inventory model for deteriorating items with linearly ramp type time dependent demand rate.
They also assumed that the production rate is proportional to the demand rate and deterioration rate is time
proportional. Wee et al. [35]developed an optimal imperfect quality inventory model for items with shortage
back-ordering. Chang et al. [6] improved the model of Wu et al. [38] by changing the objective to maximizing
the total profit and relaxed the restriction of zero ending inventory when shortages are not desirable. Ghosh
et al. [10] presented an EOQ model of a perishable product with price dependent demand. They developed the
model considering finite production, partial backlogging and lost sale where back-logging rate is dependent on
the waiting time of the customers. Widyadana et al. [36] studied a deteriorating inventory problem with and
without backorders. They solved the model without using derivatives and compared to the classical optimiza-
tion method. Skouri et al. [29] extended the work of Manna and Chaudhuri [17] assuming a general function
of time for the variable part of the demand rate considering with and without shortages. Sarkar [25] studied
an EOQ model for finite replenishment rate where demand and deterioration rate are both time-dependent.
He considered that the supplier offered trade credit to the retailer to buy more items with different discount
rates on the purchasing costs. He and Wang [11] developed a production-inventory model for deteriorating items
with demand disruption. They studied model into different scenarios according to disruption’s time and magni-
tude. Lee and Dye [15] formulated a deteriorating inventory model with stock-dependent demand by allowing
preservation technology cost as a decision variable in conjunction with replacement policy. Soni [30] extended
the model of Chang et al. [6] considering permissible delay in payment and the demand rate as multivariate
function of price and level of inventory. Shah et al. [28] developed an inventory system with non-instantaneous
deteriorating item considering demand rate as a function of advertisement of an item and selling price. Lee
and Kim [16] developed an integrated production-distribution model for both deteriorating and defective items
under a single-vendor and single-buyer system. There are also several interesting and relevant papers related
to inventory model with deterioration and shortages such as the works done by Abad [1], Wee and Yu [34],
Papachristos and Skouri [21], Chung et al. [7], Papachristos and Konstantaras [22], Cárdenas–Barrón [2,3], Yang
et al. [40], Chang [5], Pal et al. [18–20], Sana [24], Sarkar and Sarkar [26], Khanra et al. [14],Cárdenas–Barrón
et al. [4], Wu et al. [39], etc.
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In this study, we introduce an inventory model for deteriorating items where the maximum life cycle of the
products are finite. We consider that the production rate is a random variable and it follows a distribution
function. The production cost is taken as a function of production lot-size and production rate. We also allow
shortages with backlogging and assume that the backlogging rate is depended on waiting time for the next
replenishment. We study the model with different cases according the value of the expected production run-
time, product maximum life-time and cycle time of the system. Now, the objective of the model is to be optimize
the expected average per unit time cost with respect to the production lot-size.

The rest of the paper is organized as follows: Section 2 illustrates fundamental assumptions and notations.
Formulation of the model is discussed in Section 3. Section 4 analyzes Numerical analysis. Sensitivity analysis
and its managerial insights are illustrated in Section 5 and finally conclusion of the paper is provided in Section 6.

2. Fundamental notation and assumption

The following notations and assumptions are adopted to depict the proposed model.

2.1. Notation

The following notations are used throughout the paper.
Q Production lot-size.
D(p) Demand rate per unit time.
tp Production run-time.
t1 Production-inventory cycle time.
M The maximum lifetime of the products.
δ Backlogging rate of shortages.
θ Deterioration rate of the products due to quality of the products, preservation system,

handling expert of the products, pilferage, etc., which is estimated from previous knowledge.
hc Holding cost ($) per unit per unit time.
bc The backlogging cost ($) per unit per unit time due to shortages.
lc The lost sale cost ($) per unit per unit time.
Cr Purchasing cost ($) per unit item.
Cp(Q, P ) Per unit production cost ($).

2.2. Assumptions

The following assumptions are adopted to develop the model.

– Model is developed for single deteriorating item with finite life time of the products.
– Replenishment rate of supplier is instantaneously infinite, but it’s size is finite, that means replacement of

lot size is sufficiently large at any number, if needed.
– Production rate of the inventory system is random variable.
– Production cost per unit item depends on production lot-size and production rate.
– Shortages are allowed and partially backlogged.
– The backlogging rate is depended on the length of waiting time for next replenishment.

