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COMPUTATIONAL ANALYSIS OF MULTI-SERVER DISCRETE-TIME
QUEUEING SYSTEM WITH BALKING, RENEGING AND SYNCHRONOUS

VACATIONS

V. Goswami
1

and G.B. Mund
1

Abstract. This paper proposes a discrete-time multi-server queue with multiple synchronous vacations
under balking and reneging. Arriving customers decide whether to join the system or balk on the basis
of some state-dependent joining/balking probabilities, and renege according to a geometric distribution
when servers are busy. The servers take a vacation together if there are no customers in the system
at a service completion instant. When the servers are on vacation, an arriving customer activates an
impatience timer which is geometrically distributed. The inter-arrival times, service times and vacation
times are assumed to be independent and geometrically distributed. We obtain closed-form expressions
and develop a computational algorithm for calculating the steady-state probabilities. Specifically, we
establish the application of the proposed framework in analyzing a multi-server queueing system with
synchronous vacation under balking and reneging. Applications of such models can be found in a
wide variety of real-time systems including call centers, computer and communication systems, cloud
computing, quality control and maintenance in industrial establishments. We develop a cost model
to determine the optimal service rate. Various performance measures and numerical examples are
sketched out to demonstrate the impact of the proposed method. Some special cases of the model have
also been discussed. Finally, we show that in the limiting case the results converge to the corresponding
continuous-time counterparts.
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1. Introduction

There is an emerging trend to analyze queueing systems from an economic point of view to deal the customers’
dissatisfaction for waiting and their desire for service. When this dissatisfaction gets adequately firm and cus-
tomers depart before being served, the affected service providers must take measure to minimize the congestion
to an extent that customers can tolerate. From business point of view, customer impatience has a very negative
impact as the firms lose their potential customers, which affects the business as a whole. The customers may
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have options to balk or join the queue. Service providers may tolerate a certain amount of balking if it provides
to a higher level of customer satisfaction.

Customers’ impatience in queueing systems can be observed in many real-time systems, such as call cen-
ters, communication networks and web services, telecommunication applications, hospital emergency situations,
waiting lines at airports, production-inventory systems, public offices, and many other associated areas. Firstly,
it is the customer that takes the decision to abandon hastily, most obvious example is a call centre. Secondly,
the system may decide to take out customers from the queue. The first scenario may be evident in audio or
video streaming applications, when packets affinity to such applications would not reach at their next des-
tination, they are removed from the buffer. The second scenario may be of great significance in inventory
management [6]. Multi-server queueing models with impatient customers have been investigated by a number
of researchers [1, 2, 11, 17, 20, 24, 27].

Queueing models with impatient customers and server vacations have been studied due to their suitability and
applicability. Dequan et al. [30] investigated the influence of balking, reneging and server vacations in a single
server queueing system. Yue et al. [31] and Selvaraju and Goswami [23] studied customers’ impatience with
working vacations in an Markovian queue. Goswami [16] investigated GI/M/1/N queue with balking, reneging
and working vacations. Altman and Yechaili [3, 4] analyzed queueing systems with impatient customers when
the servers are on vacation and unavailable for service, respectively. Economou et al. [12] considered an optimal
balking strategies with general service and vacation times in a single-server queues. Wang et al. [26] studies the
single server machine repair problem with working vacation. Analysis of a multi-server queue with markovian
arrivals in which a group of servers take a simultaneous phase type vacation has been reported in [7]. Yue and
Sun [28] considered multi-server queuing system with balking, reneging and synchronous vacations of partial
servers. They derived the distributions of the conditional waiting time of the customers who join the system when
all the available servers are busy and finally get service. Yue and Yue [29] analyzed an M/M/c/N queueing
system with balking, reneging and synchronous vacations of servers together. Ke and Wu [18] presented a
multi-server machine repair model with standbys under a synchronous multiple vacations. Several authors have
investigated discrete-time multi-server queues under early arrival system (EAS) and late arrival system with
delayed access (LAS-DA) [5,8–10,13]. Lozano and Moreno [21] studied a discrete-time single-server queue with
balking. Research work on balking and reneging in discrete-time queuing systems with vacations comes out to be
a recent endeavor. Readers may refer to [15, 25] for the variations and extensions of vacation models. Recently,
the analysis of Geo/Geo/m queue with balking has been studied in Goswami [14].

Most of the literature on customers’ impatience focus on the continuous-time models. In comparison to
the continuous-time case, the discrete-time queues with balking, reneging and vacations received much less
attention in literature. In reality, the discrete-time multi-server queueing system with balking and reneging are
more suitable for the design and analysis of slotted time communication systems. One can find the continuous-
time result from a discrete-time queue in the limiting case but converse is not true. Analysis and modelling
of multi-server discrete-time queue with balking and renenging is more engrossed and completely varied than
the equivalent continuous-time counterpart. In various business, losses in income due to balking and renenging
are huge and hence need to be examined in suitable context. To the best of our knowledge, the discrete-time
Geo/Geo/m queue with balking, reneging and synchronous vacations has never been studied. In this paper, we
study the discrete-time multi-server queue with or without multiple synchronous vacations under balking and
reneging.

