
RAIRO-Oper. Res. 51 (2017) 591–606 RAIRO Operations Research
DOI: 10.1051/ro/2016046 www.rairo-ro.org

TRANSIENT ANALYSIS OF M/M/1 QUEUE WITH WORKING VACATION,
HETEROGENEOUS SERVICE AND CUSTOMERS’ IMPATIENCE

R. Sudhesh1, A. Azhagappan2 and S. Dharmaraja3

Abstract. This paper studies the time-dependent behavior of a single server queueing model with slow
service during single and multiple working vacations, and customers’ impatience due to slow service.
The time-dependent system size probabilities for the underlying model are obtained in closed form.
Further, time-dependent mean and variance are deduced. Finally, numerical illustrations are shown to
visualize the system effect for various values of parameters.
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1. Introduction

During the last two decades, many researchers carried out works related to queues with vacations customer’s
impatience. Vacation queues where the server stop serving the customers completely during the entire vacation
period. In a multiple vacation policy, if the server finds no customer waiting for service at the instant of
server’s vacation completion, it starts another vacation and continues this until a customer is waiting for
service(refer [1,2,5,8,20]). In a single vacation policy, on the completion of vacation period, the server stays idle
if there is no customer waiting in the queue(refer [1, 5, 15]). For both policies, if there is at least one customer
waiting in the queue at the vacation completion instant, a busy period starts.

Customer’s impatience is another important behavior in queueing models and it may occur due to the long
wait in the queue. Working vacation queue is the queue in which the server serves the customers with a service
rate lower than the service rate of busy period (refer [10,13,15,16,18]). This type of system has a wide application
in many practical situations such as working rate of employees doing their official work in office as well as in
home, recovery rate of a patient in hospital as well as in house, repair rate of a machine/vehicle during working
days as well as in holidays, etc. Doshi [5] treats the situation that the server works on secondary customers
as vacation(it may be machine breakdown, maintenance, etc.) where the server never provides any service to
the primary customers waiting in the queue. But in our work, we treat the situation that the server works on
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secondary customer as working vacation where the server provides service with a slower service rate instead of
not providing service.

Servi and Finn [13] introduced the M/M/1 queueing model with working vacations where a customer is
served at a lower service rate instead of stopping the service completely. In a single processor computer and
communication system, the arrived jobs (customers) are served with a particular service rate. The required
maintenance work (working vacation) is divided into many small segments. When all jobs are absent, the
processor starts a particular segment of maintenance work where it serves the arriving jobs with a lower service
rate. During working vacation period, there may be loss of jobs (i.e., impatience) due to slow service. We
consider customers’ impatience in our model due to slower service rate during the vacation period.

Choi et al. [3] analyzed the M/M/1 queue with two different classes of customers in which the higher priority
class 1 customers have impatience of constant duration and class 2 customers have no impatience. Altman
and Yechiali [1] presented a comprehensive analysis of the impatience behavior of single server queues such as
M/M/1, M/G/1 queues and the multi-server M/M/c queue, for both the multiple and the single vacation cases
and obtained various closed form results. Also they have showed that the proportion of customer abandonments
under the single vacation regime is smaller than that under the multiple vacation discipline. Yechiali [17] derived
various quality of service measures, mean sojourn time of a served customer, proportion of customers served,
rate of lost customers due to disasters and rate of abandonments due to impatience for the M/M/c model when
c = 1, 1 < c < ∞ and c = ∞ cases. Li and Tian [10] derived the steady state probabilities of an M/M/1 queue
with working vacations and vacation interruptions. Choudhury [4] analyzed a single server Markovian queueing
system with customers impatience. Later the M/M/1 queue with single working vacation was studied by Tian
et al. [15] where if the server returns from its working vacation period and finds no customer in the system, it
does not take another vacation but waits for the next arrival.

Perel and Yechiali [12] derived the explicit expression for probability generating function of the number of
customers in the system for single server, multiple server and infinite server queueing models. Sudhesh [14]
derived time-dependent system size probabilities for the M/M/1 queue with system disasters and customer
impatience using generating functions and continued fractions. Stationary solution of the M/M/1 queuing model
with working vacation and impatient customers was obtained by Yue et al. [18]. Vijayalaxmi and Jyothsna [16]
studied a renewal input finite buffer multiple working vacation queue with balking. Kalidass and Ramanath [8]
derived explicit expressions for the time-dependent and steady-state probabilities of the M/M/1 queue with
multiple vacations scheme and also obtained time-dependent mean and variance of the system. Yue et al. [19]
obtained a closed form expression for the system size probability under steady-state in which the server is
permitted to avail a maximum of K vacations when he/she finds no one waiting in the system after returning
from each vacation.