3. Formulation of the model

In this article, we formulate a production inventory model of deteriorating items where the life cycle of the
products are finite. We consider that the rate of deterioration is constant. It is a fraction (0 ≤ θ ≤ 1) of on-hand
inventory due to quality of the products, preservation system, handling expert of the products, pilferage, etc.,
which is estimated from previous knowledge. The inventory system produces the finished products with random
production rate P of the Q unit of the items where production lot size Q is a decision variable and the range of
the random variable is finite. The production system runs upto tp = Q

P time and the one inventory cycle time
is t1 = Q

(1+θ)D . Here, the demand of the products are consumed directly from production on the basis of ‘first
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Figure 1. Inventory versus time for Section 3.1.1 of Case I.

product first out’ and the rest amount is piled up upto the production run time, and we approximate the life
cycle of whole item at end of production time as fixed (M ). We consider that the per unit production cost is
function of the production rate such as Cp(Q, P ) = L

Q + αP . Now, we study different cases according to the
values of the maximum lifetime of the products (M ), expected production run-time (Tp = E[tp]) and the total
cycle time of the inventory system (t1).

3.1. Case I: When t1 ≥ Tp + M

In this case, the sum of the maximum lifetime of the products and the expected production run-time is less
than from the total cycle time. After the expected time Tp +M , the lifetime of the produced products is expired.
So, the no inventory is available for sale between the time period Tp+M to t1. Hence, the shortages are occurred
during the time interval (Tp + M, t1) and all of the demand during the period (Tp + M, t1) is backlogged. The
backlogged items are distributed in the next cycle time. We assume that the backlogged rate is dependent on
length of the waiting time such as δ(t) = e−κ(t1−t). According to the value of the demand rate, deterioration
rate and production rate, the following subcases are occurred.

3.1.1. When P ≥ (1 + θ)D

Here, production rate is higher than the (1 + θ) times of demand rate. Hence, inventory level does not fall
into shortages during production run-time. But, shortages are occurred after the time tp + M due to product’s
life-time factor and are continued up to t1 time (see Fig. 1). So, in this stage, the governing differential equations
are:

dI1(t)
dt

+ θI1(t) = P − D, with I1(0) = 0, 0 ≤ t ≤ tp, (3.1)

dI2(t)
dt

+ θI2(t) = −D, with I2(tp) = I1(tp) and I2(tp + M) = 0, tp ≤ t ≤ tp + M, (3.2)

and
dI3(t)

dt
= −δ(t)D, with I3(tp + M) = 0, tp + M ≤ t ≤ t1. (3.3)
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Solving the above equations, using the boundary conditions, we have

I1(t) =
(1 − e−θt)(P − D)

θ
, 0 ≤ t ≤ tp, (3.4)

I2(t) =
e−tθ(e(M+tp)θ − etθ)D

θ
, tp ≤ t ≤ (tp + M

)
(3.5)

and

I3(t) = −De−κt1(eκt − e(M+tp)κ)
κ

,
(
tp + M

) ≤ t ≤ t1. (3.6)

Now, the inventory holding cost is

HC1(Q) =hc

(∫ tp

0

I1(t)dt +
∫ tp+M

tp

I2(t)dt

)

=hc

(
e−tpθ

(
1 + etpθ(θtp − 1)

)
(P − D) +

((−1 + eMθ
)− Mθ

)
D

θ2

)
· (3.7)

The total amount of backlogged cost at the end of cycle is

BC1(Q) = bc

∫ t1

tp+M

I3(t)dt =
bc

κ2

(
1 − e−κ(t1−M−tp){1 + (t1 − M − tp)κ}

)
D. (3.8)

The total amount of lost sale cost during shortages time is

LC1(Q) = lc

∫ t1

tp+M

{1 − δ(t)}Ddt =
lc
κ

(
e−κ(t1−M−tp) + (t1 − M − tp)κ − 1

)
D. (3.9)

Therefore, Total cost of the inventory system = Total purchasing cost of raw material+Manufacturing cost +
Inventory holding cost + Shortages cost + Lost sales during shortages.