The rest of the paper is organized as follows. In Section 2, we present descriptions of the discrete-time multi-
server queueing model with balking, renenging and multiple synchronous vacations for LAS-DA. Section 3 gives
the steady-state analysis of the model. Section 4 presents algorithm for computation of steady-state probabilities.
Section 5 provides various performance measures. Section 6 discusses some special cases of our proposed model.
Section 7 presents numerical results to establish the impact of different parameters on system performances.
Section 8 Concludes the paper. Finally, a relationship between our model and its continuous counterpart is
given in the appendix.
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2. Description of the model

We study a multi-server discrete-time queue with balking, reneging and synchronous vacations under late
arrival system with delayed access (LAS-DA). In LAS-DA, potential arrivals take place in the interval (t−, t)
and potential departures take place in the interval (t, t+). We denote x̄ = 1 − x for any real number x ∈ [0, 1].
The assumptions of our proposed queueing system are as follows:

• The inter-arrival times of successive arrivals are independent and geometrically distributed with probability
mass function (p.m.f.)

ai = λ̄i−1λ, i ≥ 1, 0 < λ < 1.

• There are m servers and service times are assumed to be independent and geometrically distributed with
p.m.f.

si = μ̄i−1μ, i ≥ 1, 0 < μ < 1.

The probability that j services are completed given that there are i busy servers is given by

c(j|i) =
(
i

j

)
μj μ̄i−j , for i = 0, 1, 2, . . . ,m, j = 0, 1, . . . , i. (2.1)

• All the m servers take a vacation synchronously when they are idle. At a vacation completion epoch, all the
m servers take another synchronous vacation if there are no customers; otherwise, the servers start serving
the customers. The vacation times V are independent and geometrically distributed with common p.m.f.

P (V = i) = φ̄i−1φ, i ≥ 1, 0 < φ < 1.

• If all the servers are busy, an arriving customer may either decide to join the system or balk. Let bi be the
probability that customer joins the system (balk with probability 1 − bi), when there are i ≥ m customers
ahead in the system. We assume that 0 ≤ bi ≤ 1, m ≤ i ≤ N − 1. The arrival rate is given by

λi =

⎧⎪⎪⎨
⎪⎪⎩
λ, 1 ≤ i ≤ m− 1,

λbi, m ≤ i ≤ N − 1,

0, i = N .

If the servers are on synchronous vacations, an arriving customer in the system may join {or balk} the
system with probability bi {1−bi}, when there are i (i ≥ 0) customers in the system. In this case, the arrival
rate is given by

λi =

{
λbi, 0 ≤ i ≤ N − 1, with b0=1,

0, i = N .
.

• After joining the system, each reneging customer remains a certain length of time before turning impatient
and departing from the system. The reneging time is assumed to follow geometrical distribution with common
p.m.f. P (r = i) = ᾱi−1α, i ≥ 1, 0 < α < 1. Let i and n represent the number of busy servers and the
number of customers in the system, respectively. The average reneging rate is αn−i = (n−i)α, i+1 ≤ n ≤ N ,
i = 0,m; as the arrival and departure of impatient customers without service are independent.

• The inter-arrival times, vacation times and service times are mutually independent. The service discipline is
presumed to be first-come, first-served (FCFS).
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Figure 1. Schematic representation of a Call Center.

Practical application of the model

Figure 1 depicts a schematic representation of a call center. If an incoming call finds all trunk lines filled, it
receives a busy signal and gets blocked from entering the system [19, 32]. Otherwise, it is either connected or
it balks. Let the number of waiting slots at the Automatic Call Distributor (ACD) be N and the number of
Customer Service Representatives (CSR) be m. Note that there are N+m trunk lines at the Private Automatic
Branch Exchange (PABX). Upon entering the system, if an incoming call finds at least one CSR, it gets service
immediately. Otherwise it waits in the queue. A call in the queue may get impatient and abandon (renege) the
system by releasing its trunk line. On completion of service, a call releases both the trunk line and the CSR.
The system follows FCFS discipline. We consider balking in call centers to be state-dependent, where a calling
customer gets information about the state of the system. Based on this information it decides to join the queue
or to leave the system. A waiting customer may renege after a random time, if the service has not begun. The
customer willingness to wait may depend on various factors. The CSRs take synchronous vacations whenever
the system has no calls.

3. Analysis of the model

Let us denote the number of customers present in the system at time t− as Ns(t−) and

ζ(t−) =

{
0, if servers are on vacation,
1, if servers are in busy period.

Let us define the joint probability as Pi,j(t−) = P
{
Ns(t−) = i, ζ(t−) = j

}
, j ≤ i ≤ N, j = 0, 1.



GEO/GEO/M/N QUEUE WITH BALKING, RENEGING AND SYNCHRONOUS VACATIONS 347

Relating the state of the system at two consecutive time epochs t− and (t + 1)−, we get the following
equations. We use the symbol t instead of t− for the sake of simplicity.

