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CAPACITATED TWO-STAGE TIME MINIMIZATION TRANSPORTATION
PROBLEM WITH RESTRICTED FLOW
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Abstract. This paper discusses a capacitated time minimization transportation problem in which
transportation operation takes place in two stages. In the first stage, due to some constraints, only a
specified flow F1 is transported from available sources to various destinations and in the second stage,
a flow F2 is transported depending upon the total demand of the destinations. The current problem
is motivated by a production system of a steel industry where semi-finished jobs, initially located at
various bins in its warehouse, are transported to various manufacturing facilities by transporters for
the final processing and finishing. Due to some additional constraints, it is not possible to transport
the number of semi-finished jobs equal to the exact number of final products to be manufactured, in
one go. Therefore the transportation operation has to take place in two stages. Further, a capacity is
associated with each bin-machine link which makes the current problem, a capacitated, two stage time
minimization transportation problem with restricted flow. The objective is to minimize the sum of the
transportation times for Stage-I and Stage-II. A polynomial time iterative algorithm is proposed that
within each iteration, solves a restricted version of a related standard capacitated time minimization
transportation problem and generates a pair of Stage-I and Stage-II times with Stage-II time strictly
less than the Stage-II time of the previous iteration, whereas Stage-I time may increase. Out of these
generated pairs, a pair with the minimum sum of transportation times of Stage-I and Stage-II is selected
that gives the global optimal solution. Numerical illustration is included in the support of the theory.
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1. Introduction

In quantity analysis of many business problems, transportation problem has been one of the most important
and successful applications which deals in the physical distribution of the products. Basically, the purpose is
to minimize the cost of shipping goods from one location to another so that the needs of each arrival area are
met and every shipping location operates within its capacity. The standard cost minimization transportation
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problem (CMTP) is the following:
“A homogeneous product is to be transported from m sources to n destinations. The supplies available

at the sources are a1, a2, . . . , am and the requirements of the destinations are b1, b2, . . . , bn. The sum of the
requirements at the destinations is equal to the sum of amounts available at the sources. The per unit cost of
transportation of the product from ith source to the jth destination is cij . The problem is to determine the
amount xij , ∀ (i, j) ∈ I × J to be transported from ith source to the jth destination minimizing the total cost
of transportation”. Mathematically, the standard CMTP is:

min
∑

i

∑
j

cijxij

subject to ∑
j

xij = ai, ∀ i = 1, 2, . . . , m.

∑
i

xij = bj, ∀ j = 1, 2, . . . , n.

xij ≥ 0, ∀ i = 1, 2, . . . , m and j = 1, 2, . . . , n.

This type of statement for CMTP was initially given by Hitchcock [15]. In fact in 1781, Monge stated a similar
problem and derived some remarkable results using Euclidean geometry (see, Berge [8] for a description of
Monge’s work). Although the transportation problem can be solved by regular simplex method which was first
developed by Danzing [10], its special structure offers a more convenient procedure to solve this type of problem.
This procedure is based on the same theory as that of simplex method but it makes use of shadow prices which
yields a simpler computational scheme. This problem is widely studied and has many applications. Appa [2]
studied some useful variants of CMTP. The CMTP with mixed constraints was discussed by Brigden [6] and
Klingman and Russel [21]. Khanna et al. [19, 20] presented a study on a flow constrained CMTP. In 1959,
Harvey [14] studied the transportation problems having certain types of capacity constraints on the flows
between origins and destinations called the capacitated CMTP (CCMTP). Dahiya and Verma [12] studied
CCMTP with bounds on Rim conditions in 2007.

In most real world problems, the complexity of the social and economic environment requires the explicit
consideration of the objective function other than cost. For situations in military operations, where in the times
of emergencies like war, the time of transportation of various military troops to the battlefield is of prime
importance. Also, in the transportation of perishable goods, such as fresh fruits and vegetables etc., a delay
in transportation may result in much larger loss than any cost advantage attained by transporting at lower
cost. Such kind of situations give rise to the time minimizing transportation problems (TMTP). The TMTP
differs from the CMTP in a way that cost of transportation changes with variation in the quantity shipped,
but the time of transportation remain unchanged if the quantity of goods to be shipped is varied within the
capacity. This problem was first discussed by Hammer [13] in 1969 assuming that the shipment of goods is done
in parallel. Many authors like Schwarz [30], Garfinkel et al. [17], Bhatia [9], Arora et al. [4, 5] have studied this
problem and proposed various algorithms to solve it. The TMTP with mixed constraints have been studied
by Khanna et al. [20]. Satyaparkash [24] proposed a technique to find the optimal solution to this problem by
finding its lexicographic optimal solution. In 1981, Khanna et al. [19] studied a TMTP with flow constraint in
which only a particular amount of goods is assumed to be sent optimally to the destinations and rest is to be
stored at some of the sources. The mathematical structure of TMTP, if I = {1, 2, 3 . . . ..m} is the index set of
m sources, J = {1, 2, 3 . . . n} is the index set of n destinations and tij(xij) is the time of shipping an amount
xij from the source i to the destination j, ∀ (i, j) ∈ I × J is defined as follows:

min
X∈P

[
T (X) = max

I×J
(tij(xij))

]
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where P is defined as

P =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X = {xij} ∈ Rmn

∣∣∣∣∣∣∣∣∣∣

∑
j∈J

xij = ai, ∀ i ∈ I

∑
i∈I

xij = bj , ∀ j ∈ J

xij ≥ 0, ∀ (i, j) ∈ I × J

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The quantity shipped from the source i to the destination j is denoted by xij and

tij(xij) =
{

tij(≥ 0) if xij > 0
0 if xij = 0.

In 1980, Bansal and Puri [7] proved that the objective function in a TMTP is a concave function and hence, it
belongs to the class of concave minimization problem (CMP). As the minimizer of a CMP over a polytope is
attainable at an extreme point of the polytope, it is desirable to investigate only its extreme points.

In some circumstances, due to storage constraints or budget constraints or some possible political reasons,
arrival areas are unable to receive the quantity of the product more than a fixed number. If the exact demand is
larger than this fixed number, then it can be fulfilled only if the transportation occurs twice (once for the certain
demand and then for the left over demand). Such a transportation problem becomes two-stage transportation
problem. The standard two-stage transportation problem is studied as a variant of the standard transportation
problem by many researchers ([16,25,29]). Two-stage time minimization transportation problem (TSTP) is also
studied thoroughly in literature. In 2008, Sharma et al. [28] studied TSTP with capacity constraints on each
source-destination link. Sharma et al. [26] also discussed a variant of TSTP, viz., two stage interval TMTP. This
problem was further extended to the one with capacity constraints by Kaur and Dahiya [18]. The TMTP is also
studied as a two level TMTP [8] where Level-I and Level-II links were specified for each level of transportation
and the transportation in Level-I occurs only on Level-I links and that in Level-II occurs only on Level-II links
i.e., all the links are not available in different levels of transportation.