The average cost per unit time during the time interval [0, t1] is

Eπ1(Q) =
(1 − θ)D

Q

[
Q(Cr + Cp) +

hc

θ2

{
e−tpθ

(
1 + etpθ(θtp − 1)

)
(P − D) (3.10)

+
((

eMθ − 1
)− Mθ

)}
D +

bc

κ2

{
1 − e−κ(t1−M−tp){1 + (t1 − M − tp)κ}

}
D (3.11)

+
lc
κ

{
e−κ(t1−M−tp) + (t1 − M − tp)κ − 1

}
D

]
. (3.12)

Putting the value of t1 and tp in equation (3.10) and then simplifying, we have

Eπ1(Q) = D(1 − θ)
(

Cp + Cr + lc +
hc

θ
− lcθ

)

− D2(1 − θ)
(
κ
(
hc

(
Mθ − eMθ

)
κ + lcθ

2(1 + Mκ)
)− bcθ

2
)

Qθ2κ2

+
D2(1 − θ)(hc + lcθ)

θ

1
P

− D(1 − θ)
hc

Qθ2
P − D2hc(1 − θ)

Qθ2
e−

Qθ
P +

Dhc(1 − θ)
Qθ2

P e−
Qθ
P

−
(

bcD(1 − θ)2

κ
+

D(1 − θ)(Dlcκ + bcD(1 − Mκ))
Qκ2

)
e(M+ Q(−1+θ)

D )κe
Q
P κ

+ D(1 − θ)
bcDe(M+ Q

P −Q(1−θ)
D )κ

κ

1
P

e
Q
P κ. (3.13)
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Figure 2. Inventory versus time for Section 3.1.2 of Case I.

3.1.2. When 0 ≤ P < (1 + θ)D

In this subcase, the production rate is less than (1 + θ)D. This is a rear situation but it may happen due
to highly deteriorating products and supply disruption of raw materials. The system faces shortages from the
beginning and it never be recovered within the current cycle period. Here, the demand rate generally is not
affected by the shortages situation because the availability of the products is not sufficient in the market for
highly deterioration. Here, the cycle length of the system continue up to time t1 = Q

D as the system cycle length
is not affected by the deterioration for shortages (see Fig. 2).

So, in this stage, the governing differential equations are:

dI1(t)
dt

= −(D − P ), with I1(0) = 0, 0 ≤ t ≤ t1. (3.14)

Solving the above equations using the boundary conditions, we have

I1(t) = −(D − P )t, 0 ≤ t ≤ t1. (3.15)

The shortages cost is

BC2(Q) =
bc

2
(
(D − P )t21

)
. (3.16)

The total cost of the inventory system = Total purchasing cost of raw material + Manufacturing cost +
Shortages cost.

The average total cost per unit time during the time interval [0, t1] is

Eπ2(Q) =
(1 − θ)D

Q

[
Q(Cr + Cp) +

bc

2
{
(D − P )t21

}]
. (3.17)

Putting the value of t1 = Q
D in equation (3.17) and then simplifying, we have

Eπ2(Q) = CrD +
bcQ

2
+

DΓ

Q
+
(

Dα − bcPQ

2D

)
P. (3.18)
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Using the equations (3.13) and (3.18), the expected average total cost per unit time is

EΠ1(Q) =
∫ (1+θ)D

L

Eπ2(Q)f(P ) dP +
∫ U

(1+θ)D

Eπ1(Q)f(P ) dP. (3.19)

Now, the objective of the system is to optimize the per unit time expected average cost function with respect
to production lot-size, i.e.,

Minimize EΠ1(Q) subject to t1 ≥ (Tp + M
)
. (3.20)

3.1.3. Solution considering uniform probability distribution

Let us consider the probability density functions of production rate (P) be

f(P ) =
{

1
U−L , L ≤ P ≤ U,
0, elsewhere

}

Using the uniform density function of the production rate and simplifying the expected average cost func-
tion (3.19) per unit time (See the Appendix A), we have the expected average cost function per unit time is

EΠ1(Q) = A1 +
A2

Q
+ A3Q + A4Q

2 + eκM

(
B1 +

B2

Q
+ B3Q + B4Q

2 + B5Q
3

)
e−κ Q(1−θ)

D ,

where

A1 =
D

2(L − U)θ

[
2hcU(1 + θ) + D2αθ2(1 + θ)2 − 2D(1 + θ)(hc + Crθ + hcθ) + θ

{
2CrL

+ α
(
L2 − U2(1 + θ)

)}]
+

D2lc(1 + θ)(log U − log D(1 + θ))
L − U

+
D(hc(1 + θ) + θ(Cr + lc + Crθ))

θ
,

A2 =
D

(U − L)θ2

[
D2hc(1 + θ)2 + Γθ2(U(1 + θ) − L(2 + θ)) + D(1 + θ)

{
eMθhc(U − L)