P0,0(t+ 1) =
m∑

j=0

vj,mc(j|j)Pj,1(t) + wm+1,mc(m|m)Pm+1,1(t) + w1,0P1,0(t), (3.1)

Pk,0(t+ 1) = φ̄
(
uk−1,0Pk−1,0(t) + vk,0Pk,0(t) + wk+1,0Pk+1,0(t)

)
, 1 ≤ k ≤ N − 1, (3.2)

PN,0(t+ 1) = φ̄
(
vN,0PN,0(t) + uN−1,0PN−1,0(t)

)
, (3.3)

P1,1(t+ 1) =
m+1∑
j=1

vj,mc(j − 1|j)Pj,1(t) +
m∑

j=1

uj,mc(j|j)Pj,1(t) +
m+2∑

j=m+1

wj,mc(j − 2|m)Pj,1(t)

+ φ
(
u0,0P0,0(t) + v1,0P1,0(t) + w2,0P2,0(t)

)
, (3.4)

Pk,1(t+ 1) =
m+k∑
j=k

vj,mc(j − k|j)Pj,1(t) +
m+k+1∑

max j={m+1,k+1}
wj,mc(j − k − 1|m)Pj,1(t)

+
m+k−1∑
j=k−1

uj,mc(j − k + 1|j)Pj,1(t) + φ
(
uk−1,0Pk−1,0(t) + vk,0Pk,0(t) + wk+1,0Pk+1,0(t)

)
,

2 ≤ k ≤ N −m− 1, (3.5)

Pk,1(t+ 1) =
N−1∑
j=k

vj,mc(j − k|m)Pj,1(t) +
N−1∑

j=k+1

wj,mc(j − k − 1|m)Pj,1(t) + vN,mc(N − k|m)PN,1(t)

+
N−1∑

j=k−1

uj,mc(j − k + 1|m)Pj,1(t) + wN,mc(N − k − 1|m)PN,1(t)

+ φ
(
uk−1,0Pk−1,0(t) + vk,0Pk,0(t) + wk+1,0Pk+1,0(t)

)
, N −m ≤ k ≤ N − 1, (3.6)

PN,1(t+ 1) = vN,mc(0|m)PN,1(t) + uN−1,mc(0|m)PN−1,1(t) + φ
(
vN,0PN,0(t) + uN−1,0PN−1,0(t)

)
, (3.7)

where

ui,j =

⎧⎨
⎩
λ : i = j = 0; 1 ≤ i ≤ m− 1, j = m,

λm : i = j = m,

λiᾱi−j : j + 1 ≤ i ≤ N − 1, j = 0,m,

vi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ̄ : i = j = 0; 1 ≤ i ≤ m− 1, j = m,

λ̄m : i = j = m,

λ̄iᾱi−j + λiαi−j : j + 1 ≤ i ≤ N − 1, j = 0,m,
ᾱN−j : i = N, j = 0,m,

wi,j =
{
λ̄iαi−j : j + 1 ≤ i ≤ N − 1, j = 0,m,
αN−j : i = N, j = 0,m.
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Let us define in steady-state Pi,j = lim
t→∞Pi,j(t), j ≤ i ≤ N, j = 0, 1. The steady-state equations (3.1)–(3.7)

reduce to

0 = −λP0,0 +
m∑

j=1

vj,mc(j|j)Pj,1 + wm+1,mc(m|m)Pm+1,1 + w1,0P1,0, (3.8)

0 = −Pk,0 + φ̄
(
uk−1,0Pk−1,0 + vk,0Pk,0 + wk+1,0Pk+1,0

)
, 1 ≤ k ≤ N − 1, (3.9)

0 = −PN,0 + φ̄
(
vN,0PN,0 + uN−1,0PN−1,0

)
, (3.10)

0 = −P1,1 +
m+1∑
j=1

vj,mc(j − 1|j)Pj,1 +
m∑

j=1

uj,mc(j|j)Pj,1 +
m+2∑

j=m+1

wj,mc(j − 2|m)Pj,1

+φ
(
u0,0P0,0 + v1,0P1,0 + w2,0P2,0

)
, (3.11)

0 = −Pk,1 +
m+k∑
j=k

vj,mc(j − k|j)Pj,1 +
m+k+1∑

max j={m+1,k+1}
wj,mc(j − k − 1|m)Pj,1 + φuk−1,0Pk−1,0

+
m+k−1∑
j=k−1

uj,mc(j − k + 1|j)Pj,1 + φ
(
vk,0Pk,0 + wk+1,0Pk+1,0

)
, 2 ≤ k ≤ N −m− 1, (3.12)

0 = −Pk,1 +
N−1∑
j=k

vj,mc(j − k|m)Pj,1 +
N−1∑

j=k+1

wj,mc(j − k − 1|m)Pj,1 +
N−1∑

j=k−1

uj,mc(j − k + 1|m)Pj,1

+
(
wN,mc(N − k − 1|m) + vN,mc(N − k|m)

)
PN,1 + φuk−1,0Pk−1,0 + φvk,0Pk,0

+φwk+1,0Pk+1,0, N −m ≤ k ≤ N − 1, (3.13)

0 = −PN,1 + vN,mc(0|m)PN,1 + uN−1,mc(0|m)PN−1,1 + φ
(
vN,0PN,0 + uN−1,0PN−1,0

)
. (3.14)