Kim and Kim [9] obtained the loss probability, the waiting time distribution and the system size distribution
for a single server queue with Markov modulated service rates and impatient customers. Ammar [2] obtained the
time-dependent probabilities for the impatient behavior of the M/M/1 queueing model with multiple vacation
where the impatience of customers is due to the absence of server upon arrival and also obtained the time-
dependent mean and variance of the system. Recently Yue et al. [20] derived the probability generating functions
of the number of customers in the system for both multiple and single vacation policies. Also they obtained
performance measures like mean system size, proportion of customers served and average rate of abandonments
due to the impatience. In the literature, so far no work is carried out to obtain the transient solution of an M/M/1
queueing model with slow service in multiple as well as single vacation and customers becoming impatient due
to slow service during the vacation period. This gives us the motivation to carry out this research work.

The rest of the paper is partitioned as follows. In Section 2, some preliminary concepts are given for the better
understanding to the reader. In Section 3, the transient system size probabilities of the M/M/1 queueing model
with customers impatience and single working vacation is analyzed. The transient state system size probabilities
are expressed explicitly in terms of the modified Bessel functions using the definition and properties of confluent
hypergeometric functions. In Section 4, the time-dependent mean and variance are deduced. In Section 5, the
impatient behavior of the M/M/1 queueing model with multiple working vacation is described and analyzed.
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The time-dependent system size probabilities are derived explicitly. Also some special cases are deduced. In
Section 6, the analytical results are visualized through numerical illustrations. In Section 7, this research work
is concluded with the directions of proposed works in future.

2. Preliminaries

In this section, we introduce some of the preliminary concepts of modified Bessal functions, confluent hy-
pergeometric functions and continued fractions that are required for the reader to understand this article in a
better way.

2.1. Modified Bessal function

The modified Bessal function of the first kind of order p, denoted by Ip(x), is defined as

Ip(x) =
∞∑

k=0

(x/2)2k+p

k!Γ (k + p + 1)
, p > 0, (2.1)

which is a solution of the following Bessal’s modified equation

x2y′′ + xy′ − (x2 + p2)y = 0, p ≥ 0.

In particular, Ip(x) = I−p(x), for p ≥ 0.

2.2. Confluent hypergeometric function

The confluent hypergeometric function (or Kummer function), denoted by 1F1(a; c; z), is defined as

1F1(a; c; z) =
∞∑

k=0

(a)k

(c)k

zk

k!
, (2.2)

where z, a, c are complex and c is not a negative integer. Here (a)k, known as Pochhammer symbol, is defined as

(a)k = 1, for k = 0; = a(a + 1)(a + 2) . . . (a + k − 1), for k ≥ 1.

The following identity is from Lorentzen and Waadeland [11]

1F1(a + 1; c + 1; z)
1F1(a; c; z)

=
c

c − z+
(a + 1)z

c − z + 1+
(a + 2)z

c − z + 2+
. . . , (2.3)

which can be rewritten as

c
1F1(a; c; z)

1F1(a + 1; c + 1; z)
− (c − z) =

(a + 1)z
c − z + 1+

(a + 2)z
c − z + 2+

. . .

2.3. Continued fractions

Approximations using continued fractions provide a good representation for transcendental functions. They
are very useful than the classical representation by power series. A systematic study of the theory of continued
fraction is presented in [7]. A continued fraction is denoted by

a1

b1 + a2
b2+

a3
b3+...

and is equivalently written as
a1

b1+
a2

b2+
a3

b3+
. . . ,

where ai, bi, for i = 1, 2, 3, . . . are real or complex numbers. We apply this continued fraction technique to find
the time-dependent solution of our model.
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3. Single working vacation model

Consider an M/M/1 queueing model with single working vacation, slow service and impatient customers.
Arrival of customers follows a Poisson process with rate λ and the service time follows an exponential distribution
with rate μ1. The server resumes vacation whenever the system is empty and serves the arriving customers at a
lower service rate μ0, following an exponential distribution. On completion of server’s vacation period, the server
waits dormant in the system if there is no customer to serve. Otherwise the server starts a normal busy period
with an exponential service rate μ1. The vacation time of the server follows an exponential distribution with
parameter γ. So, in the single vacation model, the server may stay idle for some period whereas the multiple
vacation model does not have any idle time for the server.

