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FINDING A SOLUTION FOR MULTI-OBJECTIVE LINEAR FRACTIONAL
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Abstract. The multi-objective linear fractional programming is an interesting topic with many ap-
plications in different fields. Until now, various algorithms have been proposed in order to solve the
multi-objective linear fractional programming (MOLFP) problem. An important point in most of them
is the use of non-linear programming with a high computational complexity or the use of linear pro-
gramming with preferences of the objective functions which are assigned by the decision maker. The
current paper, through combining goal programming and data envelopment analysis (DEA), proposes
an iterative method to solve MOLFP problems using only linear programming. Moreover, the proposed
method provides an efficient solution which fairly optimizes each objective function when the decision
maker has no information about the preferences of the objective functions. In fact, along with normal-
ization of the objective functions, their relative preferences are fairly determined using the DEA. The
implementation of the proposed method is demonstrated using numerical examples.
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1. Introduction

Multi-objective fractional programming is a programming problem with several ratio objective functions
which should be optimized on a feasible region. If these objective functions are linear fractions (fractions with
linear numerator and denominator) along with a feasible region obtained from linear constraints, the problem
thus changes to a multi-objective linear fractional programming (MOLFP) problem. Until now, various methods
have been proposed to solve the MOLFP problem. Steuer and Kornbluth [14] suggested an algorithm based on
the simplex to find the weak efficient points of the MOLFP problem. They also utilized goal programming to solve
the multi-objective linear fractional programming which resulted in a non-linear programming model (see [15]).
Gueorguieva [12] used non-linear programming to find the weak efficient set. Iterative methods have also been
proposed using problems with sum of ratio function (for instance see [7–9]), which again are considered as non-
linear programming. There are some important difficulties in solving non-linear programming problems. One of
them is that these problems often require more complicated calculations. On the other hand, available software
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programs are faced with major limitations to solve these sorts of problems. To obviate high computational
problems, many methods and algorithms have been proposed using the fuzzy set theory [5,11,17,21]. However,
the algorithms obtained from the fuzzy set theory often result in just a satisfactory solution, not necessarily
an efficient solution. For example, the linguistic variable approach of Luhandjula [7] and the modified linguistic
approach proposed by Dutta et al. [11] with its certain shortcomings pointed out by Stancu–Minasian and
Pop [21] can be mentioned.

In addition to the aforementioned attempts, Bogdana and Milan Stanojevic [22], using the efficiency test
introduced by Lotfi et al. [16], proposed two procedures to derive weakly and strongly efficient solutions in
MOLFP problems. Furthermore, Valipour et al. [23] extended the parametric approach of Dinkelbach [10] and
proposed an iterative algorithm to solve MOLFP problems. They suggested an iterative parametric approach to
solve MOLFP problems which always converges to an efficient solution. Although the two latter methods utilize
linear programming and have a low computational complexity, they don’t have much computational discretion
for the objective functions. In other words, these methods optimize the objective functions corresponding to
their preferences which often are assigned by the decision maker based on experience or the intrinsic knowledge
of the problem.

In the present paper, through combining goal programming and data envelopment analysis (DEA), an iterative
method is proposed to solve MOLFP problems which only uses linear programming and also has a managerial
approach to find a fair solution when the decision maker has no information about the preferences of the
objective functions. In fact, along with normalizing the objective functions, their relative preferences are fairly
determined using the DEA.

The rest of the paper is organized as follows: Section 2 briefly discusses goal programming for the MOLFP
problem. In Section 3, we propose an iterative method to solve the MOLFP problem which only uses linear
programming and also converges to the efficient solution. The necessary background for DEA is presented in
the Section 4. Moreover, in this section, the iterative method proposed in Section 3 is modified using the DEA
technique to obtain a fair efficient solution. Finally, the conclusions of the paper are presented in the last section.