The solution of equations (3.8)–(3.14) will give the system-length distribution Pi,0, (0 ≤ i ≤ N) and Pi,1, (1 ≤
i ≤ N). To get them, first we need to solve the difference equations (3.10) and (3.9). Then using (3.14), (3.13)
and (3.12), we get

PN−1,0 =
1 − φ̄vN,0

φ̄uN−1,0
PN,0, (3.15)

Pk−1,0 =

⎧⎨
⎩

N∏
i=k

1 − φ̄vi,0

φ̄ui−1,0
−

N−k−1∑
i=1

wN−i+1,0

uN−i−1,0

N−i−1∏
j=k

1 − φ̄vj,0

φ̄uj−1,0
− wk+1

uk−1

⎫⎬
⎭PN,0, 1 ≤ k ≤ N − 1, (3.16)

PN−1,1 =
1

uN−1,mc(0|m)

[(
1 − vN,mc(0|m)

)
PN,1 − φ

(
vN,0PN,0 + uN−1,0PN−1,0

)]
, (3.17)

Pk−1,1 =
1

uk−1,mc(0|m)

[
Pk,1 −

N−1∑
j=k

(
vj,mc(j − k|m) + uj,mc(j − k + 1|m)

)
Pj,1

−
(
vN,mc(N − k|m) + wN,mc(N − k − 1|m)

)
PN,1 −

N−1∑
j=k+1

wj,mc(j − k − 1|m)Pj,1

−φ
(
vk,0Pk,0 + uk−1,0Pk−1,0 + wk+1,0Pk+1,0

)]
, k = N − 1, . . . , N −m, (3.18)



GEO/GEO/M/N QUEUE WITH BALKING, RENEGING AND SYNCHRONOUS VACATIONS 349

Pk−1,1 =
1

uk−1,mc(0|k − 1)

[
Pk,1 −

m+k∑
j=k

vj,mc(j − k|j)Pj,1 −
m+k−1∑

j=k

uj,mc(j − k + 1|j)Pj,1

−
m+k+1∑

max j={m+1,k+1}
wj,mc(j − k − 1|m)Pj,1 − φ

(
vk,0Pk,0 + uk−1,0Pk−1,0 + wk+1,0Pk+1,0

)]
,

k = N −m− 1, . . . , 2. (3.19)

4. Computational algorithm

In this section, we establish a computational algorithm to compute steady-state probabilities. Based on the
analysis of Section 3, we evaluate the probabilities Pi,j , 0 ≤ i ≤ N, j = 0; 1 ≤ i ≤ N, j = 1 in terms of PN,0.

Step 1: For i = 0, 1, . . . , N , calculate Pi,0 in terms of PN,0 as follows

Pi,0 = ψiPN,0, 0 ≤ i ≤ N,

where ψi are computed as follows.

• Calculate ψi as follows

ψN = 1, ψN−1 =
1 − φ̄vN,0

φ̄uN−1,0
,

ψk−1 =
N∏

i=k+1

1 − φ̄vi,0

φ̄ui−1,0
−

N−k−1∑
i=1

wN−i+1,0

uN−i−1,0

N−i−1∏
j=k

1 − φ̄vj,0

φ̄uj−1,0
− wk+1

uk−1
, k = N − 1, . . . , 1.

Step 2: For i = N,N − 1, . . . , 1, calculate Pi,1 in terms of PN,1 and PN,0 as follows

Pi,1 = ζiPN,1 + ξiPN,0, 1 ≤ i ≤ N,

where ζi and ξi are computed as follows.

• Calculate ζi and ξi as follows.

ζN = 1, ξN = 0, ζN−1 =
1 − vN,mc(0|m)
uN−1,mc(0|m)

, ξN−1 = −φ
(
vN,0ψN + uN−1,0ψN−1

uN−1,mc(0|m)

)
,

for k = N − 1, . . . , N −m,

ζk−1 =
1

uk−1,mc(0|m)

⎡
⎣ζi − N−1∑

j=k

(vj,mc(j − k|m) + uj,mc(j − k + 1|m)) ζj

−vN,mc(N − k|m)ζN −
N−1∑

j=k+1

wj,mc(j − k − 1|m)ζj − wN,mc(N − k − 1|m)ζN

⎤
⎦ ,

ξk−1 =
1

uk−1,mc(0|m)

⎡
⎣ξi − N−1∑

j=k

(
vj,mc(j − k|m) + uj,mc(j − k + 1|m)

)
ξj

−
N−1∑

j=k+1

wj,mc(j − k − 1|m)ξj − wN,mc(N − k − 1|m)ξN − vN,mc(N − k|m)ξN

−φ
(
vk,0ψk + uk−1,0ψk−1 + wk+1,0ψk+1

)⎤
⎦ ,
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for k = N −m− 1, . . . , 2,

ζk−1 =
1

uk−1,mc(0|k − 1)

⎡
⎣ζi − m+k∑

j=k

vj,mc(j − k|j)ζj −
m+k−1∑

j=k

uj,mc(j − k + 1|j)ζj

−
m+k+1∑

max j={m+1,k+1}
wj,mc(j − k − 1|m)ζj

⎤
⎦ ,

ξk−1 =
1

uk−1,mc(0|k − 1)

⎡
⎣ξi − m+k∑

j=k

vj,mc(j − k|j)ξj −
m+k−1∑

j=k

uj,mc(j − k + 1|j)ξj

−
m+k+1∑

max j={m+1,k+1}
wj,mc(j − k − 1|m)ξj − φ

(
vk,0ψk + uk−1,0ψk−1 + wk+1,0ψk+1

)⎤
⎦ .