The problem considered in this paper is to study a capacitated two-stage time minimization transportation
problem with restricted flow (CTPF). In the first stage, due to some constraints, only a specified flow F1 is
transported from available sources to various destinations and in the second stage, a flow F2 is transported
depending upon the total demand of the destinations. Here, CTPF is shown to be equivalent to the capacitated
time minimization transportation problem with bounds on Rim conditions (discussed by Dahiya and Verma [12]
for CMTP from where the similar results can be obtained for TMTP), which is further related to a standard
TMTP. A polynomial time iterative algorithm is proposed, solving a restricted version of a related standard
capacitated time minimization transportation problem at each iteration and generating a pair of Stage-I and
Stage-II times with Stage-II time strictly less than the Stage-II time of the previous iteration, whereas Stage-I
time may increase. These specific restricted versions of the standard TMTP are formed by introducing some
new restrictions and partial sum constraints required to decrease the time of Stage-II [28]. The pairs of times of
Stage-I and Stage-II are generated from these restricted versions and out of these generated pairs, a pair with
the minimum sum of Stage-I and Stage-II times is declared as the global optimal solution of the problem CTPF.

This paper is organized as follows: in next section, the instance of motivation for the current problem is
discussed. In Section 2, mathematical formulation of CTPF is given. The relation of CTPF with standard
TMTP is established in Section 3. In Section 4, various theoretical results are justified. Based upon these
results, an algorithm to solve the current problem is developed in Section 5. Numerical illustration is given in
Section 6 and Section 7 contains concluding remarks.

2. Motivation

The current problem is motivated by the applications of transportation problem in iron and steel industry
which manufactures a homogeneous product. The semi-finished jobs, which take the form of this homogeneous
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product after final processing and finishing on the various manufacturing facilities or machines, are initially
stored at various bins located at different places in the warehouse of the industry. The manufactured products
are then supplied to the market. This whole system involves the transportation of semi-finished jobs from bins
to the machines and then the transportation of finished jobs from the industry to the market. In order to meet
the market demand at the earliest, it is required to manufacture the product in the minimum possible time.
Therefore, the time of transportation of semi-finished jobs from bins to the machines is of prime importance and
is to be minimized. As the jobs to be carried out are big and heavy in a steel industry and their transportation
may be cumbersome and expensive, it is assumed that there is capacity associated to each bin-machine link,
i.e., at most a particular number of jobs can be transported on each of the bin-machine links. Of course, these
constraints are due to various factors affecting the transportation process, fuel consumption and consequently
the cost of transportation, but it does not mean that the maximum number of units should be assigned to the
cheapest route. Parallel to the cost constraints, there is a constraint on the capacity of the vehicles that are
available for the transportation. So while putting a capacity restriction on each link, both the factors are taken
into account. Also, the maximum amount F1 (say), of semi-finished jobs that can be processed and finished in
one stage is fixed due to additional constraints like, limited allowed units of power for consumption, working
time, manpower etc. (which result in the shipping of only a particular number of jobs in one go) and rest of the
jobs have to be processed and finished (hence shipped) later in the second stage. In the current problem, the
exact demand is assumed to be less than or equal to 2F1, which leads the current problem to be a two stage
transportation problem. Our objective in the current problem is to minimize the sum of times of transportation
of Stage-I and Stage-II. Also, we assume the exact demand F1 + F2 to be less than or equal to

∑
i ai which is

further less than or equal to 2F1. Initially, all the machines are kept involved in the processing. Inspite of this,
due to the additional constraints discussed above, it is possible to manufacture only F1 units in one stage and
F2 units have to be manufactured in the second stage. As there is no storage allowed near the machines, only
F1 units can be transported in first stage and F2 units need to be transported in second stage. Note that in
second stage, all the machines need not be involved in processing, some of them may be kept vacant depending
upon the time of transportation that is consumed from various bins to these machines. As all the machines are
working in first stage, so in order to utilize them to their maximum, each one of them is assigned a minimum
number of jobs to be essentially processed on them because if a machine is working for some time and consuming
power, then keeping the budget constraint in mind, their should be a minimum number of jobs to be processed
essentially on it. This number can be different for different machines because though the machines are identical
but the newer machines can work faster or consume less power than the older ones.

3. Mathematical formulation

Let I = {1, 2, . . . , m} denotes the index set of m bins located in the warehouse at different places and
J = {1, 2, . . . , n} be the index set of n manufacturing facilities (machines) available for final processing and
finishing. Let ai, i ∈ I be the availability of semi-finished jobs at ith bin and bj, j ∈ J be the minimum number
of jobs to be essentially processed on jth machine.

Here we assume that:

(i)
∑

i∈I ai ≥
∑

j∈J bj .

(ii) In the first stage, only F1 ≥ (
∑

j∈J bj) units can be shipped but as the total demand is assumed to be
F1 + F2, F2 units should be shipped in the second stage.

Mathematically, Stage-I problem can be stated as

(P1) minX∈S [maxI×J(tij(xij))]
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where

S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X = {xij} ∈ Zmn

∣∣∣∣∣∣∣∣∣∣∣∣

∑
j∈J

xij ≤ ai ∀ i ∈ I

∑
i∈I

xij ≥ bj ∀ j ∈ J∑
i∈I

∑
j∈J

xij = F1, 0 ≤ xij ≤ uij , ∀ (i, j) ∈ I × J

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where uij is the capacity of the (i, j)th bin-machine link.
Corresponding to a feasible solution X of the Stage-I problem, let S(X) be the set of feasible solutions of

Stage-II problem. Then Stage-II problem can be formulated as

(P2) minY ∈S(X) [maxI×J(tij(yij))]

where

S(X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y = {yij} ∈ Zmn

∣∣∣∣∣∣∣∣∣∣∣∣

∑
j∈J

yij ≤ āi ∀ i ∈ I

∑
i∈I

yij ≥ 0 ∀ j ∈ J∑
i∈I

∑
j∈J

yij = F2, 0 ≤ yij ≤ ūij , ∀ (i, j) ∈ I × J

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Note that āi = ai −
∑

j∈J xij and ūij = uij − xij ∀ (i, j) ∈ I × J .
Then the CTPF can be formulated as:

(P3) minX∈S

[
maxI×J(tij(xij)) + minY ∈S(X) [maxI×J(tij(yij))]

]
.

The set of feasible solutions of the problem (P3) is the union of the set of feasible solutions of Stage-I and the
corresponding optimal feasible solutions (OFS) of Stage-II problem.

To solve this problem, we are solving a related transportation problem in which the transportation matrix
is unimodular. By the property of unimodularity if the availability and demands are integers then all the basic
feasible solutions (of course in terms of x′

ijs) will take integral values and in the proposed solution technique,
we are scanning only basic feasible solutions of the related transportation problem. So, from now onwards we
have relaxed the condition of xij ’s to be integers specifically.