+ (LlcM − lcMU + Γ )θ2 − hc(U − LMθ + MUθ)
}]

+
D2(1 + θ)(bc − lcκ)

κ2
,

A3 =
2bcDLU − bcL

2U − 2D3hc(1 + θ) + D2U
(
2hc − bc(1 − θ2)

)
4D(L − U)U

+
Dhc(1 + θ)(log U − log D(1 + θ))

2(U − L)
,

A4 = −hcθ
(
D2(1 + θ)2 − 2DU(1 + θ)2 + U2(1 + 2θ)

)
12(U − L)U2(1 + θ)

,

B1 =
D2(lc + bcM)(1 + θ)(log U − log D(1 + θ))

U − L
− bcD(U − D(1 + θ))

(U − L)κ
,

B2 =
D2(1 + θ)(U − D(1 + θ))(lcκ + bc(Mκ − 1))

(U − L)κ2
,

B3 =
D(U − D(1 + θ))(bc + lcκ + bcMκ)

2(U − L)U
− bcD(log U − log D(1 + θ))

U − L
,

B4 =
{U − D(1 + θ)}κ[lc{U + D(1 + θ)}κ + bc{U(Mκ− 4) + D(1 + θ)(2 + Mκ)}]

12(U − L)U2(1 + θ)
,

B5 = −bc{U − D(1 + θ)}2{U + 2D(1 + θ)}κ2

36D(U − L)U3(1 + θ)2
·
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Differentiating the per unit time average expected cost function with respect to the production lot (Q), we
get

dEΠ1(Q)
dQ

= A3 − A2

Q2
+ 2A4Q +

[(
B3 − B1(1 − θ)κ

D

)
− B2(1 − θ)κ

DQ
− B2

Q2
+
(

2B4 − B3(1 − θ)κ
D

)
Q

+
(

3B5 − B4(1 − θ)κ
D

)
Q2 − B5(1 − θ)κ

D
Q3

]
eMκ− Q(1−θ)κ

D

d2EΠ1(Q)
dQ2

= 2A4 +
2A2

Q3
+
[(

2B4 − 2B3(1 − θ)κ
D

+
B1(1 − θ)2κ2

D2

)
+

2B2

Q3
+

2B2(1 − θ)κ
DQ2

+
B2(1 − θ)2κ2

D2Q

+
(

6B5 − 4B4(1 − θ)κ
D

+
B3(1 − θ)2κ2

D2

)
Q −

(
6
B5(1 − θ)κ

D
− B4(1 − θ)2κ2

D2

)
Q2

+
B5(1 − θ)2κ2

D2
Q3

]
eMκ−Q(1−θ)κ

D .

Let Q∗ be the solution of the equation dEΠ1(Q)
dQ = 0. The solution Q∗ is optimal if it satisfies the second order

condition d2EΠ1(Q)
dQ2 > 0 at Q = Q∗. We show the conditions numerically as it is not possible to prove the

condition analytically.

3.2. Case II: When t1 ≤ (
Tp + M

)
In this section, the sum of the maximum lifetime of the products and the production run-time is greater than

from the total cycle time of the inventory system. So, the shortages of the demand are not occurred for product’s
lifetime. But, the system may fall into shortages due to the reason of production rate which is a random variable.
According to the value of the demand rate, deterioration rate and production rate, the following subcases are
occurred.

3.2.1. When P ≥ (1 + θ)D

In the subcase, we insert the condition on production rate such that the system does not fall into shortages of
demand during production run-time (see the model diagram Fig. 3). So, in this stage, the governing differential
equations are:

dI1(t)
dt

+ θI1(t) = P − D, with I1(0) = 0, 0 ≤ t ≤ tp (3.21)

and
dI2(t)

dt
+ θI2(t) = −D, with I2(tp) = I1(tp) and I2(t1) = 0, tp ≤ t ≤ t1. (3.22)

Solving the above equations using the boundary conditions, we have

I1(t) =
(1 − e−tθ)(P − D)

θ
, 0 ≤ t ≤ tp (3.23)

and

I2(t) =
(eθ(t1−t) − 1)D

θ
, tp ≤ t ≤ t1. (3.24)

The inventory holding cost is

HC2(Q, P ) = hc

(∫ tp

0

I1(t)dt +
∫ t1

tp

I2(t)dt

)

= hc

(
e−θtp

(
P + P eθtp(θtp − 1) +

(
eθt1 − θt1eθtp − 1

)
D
)

θ2

)
· (3.25)
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Figure 3. Inventory versus time for Section 3.2.1 of Case II.