2. Goal programming problem to solve MOLFP problems

Consider a maximization linear fractional programming problem with zi(x) = Ni(x)
Di(x) = pix+αi

qix+βi
(i = 1, . . . , k)

as the objective functions and X = {x|Ax ≤ b, x ≥ 0} as the feasible region (where qi, pi ∈ Rn and αi, βi are
scalars). This problem can be written as below:

Max Z(x) =
(
z1(x), . . . , zk(x)

)
s.t x ∈ X. (2.1)

where, it has been assumed that the feasible region X is bounded and the inequality Di(x) > 0 holds for all
x ∈ X. Moreover, in the current paper, without loss of generality, we suppose that each component of the
criterion vector Z(x) is non-negative for all x ∈ X. This is possible by adding a sufficiently positive constant to
the objective functions (see [16]).

Definition 2.1. x̄ ∈ X is called an efficient solution of the problem (2.1) if there is no x ∈ X such that
zi(x) ≥ zi(x̄) for all i ∈ {1, 2, . . . , k} and zr(x) > zr(x̄) at least for one index like r.

Definition 2.2. Suppose that x1, x2 ∈ X. It is called that Z(x1) dominates Z(x2) if zi(x1) ≥ zi(x2) for all
i ∈ {1, 2, . . . , k} and zr(x1) > zr(x2) at least for one index like r. In this case, x1 is called better than x2.

To achieve the linear fractional goal programming, first the model (2.2) should be solved for each i ∈ {1, 2, . . . , k}
as follows:

Max zi(x) =
Ni(x)
Di(x)

s.t x ∈ X. (2.2)
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Model (2.2) is a single objective linear fractional programming problem which can easily be linearized through
the Charnes and Cooper transformation (see [3]). Suppose that z∗i (i = 1, . . . , k) is the optimum value of the
model (2.2) corresponding to the ith objective function of the model (2.1). Then, the goal programming model
corresponding to the model (2.1) will be as follows:

Min
k∑

i=1

di

s.t
Ni(x)
Di(x)

+ di = z∗i i = 1, . . . , k,

di ≥ 0 i = 1, . . . , k,

x ∈ X. (2.3)

Model (2.3) provides an efficient solution for the MOLFP problem (2.1). However, this model is a non-linear
programming problem which is difficult to solve. Since the model (2.3) cannot be always linearized, we create
a little change in it. In fact, we consider the deviation variable di(i = 1, . . . , k) as di = ri/(qix + βi). Then,
through replacing the objective function

∑k
i=1 di with

∑k
i=1 ri, the linear goal programming model for the

MOLFP problem (2.1) can be obtained as follows:

Min
k∑

i=1

ri

s.t Ni(x) − z∗i Di(x) + ri = 0 i = 1, . . . , k,

ri ≥ 0 i = 1, . . . , k,

x ∈ X. (2.4)

It should be mentioned that although the problem (2.4) is a linear programming problem, it does not guarantee
to obtain the efficient solution of the MOLFP problem (2.1). In other words, model (2.4) may only provide a
satisfactory solution of the MOLFP problem (2.1). In fact, the models (2.3) and (2.4) are not equivalent but one
may use the latter model to obtain a satisfactory solution without dealing with the non-linearity of the problem
to be solved. It can be said that the model (2.4) is similar to the methods which often lead to a satisfactory
solution, however, not necessarily an efficient solution (e.g., [5, 11]).

Example 1. Consider the MOLFP problem (2.5) with 4 objective functions and 4 linear constraints as follows:

Max
(

z1 =
x0 − x1 + 2x2 + 3
2x0 + 3x1 + x2 + 2

, z2 =
4x2 + 9

2x0 − x1 + x2 + 5

)

Max
(

z3 =
100x0 − 100x1 + 1000x2 + 300

x0 + x1 + x2 + 3
, z4 =

2000x0 + 4000x2 + 28000
−x0 + x1 + x2 + 10

)

s.t x0 + x1 + x2 = 1 , x0 + x1 − x2 ≤ 2,

x0 − x1 + x2 ≤ 4, x0 + 2x2 ≤ 4,

x0, x1, x2 ≥ 0. (2.5)
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All of the objective functions have non-negative values throughout the feasible region of the problem. Model (2.4)
corresponding to the problem (2.5) can be written as follows (by separately maximizing the objective functions):