4. Theoretical development

To find a feasible solution of Stage-I problem, we rewrite the problem (P1) as a capacitated TMTP with
bounds on Rim conditions (see [5]). Thus the Stage-I problem (P1) becomes

(P1) minX∈S [maxI×J(tij(xij))]

where

S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X = {xij} ∈ Rmn

∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤
∑
j∈J

xij ≤ ai ∀ i ∈ I

bj ≤
∑
i∈I

xij ≤
∑
i∈I

uij ∀ j ∈ J∑
i∈I

∑
j∈J

xij = F1, 0 ≤ xij ≤ uij , ∀ (i, j) ∈ I × J

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Here we assume that
∑

j∈J uij ≥ ai ∀ i ∈ I. This kind of problem was first discussed by Dahiya and Verma [12]
for a capacitated CMTP and their technique can easily be extended (discussed below) to solve (P1), a capacitated
TMTP which can further be solved by using any of the methods available in literature (see [4,9,11,13,17,22,30]).
Here 0 and ai represent the minimum and maximum availability of the semi-finished jobs at the ith bin and bj
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and
∑

i∈I uij denote the minimum and maximum number of jobs to be processed and finished on the jth machine
respectively. In order to solve (P1) (the above rewritten Stage-I problem), an amount

∑
i∈I

∑
j∈J uij − F1 of

machine-slack has to be retained at the various machines and the amount
∑

i∈I ai − F1 of bin-reserve has to
be kept at various bins. This suggests the introduction of an extra bin which fills up the machine-slacks and
an extra machine which processes the bin-reserves. Also as the machine-slacks (bin-reserves) are to be retained
at various legitimate machines (bins), it follows that flow should be prevented from new bin to new machine
and this can be done by assigning a time M (a very large positive number) to this link. Thus, the problem (P1)
transforms to an equivalent balanced capacitated TMTP.

(P ∗
1 ) minZ∈S∗

[
maxI∗×J∗(t∗ij(zij))

]
where

S∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z = {zij} ∈ R(m+1)(n+1)

∣∣∣∣∣∣∣∣∣∣

∑
j∈J∗

zij = a∗
i ∀ i ∈ I∗

∑
i∈I∗

zij = b∗j ∀ j ∈ J∗

0 ≤ zij ≤ u∗
ij ∀ (i, j) ∈ I∗ × J∗

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where
I∗ = I

⋃{m + 1} J∗ = J
⋃{n + 1}

t∗ij = tij ∀ (i, j) ∈ I × J t∗i,n+1 = 0 ∀ i ∈ I

t∗m+1,j = 0 ∀ j ∈ J t∗m+1,n+1 = M

a∗
i = ai ∀ i ∈ I a∗

m+1 =
∑

i∈I

∑
j∈J uij − F1

b∗j =
∑

i∈I uij ∀ j ∈ J b∗n+1 =
∑

i∈I ai − F1

u∗
ij = uij ∀ (i, j) ∈ I × J u∗

i,n+1 = ai ∀ i ∈ I

u∗
m+1,j =

∑
i∈I uij − bj ∀ j ∈ J u∗

m+1,n+1 = ∞
Definition 4.1 (Corner feasible solution).

A feasible solution {zij}I∗×J∗ of the problem (P ∗
1 ) is called a corner feasible solution (CFS) if zm+1,n+1 = 0.

A feasible solution of the problem (P ∗
1 ) which is not a CFS is called a non-corner feasible solution.

4.1. To read the feasible solution of Stage-I from the CFS of (P ∗
1 )

Solving the problem (P1) is equivalent to solving the problem (P ∗
1 ). The equivalence establishes by proving

following results.

Theorem 4.2. A non-corner feasible solution to (P ∗
1 ) cannot provide a feasible solution to (P1).

Theorem 4.3. There is a one to one correspondence between feasible solutions of (P1) and the CFS of (P ∗
1 ).

This can be proved by using the relation

xij = zij ∀ (i, j) ∈ I × J (A)

where Z = {zij}I∗×J∗ is a CFS of the problem (P ∗
1 ) and X = {xij}I×J is taken to be a feasible solution

of (P1).

Theorem 4.4. The value of the objective function of (P1) at a feasible solution is equal to the value of the
objective function of (P ∗

1 ) at its corresponding CFS and conversely.

Theorem 4.5. There is one to one correspondence between optimal feasible solutions of (P1) and optimal among
the corresponding corner feasible solutions of (P ∗

1 ).
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Theorem 4.6. Optimizing (P1) is exactly equivalent to optimizing (P ∗
1 ), provided (P1) has a feasible solution.

All these results can be proved for TMTP on the same lines as proved by Dahiya and Verma [12] for the
CMTP. After establishing the equivalence, an OFS X = {xij}I×J of Stage-I problem (P1) is obtained from an
optimal CFS, Z = {zij}I∗×J∗ of (P ∗

1 ) by using the relation (A) given above.
Further, an OFS of Stage-II problem corresponding to the feasible solution X of Stage-I, is obtained from an

optimal CFS of (P ∗
1 ) by using the strategy discussed in the following subsection.

4.2. Strategy to find an optimal feasible solution of Stage-II corresponding to a feasible
solution X of Stage-I

Let Z = {zij}I∗×J∗ be a CFS of the problem (P ∗
1 ). Define:

(1) Ī = {i ∈ I|zi,n+1 > 0}.
(2) For each i ∈ Ī , J̄i = {j ∈ J |ūij �= 0} where ūij = u∗

ij − zij = uij − zij .
(3) S̄ =

⋃
i∈Ī({i} × J̄i).

Let there be p cells named as (i1, j1), (i2, j2), . . . , (ip, jp) in S̄ (i .e., |S̄| = p) such that their corresponding times
are arranged in ascending order, i .e., ti1j1 ≤ ti2j2 ≤ . . . ≤ tipjp . If for some a and b, tiaja = tibjb

, the cell with
the minimum index of i and then minimum index of j occurs first in this sequence. For allocation in Stage-II,
select the cells in this order and proceed as follows:

Let r be a number such that r ∈ {1, 2, . . . , p}.
Step 0. Set r = 1 and go to Step 1.

Step 1. Find yirjr = min{F̂2, ẑir ,n+1, ūirjr}
for

F̂2 =
{

F2 for r = 1,

F2 −
∑r−1

k=1 yikjk
for r > 1.

and

ẑir,n+1 =
{

zir,n+1 for r = 1
zir,n+1 −

∑
j∈J̄ir

yirj for r > 1 and tirj ≤ tirjr .

Step 2. If yirjr = F̂2, for some r, then go to Step 3.
If yirjr = ẑir ,n+1 for some r, then send this amount to the cell (ir, jr) and set r = r + 1 and go to
Step 1.
If yirjr = ūirjr for some r, then send this amount to the cell (ir, jr) and set r = r+1 and go to Step 1.

Step 3. Note tirjr as the optimal time for Stage-II and stop.
Continue doing these steps up to an index s such that

∑s−1
r=1 yirjr < F2 and

∑s
r=1 yirjr = F2, then

tisjs is noted as the optimal time for Stage-II corresponding to a feasible solution of Stage-I.

Clearly yirjr = 0, ∀ r > s and yij = 0 ∀ (i, j) /∈ S̄.
In the above strategy, a technique is given to find an optimal solution of Stage-II problem corresponding to

a given solution X of Stage-I problem systematically transporting the left over/stored amount at various bins
starting with a bin-machine link corresponding to the minimum time, then to the next minimum and so on till
a total flow of F2 units is transported.