Assume that inter-arrival times, service times in the vacation period, service times in the busy period and
vacation times are all independent. The service discipline is first-come-first-served (FCFS). Customers become
impatient due to the slow service of the server under single vacation. That is, each individual customer activates
an independent and exponentially distributed impatient timer with parameter ξ. The customer abandons the
system and never returns if his/her service is not completed before his/her timer expires. The state transition
of this model is as follows in the Figure 1.

Let {X(t), t ≥ 0} be the number of customers in the system and J(t) be the status of the server at time t,
which is defined as follows:

J(t) =

{
0, if the server is in vacation and serves customers with slow service at time t,
1, if the server is busy and serves customers with normal service at time t.

Then {X(t), J(t), t ≥ 0} is a continuous time Markov chain on the state space S = {0, 0} ∪ {0, 1} ∪
{n, j : n = 1, 2, . . . ; j = 0 or 1}. Let

Pn,0(t) = P {X(t) = n, J(t) = 0} , n = 0, 1, 2, . . . ,

Pn,1(t) = P {X(t) = n, J(t) = 1} , n = 0, 1, 2, . . .

Then Pn,k(t), n = 0, 1, 2, . . . , k = 0, 1, satisfy the forward Kolmogorov equations as follows:

P ′
0,0(t) = −(λ + γ)P0,0(t) + μ1P1,1(t) + (μ0 + ξ)P1,0(t), (3.1)

P ′
1,0(t) = −(λ + μ0 + ξ + γ)P1,0(t) + λP0,0(t) + (μ0 + 2ξ)P2,0(t), (3.2)

P ′
n,0(t) = −(λ + μ0 + nξ + γ)Pn,0(t) + λPn−1,0(t) + (μ0 + (n + 1)ξ)Pn+1,0(t), n ≥ 2, (3.3)

P ′
0,1(t) = −λP0,1(t) + γP0,0(t), (3.4)

P ′
1,1(t) = −(λ + μ1)P1,1(t) + λP0,1(t) + μ1P2,1(t) + γP1,0(t), (3.5)

P ′
n,1(t) = −(λ + μ1)Pn,1(t) + λPn−1,1(t) + μ1Pn+1,1(t) + γPn,0(t), n ≥ 2, (3.6)

with P00(0) = 1, i.e., the system is empty at time t = 0.

Figure 1. State transition diagram for single working vacation queuing model.
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3.1. Transient solution

In this section, we derive the time-dependent system size probabilities for the model under consideration. In
Theorem 3.1, the transient probabilities Pn,1(t), for n ≥ 1, are derived using probability generating function
method in terms of modified Bessel function. In Theorem 3.2, the transient probabilities Pn,0(t), for n ≥ 0, are
derived using continued fraction method in terms of confluent hypergeometric function. The following theorem
expresses Pn,1(t) in terms of Pn,0(t) and P0,1(t), for n = 1, 2, 3, . . .

Theorem 3.1. The probabilities Pn,1(t) are obtained, for n = 1, 2, 3, . . ., from (3.5) and (3.6) in terms of
modified Bessel functions as

Pn,1(t) = γ

t∫
0

e−(λ+μ1)(t−u)
∞∑

m=0

Pm,0(u)βn−m
1 [In−m(α1(t − u)) − In+m(α1(t − u))] du

+ μ1

t∫
0

e−(λ+μ1)(t−u)P0,1(u)βn+1
1 [In−1(α1(t − u)) − In+1(α1(t − u))] du, (3.7)

where P0,1(t) is obtained from (3.4) as

P0,1(t) = γ

t∫
0

P0,0(u)e−λ(t−u)du (3.8)

and In(t) is the modified Bessel function of the first kind of order n, α1 = 2
√

λμ1 and β1 =
√

λ
μ1

. The
proof of Theorem 3.1 is given in Appendix A. The following theorem expresses Pn,0(t) in terms of P0,0(t), for
n = 1, 2, 3, . . . and gives P0,0(t) explicitly.

Theorem 3.2. The probabilities Pn,0(t) are obtained for n = 1, 2, 3, . . . from (3.1), (3.2) and (3.3) using the
continued fraction method and confluent hypergeometric functions as

Pn,0(t) = Qn(t) ∗ P0,0(t), (3.9)

where

P0,0(t) =
∞∑

k=0

k∑
r=0

r∑
i=0

(
k
r

)(
r
i

)(
μ0 + ξ

λγ

)i

λrγke−(λ+γ)t t
k

k!
∗ e−λt tr−i−1

(r − i − 1)!

