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Abstract. Supply chain network design is one of the most important strategic decisions that need to
be optimized for long-term efficiency. Critical decisions include facility location, inventory, and trans-
portation issues. This study proposes that with a dual-channel supply chain network design model,
the traditional location-inventory problem should be extended to consider the vast amount of online
customers at the strategic level, since the problem usually involves multiple and conflicting objectives.
Therefore, a multi-objective dual-channel supply chain network model involving three conflicting objec-
tives is initially proposed to allow a comprehensive trade-off evaluation. In addition to the typical costs
associated with facility operation and transportation, we explicitly consider the pivotal online customer
service rate between the distribution centers (DCs) and their assigned customers. This study proposes
a heuristic solution scheme to resolve this multi-objective programming problem, by integrating ge-
netic algorithms, a clustering analysis, a Non-dominated Sorting Genetic Algorithm II (NSGA-II), and
a Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Several experiments are
simulated to demonstrate the possibility and efficacy of the proposed approach. A scenario analysis is
conducted to understand the model’s performance.
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1. Introduction

Supply chain management is a set of approaches that efficiently integrates suppliers, facilities, and customers
so that merchandise is produced and distributed at the right quantities, to the right locations, and at the right
time, to minimize system-wide costs while simultaneously meeting service level requirements. Supply chain
network design is one of the most important strategic decisions in supply chain management. It determines the
optimal configuration of the facilities as well as the production, distribution, and shipment of inventory in such
a way to optimize both customer satisfaction and the value of the chain. Supply chain network design involves
strategic decisions that also influence tactical and operational decisions, for instance, a decision on the location

Keywords. Supply chain network design, location inventory problem, dual channel, multi-objective programming, evolutionary
computation.

1 Department of Management Sciences and Decision Making, Tamkang University, No. 151, Yingjuan Road, Danshuei District,
New Taipei City 251, Taiwan, Republic of China. cutepluschung@yahoo.com.tw
2 Department of Finance and Actuarial Science, Aletheia University, No. 26, Chenli Street, Danshuei District, New Taipei
City 251, Taiwan, Republic of China.

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2017

http://dx.doi.org/10.1051/ro/2016010
http://www.rairo-ro.org
http://www.edpsciences.org


136 S.-H. LIAO ET AL.

of facilities that fails to take into consideration the related inventory and transportation costs can lead to
sub-optimality. For this reason, there is a new trend of research focuses on the integration of facility location,
transportation, and inventory decisions.

Retail stores have always been the traditional channel in supply chains. However, since the advent of online
shopping, the online channel has also become another important option for customers. Therefore, a dual-channel
supply chain model comprising physical and online channels becomes more common, and this enables customers
to select a specific channel. Dual channels mean more shopping choices and potential cost-savings for customers.

Traditionally, facilities location, inventory decision is a strategic policy, and transportation is a short term
plan, Shin and Qi [27] stated “failure to take the related shipment costs into consideration when deciding the
locations of facilities can lead to sub-optimality, since strategic location decisions have a big impact on shipment
costs”, moreover, the proposed paper discuss the dual channel supply chain network business model, if we only
consider the retailer physical demand but ignore the online customer potential demand, could cause the DCs’
location away these online customer lead to sub-optimality. the definition of potential customers demand in
proposed model is not their actual order, but the rough data obtained by customers historical information, so,
that don’t need to be optimized each time the orders are to be delivered. This study addresses the problem of a
dual-channel supply chain network which determines the facility locations, customer allocation, and inventory
policy − a problem that has so far received limited attention. Since the explored problem integrates both location
inventory and vehicle routing problems (VRPs), it is an NP-hard problem. This study attempts to provide an
optimal solution to determine the distribution centers’ (DCs) number, location, inventory, and distribution
decisions. However, given that the integration of these decisions usually involve a trade-off among incompatible
objectives, a single performance measure such as minimum cost or maximum profit would not capture the
whole essence of the problem, as improving one objective may lead to the deterioration of others. Hence, three
objectives are considered in this proposed model: (1) to minimize the operation cost comprising DCs’ fixed
cost and inventory holding cost; (2) to minimize the transportation cost comprising inbound point-to-point
transportation and outbound vehicle routing conducted by outsourced providers; and (3) to maximize online
customer service satisfaction. This therefore calls for the formulation of a multi-objective nonlinear integer
programming model, as the problem cannot be easily solved by using existing optimization techniques. An
approach that integrates NSGA-II [9] and TOPSIS [15] is proposed to resolve this problem. NSGA-II searches
for a set of non-dominated solutions, where a non-dominated solution performs better than other solutions on
at least one criterion. Subsequently, TOPSIS determines the best compromise solution for decision makers from
the Pareto set.

The contribution of this study is in twofold. First, we establish a dual-channel supply chain network model
which considers the issue of potential online customers within a traditional location-inventory problem, as this
important strategic decision facilitates the transportation movement in a dual-channel supply chain configuration
that would affect tactical and operational activities. Second, due to the inherent complexity of a supply chain
network problem comprising various conflicting objectives, this study therefore develops a multi-objective model
and presents a methodology solution to help the decision maker improve the decision quality through the
evaluation of the trade-offs involved in incompatible goals.