Criterion to obtain an optimal feasible solution of (P3)
If Z = {zij}I∗×J∗ is a CFS of the problem (P ∗

1 ), then a feasible solution X = {xij}I×J of Stage-I, obtained
by taking xij = zij ∀ (i, j) ∈ I × J and the corresponding optimal feasible solution Y = {yij}I×J of Stage-II,
obtained by using the strategy discussed in Section 4.2, yield a feasible solution, say (X, Y ), of (P3) generating
a pair (T 0

1 , T 0
2 ) of Stage-I and Stage-II times.
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In order to find an OFS of the problem (P3), an iterative algorithm is proposed which at each iteration,
solves a restricted version of the problem (P ∗

1 ) that concentrates on decreasing the time of Stage-II, strictly. So,
during this iterative algorithm, a sequence of pairs of Stage-I and Stage-II times is obtained, out of all these
generated pairs, one with the minimum sum of Stage-I and Stage-II times is considered as optimal.

Remark 4.7. The current algorithm solves a balanced capacitated TMTP (P ∗
1 ) corresponding to Stage-I prob-

lem and a strategy discussed in Section 3.2 to read the solution of Stage-II problem. Also to solve this balanced
capacitated TMTP, we transform it into a balanced capacitated CMTP using lexicographic technique and the
best polynomial running time for this capacitated CMTP is o((m + 1)log n + 1((m + 1) + (n + 1)log(n + 1))),
where m+1 and n+1 are number of sources and destinations respectively (Orlin, 1997). While using the strat-
egy for Stage-II solution, only a finite time is consumed and therefore the proposed algorithm is a polynomial
time algorithm.

4.3. Restricted version of (P ∗
1 )

Let at the kth iteration of the algorithm, Stage-I time be T k
1 and the corresponding optimal time for Stage-II

be T k
2 . The restricted version of (P ∗

1 ) concentrates on decreasing the Stage-II time strictly, therefore, it is defined
at T k

2 and is denoted by P ∗
1 (T k

2 ).
Following restrictions are imposed on (P ∗

1 ):

(i) Put ti,n+1 = M , for i ∈ I for which minj(tij) ≥ T k
2 where M is a large positive number.

(ii) Set tij = M ∀ (i, j) ∈ I × J for which tij + T L
2 ≥ minh=0,1,...,k[T h

1 + T h
2 ] where T L

2 is the lower bound on
Stage-II time (discussed in Sect. 4.2).
Let Ik = {i ∈ I|minj tij < T k

2 }. Now for each i ∈ Ik, define Jk
i = {j ∈ J |tij < T k

2 } and form a set
Sk =

⋃
i∈Ik

({i} × Jk
i ).

This set Sk is the set of all bin-machine links which are eligible for transportation in the restricted version
for Stage-II problem.

(iii) If for some i ∈ Ik,
∑
j∈Jk

i

uij < ai, then for this i, apply the partial sum constraint defined by

∑
j∈Jk

i

zij + zi,n+1 ≤
∑
j∈Jk

i

uij .

Mathematically, the restricted version P ∗
1 (T k

2 ) takes the following form:

min
Z∈S∗

[
max

I∗×J∗
(t∗∗ij (zij))

]

where

S∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z = {zij} ∈ R(m+1)(n+1)

∣∣∣∣∣∣∣∣∣∣

∑
j∈J∗

zij = a∗
i ∀ i ∈ I∗

∑
i∈I∗

zij = b∗j ∀ j ∈ J∗

0 ≤ zij ≤ u∗
ij ∀ (i, j) ∈ I∗ × J∗

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and
t∗∗m+1,j = 0 ∀ j ∈ J t∗∗m+1,n+1 = M

t∗∗i,n+1 = 0 ∀ i ∈ Ik t∗∗i,n+1 = M ∀ i /∈ Ik

t∗∗ij = t∗ij ∀ (i, j) ∈ L

where
L = {(i, j) ∈ I × J |tij + T L

2 < min
h=0,1,...,k

[T h
1 + T h

2 ]} t∗∗ij = M ∀ (i, j) /∈ L.
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The partial sum constraints in restriction (iii) are treated as side constraints while solving the problem P ∗
1 (T k

2 )
as they do not occur in S∗. These side constraints can be handled by the technique discussed by Dantzing and
Thapa [11].

Definition 4.8 (M-feasible solution).
A feasible solution Z = {zij}I∗×J∗ of the problem P ∗

1 (T k
2 ) is called an M-feasible solution (MFS) if zij =

0 ∀ (i, j) ∈ I∗ × J∗ with t∗∗ij = M .

Definition 4.9 (M-feasible solution w.r.t (P1)).
A feasible solution Z = {zij}I∗×J∗ of the problem P ∗

1 (T k
2 ) is called an M-feasible solution with respect to

(P1) if:

(i) It is CFS of the problem P ∗
1 (T k

2 ).
(ii) zij = 0 ∀ (i, j) ∈ I × J with t∗∗ij = M .

From an M-feasible solution w.r.t (P1) of the problem P ∗
1 (T k

2 ), we read the solution X = {xij} of Stage-I
problem by taking xij = zij ∀ (i, j) ∈ I × J . To also find the corresponding OFS of Stage-II problem giving the
time strictly less than T k

2 , we define a Special MFS of the problem P ∗
1 (T k

2 ).

Definition 4.10 (Special M-feasible solution).
A feasible solution Z = {zij}I∗×J∗ of the problem P ∗

1 (T k
2 ) is called Special M-feasible solution (SMFS) if:

(i) It is MFS w.r.t. P1.
(ii)

∑
i∈Ik zi,n+1 ≥ F2.

Result. For a SMFS of the problem P ∗
1 (T k

2 ), F2 ≤
∑

(i,j)∈

∑
Sk

ūij .

Proof. Let the problem P ∗
1 (T k

2 ) has a SMFS, Z = {zij}I∗×J∗ . Clearly, the restriction (iii) holds, i.e.,∑
j∈Jk

i

zij + zi,n+1 ≤
∑
j∈Jk

i

uij ∀ i ∈ Ik.

Summing over i ∈ Ik ∑
i∈Ik

∑
j∈Jk

i

zij +
∑
i∈Ik

zi,n+1 ≤
∑
i∈Ik

∑
j∈Jk

i

uij . (4.1)

Since the solution is SMFS of P ∗
1 (T k

2 ), this implies

F2 ≤
∑
i∈Ik

zi,n+1.

Adding
∑
i∈Ik

∑
j∈Jk

i

zij on both sides, we get

∑
i∈Ik

∑
j∈Jk

i

zij + F2 ≤
∑
i∈Ik

∑
j∈Jk

i

zij +
∑
i∈Ik

zi,n+1 ≤
∑
i∈Ik

∑
j∈Jk

i

uij

(By (4.1))
⇒

∑
i∈Ik

∑
j∈Jk

i

zij + F2 ≤
∑
i∈Ik

∑
j∈Jk

i

uij

⇒ F2 ≤
∑
i∈Ik

∑
j∈Jk

i

(uij − zij) =
∑
i∈Ik

∑
j∈Jk

i

ūij =
∑

(i,j)∈

∑
Sk

ūij

⇒ F2 ≤
∑

(i,j)∈

∑
Sk

ūij . �
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4.4. Some important remarks

Remark 4.11. If the solution of the problem P ∗
1 (T k

2 ) is not SMFS for some k, then the proposed algorithm is
terminated.