Max
4∑

i=1

ri

s.t

− 2.34x0 − 6.01x2 + 0.33x3 + r1 = 0.34,

− 4.5x0 + 2.25x2 + 1.75x3 + r2 = 2.25,

− 225x0 − 425x2 + 675x3 + r3 = 675,

5333.34x0 + 666.66x2 − 3333.34x3 + r4 = 5333.34,

x0 + x1 + x2 = 1 , x0 + x1 − x2 ≤ 2,

x0 − x1 + x2 ≤ 4, x0 + 2x2 ≤ 4,

x0, x1, x2 ≥ 0. (2.6)

Solving the model (2.6) leads to the optimal solution (x1, x2, x3) = (1, 0, 0) with the criterion vector
(z1, z2, z3, z4) = (1, 1.286, 100, 3333.34). In the next section, it will be shown that the obtained solution is
an efficient solution of the MOLFP problem (2.5).

3. An iterative method to obtain an efficient solution for MOLFP problems

In the previous section, we proposed the linear goal programming model (2.4) to solve the MOLFP problem
in which the provided solution might not be efficient while achieving the efficient solution is usually the main
purpose of any method delivered to solve the MOLFP problem. Therefore, we should determine the efficiency
status of the provided solution from the model (2.4) denoted by x∗. If x∗ is an efficient solution, we are done;
otherwise, it must be changed with an efficient solution.

There are several methods to determine the efficiency status of a given feasible solution of the MOLFP
problem (e.g., [16]). However, we propose a linear programming model based on goal programming similar to
the model (2.4) which can easily determine the efficiency status of x∗. Moreover, if the solution x∗ is not efficient,
the proposed model provides a better feasible solution for the MOLFP problem. Finally, based on the proposed
model, an iterative method is presented which certainly leads to an efficient solution of the MOLFP problem.

Suppose that x0 = x∗. To determine the efficiency status of x0, the following linear programming problem is
suggested:

Max
k∑

i=1

ri

s.t Ni(x) − z0
i Di(x) − ri = 0 i = 1, . . . , k,

x ∈ X, r = (r1, . . . , rk) ≥ 0. (3.1)

where z0
i = Ni(x0)/Di(x0) (i = 1, . . . , k). Note that X is a compact set and Di(x) > 0 for all x ∈ X; therefore,

each z0
i (i = 1, . . . , k) is a finite positive quantity. Details of the efficiency determining of the x0 is presented in

the Theorem 3.1.

Theorem 3.1. Consider the problem (3.1). Then, x0 is an efficient solution of the MOLFP problem (2.1) if
and only if the optimum value of the problem (3.1) is zero. Otherwise, if (x1∗

, r1∗
) is an optimal solution of the

problem (3.1), then x1∗
is a feasible solution of the MOLFP problem (2.1) which is better than x0.
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Proof. First, suppose that x0 is an efficient solution. We prove that the optimum value of the problem (3.1) is
zero. Assume by contradiction that it is a positive quantity. Therefore, if (x1∗

, r1∗
) is an optimal solution of the

problem (3.1) then the inequality r1∗ �= 0 holds. Because Di(x1∗
) > 0 (i = 1, . . . , k), the first constraints of the

problem (3.1) can be written at the optimal solution as follows:

z1
i =

r1∗
i

Di(x1∗)
+ z0

i i = 1, 2, . . . , k (3.2)

where z1
i = Ni(x1∗

)/Di(x1∗
) (i = 1, . . . , k). Since x1∗ ∈ X and r1∗ �= 0, the relation (3.2) shows that x0 is

an inefficient solution of the MOLFP problem (2.1) and it is a contradiction. Thus, the optimum value of the
problem (3.1) must be zero.