Step 3: Compute PN,1 in terms of PN,0 as follows

πN,1 = ΩπN,0, 1 ≤ i ≤ N,

where

Ω =
λψ0 −

m∑
j=1

μjξjvj,m − ψ1w1,0 − μmξm+1wm+1,m

m∑
j=1

μjζjvj,m + μmζm+1wm+1,m

·

Step 4: For i = 1, 2, . . . , N , calculate Pi,1 in terms of PN,0 as follows

Pi,1 = (ψi +Ωζi)PN,0, 1 ≤ i ≤ N.

Step 5: Using normalization equation
∑N

i=0 Pi,0 +
∑N

i=1 Pi,1 = 1, determine PN,0 as

PN,0 =

[
N∑

i=0

ψi +
N∑

i=1

(ξi + Ωζi)

]−1

.

5. Performance measure

Performance measures are significant characteristics of queueing systems as they speculate the efficiency of
the model under consideration. We can evaluate the various performance measures, once the state probabilities
at various epochs are known. The average number of customers in the queue (Lq) is given by

Lq =
N∑

k=1

kPk,0 +
N∑

k=m+1

(k −m)Pk,1.
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The average number of customers in the system (Ls) is

Ls =
N∑

k=1

k(Pk,0 + Pk,1).

The average number of busy servers (E(B)) are

E(B) =
m−1∑
k=0

kPk,1 +m

N∑
k=m

Pk,1 = m−
m−1∑
k=0

(m− k)Pk,1 = Ls − Lq.

The average number of servers on vacation (E(V )) and the average number of idle servers in the system (E(I))
are given by

E(V ) =
N∑

k=0

Pk,0, E(I) = m− E(B) − E(V ).

In the system, customers arrive at the rate λ. Some of arriving customers may not join the system because of
balking. The effective arrival rate λe into the system is thus different from the overall arrival rate and is given by

λe =
N−1∑
i=0

λbiPi,0 +
m−1∑
i=1

λPi,1 +
N−1∑
i=m

λbiPi,1

= μ

m∑
k=1

kPk,1 +
N∑

k=m+1

(mμ+ (k −m)α)Pk,1 +
N∑

k=1

kαPk,0 = αLq + μE(B).

Using Little’s rule, the average waiting time of a customer in the system (Ws) and the average waiting time of
a customer in the queue (Wq) is given by

Ws = Ls/λ
e, Wq = Lq/λ

e.

The fraction of customers that enter the system is λe/λ and the utilization of the system is U = λe/(mμ). The
potential (offered) load is ρ = λ/(mμ). The proportion of loss of customers is given by λ − λe/λ. In a real life
situation, customers who are lost to the system due to balking represent the business loss. The probability that
a customer balks is 1− bi, the immediate balking rate is λ(1− bi). The average balking rate (BR) is specified by

BR =
N∑

i=1

λ(1 − bi)Pi,0 +
N∑

i=m

λ(1 − bi)Pi,1.

If all the servers are busy and there are i customers in the system, then there are (i−m) waiting customers in
the queue. The reneging rate is (i−m)α as any of the (i−m) customers in the queue may renege. The average
reneging rate (RR) is given as

RR =
N∑

i=1

iαPi,0 +
N∑

i=m+1

(i−m)αPi,1 = αLq.
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The average rate of customer loss (LR) is the sum of the average balking rate and the average reneging rate.
Thus, we get

LR = BR +RR.

5.1. Cost model

We formulate the total expected cost function per unit time where the service rate μ is a decision variable.
Our objective is to minimize the total expected cost function by optimizing the service rate μ. We consider the
following cost parameters:

C1 ≡ service cost per unit time during synchronous vacations,
C2 ≡ service cost per unit time during busy period,
C3 ≡ service cost per unit time during idle period,
C4 ≡ service cost per unit time when customer is waiting,
C5 ≡ cost per unit time when customer joins the system and is served,
C6 ≡ customer balking or reneging cost per unit time.

Let F (μ) be the total expected cost function per unit time. Using the definitions of each cost element and its
associated system performance measures, the total expected cost function per unit time is expressed as

Minimize F (μ) = C1E(V ) + C2E(B) + C3E(I) + C4Lq + C5(Ls − Lq) + C6LR,

where E(V ), E(B), E(I), Lq and LR are as defined above. The objective is to determine the optimal service
rate μ∗ to minimize the cost function F . As expected cost function is highly complex, it is a difficult task to
develop analytic results for the optimum value of μ. We use the quadratic fit search method to solve the above
optimization problem [22]. Given a 3-point pattern, the unique optimum x of the quadratic function agreeing
with f(x) at (x0, x1, x2) occurs at

x =
1
2
f(x0)(x2

1 − x2
2) + f(x1)(x2

2 − x2
0) + f(x2)(x2

0 − x2
1)

f(x0)(x1 − x2) + f(x1)(x2 − x0) + f(x2)(x0 − x1)
· (5.1)

6. Special cases

In this section, we derive some known results available in the literature as special cases of our model by taking
specific values for the parameters.