∗ Qi
1(t) ∗

λ

β1
r−i+1 e−(λ+μ1)t [Ir−i−1(α1(t) − Ir−i+1(α1(t))]

∗(r−i)

∗
[ ∞∑

m=0

λ

βm+1
1

e−(λ+μ1)t [Im−1(α1(t) − Im+1(α1(t))] ∗ Qm(t)

]∗(k−r)

, (3.10)

Qn(t) = λn
∞∑

k=0

(−λ)k

k∏
j=1

(μ0 + (n + j)ξ)

ξkk!
an+k(t) ∗

∞∑
i=1

(λ)ibi(t), (3.11)

ak(t) =
1

ξ2k−1k!

k∑
r=1

k∏
j=1

(μ0 + jξ)
(−1)r−1

(r − 1)!(k − r)!
e−(γ+μ0+rξ)t, k = 1, 2, 3, . . . , (3.12)

bk(t) =
k∑

i=1

(−1)i−1ai(t) ∗ bk−i(t), k = 2, 3, 4, . . . ; b1(t) = a1(t), (3.13)

where ∗ denotes the convolution and ∗(k − r) denotes the (k − r) fold convolution. The proof of Theorem 3.2
is given in Appendix B.



596 R. SUDHESH ET AL.

4. Moments

As we have derived the time-dependent solution in the last section, it is very important to analyze the mean
and variance of the number of customers in the system at time t. Therefore, in this section, we derive the
time-dependent mean and variance of the number of customers in the system at time t.

4.1. Mean

Let E(X(t)) be the average number of customers in the system at time t.

E(X(t)) =
∞∑

n=1

n (Pn,0(t) + Pn,1(t)) , E(X(0)) = 0.

From (3.2), (3.3), (3.5) and (3.6), we obtain

d
dt

E(X(t)) = λ − μ0

∞∑
n=1

Pn,0(t) − ξ

∞∑
n=1

nPn,0(t) − μ1

∞∑
n=1

Pn,1(t).

Integrating the above equation, we get

E(X(t)) = λt − μ0

∞∑
n=1

t∫
0

Pn,0(u)du − ξ
∞∑

n=1

n

t∫
0

Pn,0(u)du − μ1

∞∑
n=1

t∫
0

Pn,1(u)du. (4.1)

4.2. Variance

Let V ar(X(t)) be the variance of the number of customers in the system at time t.

V ar(X(t)) = E(X2(t)) − (E(X(t)))2,

where

E(X2(t)) =
∞∑

n=1

n2 (Pn,0(t) + Pn,1(t)) .

From (3.2), (3.3), (3.5) and (3.6), we obtain

d
dt

E(X2(t)) = λ + 2λE(X(t)) − μ0

∞∑
n=1

(2n − 1)Pn,0(t) − ξ

∞∑
n=1

(2n2 − n)Pn,0(t) − μ1

∞∑
n=1

(2n − 1)Pn,1(t).

On integration, we obtain

E(X2(t)) = λt + 2λ

t∫
0

E(X(u))du − μ0

∞∑
n=1

(2n − 1)

t∫
0

Pn,0(u)du − ξ
∞∑

n=1

(2n2 − n)

t∫
0

Pn,0(u)du

− μ1

∞∑
n=1

(2n − 1)

t∫
0

Pn,1(u)du, (4.2)

where Pn,0(t) and Pn,1(t), for n = 1, 2, 3, . . ., are given by (3.9) and (3.7) respectively.
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Figure 2. State transition diagram for multiple working vacation queueing model.

5. Multiple working vacation model

Consider an M/M/1 queueing model with multiple working vacation, slow service and impatience of customers
due to slow service. Customers arrive according to a Poisson process with rate λ and the service times are
exponentially distributed with rate μ1. The server takes vacation at the end of each busy period and serves
the customers who arrive with a lower service rate μ0 (<μ1) which follows an exponential distribution. In
the multiple vacation queueing model, if the server finds no customers in the system upon returning from the
vacation, the server takes another vacation and continues this till a customer shows up in the queue for service.
On the other hand, if the server finds a customer at the instant of vacation completion, the server starts a
busy period of service time exponentially distributed with rate μ1 until the system becomes empty. The server
vacation times follow an exponential distribution with parameter γ. The busy period with rate μ1 starts at
the time instant when at least one customer waits in the queue when the server returns to the system after
the completion of vacation period and ends at the time instant when the system becomes empty for the first
time after this service. The busy period with rate μ0 starts at the time instant when a customer arrives to the
system when the server is in working vacation and ends at the time instant of the completion of that particular
segment of vacation period.