Conversely, suppose that the optimum value of the problem (3.1) is zero. Assume by contradiction that x0 is
an inefficient solution of the problem (2.1). Then, there should be a feasible solution of the problem (2.1) like x̄
which is better than x0. It means that:

Ni(x̄)
Di(x̄)

≥ Ni(x0)
Di(x0)

i = 1, 2, . . . , k,

∃j ∈ {1, 2, . . . , k}; Nj(x̄)
Dj(x̄)

>
Nj(x0)
Dj(x0)

· (3.3)

Since
(
1/Di(x̄)

)
> 0 (i = 1, . . . , k), then by adding the

(
r̄i/Di(x̄)

)
s (i = 1, . . . , k) as slack variables in the

relation (3.3) such that r̄ = (r̄1, . . . , r̄k) �= 0, the following equalities can be obtained:

Ni(x̄)
Di(x̄)

− r̄i

Di(x̄)
=

Ni(x0)
Di(x0)

i = 1, 2, . . . , k

r̄ = (r̄1, . . . , r̄k) ≥ 0, r̄ �= 0 (3.4)

by multiplying both sides of the ith equality to Di(x̄)(i = 1, 2, . . . , k) in the relation (3.4), it can be seen that
(x̄, r̄) is a feasible solution of the problem (3.1). Now, r̄ �= 0 shows that the optimum value of the objective
function should be positive and it is a contradiction; thus, x0 is efficient.

The second part of the theorem is proved in the same way as the first part. �

Now, the Theorem 3.2 shows that how the frequent use of the model (3.1) can lead to an efficient feasible
solution of the MOLFP problem (2.1).

Theorem 3.2. Suppose that x0 is an arbitrary feasible solution of the problem (2.1). Let h := 0 and solve the
following problem (where zh

i = zi(xh), i = 1, . . . , k):

U∗
h = max

k∑
i=1

rh
i

S.t. Ni(x) − zh
i Di(x) − rh

i = 0 i = 1, 2, . . . , k,

x ∈ X, rh = (rh
1 , . . . , rh

k ) ≥ 0. (3.5)

If U∗
h > 0, this means that xh is an inefficient solution of the problem (2.1). In this situation, let h := 1 and

xh := xh∗
; where, (xh∗

, rh∗
) is an optimal solution of the model (3.5). Once again, by updating the zh

i (i =
1, . . . , k) let’s solve the problem (3.5) and continue this process to obtain the sequence {xh}∞h=1. The obtained
sequence certainly converges to an efficient feasible solution of the problem (2.1).

Proof. Before starting the proof, remember the non-negativity assumption of the objective functions. If h
is an arbitrary iteration number, it is obvious that xh is a feasible solution of the problem (2.1) such that
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Z(xh) ≥ Z(xh−1) ≥ 0 and thus ||Z(xh)||1 ≥ ||Z(xh−1)||1. If U∗
h = 0 then xl+1 = xh for all l ≥ h and there is

nothing to prove. Then, suppose that U∗
h > 0. It can be seen that ||Z(xh+1) − Z(xh)||1 is obtained from the

following relation:

||Z(xh+1) − Z(xh)||1 =
k∑

i=1

rh
i

Di(xh+1)
≥ 0 (3.6)

As long as U∗
h > 0, relation (3.6) shows that {||Z(xh)||1}∞h=1 is a strictly increasing sequence. On the other

hand, X is a compact set and ||Z(.)||1 : X → R is a continuous function. This means that the function ||Z(.)||1,
according to Weierstrass’ extreme value theorem, attains its maximum on the X. Therefore, since xh ∈ X for
all h, it is concluded that the sequence {xh}∞h=1 must converge to a feasible solution of the problem (2.1) like
x̄ = xN such that U∗

N = 0. This means that xN is an efficient feasible solution of the problem (2.1). �

It should be noted that the presented method can be considered as a generalization of the Isbell and Marlow’s
technique [13]. A comparison between some variations of this technique has been provided by Bhatt [2].

Remark 3.3. In practice, the sequence {xh}∞h=1 generated in the Theorem 3.2 converges in the first few ele-
ments. However, to avoid time wasting, one can use the stop condition as follows:

||Z(xh+1) − Z(xh)||1 =
k∑

i=1

rh
i

Di(xh+1)
≤ ε (3.7)

where ε is a sufficiently small positive quantity. It should be mentioned that using the stop condition leads to
a solution of the problem (2.1) which may not be efficient.