The total cost of the inventory system = Total purchasing cost of raw material + Manufacturing cost +
Inventory holding cost.

The average total cost per unit time during the time interval [0, t1] is

Eπ3(Q) =
(1 − θ)D

Q

[
Q(Cr + Cp) +

hc

θ2

{
e−θtp

(
P + eθtp(θtp − 1) +

(
eθt1 − θt1eθtp − 1

)
D
)}]

. (3.26)

Putting the value of t1 and tp in eq. (24) and then simplifying, we have

Eπ3(Q) = D(Cr + hc)(1 − θ) +
DL(1 − θ)

P
+

D
(
Qα − hc

θ2

)
(1 − θ)

Q
P

+
D2
(
e

Q(1−θ)θ
D − 1

)
hc(1 − θ)

Qθ2
e−

Qθ
P +

Dhc(1 − θ)
Qθ2

P e−
Qθ
P . (3.27)

3.2.2. When 0 ≤ P < (1 + θ)D

Similar as Section 3.1.2 of Case I. Hence using equation (3.18), the average total cost per unit time during
the time interval [0, t1] is

Eπ2(Q) = CrD +
bcQ

2
+

DΓ

Q
+
(

Dα − bcPQ

2D

)
P. (3.28)

Using the equations (3.27) and (3.28), the expected average total cost per unit time is

EΠ2(Q) =
∫ (1+θ)D

L

Eπ4(Q)f(P ) dP +
∫ U

(1+θ)D

Eπ3(Q)f(P ) dP. (3.29)

Now, the objective of the system is to optimize the per unit time expected average cost function with respect
to production lot-size, i.e.,

Minimize EΠ2(Q) subject to t1 ≤ (Tp + M
)
. (3.30)
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3.2.3. Solution considering uniform probability distribution

Considering the probability density functions of production rate (P) as

f(P ) =
{

1
U−L , L ≤ P ≤ U,
0, elsewhere

}
.

The expected average cost function (3.29) per unit time is (see Appendix A for expected value)

EΠ2(Q) = E1 + E2Q + E3Q
2 +

E4

Q
+
(

F1 + F2Q + F3Q
2 +

F4

Q

)
e

θQ
(1+θ)D ,

where

E1 =
D

2(L − U)θ
[
D2αθ2(1 + θ)2 − 2D(1 + θ)(hc + Crθ + hcθ) + 2hc(U + Lθ)

+θ
{
α
(
L2 − U2(1 + θ)

)− 2Cr(U(1 + θ) − L(2 + θ))
}]

+
D2hc(1 + θ)(log U − log D(1 + θ))

(U − L)θ
,

E2 =
2bcDLU − bcL

2U − 2D3hc(1 + θ) + D2U
(
2hc − bc

(
1 − θ2

))
4D(L − U)U

+
Dhc(1 + θ)(log U − log D(1 + θ))

2(U − L)
,

E3 = −hcθ
(
D2(1 + θ)2 − 2DU(1 + θ)2 + U2(1 + 2θ)

)
12(U − L)U2(1 + θ)

,

E4 =
D
(
D2hc(1 + θ)2 + D(1 + θ)

(
Γθ2 − hcU

)
+ Γθ2(U(1 + θ) − L(2 + θ))

)
(U − L)θ2

,

F1 = −D2hc(1 + θ)(log U − log D(1 + θ)])
(U − L)θ

, F2 =
Dhc(U + D(1 + θ))

2(U − L)U
,

F3 = −hcθ
(
U2 − D2(1 + θ)2

)
12(U − L)U2(1 + θ)

, F4 =
D2hc(1 + θ)(U + D(1 + θ))

(U − L)θ2
·

Differentiating the per unit time average expected cast function with respect to the production lot (Q), we get

dEΠ2(Q)
dQ

= E2 + 2E3Q − E4

Q2
+
[(

F2 +
F1θ

(1 + θ)D

)
+
(

2F3 +
F2θ

(1 + θ)D

)
Q +

F3θQ
2

(1 + θ)D

+
(

F4θ

(1 + θ)QD
− F4

Q2

)]
e

Qθ
D+Dθ ,

d2EΠ2(Q)
dQ2

= 2E3 +
2E4

Q3
+
[
2F3 +

F1θ
2

(D(1 + θ))2
+

2F2θ

D(1 + θ)
+
(

F2θ
2

(D(1 + θ))2
+

4F3θ

D(1 + θ)

)
Q +

F3Q
2θ2

(D + Dθ)2

+
2F4

Q3
+

F4θ
2

Q(D + Dθ)2
− 2F4θ

Q2(D(1 + θ))

]
e

Qθ
D(1+θ) .