Assume that inter-arrival times, service times in the busy period and vacation times are all independent. The
service discipline is First-Come-First-Served (FCFS). During the vacation period, arriving customers become
impatient due to slow service. That is, each individual customer activates an independent impatience timer,
exponentially distributed with parameter ξ. If the customer’s service has not been completed before his/her
timer expires, he/she abandons the system and never returns. The state transition diagram of a multiple working
vacation queueing model is given in Figure 2.

Let {X(t), t ≥ 0} be the number of customers in the system at time t and J(t) be the status of the server at
time t, which is defined as follows:

J(t) =

{
0, if the server is in vacation and serves customers with slow service at time t,
1, if the server is busy and serves customers with normal service at time t.

Then {X(t), J(t), t ≥ 0} is a continuous time Markov chain on the state space S = {0, 0} ∪
{n, j : n = 1, 2, . . . ; j = 0 or 1} . Let

Pn,0(t) = P {X(t) = n, J(t) = 0} , n = 0, 1, 2, . . . ,

Pn,1(t) = P {X(t) = n, J(t) = 1} , n = 1, 2, 3, . . .
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Then Pn,j(t), n = 0, 1, 2, . . . , j = 0, 1, satisfy the forward Kolmogorov equations as follows:

P ′
0,0(t) = −λP0,0(t) + μ1P1,1(t) + (μ0 + ξ)P1,0(t), (5.1)

P ′
1,0(t) = λP0,0(t) − (λ + μ0 + ξ + γ)P1,0(t) + (μ0 + 2ξ)P2,0(t), (5.2)

P ′
n,0(t) = λPn−1,0(t) − (λ + μ0 + nξ + γ)Pn,0(t) + (μ0 + (n + 1)ξ)Pn+1,0(t), n ≥ 2, (5.3)

P ′
1,1(t) = −(λ + μ1)P1,1(t) + μ1P2,1(t) + γP1,0(t), (5.4)

P ′
n,1(t) = −(λ + μ1)Pn,1(t) + λPn−1,1(t) + μ1Pn+1,1(t) + γPn,0(t), n ≥ 2, (5.5)

with P0,0(0) = 1, i.e., the system is empty at time t = 0.

5.1. Transient solution

In this section, we derive the time-dependent system size probabilities of the multiple working vacation model.
The following theorem gives the expression for Pn,1(t) in terms of Pn,0(t), for n = 1, 2, 3, . . .

Theorem 5.1. The probabilities Pn,1(t) are obtained for n = 1, 2, 3, . . . from (5.4) and (5.5) in terms of modified
Bessel functions as

Pn,1(t) = γ

t∫
0

e−(λ+μ1)(t−u)
∞∑

m=1

Pm,0(u)βn−m
1 [In−m(α1(t − u)) − In+m(α1(t − u))] du, (5.6)

where In(t) is the modified Bessel function of the first kind of order n, α1 = 2
√

λμ1 and β1 =
√

λ
μ1

.

The proof of Theorem 5.1 is given in Appendix C. Theorem 5.1 is a corollary of the Theorem 3.1, i.e., when
P0,1(t) = 0, the results in Theorem 3.1 get reduced into the results of Theorem 5.1. The following theorem
expresses Pn,0(t) in terms of P0,0(t), for n = 1, 2, 3, . . . and gives P0,0(t) explicitly.

Theorem 5.2. The probabilities Pn,0(t) are obtained for n = 1, 2, 3, . . . from (5.1), (5.2) and (5.3) using the
continued fraction method as in (3.9), Qn(t) as in (3.11) and

P0,0(t) = μ1

∞∑
k=0

k∑
r=0

γk

(
k
r

)(
μ0 + ξ

γ

)r

e−λt t
k

k!
∗ Qr

1(t)

∗
[ ∞∑

m=1

β1−m
1 [Im−1(α1(t) − Im+1(α1(t))] e−(λ+μ1)t ∗ Qm(t)

]∗(k−r)

. (5.7)

The proof of Theorem 5.2 is given in Appendix D. Theorem 5.2 is a particular case of Theorem 3.2, i.e. when
γ = 0 is substituted in (B.1), the results of Theorem 3.2 get reduced into the results of Theorem 5.2.