Remark 4.12. Corresponding to a SMFS, say Zk+1 = {zij}I∗×J∗ of P ∗
1 (T k

2 ), a feasible solution Xk+1 of Stage-
I is obtained by taking xij = zij ∀ (i, j) ∈ I×J and corresponding to Xk+1, an OFS Y k+1 of Stage-II problem is
obtained by using the strategy discussed in Section 3.2 for (i, j) ∈ S̄k instead of S̄ where S̄k =

⋃
i∈Īk({i}× J̄k

i )
and Īk = {i ∈ Ik|zi,n+1 > 0}, J̄k

i = {j ∈ Jk
i |ūij �= 0} for each i ∈ Īk.

We denote T (Xk+1) = T k+1
1 and T (Y k+1) = T k+1

2 .

Remark 4.13. A SMFS of the problem P ∗
1 (T k

2 ), yields a pair of Stage-I and Stage-II times in which Stage-II
time is strictly less than T k

2 . The existence of such an OFS of Stage-II problem is established in next section.

5. Theoretical justification of the proposed algorithm

Theorem 5.1. At an optimal SMFS solution of the problem P ∗
1 (T k

2 ) yielding Stage-I time as T k+1
1 , an OFS of

the corresponding Stage-II problem exists that yields a time T k+1
2 such that T k+1

2 < T k
2 .

Proof. Let Zk+1 = {zij}I∗×J∗ be an optimal SMFS of P ∗
1 (T k

2 ). Let Xk+1 = {xij}I×J be the corresponding
feasible solution of Stage-I problem and Y k+1 = {yij}I×J be a solution of Stage-II corresponding to Xk+1

obtained by using the strategy discussed in Section 4.2.

Claim 1 (Feasibility). Y k+1 is a feasible solution of Stage-II problem corresponding to the feasible solution
Xk+1 of Stage-I problem.

On contrary, suppose Y k+1 = {yij}I×J is not a feasible solution of Stage-II problem.
By the construction of Y k+1, yij ≥ 0 ∀ (i, j) ∈ S̄k and yij = 0 ∀ (i, j) ∈ (I × J)\S̄k which implies that

yij ≥ 0 ∀ (i, j) ∈ I × J.

Therefore
∑
i∈I

yij ≥ 0 ∀ j ∈ J.

Also for each i ∈ Īk,
∑

j∈J̄i
k

yij ≤ zi,n+1 and yij = 0 for j ∈ J\J̄i
k
.

⇒
∑
j∈J

yij =
∑

j∈J̄i
k

yij +
∑

j∈J\J̄i
k

yij ≤ zi,n+1 + 0 = ai −
∑
j∈J

xij = āi

and for each i ∈ I\Īk,
∑
j∈J

yij = 0 ≤ āi.

Therefore
∑
j∈J

yij ≤ āi ∀ i ∈ I.

So, if we assume that Y k+1 is not a feasible solution of Stage-II, then the only constraint that is violated is∑
i∈I

∑
j∈J

yij = F2.

Then by construction of Y k+1, there is only one possibility that
∑
i∈I

∑
j∈J

yij < F2. This implies
∑

(i,j)∈S̄k

yij <

F2, as S̄k ⊆ I × J and yij = 0 ∀ (i, j) /∈ S̄k.

⇒
∑
i∈Īk

∑
j∈J̄i

k

yij < F2. (5.1)
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In this situation, by construction of Y k+i, ∑
j∈J̄k

i

yij = zi,n+1 ∀ i ∈ Īk.

Summing over i ∈ Īk ∑
i∈Īk

∑
j∈J̄k

i

yij =
∑
i∈Īk

zi,n+1. (5.2)

From (5.2) and (5.3) we get,
∑
i∈Īk

zi,n+1 < F2.

Also zi,n+1 = 0 ∀ i ∈ Ik\Īk (by definition of Īk), which implies∑
i∈Ik

zi,n+1 < F2. (5.3)

A contradiction to the assumption that Zk+1 is a Special M-feasible solution. Therefore, Y k+1 is a feasible
solution of Stage-II corresponding to the feasible solution Xk+1 of Stage-I problem.

Claim 2 (Optimality). Y k+1 is an optimal feasible solution of Stage-II corresponding to the feasible solution
Xk+1 of Stage-I.

On contrary, let Y ′ = {y′
ij} be any other feasible solution of Stage-II problem corresponding to the feasible

solution Xk+1 of Stage-I problem yielding time of Stage-II problem strictly less than that yielded by Y k+1.
Let there be p elements in S̄k arranged in ascending order of transportation time (as discussed in Sect. 4.2),

i.e.,
ti1j1 ≤ ti2j2 ≤ ti3j3 ≤ . . . ≤ tipjp .

We will prove the optimality of Y k+1 by using induction on the cardinality of the set S̄k.

Case I. Let |S̄k| = 1, i.e., S̄k = {(i1, j1)}.
By construction of Y k+1 and its feasibility yi1j1 = min{F2, zi1,n+1, ūi1j1}, therefore yi1j1 = F2.
As Y ′ yields Stage-II time strictly less than that yielded by Y k+1, therefore y′

i1j1 should be 0 which is absurd,
as we assume Y ′ to be a feasible solution of Stage-II in which flow F2 is transported.

Case II. Let |S̄k| = 2, i.e., S̄k = {(i1, j1), (i2, j2)}.
The cells allowed for allocation are (i1, j1), (i2, j2) and

∑
q=1,2

yiqjq = F2.

If for Y k+1, yij > 0 only for (i1, j1) and yij = 0 for (i2, j2), then it can be proved on the same lines as proved for
Case I. But if yij > 0 for (i1, j1) and (i2, j2) both, then by construction of Y k+1, yi1j1 = min{F2, zi1,n+1, ūi1j1}

Clearly yi2j2 > 0, this implies that yi1j1 �= F2.

Following subcases arise:
Subcase (i)

If yi1j1 = ūi1j1 < F2. (5.4)

By assumption that Y ′ is a feasible solution yielding Stage-II time strictly less than that yielded by Y k+1,

F2 = y′
i1j1 ≤ ūi1j1 (5.5)

Combining (5.4) and (5.5)
F2 ≤ ūi1j1 < F2

which is a contradiction.
Subcase (ii)

If yi1j1 = zi1,n+1 < F2 (5.6)
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By assumption that Y ′ yields Stage-II time strictly less than that yielded by Y k+1,

F2 = y′
i1j1 ≤ zi1,n+1. (5.7)

Combining (5.6) and (5.7)
F2 ≤ zi1,n+1 < F2.

which is a contradiction.

Case III. Let |S̄k| = 3.

The cells allowed for allocation are (i1, j1), (i2, j2), (i3, j3) and
∑

q=1,2,3

yiqjq = F2.

If for Y k+1, yij > 0 only for (i1, j1) and yij = 0 for (i2, j2) and (i3, j3), then it can be proved on the same lines
as proved for Case I.
If for Y k+1, yij > 0 for (i1, j1), (i2, j2) and yij = 0 for (i3, j3), then it can be proved on the same lines as
proved for Case II.
But if for Y k+1, yij > 0 for (i1, j1), (i2, j2) and (i3, j3), then start with (i1, j1) and find

yi1j1 = min{F2, zi1,n+1, ūi1j1}.