Let Q∗ be the solution of the equation dEΠ2(Q)
dQ = 0. The solution Q∗ is optimal if it satisfies the second order

condition d2EΠ2(Q)
dQ2 > 0 at Q = Q∗. We show the conditions numerically as it is not possible to prove the

condition analytically.

4. Numerical example

Here, we illustrate our model numerically to find out the insight behaviors of the proposed model. We consider
the values of the parameters in appropriate units as follows: Demand rate D = 600 unit per unit time, inventory
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Figure 4. Expected per unit time average cost versus production lot-size for Case I.

Figure 5. Expected per unit time average cost versus production lot-size for Case I.

holding cost hc = $2.5 per unit per unit time, purchasing cost Cr = $15 per unit, back-ordering cost bc = $5
per unit per unit time, lost sale cost lc = $4 per unit per unit time, deterioration rate θ = 0.12, production
cost parameters Γ = 10 000 and α = 0.01, products’ maximum life cycle time M = 5 unit, parameter of
back-ordering rate κ = 0.4 and parameters of uniform distribution U = 10 000 and L = 10. Then, the optimal
results for Case I are optimal production lot size Q∗ = 10 789.80 unit, optimal expected production run-time
Tp = 7.46 unit, optimal cycle time t1 = 16.06 unit > (Tp + M = 12.46) and the optimal per unit time expected
average cost EΠ1 = $51 799.30. The above results are optimal as d2EΠ1(Q)

dQ2 = 13.07 × 10−6 > 0 at the value
of Q∗ = 10 789.80 unit. It is clear from the Figure 4 that the objective function EΠ1 is convex and unimodal
function.

Here, the optimal results for Case II are optimal production lot size Q∗ = 2508.08 unit, optimal expected
production run-time Tp = 1.73 unit, optimal cycle time t1 = 3.73 unit ≤ (Tp + M = 6.73) and the optimal per
unit time expected average cost EΠ2 = $49810.90. The above results are optimal as d2EΠ2(Q)

dQ2 = 0.000992328 > 0
at the value of Q∗ = 2508.08 unit. Here, Figure 5 shows clearly that the objective function EΠ2 is a convex
function. Similar as before, the required optimal solution is unique here.
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Table 1. Sensitivity analysis of key parameters.

Parameter Case I: t1 > tp + M Case II: t1 ≤ tp + M

Q tp

(
tp + M

)
t1 EΠ1 Q tp

(
tp + M

)
t1 EΠ2

M 2.0 7599.33 5.25 7.25 11.31 51 014.00 2508.08 1.73 3.73 3.73 49 810.90
3.5 7490.02 5.17 8.68 11.15 51 223.90 2508.08 1.73 5.23 3.73 49 810.90
6.5 14 951.90 10.34 16.84 22.25 52 561.40 2508.08 1.73 8.23 3.73 49 810.90
8.0 19 960.60 13.80 21.80 29.70 53 425.50 2508.08 1.73 9.73 3.73 49 810.90

θ 0.08 11 861.30 8.20 13.20 18.30 50 956.00 2493.81 1.72 6.72 3.85 48 140.50
0.10 11 054.80 7.64 12.64 16.75 51 277.70 2500.59 1.73 6.73 3.79 48 976.30
0.14 11 015.20 7.62 12.62 16.10 52 428.70 2516.23 1.74 6.74 3.68 50 644.30
0.16 11 788.30 8.15 13.15 16.94 53 117.70 2525.02 1.75 6.75 3.63 51 476.50