Remark 5.3. When μ0 = μ1, there is no difference between the service rates in busy periods and vacations.

5.2. Special cases

case(1): When ξ = 0, μ0 = 0 and μ1 = μ, then Pn,0(t) becomes

Pn,0(t) = λne−(λ+γ)t tn

(n − 1)!
∗ P0,0(t),

which coincides with (13) of [8].
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case(2): When μ0 = 0 and μ1 = μ, then P0,0(t) and Qn(t) become

P0,0(t) = μ

∞∑
k=0

k∑
r=0

γk

(
k
r

)(
ξ

γ

)r

e−λt tk

k!
∗ Qr

1(t) ∗
[ ∞∑

m=1

β1−m [Im(α(t) − Im+2(α(t))] e−(λ−μ)t ∗ Qm(t)

]∗(k−r)

,

Qn(t) = λn
∞∑

k=0

(−λ)k

(
n + k

k

)
an+k(t) ∗

∞∑
i=1

(λ)ibi(t),

which coincide respectively with the results (4.13) and (4.17) in [2].

Remark 5.4. The mean and variance of the number of customers in the system at time t for multiple working
vacation model is derived and obtained the same results as in (4.1) and (4.2) respectively.

6. Numerical illustration

For the Multiple Working Vacation Queueing Model, the time-dependent system size probabilities are plotted
for λ = 1, μ0 = 1.25, μ1 = 1.5, ξ = 0.1, γ = 0.1 in Figures 3 and 4. Assume that there is no customer initially
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Figure 3. Transient-state system size probabilities for multiple working vacation queueing model.
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Figure 4. Transient-state system size probabilities for multiple working vacation queueing model.
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Figure 5. Mean queue length for multiple working vacation queueing model with different
values of ξ.
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Figure 6. Variance for multiple working vacation queueing model with different values of ξ.

in the system. It is observed that the probability curves in Figure 3 (except P0,0(t)) and Figure 4 increase
initially and attain steady-state as time t increases. Figure 5 shows that the increase in impatient rate ξ leads to
decrease in the mean number of customers in the queue. The variance also decreases as the increase of customer’s
impatience rate ξ which is shown in Figure 6.

For the single working vacation queueing model, the transient-state system size probabilities are plotted for
λ = 1, μ0 = 1.25, μ1 = 1.5, ξ = 0.1, γ = 0.1 in Figures 7 and 8. In Figure 7, the probability curves increase
initially and then decrease before reaching a steady-state for large values of t. In Figure 8, the probability
curves increase initially and reach a steady-state for large values of t. Figures 9 and 10 show that the increase
in impatient rate ξ leads to decrease in the mean and variance number of customers in the queue.

When comparing these figures (Figs. 5, 6, 9 and 10), it is evident that whenever the impatience rate of
customers increases, they move out of the system rapidly and hence the average number of customers in the
system automatically gets reduced. Also the mean and variance of the number of customers in the system for
multiple working vacation case is less than that of single working vacation case.
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Figure 7. Transient-state system size probabilities for single working vacation queueing model.
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Figure 8. Transient-state system size probabilities for single working vacation queueing model.
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Figure 9. Mean queue length for single working vacation queueing model with different values of ξ.
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Figure 10. Variance for single working vacation queueing model with different values of ξ.

7. Conclusion and future work

This paper deals with the impatient behavior of an M/M/1 queueing model with the server providing het-
erogeneous service in multiple and single working vacation. Explicit expressions for the transient-state system
size probabilities are derived using generating functions and continued fractions. Numerical illustrations help to
visualize the analytical results.

In future, this work will be extended to the models with two heterogeneous servers and multi-servers in the
context of synchronous or asynchronous vacation and also this work will be extended to the multi-server models
in which some of the servers take vacation simultaneously.

Appendix A.

Proof of Theorem 3.1. Let Gs(z, t) =
∞∑

n=1

Pn,1(t)zn, Gs(z, 0) = 0, where s denotes the single vacation case.