Either yi1j1 = ūi1j1 or yi1j1 = zi1,n+1.
In any of the above case, go to (i2, j2) and find

yi2j2 = min{F̂2, ẑi2,n+1, ūi2j2} = min{F2 − yi1j1 , ẑi2,n+1, ūi2j2}

Now either yi2j2 = ūi2j2 or yi2j2 = ẑi2,n+1 for the reason that yi2j2 can not be equal to F2 − yi1j1 as yij > 0 for
(i1, j1), (i2, j2) and (i3, j3).
Subcase (i) yi1j1 = ūi1j1 and yi2j2 = ūi2j2 .
Clearly

3∑
q=1

yiqjq = F2 ⇒
2∑

q=1

yiqjq < F2 ⇒ ūi1j1 + ūi2j2 < F2.

By assumption that Y ′ is a feasible solution and yields better time than Y k+1 we have

F2 =
2∑

q=1

y′
iqjq

≤ ūi1j1 + ūi2j2 < F2.

which is a contradiction.
Subcase (ii) yi1j1 = ūi1j1 and yi2j2 = ẑi2,n+1.
Clearly

3∑
q=1

yiqjq = F2 ⇒
2∑

q=1

yiqjq < F2.

⇒ ūi1j1 + ẑi2,n+1 < F2 (5.8)

There are two possibilities:

(i) If i1 = i2, then ẑi2,n+1 = ẑi1,n+1 = zi1,n+1 − ūi1j1

Inequality (5.8) implies that ūi1j1 + zi1,n+1 − ūi1j1 < F2 ⇒ zi1,n+1 < F2.
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Again, by assumption that Y ′ is a feasible solution and yields better time than Y k+1 we have

F2 =
2∑

q=1

y′
iqjq

≤ zi1,n+1 < F2

which is a contradiction.

(ii) If i1 �= i2, then ẑi2,n+1 = zi2,n+1 (because nothing has been shipped from the source i2 yet).

Inequality (5.8) implies that ūi1j1 + zi2,n+1 < F2. Again, by assumption that Y ′ is a feasible solution and
yields better time than Y k+1 we have

F2 =
2∑

q=1

y′
iqjq

≤ ūi1j1 + zi2,n+1 < F2

which is a contradiction.

Subcase (iii) yi1j1 = zi1,n+1 and yi2j2 = ūi2j2 .

Here it is clear that i1 �= i2.

Also

3∑
q=1

yiqjq = F2 ⇒
2∑

q=1

yiqjq < F2 ⇒ zi1,n+1 + ūi2j2 < F2

Again, by assumption that Y ′ is a feasible solution and yields better time than Y k+1, we have

F2 =
2∑

q=1

y′
iqjq

≤ zi1,n+1 + ūi2j2 < F2

which is a contradiction.

Subcase (iv) yi1j1 = zi1,n+1and yi2j2 = ẑi2,n+1.

Here also, i1 �= i2.

Now

3∑
q=1

yiqjq = F2 ⇒
2∑

q=1

yiqjq < F2 ⇒ zi1,n+1 + zi2,n+1 < F2.

By assumption that Y ′ is a feasible solution and yields better time than Y k+1 we have,

F2 =
q=2∑
q=1

y′
iqjq

≤ zi1,n+1 + zi2,n+1 < F2

which is a contradiction.
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Proceeding this way for |S̄k| = 4, 5, . . . , p, we get a similar type of contradiction in each case.
Thus, there does not exist a solution like Y ′ giving Stage-II time strictly less than that given by Y k+1. Thus

Y k+1 is an OFS of Stage-II problem corresponding to a feasible solution Xk+1 of Stage-I. Also by construction
of Y k+1, it is clear that T k+1

2 < T k
2 . �

Theorem 5.2. Let an OFS of the problem P ∗
1 (T k

2 ) is a Special M-feasible solution. Then T k+1
1 ≥ T k

1 .

Proof. On contrary, suppose T k+1
1 < T k

1 .
Since the pair (T k

1 , T k
2 ) is obtained from an optimal SMFS of the problem P ∗

1 (T k−1
2 ), so T k

1 is the time of
Stage-I for the problem P ∗

1 (T k−1
2 ) and T k

2 is the corresponding optimal time for Stage-II. If T k+1
1 < T k

1 , this
means that the cell (i, j) ∈ I × J with tij = T k+1

1 is not blocked in the problem P ∗
1 (T k−1

2 ) and ti,n+1 = 0 for
i ∈ I for which minj∈J tij < T k−1

2 , i.e., minj∈J tij ≤ T k
2 (as T k

2 < T k−1
2 ).

Also T k
2 < T k−1

2 implies that Jk
i ⊂ Jk−1

i for each i ∈ I.
Thus any feasible solution Zk+1 = {zij}I∗×J∗ of the problem P ∗

1 (T k
2 ) satisfying

∑
j∈Jk

i

zij + zi,n+1 ≤
∑
j∈Jk

i

uij ∀ i ∈ Ik

must also satisfy ∑
j∈Jk−1

i

zij + zi,n+1 ≤
∑

j∈Jk−1
i

uij ∀ i ∈ Ik−1

as Ik ⊂ Ik−1. Therefore, an optimal SMFS, Zk+1 of the problem P ∗
1 (T k

2 ) giving time of transportation of
Stage-I as T k+1

1 is a feasible solution of the problem P ∗
1 (T k−1

2 ) as it satisfies the partial sum constraint for
Jk−1

i = {j ∈ J |minj∈J tij < T k−1
2 } also. Thus, Zk+1 is a SMFS of the problem P ∗

1 (T k−1
2 ) with associated time

as T k+1
1 which is strictly less than T k

1 . This is a contradiction to the fact that T k
1 is the optimal time of the

problem P ∗
1 (T k−1

2 ). Hence T k+1
1 ≥ T k

1 . �

Theorem 5.3. If T̂1 + T̂2 = mink≥0[T k
1 + T k

2 ], where T k
1 and T k

2 are the times of transportation of
Stage-I and Stage-II respectively, corresponding to an optimal SMFS of the problem (P ∗

1 ), for k = 0 and
P ∗

1 (T k−1
2 ), for k ≥ 1, then T̂1 + T̂2 is the optimal value of objective function of the problem (P3).

Proof. Let if possible T̂1 + T̂2 not be the optimal value of the objective function of the problem (P3). Suppose
there exists a feasible solution (X̃, Ỹ ) of (P3) that provides a pair of Stage-I and Stage-II times as (T̃1, T̃2) such
that T̃1 + T̃2 < T̂1 + T̂2, i.e.,

T̃1 + T̃2 < min
k≥0

[
T k

1 + T k
2

]
. (5.9)

As (X̃, Ỹ ) is a feasible solution of (P3), so X̃ is the feasible solution of Stage-I problem (P1) and Ỹ be the
corresponding OFS of Stage-II problem (P2). Corresponding to (X̃, Ỹ ), define a solution Z̃ = {zij}I∗×J∗ of the
problem (P ∗

1 ) (a balanced transportation problem equivalent to Stage-I problem (P1)) as

zij = xij ∀ (i, j) ∈ I × J
zi,n+1 = ai −

∑
j∈J xij ∀ i ∈ I

zm+1,j =
∑

i∈I uij −
∑

i∈I xij ∀ j ∈ J.
zm+1,n+1 = 0

(5.10)

Now, firstly we prove that Z̃ = {zij}I∗×J∗ defined by equation (5.10) is a feasible solution of the problem (P ∗
1 ).