Case 1: α → 0. That is, the customers never renege. The model reduces to Geo/Geo/m/N queue with balking
and synchronous vacations. Taking α→ 0, it is found that ui,j , vi,j and wi,j reduce to

ui,j =

{
λ, i = j = 0; 1 ≤ i ≤ m− 1, j = m,

λi 1 ≤ i ≤ N − 1, j = 0; m ≤ i ≤ N − 1, j = m,

vi,j =

⎧⎪⎨
⎪⎩
λ̄, i = j = 0; 1 ≤ i ≤ m− 1, j = m,

λ̄i, 1 ≤ i ≤ N − 1, j = 0;m ≤ i ≤ N − 1, j = m,

1, i = N, j = 0,m,

wi,j = 0, 1 ≤ i ≤ N − 1, j = 0; m+ 1 ≤ i ≤ N − 1, j = m.
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Then, using (3.16)–(3.19), we obtain the steady-state probabilities as

PN−1,0 =
φ

φ̄λN−1
PN,0,

Pk−1,0 =
N∏

i=k

(
1 − φ̄λ̄i

φ̄λ̄i−1

)
PN,0, 1 ≤ k ≤ N − 1,

PN−1,1 =
1

λN−1c(0|m)

[(
1 − c(0|m)

)
PN,1 − φ

(
PN,0 + λN−1PN−1,0

)]
,

Pk−1,1 =
1

λk−1c(0|m)

[
Pk,1 −

N−1∑
j=k

(
λ̄jc(j − k|m) + λjc(j − k + 1|m)

)
Pj,1 − c(N − k|m)PN,1

−φ
(
λ̄kPk,0 + λk−1Pk−1,0

)]
, k = N − 1, . . . , N −m,

Pk−1,1 =
1

λk−1c(0|m)

[
Pk,1 −

m+k−1∑
j=k

(
λ̄jc(j − k|m) + λjc(j − k + 1|m)

)
Pj,1 − λ̄m+kc(m|m)Pm+k,1

−φ
(
λ̄kPk,0 + λk−1Pk−1,0

)]
, k = N −m+ 1, . . . ,m+ 1,

Pk−1,1 =
1

λk−1c(0|k − 1)

[
Pk,1 −

m−1∑
j=k

(
λ̄c(j − k|j) + λc(j − k + 1|j)

)
Pj,1 −

m+k∑
j=m

λ̄jc(j − k|m)

−
m+k∑
j=m

λjc(j − k + 1|m)
)
Pj,1 − φ

(
λ̄kPk,0 + λk−1Pk−1,0

)]
, k = m, . . . , 2.

Case 2: φ → 1. The model reduces to Geo/Geo/m/N queue with balking and reneging. In this case, the

vacations probabilities Pi,0 (1 ≤ i ≤ N) does not exist. If we take P0,0 as P0 and Pi,1 as Pi for 1 ≤ i ≤ N , we
get the results of Geo/Geo/m/N queue with balking and reneging.

Case 3: α → 0 and bi = 1 (0 ≤ i ≤ N − 1). The model reduces to Geo/Geo/m/N queue with synchronous
vacations. Taking α → 0 and bi = 1 (0 ≤ i ≤ N − 1), it is found that ui,j , vi,j and wi,j reduce to ui,j = λ, 0 ≤
i ≤ N − 1, j = 0,m, vi,j = λ̄, 0 ≤ i ≤ N − 1, j = 0,m, vN,j = 1, j = 0,m and wi,j = 0, 1 ≤ i ≤ N − 1, j =
0; m+ 1 ≤ i ≤ N − 1, j = m.
Using (3.16)–(3.19), the steady-state probabilities, after simplification, are given as

Pk,0 =
(
φ

φ̄λ

) (
φ+ φ̄λ

φ̄λ

)N−k−1

PN,0, 0 ≤ k ≤ N − 1,

PN−1,1 =
1

λc(0|m)

[(
1 − c(0|m)

)
PN,1 − φ

(
PN,0 + λPN−1,0

)]
,

Pk−1,1 =
1

λc(0|m)

[
Pk,1 −

N−1∑
j=k

(
λ̄c(j − k|m) + λc(j − k + 1|m)

)
Pj,1 − c(N − k|m)PN,1

−φ
(
λ̄Pk,0 + λPk−1,0

)]
, k = N − 1, . . . , N −m,

Pk−1,1 =
1

λc(0|k − 1)

[
Pk,1 −

m+k∑
j=k

λ̄c(j − k|j)Pj,1 −
m+k−1∑

j=k

λc(j − k + 1|m)Pj,1 − φ
(
λ̄Pk,0 + λPk−1,0

)]
,

k = N −m− 1, . . . , 2.