From (3.5) and (3.6), we get

∂Gs(z, t)
∂t

=
[
−(λ + μ1) + λz +

μ1

z

]
Gs(z, t) + μ1

(
1 − 1

z

)
P0,1(t) + γ

∞∑
n=0

Pn,0(t)zn. (A.1)

Solving the equation (A.1), we obtain

Gs(z, t) = γ

t∫
0

[ ∞∑
n=1

Pn,0(u)zn

]
e−(λ+μ1)(t−u)e(λz+

µ1
z )(t−u)du

+ μ1

(
1 − 1

z

) t∫
0

P0,1(u)e−(λ+μ1)(t−u)e(λz+
µ1
z )(t−u)du. (A.2)

It is well known that, if α1 = 2
√

λμ1 and β1 =
√

λ
μ1

, then

e[(λz+
µ1
z )t] =

∞∑
n=−∞

(β1z)nIn(α1t),
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where In(t) is the modified Bessel function of the first kind of order n. Comparing the coefficients of zn on both
sides of (A.2) for n > 0, we get

Pn,1(t) = γ

t∫
0

∞∑
m=0

Pm,0(u)e−(λ+μ1)(t−u)βn−m
1 In−m(α1(t − u))du (A.3)

+ μ1

t∫
0

P0,1(u)e−(λ+μ1)(t−u)βn
1 [In(α1(t − u)) − β1In+1(α1(t − u))] du. (A.4)

The above holds for n = −1,−2,−3, . . . , with the left hand side replaced by zero. Using I−n(x) = In(x) for
n = 1, 2, 3, . . . ,

0 = γ

t∫
0

∞∑
m=0

Pm,0(u)e−(λ+μ1)(t−u)β−n−m
1 In+m(α1(t − u))du (A.5)

+ μ1

t∫
0

P0,1(u)e−(λ+μ1)(t−u)β−n
1 [In(α1(t − u)) − β1In−1(α1(t − u))] du. (A.6)

From (A.4) and (A.6), we obtain the expression (3.7), for n = 1, 2, 3, . . . Also we obtain (3.8) from (3.4). Thus
we have expressed Pn,1(t) in terms of Pn,0(t) and P0,1(t), for n = 1, 2, 3, . . . and P0,1(t) in terms of P0,0(t). �

Appendix B.

Proof of Theorem 3.2. Let P̂n,1(s) be the Laplace transform of Pn,1(t). Taking Laplace transform on (5.1)–(5.3),
we get

P̂0,0(s) =
1

(s + λ + γ) − μ1
P̂1,1(s)

P̂0,0(s)
− (μ0 + ξ) P̂1,0(s)

P̂0,0(s)

· (B.1)

P̂1,0(s)
P̂0,0(s)

=
λ

(s + λ + μ0 + ξ + γ) − (μ0 + 2ξ) P̂2,0(s)

P̂1,0(s)

· (B.2)

P̂n,0(s)
P̂n−1,0(s)

=
λ

(s + λ + μ0 + nξ + γ) − (μ0 + (n + 1)ξ) P̂n+1,0(s)

P̂n,0(s)

· (B.3)

Solving (B.2) and (B.3) and on repeated applications of the identity (2.3), we obtain

P̂n,0(s) =
(

λ

ξ

)n 1
n∏

i=1

(
s+γ+μ0

ξ + i
) 1F1

(
μ0
ξ + n + 1; s+γ+μ0

ξ + n + 1;−λ
ξ

)
1F1

(
μ0
ξ + 1; s+γ+μ0

ξ + 1;−λ
ξ

) P̂0,0(s).

P̂n,0(s) = Q̂n(s)P̂0,0(s). (B.4)
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Laplace inversion of (B.4) yields (3.9) which is the system size probability in vacation state. Using (5.6) and (B.4),
for n = 1, in (B.1) and after some mathematical manipulations, we obtain

P̂0,0(s) =
∞∑

k=0

k∑
r=0

r∑
i=0

(
k
r

)(
r
i

)(
μ0 + ξ

λγ

)i
λrγk

(s + λ + γ)k+1(s + λ)r−i

× ˆQi
1(s)

(
p1 −

√
p2
1 − α2

1

α1β1

)r−i [ ∞∑
m=0

(
p1 −

√
p2
1 − α2

1

α1β1

)m

Q̂m(s)

]k−r

, (B.5)

where p1 = s + λ + μ1. The Laplace inversion of the above equation gives the empty system size probability
P0,0(t) which is shown in (5.7). From (B.4), we obtain

Q̂n(s) =
(

λ

ξ

)n 1
n∏

i=1

(
s+γ+μ0

ξ + i
) 1F1

(
μ0
ξ + n + 1; s+γ+μ0

ξ + n + 1;−λ
ξ

)
1F1

(
μ0
ξ + 1; s+γ+μ0

ξ + 1;−λ
ξ

) · (B.6)