For all i ∈ I, ∑
j∈J∗

zij =
∑
j∈J

zij + zi,n+1 =
∑
j∈J

xij + ai −
∑
j∈J

xij = ai = a∗
i .



CAPACITATED TWO-STAGE TIME MINIMIZATION TRANSPORTATION PROBLEM WITH RESTRICTED FLOW 461

For i = m + 1,
∑
j∈J∗

zm+1,j =
∑
j∈J

zm+1,j + zm+1,n+1 =
∑
j∈J

zm+1,j + 0

=
∑
j∈J

(∑
i∈I

uij −
∑
i∈I

xij

)

=
∑
j∈J

∑
i∈I

uij −
∑
j∈J

∑
i∈I

xij

=
∑
j∈J

∑
i∈I

uij − F1 = a∗
m+1.

Similarly, for all j ∈ J ,

∑
i∈I∗

zij =
∑
i∈I

zij + zm+1,j =
∑
i∈I

xij +
∑
i∈I

uij −
∑
i∈I

xij =
∑
i∈I

uij = b∗j .

For j = n + 1,
∑
i∈I∗

zi,n+1 =
∑
i∈I

zi,n+1 + zm+1,n+1 =
∑
i∈I

(ai −
∑
j∈J

xij) + 0 =
∑
i∈I

ai − F1 = b∗n+1. Also for

(i, j) ∈ I × J, 0 ≤ zij ≤ u∗
ij (as zij = xij and u∗

ij = uij ∀ (i, j) ∈ I × J).

For i = m + 1, zm+1,j =
∑
i∈I

uij −
∑
i∈I

xij ≤
∑
i∈I

uij − bj = u∗
m+1,j ∀ j ∈ J .

Also, zm+1,j =
∑
i∈I

uij −
∑
i∈I

xij ≥ 0 and zi,n+1 = ai −
∑
j∈J

xij ≤ ai = u∗
i,n+1.

Also, zi,n+1 = ai −
∑
j∈J

xij ≥ 0 (as X̃ = {xij} is a feasible solution of (P1)).

Therefore, Z̃ = {zij}I∗×J∗ is a feasible solution of the problem (P ∗
1 ).

Now clearly, T̃2 ≥ T L
2 because T L

2 is the minimum possible time of Stage-II. Also T̃2 ≤ T 0
2 , for if T̃2 > T 0

2 ,
then the inequality (5.9) implies T̃1 < T 1

0 which contradicts the optimality of T 0
1 for the problem (P ∗

1 ). Therefore

T L
2 ≤ T̃2 ≤ T 0

2 . (5.11)

Now if (T r
1 , T r

2 ) is a pair of times of Stage-I and Stage-II such that either the optimal solution of P ∗
1 (T r

2 ) is not
SMFS or T r

2 = T L
2 , then T r

2 ≤ T̃2 ≤ T 0
2 .

If T̃2 ≥ T r
2 then by inequality (5.9),

T̃1 < T r
1 . (5.12)

Consider the problem P ∗
1 (T r−1

2 ), r ≥ 1 withT r
1 as the Stage-I time given by optimal SMFS of this problem.

As proved earlier, Z̃ is a feasible solution of (P ∗
1 ) but it may or may not be a feasible solution of P ∗

1 (T r−1
2 ).

Case (i): Z̃ is a feasible solution of P ∗
1 (T r−1

2 ), r ≥ 1.
Subcase (i) Suppose it is also a SMFS of P ∗

1 (T r−1
2 ) which implies that it is an MFS with respect to (P1). It

means that the solution Z̃ is giving Stage-I time equal to T̃1, such that T̃1 < T r
1 which is a contradiction to the

optimality of T r
1 for the problem P ∗

1 (T r−1
2 ).

Subcase (ii) Suppose Z̃ is not a SMFS of P ∗
1 (T r−1

2 ), then either Z̃ is not MFS with respect to (P1) or∑
i∈Īr−1 zi,n+1 < F2.
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(a) If Z̃ is not MFS with respect to (P1). It means zij > 0 for some (i, j) ∈ I × J with tij = M .
This means zij > 0 for some (i, j) /∈ L (because tij = M only for (i, j) /∈ L where L = {(i, j) ∈ I × J |tij +
T L

2 < minh=0,1,...,r−1[T h
1 +T h

2 ]}). But Z̃ yields a solution giving Stage-I time T̃1, therefore, for (i, j) ∈ I ×J
with tij = T̃1, zij > 0 and eventually that (i, j) does not belong to L.
⇒ T̃1 + T L

2 ≥ minh=0,1,...,r−1[T h
1 + T h

2 ].
⇒ T̃1 + T̃2 ≥ T̃1 + T L

2 ≥ minh=0,1,...,r−1[T h
1 + T h

2 ] (as T̃2 ≥ T L
2 ).

which is a contradiction as to (5.9).
(b) If

∑
i∈Īr−1 zi,n+1 < F2, then F2 cannot be transported in time less than T r−1

2 , therefore for Z̃, T̃2 ≥ T r−1
2 .

From (5.9), T̃1 < T r−1
1 .

So, we consider the problem P ∗
1 (T r−2

2 ) and proceed as before and continue this process until we reach at a step
with T̃2 ≥ T 0

2 which gives that T̃1 < T 0
1 . A contradiction to optimality of T 0

1 .

Case (ii): Let Z̃ not be a feasible solution of P ∗
1 (T r−1

2 ), i.e, the partial sum constraints are not satisfied.
This implies

∑
j∈Jr−1

i

zij + zi,n+1 >
∑

j∈Jr−1
i

uij for some i ∈ Īr−1.

It means in Stage-II, F2 has to be sent at a route with time greater than or equal to T r−1
2 but then T̃1 < T r−1

1

So, we consider the problem P ∗
1 (T r−2

2 ) and proceed as before and continue this process until we reach at a step
with T̃2 ≥ T 0

2 which gives that T̃1 < T 0
1 . A contradiction to optimality of T 0

1 .
Hence there does not exist any solution of (P3) giving a pair of the type (T̃1, T̃2) satisfying (5.9). �

5.1. Computing T L
2

Find minI×J tij = tr1s1 .
If F2 ≤ ur1s1 , then T L

2 = tr1s1 else, find minI×J\(r1s1) tij = tr2s2 .
If F2 ≤ ur1s1 + ur2s2 , then T L

2 = tr2s2 else, find minI×J\(r1s1),(r2s2) tij = tr3s3 .
Continuing this way, we get T L

2 = trk+1sk+1 where minI×J\{(r1s1),(r2s2)...(rksk)} tij = trk+1sk+1

if
∑l=k

l=1 urlsl
< F2 and

∑l=k+1
l=1 urlsl

≥ F2.