354 V. GOSWAMI AND G.B. MUND

Case 4: φ → 1, α → 0 and bi = 1 (0 ≤ i ≤ N − 1). The model reduces to Geo/Geo/m/N queue without
balking, reneging and synchronous vacations. In this case, the vacations probabilities Pi,0 (1 ≤ i ≤ N) does not
exist. If we take P0,0 as P0 and Pi,1 as Pi for 1 ≤ i ≤ N , we get the results of Geo/Geo/m/N queue without
balking, reneging and synchronous vacations.

Case 5: φ → 1, α → 0 and bi = 1, 0 ≤ i ≤ m − 1 and bi = b, i ≥ m. Assuming ρ = λ/mμ < 1 and
N → ∞, the model reduces to infinite buffer Geo/Geo/m queue without reneging and synchronous vacations.
Note that the synchronous vacation probabilities Pi,0 (1 ≤ i ≤ N) does not exist. Let us define P0,0 = P0 and
Pi,1 = Pi. Substituting φ→ 1, α→ 0 and bi = 1, 0 ≤ i ≤ m− 1 and bi = b, i ≥ m in (3.16)–(3.19), we obtain

λP0 = λ̄

m−1∑
j=1

c(j|j)Pj + (1 − λb)c(m|m)Pm, (6.1)

Pk = λ̄
m−1∑
j=k

c(j − k|j)Pj + λ
m−1∑

j=k−1

c(j + 1 − k|j)Pj + (1 − λb)
m+k∑
j=m

c(j − k|m)Pj

+λb
m+k−1∑

j=m

c(j + 1 − k|m)Pj , 1 ≤ k ≤ m, (6.2)

Pk = (1 − λb)
m+k∑
j=k

c(j − k|m)Pj + λb

m+k−1∑
j=k−1

c(j + 1 − k|m)Pj , k ≥ m+ 1. (6.3)

The system-length distributions at steady-state are given as

Pk =
{
P ∗

k Pm, 0 ≤ k ≤ m,
rk−mPm, k ≥ m+ 1,

where r, 0 < r < 1, is the unique real root of the equation
(
(1 − λb)r + λb

)
(μ̄+ μr)m = r. Using the

normalization condition, we get Pm =
(

1
1−r +

∑m−1
k=0 P ∗

i

)
. The {P ∗

k }m
0 can be obtained from (6.1) and (6.2)

using backward recursion. These results match with the results reported in Goswami [14].

7. Numerical results

In this section, some numerical results have been presented in the form of table and graphs. It gives managerial
insights on optimal decisions to add the qualitative views of the queueing system under examination through
exemplifying numerical results. Certainly, the change of parameters, such as the balking rate, reneging rate and
vacation rate in the system, may influence various performance measures of the model.

Table 1 gives the optimum value of μ∗, the minimum cost F (μ∗) and various performance measures for
different values of reneging rate (α). The parameters are taken as λ = 0.5, φ = 0.1, m = 3, N = 10 and
bi = 1 − i/N . We observe that as α increases: (i) The optimum μ∗ increases. (ii) The LR, E(V ) and E(I)
increase. (iii) The optimum cost and the other performance indices decrease.

Figure 2 provides the average rate of customer loss (LR) with a change of vacation time φ for different balking
functions (i) bi = 1−i/N2, (ii) bi = 1−i/N , (iii) bi = 1/(i+1). The parameters are taken as α = 0.1, λ = 0.5, μ =
0.0625,m = 10 and N = 25. It is seen that as φ increases the average rate of customer loss (LR) decreases for
different balking functions. But the average rate of customer loss in the system is lower for the balking function
given in (i). Figure 3 presents the impact of offered load (ρ) on the average number of busy servers E(B) and
the average number of servers on vacation E(V ) for various bi, where μ = 0.2, α = 0.05, φ = 0.1, N = 10 and
m = 3. It is evident from the figure that average number of busy servers increases as offered load increase,
where as E(V ) decreases. Further, with fixed offered load, the average number of busy servers and the average
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Table 1. Effect of α on performance characteristics.

α = 0.03 α = 0.05 α = 0.07 α = 0.1 α = 0.15
μ∗ 0.37200 0.41470 0.46050 0.53430 0.67210
Lq 1.43567 1.40519 1.37492 1.32538 1.23428
Ls 2.40805 2.23016 2.07398 1.87292 1.60438
Wq 3.54665 3.40756 3.28800 3.11790 2.84474
Ws 5.94880 5.40809 4.95975 4.40596 3.69772
LR 0.13743 0.15775 0.17806 0.20745 0.25126

E(B) 0.97238 0.82497 0.69906 0.54754 0.37009
E(V ) 0.50708 0.56368 0.61466 0.67985 0.76292
E(I) 1.52054 1.61136 1.68628 1.77261 1.86699
F (μ∗) 340.373 329.019 319.213 306.811 290.577

number of servers on vacation decrease when the balking probability increases. We may setup an admissible
offered load and the balking probability to employ servers efficiently.