Using the definition of confluent hypergeometric function, we have

1F1

(
μ0
ξ + n + 1; s+γ+μ0

ξ + n + 1;−λ
ξ

)
n∏

i=1

(
s+γ+μ0

ξ + i
) =

∞∑
k=0

k∏
j=1

(μ0 + (n + j)ξ)

n+k∏
i=1

(s + γ + μ0 + iξ)

(−λ)k

ξk−nk!
·

Applying partial fraction in the above equation, we get

1F1

(
μ0
ξ + n + 1; s+γ+μ0

ξ + n + 1;−λ
ξ

)
n∏

i=1

(
s+γ+μ0

ξ + i
) =

∞∑
k=0

k∏
j=1

(μ0 + (n + j)ξ)

k!
(−λ)k

ξ2k−1

n+k∑
i=1

(−1)i−1

(i − 1)!(n + k − i)!
1

s + γ + μ0 + iξ
· (B.7)

Further,

1F1

(
μ0

ξ
+ 1;

s + γ + μ0

ξ
+ 1;−λ

ξ

)
=

∞∑
k=0

k∏
j=1

(μ0 + jξ)

k∏
i=1

(s + γ + μ0 + iξ)

(−λ)k

ξkk!
=

∞∑
k=0

(−λ)kâk(s),

where âk(s) =

k∏
j=1

(μ0+jξ)

k∏
i=1

(s+γ+μ0+iξ)

1
ξkk!

; â0(s) = 1. By resolving into partial fractions, we have

âk(s) =
1

ξ2k−1k!

∞∑
r=1

k∏
j=1

(μ0 + jξ) (−1)r−1

(r − 1)!(k − r)!
1

s + γ + μ0 + rξ
, for k = 1, 2, 3, . . . (B.8)
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Using the identity given in [6], we obtain[
1F1

(
μ0

ξ
+ 1;

s + γ + μ0

ξ
+ 1;−λ

ξ

)]−1

=
∞∑

k=0

b̂k(s)(λ)k, (B.9)

where b̂0(s) = 1 and for k = 1, 2, 3, . . .,

b̂k(s) =

∣∣∣∣∣∣∣∣∣∣∣

â1(s) 1 0 . . . 0 0
â2(s) â1(s) 1 . . . 0 0
â3(s) â2(s) â1(s) . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
âk−1(s) âk−2(s) âk−3(s) . . . â1(s) 1
âk(s) âk−1(s) âk−2(s) . . . â2(s) â1(s)

∣∣∣∣∣∣∣∣∣∣∣
(B.10)

=
k∑

i=1

(−1)i−1âi(s)b̂k−i(s). (B.11)

Substitute (B.7) and (B.9) in (B.6), we get

Q̂n(s) = λn
∞∑

k=0

(−λ)k

k∏
j=1

(μ0 + (n + j)ξ)

ξkk!
ân+k(s)

∞∑
i=1

(λ)i b̂i(s). (B.12)

On Laplace inversion, we get (3.11). Thus we have expressed Pn,0(t) in terms of P0,0(t), for n = 1, 2, 3, . . . and
P0,0(t) explicitly. �

Appendix C.

Proof of Theorem 5.1. Define Gm(z, t) =
∞∑

n=1
Pn,1(t)zn, Gm(z, 0) = 0, where m denotes the multiple vacation

case.
From (5.4) and (5.5), we get

∂Gm(z, t)
∂t

=
[
−(λ + μ1) + λz +

μ1

z

]
Gm(z, t) − μ1P1,1(t) + γ

∞∑
n=1

Pn,0(t)zn. (C.1)

Using the methodology given in Theorem 3.1 of single working vacation model, we obtain (5.6). Thus we have
expressed Pn,1(t) in terms of Pn,0(t), for n = 1, 2, 3, . . . �

Appendix D.

Proof of Theorem 5.2. Taking Laplace transform on (5.1), we get

P̂0,0(s) =
1

(s + λ) − μ1
P̂1,1(s)

P̂0,0(s)
− (μ0 + ξ) P̂1,0(s)

P̂0,0(s)

(D.1)

and from (5.2) and (5.3), we obtain (3.9) and Qn(t) is as in (3.11). Using (5.5) and (3.9), for n = 1, in (D.1) and
after some algebraic manipulations and taking Laplace inversion, we get (5.7). Thus we have expressed Pn,0(t)
in terms of P0,0(t), for n = 1, 2, 3, . . . and P0,0(t) explicitly. �
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