It is worth noting that in most cases it is necessary to obtain an efficient solution of the MOLFP problem (2.1),
and so the presented condition in the relation (3.7) cannot be used. In such a situation, in order to reduce the
volume of computations, problem (3.1) can get rid of its first k constraints by eliminating the variables ris
(i = 1, . . . , k) and putting them in the objective function. Now, each problem has fewer constraints and also
it can be solved through fewer numbers of Simplex iterations which start by the last tableau of the precedent
problem, because it is only the objective function that changes.

Now, using the model (3.1), it can be displayed that the obtained solution from the model (2.4) is efficient
or not. Moreover, in the case of its inefficiency, the frequent use of the model (3.1), as was presented in the
Theorem 3.2, can provide an efficient solution of the MOLFP problem (2.1). For instance, in the Example 1, the
optimum value of the problem (3.1) corresponding to the solution x0 = (1, 0, 0) from the MOLFP problem (2.1)
is equal to zero. This means that the mentioned solution is efficient for the problem (2.1) and there is no need
to reuse the model (3.1).

4. Obtaining a fair solution for MOLFP problems

by using the DEA technique

In the previous sections, it was shown that the MOLFP problem (2.1) can be solved first using the model (2.4)
and then by frequent use of the model (3.1). However, in the proposed method, the objective functions were
not normalized and also they had the same preferences. Since these may be determinant in the computations,
we call the obtained solution in this situation as an “unfair solution”. To overcome the mentioned problem and
obtain a fair solution, the objective functions must be normalized and their preferences must be considered in
the optimization method. Different techniques exist to normalize the objective functions. Therefore, we focus
on the fair determination of the objective functions’ preferences when the decision maker has no information
about them. To this end, the concept of fairness related to preferences of the objective functions is defined
based on the objective functions’ scales using the DEA technique. The necessary background of DEA and the
details of its use in the fair determination of the objective functions’ preferences are presented in the following
subsections.
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4.1. Data envelopment analysis (DEA)

DEA is a technique based on the mathematical programming to evaluate the performance of the homogeneous
decision making units (DMU) with multiple inputs and outputs. CCR and BCC models are two basic models
of DEA which deal with constant returns to scale (CRS) and variable returns to scale (VRS) respectively
(see [1, 6]). Constant returns to scale simply means that the size of the inputs and outputs can be increased in
the same proportion in the production possibility set (PPS).

In addition to the aforementioned DEA models which measure the efficiency of the DMUs, many other models
have been developed with different applications and purposes. One of them is the additive model introduced
by Charnes et al. [4]. This model was developed to determine the efficiency status of the DMUs. Moreover, the
optimum value of the additive model is an inefficiency criterion for the corresponding DMUs. This means that
the larger optimum value of the additive model results in the more inefficiency of the DMU under evaluation.
In the traditional DEA literature, (x0, y0) is called an efficient (Pareto-efficient) DMU in the PPS if there is no
(x̄, ȳ) ∈ PPS such that (−x̄, ȳ) � (−x0, y0). Naturally, in the additive model, a DMU will be more inefficient if
its outputs are smaller and its inputs are larger.

In order to briefly present the additive model, consider the n DMUs where each DMUj(j = 1, . . . , n) uses
the input vector xj = (x1j , . . . , xmj) to produce the output vector yj = (y1j , . . . , ysj). The additive model to
evaluate the DMUo, (o ∈ {1, 2, . . . , n}), assuming variable returns to scale, is as below:

Max 1ms−o + 1ss
+
o

s.t

n∑
j=1

λjxj + s−o = xo,

n∑
j=1

λjyj − s+
o = yo,

n∑
j=1

λj = 1,

λj ≥ 0 j = 1, . . . , n,

s−o ≥ 0, s+
o ≥ 0, (4.1)

where 1m and 1s are row vectors of ones of the appropriate sizes. If the optimal value of the model (4.1) equals
to zero, DMUo is an efficient DMU in the PPS. Otherwise, it is an inefficient DMU. In the last case, the larger
the optimum value, the more inefficient is the DMUo.