D 400 10 065.00 6.96 11.96 22.47 33 966.90 1921.31 1.33 6.33 4.29 34 001.90
500 10 600.70 7.33 12.33 18.93 42 823.20 2223.17 1.54 6.54 3.97 41 912.50
700 11 049.30 7.64 12.64 14.09 60 892.00 2780.37 1.92 6.92 3.55 57 709.40
800 11 777.90 8.14 13.14 13.15 70 112.20 3042.82 2.10 7.10 3.34 65 615.90

hc 1.5 7115.74 4.92 9.92 10.59 50 035.00 3100.15 2.14 7.14 4.61 48 697.50
2.0 9186.07 6.35 11.35 13.67 50 946.00 2755.30 1.90 6.91 4.10 49 285.80
3.0 11 598.40 8.02 13.02 17.26 52 635.50 2319.20 1.60 6.60 3.45 50 290.10
3.5 12 122.90 8.38 13.38 18.04 53 465.00 2168.58 1.50 6.50 3.23 50 734.20

bc 3 11 749.90 8.12 13.12 17.48 51 083.20 2537.36 1.75 6.75 3.78 49 738.70
4 11 307.60 7.82 12.82 16.83 51 442.80 2522.60 1.74 6.74 3.75 49 774.90
6 10 089.70 6.98 11.98 15.01 52 151.20 2493.77 1.72 6.72 3.71 49 846.60
7 8868.84 6.13 11.13 13.20 52 493.50 2479.69 1.71 6.71 3.69 49 882.20

U 8000 9864.20 8.25 13.25 14.68 45 813.30 2582.12 2.16 7.16 3.84 43 197.90
9000 10 282.00 7.78 12.78 15.30 48 770.40 2541.26 1.92 6.92 3.78 46 497.30
11 000 11 338.10 7.22 12.22 16.87 54 880.20 2480.56 1.58 6.58 3.69 53 134.40
12 000 11 882.30 7.02 12.02 17.68 58 000.30 2457.33 1.45 6.45 3.66 56 465.20

L 1 10 679.80 9.84 14.84 15.89 51 816.90 2507.66 2.31 7.31 3.73 49 794.70
5 10 728.50 8.16 13.16 15.97 51 809.00 2507.85 1.91 6.91 3.73 49 801.90

100 11 977.70 5.57 10.57 17.82 51 631.20 2510.37 1.17 6.17 3.74 49 975.70
500 17 213.40 5.43 10.43 25.62 51 203.70 2477.19 0.78 5.78 3.67 50 791.60

5. Sensitivity analysis with managerial insights

From the Table 1, we observe the sensitivity of the parameters which help the decision makers to take
appropriate decisions on their marketing strategy. Now, we discuss the sensitivity of the parameters as follows:

− With the increasing value of the maximum life-time of the product M , the optimal production lot size,
optimal cycle time of the inventory system, expected production run-time and per unit time expected
average cost increase for both Cases, I and II.

− The optimal cycle time of the inventory system, expected production run-time and per unit time expected av-
erage cost increase for both the cases when the deterioration rate θ is increasing. But, the optimal production
lot-size for Case I decreases first then increases when θ increases.

− When the demand rate D is decreased, the optimal production lot-size, optimal cycle time of the inventory
system, expected production run-time and per unit time expected average cost decrease for both Cases I
and II.

− The optimal production lot-size, optimal cycle time of the inventory system, expected production run-time
and per unit time expected average cost increase with the higher value of inventory per unit per unit time
holding cost hc for the Case I but the optimal production lot-size, optimal cycle time of the inventory system
and expected production run-time decrease and the per unit time expected average cost increase with the
higher value of inventory per unit per unit time holding cost hc for the Case II.
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− When the shortages cost bc per unit per unit time increases, the optimal production lot-size, optimal cycle
time of the inventory system and expected production run-time decrease but the per unit time expected
average costs increase for both the cases.

− With the increasing value of the upper limit of the uniform distribution (U), the optimal production lot
size, the optimal cycle time of the inventory system and per unit time expected average cost increase but
expected production run-time decreases for Case I. The optimal production lot-size, optimal cycle time of
the inventory system and expected production run-time decrease but the per unit time expected average
cost increase with the higher value of U for the Case II.

− When the lower limit of the uniform distribution L increases, the optimal production lot size and the optimal
cycle time of the inventory system increase but expected production run-time and per unit time expected
average cost decrease for Case I. Again, the optimal production lot-size, optimal cycle time of the inventory
system and expected production run-time decrease but the per unit time expected average cost increases
with the higher value of L for the Case II.

− The proposed model helps a manager of a production industry to control production and inventory levels,
production run time and starting of production to achieve minimum expected average cost of the system
under several values of the parameters related to the system costs.