6. Algorithm

Initial step: Obtain an OFS of (P ∗
1 ) and note the Stage-I and Stage-II times as T 0

1 and T 0
2 respectively. If

T 0
2 = T L

2 , then stop and go to terminal step, else go to general step.

General step: Let the pairs in hand be (T g
1 , T g

2 ) for g = 0, 1, . . . , k − 1.
Construct the problem P ∗

1 (T k−1
2 ) and find its OFS. If this is not a SMFS, then stop and go to terminal step,

otherwise read the time T k
1 of Stage-I and T k

2 of Stage-II.
If T k

2 = T L
2 , stop and go to terminal step, else repeat the general step for next higher values of k.

Terminal step: Declare ming≥0[T
g
1 + T g

2 ] as the optimal value of the objective function of (P3).

7. Numerical illustration

Consider the following 6× 5 transportation problem given Table 1 having six bins and five machines. Table 2
gives the maximum capacity (the maximum number of units of the semi-finished jobs allowed for shipping) of
each (i, j)th link. In this problem,

∑
i ai = 400 and

∑
j bj = 300 and the number of jobs to be sent in first stage

is F1 = 350 and in second stage is F2 = 40.
Here T L

2 = 13.
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Table 1. Time of transportation along various links.

M1 M2 M3 M4 M5 ai

B1 82 28 96 80 68 80

B2 91 55 49 96 76 70

B3 13 96 81 66 75 50

B4 92 97 15 04 40 90

B5 64 16 43 85 66 60

B6 10 98 92 94 18 50

bj 50 40 75 75 60

Table 2. Capacity/upperbound on the bin-machine links.

20 25 25 30 20

15 20 25 25 20

35 25 25 15 20

25 20 25 20 20

20 25 20 25 15

15 20 25 30 20

7.1. Initial step:

An OFS of the problem (P ∗
1 ) gives T 0

1 = 85 and the corresponding T 0
2 = 92 (given in the Tab. 3). So the

current value of T 0
1 + T 0

2 is equal to 177. Since T 0
2 > T L

2 , go to general step of the algorithm.

7.2. General step:

Iteration 1: Construct the problem P ∗
1 (T 0

2 ), its SMFS yields Stage-I time T 1
1 = 92 and the corresponding

Stage-II time T 1
2 = 76.

The current value of T 1
1 + T 1

2 becomes 168. As T 1
2 > T L

2 , solve P ∗
1 (T 1

2 ).
Iteration 2: P ∗

1 (T 1
2 ) yields the pair (T 2

1 , T 2
2 ) = (92, 16).

Iteration 3: P ∗
1 (T 2

2 ) yields the pair (T 3
1 , T 3

2 ) = (92, 13).
Here T 3

2 = T L
2 , therefore, Stage-II time can not be decreased further. So the algorithm terminates.

7.3. Terminal step:

The optimal value of the objective function of the problem (P3) is given by minh=0,1,2,3[T h
1 + T h

2 ] = 105. An
optimal feasible solution of the problem P ∗

1 (T 2
2 ) is shown in Table 4.

In Table 4, the entry at the center of each cell gives the time of transportation. Note that the entries in
boldface represent basic cells and the entries of the form a represent the non basic cells which are at their upper
bounds. Feasible solutions of Stage-I and Stage-II problems corresponding to the OFS of the problem P ∗

1 (T 2
2 )

are depicted in Tables 5 and 6 respectively.
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Table 3. (OFS) of the problem P ∗
1 .

M1 M2 M3 M4 M5 M6

B1 82
25

28 96
30

80 68
5

0

B2 91
20

55
25

49 96 76
15

0
10

B3 13
30

96 81
5

15
66 75 0

B4 92 97
25

15
20

4
20

40 0
25

B5 64
5

16
5

20
43 85

10

15
66 0

B6
15

10 98 92 94
20

18
15

0

B7
80

0 0
80

70
0

70
0 0

20
M

Table 4. (OFS) of the problem P ∗
1 (T 2

2 ).

M1 M2 M3 M4 M5 M6

B1
20

82
25

28 M
30

80 68
5

M

B2 91
5

20
55

25
49 M

20
76 M

B3 13 M 81
0

15
66 75 0

35

B4 92
25

M
25

15
20

4
20

40 0

B5 64
5

25
16

20
43 85

10
66 M

B6 10 M 92
15

94
20

18
15

0

B7 0
75

0
80

0
70

70
0 0

50
M
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Table 5. OFS of Stage-I of the problem P ∗
1 (T 2

2 ).

M1 M2 M3 M4 M5

B1
20

82

25

28 96

30

80 68

5

B2
91

5

20

55

25

49 96

20

76

B3
13 96 81

0

15

66 75

B4
92

25

97

25

15

20

4

20

40

B5
64

5

25

16

20

43 85

10

66

B6
10 98 92

15

94

20

18

Table 6. OFS of Stage-II of the problem P ∗
1 (T 2

2 ).

M1 M2 M3 M4 M5

B1
82 28 96 80 68

B2
91 55 49 96 76

B3
25

13 96 81 66 75

B4
92 97 15 4 40

B5
64 16 43 85 66

B6
15

10 98 92 94 18
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8. Concluding remarks

(1) The problem considered in this paper is related to a steel industry manufacturing a product whose manu-
facturing process involves the transportation of semi-finished jobs from various bins to the various identical
manufacturing facilities for the final processing and finishing. It is assumed that vehicles are available for
the transportation and due to some constraints, a capacity is introduced on each bin-machine link. Also,
depending upon various factors, the number of products equal to the market demand cannot be sent in one
go. So the transportation has to take place in two stages. It is further assumed that the number of products
equal to the market demand, when manufactured, are sent to the market in a truck consuming a fixed time
of transportation. If a machine receives k number of jobs for processing from some bins, it takes k times the
per unit processing time which would be a fixed time. So only the minimization of the time of transportation
of semi-finished jobs from bins to the manufacturing units is considered to be of prime importance. So
our objective is to find out that how the semi-finished jobs (equal to the market demand) must be trans-
ported on various bin-machine links in Stage-I and Stage-II so that total time of transportation is minimum.

(2) A polynomial time iterative algorithm is proposed to find an optimal solution to this capacitated two-stage
time minimization transportation problem that generates a sequence of pairs of transportation times of
Stage-I and Stage-II starting with minimum time of Stage-I. The generated pairs are such that at each
iteration, Stage-II time decreases strictly and Stage-I transportation time may increase. The algorithm
terminates as soon as the minimum time of Stage-II is reached or the problem is not Special M-feasible at
some iteration. In the proposed algorithm, we are solving a balanced capacitated CMTP and its restricted
versions at each iteration.
Various polynomial time solution techniques are available to solve capacitated CMTP [28] and any of the
above mentioned techniques can be applied to solve this problem. Capacitated CMTP can be solved by
converting it into an equivalent network problem with lower and upper arc capacities [1, 3, 23].

(3) The algorithm terminates in a finite number of steps. The maximum number of iterations that may be re-
quired is s−r+1 where s is the total number of distinct time entries and r ∈ {1, 2, . . . , s} such that T 1

1 = tr.

(4) In the current problem, it is also assumed that total number of jobs to be manufactured is less than or equal
to 2F1. If it is greater than 2F1, it would have become a multi-level problem which is a topic of further
research.
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