Sometimes it happens that the DMUs have no input and the evaluation of the DMUs must be conducted just
based on their outputs. In this regard, Lovell and Pastor [18] proposed a pure output model in 1997. Nonetheless,
two years later, they stated that from a production viewpoint it could be argued that each DMU is by itself
‘the input’, therefore, a single constant input is at hand (see [19]). On the other hand, Mahdiloo et al. [20]
proved that the additive model with a single constant input is equivalent to the additive model without input.
Accordingly, when the DMUs have no input, the additive model to evaluate the DMUo can be used as follows:

Max 1s+
o

s.t

n∑
j=1

λjyj − s+
o = yo,

n∑
j=1

λj = 1,

λj ≥ 0 j = 1, . . . , n,

s+
o ≥ 0. (4.2)
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4.2. Obtaining a fair solution for MOLFP problems

Consider the models (2.4) and (3.1) which were proposed in the previous sections. A major disadvantage of
them becomes apparent when the value of an objective function is much larger than those of the other functions.
This issue may be determinant in the goal programming computations. Therefore, before starting the related
computations, the objective functions should be normalized. There are different normalization methods which
can be used to this end. One of the most common normalization methods is as follows:

fN(x) =
f(x) − fmin

fmax − fmin
, (4.3)

where, fN(x) is the normalized form of the objective function f(x) and fmax along with fmin are the maximum
and minimum values of the objective function on the feasible region of the problem respectively. Using the
relation (4.3), each objective function ranges within the interval [0, 1] and then the same magnitude among
them is guaranteed.

Another disadvantage of the models (2.4) and (3.1), which could be determinant in the computations and thus
must be resolved, is assigning the same preference to all of the objective functions. Most of the existing methods
for solving the MOLFP problems use the preferences of the objective functions presented by the decision maker
based on his/her experience. However, consider a situation in which decision maker has no information about the
preferences of the objective functions. The purpose of the current subsection is assigning the relative preferences
to the objective functions in the mentioned situation (using the additive DEA model).

In most of the practical MOLFP problems, an objective function is more significant for decision maker if it
has smaller absolute values compared to other objective functions. Accordingly, considering the non-negativity
of the objective functions’ values, we suggest a method which assigns the higher preference to the objective
function with the smaller scales. Of course, it should be noted that this idea may need to be changed in different
cases. Therefore, before using the suggested preference assignment process, be careful about its compatibility
with the given MOLFP problem.

Now, the question which arises is that how should the scale of the objective functions be determined? One
may use the maximum (or minimum) value of the objective functions as their scales. Nonetheless, determination
of the scale value using only one value of the function does not seem a reasonable idea. Therefore, in order to
determine the scale of the objective function, we utilize its values (before normalization) at the solutions which
individually maximize the objective functions. Accordingly, each of the objective functions is considered as a
DMU without any input such that its outputs are the mentioned values of the associated objective function.
Finally, the relative preferences will be assigned by the additive model (4.2) corresponding to these DMUs. The
preference assignment process for the MOLFP problem (2.1), which must be done before the normalization of
the objective functions, can be summarized as follows:

Step 0: Solve the model (4.4) for all j ∈ {1, . . . , k} and obtain its optimal solution denoted by x∗
j (j = 1, . . . , k).

Then, go to Step 1.

Max pjx + αjt

S.t. qjx + βjt = 1,

Ax ≤ bt,

x ≥ 0, t ≥ 0. (4.4)

Step 1: Compute the cross-evaluation score zij = zi(x∗
j ) for all i, j ∈ {1, . . . , k}.

Step 2: Consider the DMUs with k outputs without any input as follows:

DMUi = (zi1, zi2, . . . , zik) i = 1, . . . , k. (4.5)
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In order to create a better distinction between the DMUs, add the super ideal DMU (z∗∗1 , z∗∗2 , . . . , z∗∗k ) to
the mentioned DMUs and go to Step 3; where, z∗∗j (j = 1, . . . , k) is obtained from the relation (4.6) (ε is a
sufficiently small positive value):

z∗∗j = ε + max{zij : i = 1, . . . , k} j = 1, . . . , k. (4.6)

Step 3: Evaluate the k DMUs corresponding to the objective functions, mentioned in the Step 2, through the
additive model (4.2). Suppose that R∗

i (i = 1, . . . , k) is the optimal value of the model (4.2) corresponding to the
ith objective function. The value of the relative preference for the ith objective function (i = 1, . . . , k), denoted
by wi, is obtained as follows:

wi =

⎛
⎝R∗

i /

k∑
j=1

R∗
j

⎞
⎠ (4.7)

According to the relation (4.7), the relative preference has a larger value when R∗
i is larger. This is what we

have been looking for because the larger R∗
i means that the ith objective function compared to others has a

smaller scale.