The parameters for Figures 4 to 7 are taken as μ = 0.2, α = 0.1, φ = 0.1, N = 10,m = 3 and b[i] = 1 − i/N .
Figures 4 and 5 illustrate dependence of Wq and Lq on the φ and λ, respectively. A decreasing trend is observed
in Wq with the increase of φ and λ. But, an increasing trend is observed in Lq with the increase of φ and λ.
We can carefully setup φ and λ in the system to ensure the minimum Wq and Lq. The variation in the cost for
different values of μ and α is shown in Figure 6. It is observed that the average cost decreases with the increase
of μ and α. We may infer from this figure that for lower values of μ the maximal performance gain is rather
limited, for higher values of μ, the maximal performance gain is larger, especially when α is moderate or high.
When α is low, we observe that their is no significant difference in cost.

Figure 7 depicts dependence of average rate of customer loss (LR) on ρ and φ. It is observed that for fixed φ,
the LR increases when the offered load ρ increases. This is because as ρ increases the average rate of customer
loss increases. Further, with fixed offered load ρ, the average rate of customer loss decreases when the vacation
parameter φ increases. We can carefully setup the offered load and vacation parameter φ in the system in order
to ensure the minimum customer loss. From the numerical results, we can determine the impact of parameters
on the performance measures in the system.
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8. Conclusions

In this paper, we analyzed a discrete-time multi-server queue with multiple synchronous vacations under
balking and reneging for late arrival system with delayed access. The presented model may be potentially used
in a wide variety of real-time systems including call centers, communication system, cloud computing, quality
control and maintenance in industrial establishments. We have obtained a closed-form analytical expressions
and developed a computational algorithm for calculating the steady-state probabilities. A method to obtain an
optimal service rate that minimizes the total expected cost under a certain cost function was presented. Various
performance measures and numerical results in the form of table and graphs are sketched out to display the
impact of the system parameters. Some special cases of the model have also been presented. The relationship
between our model and the corresponding continuous-time model was also investigated. Finally, it is shown
that in the limiting case the results converge to the corresponding continuous-time counterparts. The analytical
approach used in this paper may be applied to analyze discrete-time renewal input multi-server queue with
multiple working vacations under balking and reneging which is left for future investigation.
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Appendix

Here we study the relationship between the discrete-time Geo/Geo/m/N queueing system with balking,
reneging and synchronous vacations and its continuous-time counterpart. For the continuous-time M/M/m/N
queueing system with balking, reneging and synchronous vacations, we assume that the inter-arrival time,
vacation times and impatient timer are exponentially distributed with parameters λ̃, φ̃ and α̃. There arem server
and service times are assumed to be independent and exponentially distributed with mean service time 1/μ̃. Let
the time axis be slotted into intervals of equal length, so that λ = λ̃Δ, μ = μ̃Δ, φ = φ̃Δ and α = α̃Δ, where
Δ > 0 is sufficiently small. Now, using μ = μ̃Δ in (2.1), we obtain

c(j|i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, i = j = 0;
1 − μ̃Δ, i = 1, j = 0;
μ̃Δ, i = j = 1;
1 − min(i,m)μ̃Δ+ o(Δ), i = 2, 3, . . . ,m, j = 0;
min(i,m)μ̃Δ+ o(Δ), i = 2, 3, . . . ,m, j = 1;
o(Δ), i = 2, 3, . . . ,m, j = 2, 3, . . . ,min(i,m);
0, otherwise,

(A.1)

where o(Δ) denotes any function of Δ such that lim
Δ→0

o(Δ)
Δ = 0.

Using λ = λ̃Δ, μ = μ̃Δ, φ = φ̃Δ, α = α̃Δ, ui,j , vi,j , wi,j and (A.1) in (3.15), we obtain

PN−1,0 =
1 − (1 − φ̃Δ)(1 −Nα̃Δ)

(1 − φ̃Δ)λ̃ΔbN−1(1 − (N − 1)α̃Δ)
PN,0.

Dividing both sides by Δ and taking limit as Δ→ 0 in the above equation, we obtain

PN−1,0 =
φ̃+Nα̃

λ̃bN−1

PN,0.

Using (A.1), putting λ = λ̃Δ, μ = μ̃Δ, φ = φ̃Δ, α = α̃Δ and taking limit as Δ→ 0 in equations (3.16)–(3.19),
we get,

Pk−1,0 =

⎡
⎣ N∏

i=k

φ̃+ λ̃bi + iα̃

λ̃bi−1

−
N−k−1∑

i=1

(N − i+ 1)α̃
λ̃bN−i−1

N−i−1∏
j=k

φ̃+ λ̃bj + jα̃

λ̃bj−1

− (k + 1)α̃
λ̃bk−1

⎤
⎦PN,0,

k = N − 1, . . . , 1,

PN−1,1 =
mμ̃+ (N −m)α̃

λ̃bN−1

PN,1 − φ̃

λ̃bN−1

PN,0,

Pk−1,1 =
mμ̃+ λ̃bk + (k −m)α̃

λ̃bk−1

Pk,1 − mμ̃+ (k + 1 −m)α̃
λ̃bk−1

Pk+1,1 − φ̃

λ̃bk−1

Pk,0,

k = N − 1, N − 2, . . . , 2,

which match with the relations for the continuous-time M/M/m/N queue with balking, reneging and syn-
chronous vacations reported in [29].
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