6. Conclusion

We have developed a production inventory model with deteriorating items of finite life cycle. One of the
important factor of business is to be aware about of the product’s life cycle. It has a significant impact on
the decisions making of a company. The production rate of the system is considered as a random variable
which follows a probability distribution function. We assume that the per unit production cost depends on
production lot size and production rate. Shortages with partially backlogging are also allowed in the model and
the backlogged rate is depended on the length of the waiting time. We have studied the model with two cases:
Case I, where the sum of the maximum lifetime of the products and the production run-time is less than from
the total cycle time and Case II, where the sum of the maximum lifetime of the products and the production
run-time is greater than from the total cycle time. In the Case I, we have discussed that the shortages may
occur due to product’s life cycle. Here, we analyzed the model with respect to the production lot size such that
the average expected per unit time cost of the inventory system is minimum. We also investigate the model
through numerical example and discuss the sensitivity of the main parameters.

The major contribution of the model is to study a stochastic production inventory model considering the
production rate of the system is a random variable and the maximum life-cycle of the products is finite. Different
cases according the value of the products’s life-time, production run-time and one cycle length of the system
have been studied in the model.

The proposed model considers only one cycle production-inventory model for continuous variables those are
major limitations of this model. These limitations may be waived in future considering supply chain system
comprising of supplier of raw materials, manufacturer, retailers and the end customers for discrete variables
under bargaining strategies. In future, the more realistic features of demand such as uncertainty in demand, price
and stock-dependent demand may be included in the proposed model. The present model can be extended further
implementing financial strategies such as quantity discount, cash discount, trade-credit financing, restriction on
storage capacity, production lot size, limitation on capital investment and others into the model.

Appendix A.

The expected value with in range [D(1 + θ), U ] of P and 1
P are

∫ U

(1+θ)D

Pf(P )dP =
U2 − D2(1 + θ)2

2(U − L)
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and ∫ U

(1+θ)D

f(P )
P

dP =
log U − log[D(1 + θ)]

U − L

respectively. Again, we know

e−
Qθ
P = 1 − θQ

P
+

θ2Q2

2P 2
− θ3Q3

6P 3
+

θ4Q4

24P 4
+ O[Q]5.

As 0 < θ < 1 is small, we approximate the function e−
Qθ
P up to fourth term and get

e−
Qθ
P = 1 − θQ

P
+

θ2Q2

2P 2
− θ3Q3

6P 3
.

Hence, the expected value with in range [D(1 + θ), U ] of e−
θQ
P and P e−

θQ
P are∫ U

(1+θ)D

e−
Qθ
P f(P )dP =

6DQ2θ2(1 + θ) − 12D3(1 + θ)3 + 12D2Qθ(1 + θ)2 log D(1 + θ)] − Q3θ3

12D2(U − L)(1 + θ)2

− 6Q2Uθ2 − Q3θ3 + 12QU2θ log U − 12U3

12(U − L)U2

and ∫ U

(1+θ)D

P e−
Qθ
P f(p)dP =

1
6D(L − U)U(1 + θ)

[
(U − D(1 + θ))

{
Q3θ3 − 3D2U(1 + θ)2

− 3DU(1 + θ)(U − 2Qθ)
}
− 3DQ2Uθ2(1 + θ)(log U − log[D(1 + θ)])

]
,

respectively.
Again,

e
Q
P κ = 1 +

κQ

P
+

κ2Q2

2P 2
+

κ3Q3

6P 3
+

κ4Q4

24P 4
+ O[Q]5.

As 0 < κ < 1 is small, κ
P is very small. So, we approximate the function e

Qκ
P up to fourth term and get

e
Q
P κ = 1 +

κQ

P
+

κ2Q2

2P 2
+

κ3Q3

6P 3
.

Hence, the expected value with in range [D(1 + θ), U ] of e
Q
P κ and e

Q
P

κ

P are
∫ U

(1+θ)D

e
Q
P κf(P )dP =

6DQ2(1 + θ)κ2 + Q3κ3 − 12D3(1 + θ)3 − 12D2Q(1 + θ)2κ log D(1 + θ)]
12D2(U − L)(1 + θ)2

− 6Q2Uκ2 + Q3κ3 − 12QU2κ log U − 12U3

12(U − L)U2

and ∫ U

(1+θ)D

f(P )e
Q
P κ

P
dP =

Qκ
(
36D2(1 + θ)2 + 9DQ(1 + θ)κ + 2Q2κ2

)− 36D3(1 + θ)3 log D(1 + θ)]
36D3(U − L)(1 + θ)3

− Qκ
(
36U2 + 9QUκ + 2Q2κ2

)− 36U3 log U

36(U − L)U3
,

respectively.
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