Lemma 4.1. Theorems 3.1 and 3.2 remain true when the objective function of the models (2.4) and (3.1) is
replaced with

∑k
i=1 wiri such that wi > 0 (i = 1, . . . , k).

Proof. This lemma can be proved exactly similar to the Theorems 3.1 and 3.2. �

Note that the super ideal DMU (z∗∗1 , z∗∗2 , . . . , z∗∗k ) dominates all other DMUs corresponding to the objective
functions and this guarantees the positivity of the wi for all i ∈ {1, . . . , k}. Therefore, as a main corollary of the
lemma 4.1, the method to fairly solve the MOLFP problems can be presented as follows:

(1) Using the presented preference assignment process, determine the relative preferences of the objective func-
tions i.e. wis (i = 1, . . . , k).

(2) Replace the original objective functions with the normalized ones in the models (2.4) and (3.1) by the use
of the relation (4.3).

(3) Obtain a solution for the MOLFP problem through the model (2.4) and then model (3.1) with the modified
objective function as

∑k
i=1 wiri.

Example 2. In the Example 1, assigning the same preference to the objective functions of the MOLFP prob-
lem (2.5) without using any normalization process led to the efficient solution x̄ = (1, 0, 0) with the criterion
vector Z = (1, 1.286, 100, 3333.34). Now, according to the presented definition of the fairness, we want to obtain
a fair solution for the problem (2.5).

To obtain a fair solution, first of all, the relative preferences of the objective functions must be deter-
mined. Table 1 represents the DMUs associated with the objective functions along with the super ideal DMU
(z∗∗1 , z∗∗2 , . . . , z∗∗k ) in which ε is considered equal to 0.0001. Table 1 shows that the fourth objective function

Table 1. The DMUs related to the Example 2.

DMUs Outputs
1 1.66667 0.40000 1.66667 1.00000
2 2.16667 2.25000 2.16667 1.28571
3 325.00000 50.00000 325.00000 100.00000
4 2909.09091 2545.45455 2909.09091 3333.33333

Super Ideal 2909.09101 2545.45465 2909.09101 3333.33343
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Table 2. The relative preferences.

Preferences
w1 0.34109725188
w2 0.34100577379
w3 0.31789696266
w4 0.00000001167

Table 3. The maximum and minimum values of the objective functions.

Objective functions Minimum Maximum
1 0.40000 1.66667
2 1.28571 2.25000
3 50.00000 325.00000
4 2545.45455 3333.33333

compared to others has a larger scale; therefore, based on the presented discussion about the fairness, it is ex-
pected that a relative preference with smaller a value to be obtained for this objective function. The relative
preferences according to the Table 1 using the additive model (4.2) and then the relative (4.7) are shown in the
Table 2. It is clear that the obtained preferences are consistent with our desire.

Now, the objective functions must be normalized using the relation (4.3). To this end, the maximum and
minimum values of the objective functions are obtained and represented in the Table 3. According to the Tables 2
and 3, the associated model (2.4) with the modified objective function will be as follows:

Min z = 0.341097r1 + 0.3410058r2 + 0.3178970r3 + 0.00000001167r4

s.t x0 + x1 + x2 = 1 , x0 + x1 − x2 ≤ 2,

x0 − x1 + x2 ≤ 4, x0 + 2x2 ≤ 4,

− 2.34x0 − 6.01x1 + 0.33x2 + r1 = 0.34,

− 4.5x0 + 2.25x1 + 1.75x2 + r2 = 2.25,

− 225x0 − 425x1 + 675x2 + r3 = 675,

5333.34x0 − 3333.34x1 + 666.66x3 + r4 = 5333.4,

x0, x1, x2 ≥ 0, ri ≥ 0 i = 1, . . . , 4. (4.8)

Solving the model (4.8) results in the solution x0 = (0, 0, 1) which may not be efficient. Therefore, to obtain an
efficient solution of the problem (2.5), the associated model (3.1) with the modified objective function should
be solved as follows:

Min z = 0.341097r1 + 0.3410058r2 + 0.3178970r3 + 0.00000001167r4

s.t x0 + x1 + x2 = 1 , x0 + x1 − x2 ≤ 2,

x0 − x1 + x2 ≤ 4, x0 + 2x2 ≤ 4,

− 2.34x0 − 6x1 + 0.34x3 − r1 = 0.34,

− 4.34x0 + 2.17x1 + 1.84x3 − r2 = 1.84,

− 225x0 − 425x1 + 675x2 − r3 = 675,

4909.09x0 − 2909.09x1 + 1090.90x2 − r4 = 1090.90,

x0, x1, x2 ≥ 0, ri ≥ 0 i = 1, . . . , 4. (4.9)

The Optimum value of the model (4.9) is equal to 0. This means that x0 = (0, 0, 1) is an efficient solution of
the problem (2.5) and thus we are done.
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The original criterion vector of x0 in the Example 2 is equal to:

Z
(
x0 = (0, 0, 1)

)
=

(
1.66667, 2.16667, 325.00000, 2909.09091

)
.

The Comparison of the criterion vectors of x0 = (0, 0, 1) and x̄ = (1, 0, 0) (obtained in the Example 1) shows
the importance of selecting the relative preferences in obtaining a fair solution. Because all of the first to third
objective functions, which have the smaller scales compared to the fourth objective function, are improved in
the new solution (i.e. x0); specifically, the first and third objective functions which attain their maximum values.

As a final point, it should be mentioned again that the proposed method in this section just obtained an
efficient solution for the given MOLFP problem based on the presented definition of the fairness. When the
decision maker is able to decide about the satisfaction level of the objective functions, model (3.1) can be used
with a little change to obtain a satisfactory solution in an interactive process. In this case, starting from an
arbitrary feasible solution of the given MOLFP problem like x̄, the frequent use of the model (4.10) can lead to
a satisfactory solution:

Max
∑

i∈{1,...,k}−I1

ri

S.t. Ni(x) − ri = (zi(x̄) − Δi)Di(x) i ∈ I1,

Ni(x) − ri = zi(x̄)Di(x) i ∈ {1, . . . , k} − I1,

Ax ≤ b, x ≥ 0, r ≥ 0, (4.10)

where I1 is the index set of the objective functions to be relaxed and Δis (i ∈ I1) are the amounts by which they
are to be relaxed. To reach the best compromise (satisfactory) solution, model (4.10) can be frequently solved
by updating the x̄ along with its associated index set I1 and the values of the Δis (i ∈ I1). At the end, the
obtained satisfactory solution through frequent use of the model (3.1) (without any change) can be improved
until the efficient solution is achieved.

5. Conclusions

The paper has pointed out that most of the existing methods for solving the MOLFP problems either use
non-linear programming with a high computational complexity or they use linear programming with preferences
of the objective functions which are assigned by the decision maker. Although in the latter case, the existing
models have a low computational complexity, this paper discussed two points about them which may sometimes
be important in optimization process. The first is the normalization of the objective functions and the second
is the consideration of their relative preferences in the optimization process. Before addressing these points,
an iterative method was proposed using the goal programming to solve the MOLFP problem which only uses
linear programming and converges to the efficient solution. Then, the proposed method was developed using
the additive DEA model to obtain a fair solution.

At the end, it should be noted that the concept of fairness to determine the relative preferences of the
objective functions has been presented based on the objective functions’ scales for when the decision maker
has no information about the preferences of the objective functions. According to this definition, the objective
function has a higher preference if it has a smaller scale. However, this definition may not always be consistent
with the given MOLFP problem and may sometimes need to be changed. Furthermore, as has been mentioned
in Section 4, if the decision maker is able to decide about the satisfaction level of the objective functions, the
proposed method can be transformed to obtain a satisfactory efficient solution in an interactive process.
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