The remainder of this paper is organized as follows. Section 2 presents a review of existing literature on related
works. Section 3 describes the multi-objective dual sale channel problem and formulates the model. Section 4
details the approach for resolving the problem, and the computational results are reported in Section 5. The study
is concluded with recommendations for the future direction in Section 6.

2. Literature review

Supply chain network design involves strategic decisions on the facility number, location, and customers’
assignment, which influences tactical and operational decisions. As the supply chain network design is strongly
related to inventory and transportation issues, a model that does not consider these issues can lead to sub-
optimality. Daskin et al. [8] and Shen et al. [26] introduced a joint location-inventory model with risk pooling
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that incorporates the inventory decision into the location problem. Vidyarthi et al. [31] proposed a production-
location-inventory integration problem in a three-level distribution network with multiple types of product
consideration. In this study, they only considered the safety stock cost but not the on-hand inventory cost,
while Özsen et al. [23] considered a location-inventory model subject to a restriction on the maximum possible
inventory accumulation at DCs. Sourirajan et al. [29] analyzed a network design model where the supply lead
time from a single supplier to capacitated DCs comprises load make-up, replenishment, and congestion time
components. Gzara et al. [14] presented two integration network designs and inventory control problems in service
parts logistic systems under demand uncertainty and highly nonlinear time-based service level constraints.
Jin [17] proposed a distribution network design problem that considers an inventory management cost restricted
by a given budget, and then used the Lagrangian relaxation method to solve the nonlinear integer program.

In contrast to the substantial number of studies discussing the physical channel supply chain network design,
there is relatively little research on the problem with dual-sale channels. Dye [11] developed a deteriorating
inventory model with a time-dependent backlogging rate, and then proposed an algorithm to find the optimal
selling price and replenishment schedule. Mahar and Wright [21] established a “quasi-dynamic” policy to solve
the online demand allocation problem, and assumed that the online demand is accumulated before being assigned
to specific retailers/e-tailers, and the allocation decision is then made based on the expected inventory, shipping,
and waiting costs. The experiment results indicated that total cost is significantly reduced after the proposed
policy is applied. Bretthauer et al. [4] established a two-echelon facilities network which comprises a single central
warehouse and several depots for both in-store and online sales, and one offsite depot for online sales only. The
aim of this study is to determine the optimal inventory and allocation solution for satisfying both in-store and
online demand. Widodo et al. [32] reviewed the inventory equilibrium performance and inventory control policy
within dual-sale channels in terms of where and how much inventory should be allocated and held at each site
to satisfy both in-store and online demand and minimize the total cost. Liu and Xu [20] developed a three-
level, dual-channel supply chain network transactions model which integrates multi-period and multi-criteria
decision-making that established the optimal conditions for the manufacturers and the retailers respectively,
along with the behavior of the various decision makers.

Multi-objective optimization problems in supply chain network have been considered by different researchers
in literature [6; 22; 25]. Farahani et al. [12] divided three categories consisting of classical approaches, pareto
optimal approaches and Evolutionary algorithms (EAs) in their comprehensive review paper to solve multi-
objective optimization problem. As they depicted, “if the problems in the first and second category are complex
then those can be solved using EAs”. EAs have been validated to have better computational efficiency in resolving
the component assignment optimization problems of supply chain network, which is why there has been a growing
interest to adopt Multi-objective evolutionary algorithms (MOEAs), such as NSGA-II, to resolve a variety of
multi-objective supply chain network problems [2, 18]. While MOEAs can obtain a group of Pareto optimal
solutions, those solutions need to be sorted according to decision-makers’ preferences, which is a multi-attribute
decision-making problem (MADM). Several novel hybrid approaches that combine various MOEAs and MADM
techniques, such as the Analytic Hierarch Process (AHP) or TOPSIS have been proposed to resolve this type
of problem. Taleizadeh et al. [30] developed a random fuzzy replenishment multi-product inventory model and
proposed a hybrid intelligent algorithm to resolve multi-objective integer-non-linear problems, finally applied
TOPSIS to rank the solutions. Goyal et al. [13] investigated the optimal machine selection for a reconfigurable
manufacturing system. They applied NSGA II to provide the Pareto front solutions, and used the Shannon
entropy weigh theory and TOPSIS approach to rank the solutions.

Some noteworthy innovative research aspects found from the survey have been incorporated in our research
work Our study extends the traditional location-inventory problem to consider the vast amount of online cus-
tomers at the strategic level. A nonlinear, mixed-integer, multi-objective location-routing model is proposed to
minimize both the total location and routing costs. A systematic approach via the integration of NSGA II and
TOPSIS is also provided. NSGA-II with a “filter” is employed to approximate a set of Pareto-optimal solu-
tions. However, TOPSIS is then adopted to rank these solutions from the best to the worst once the subjective
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preferences of decision makers have been provided. To date, very few studies have applied similar problem-solving
approaches in the similar research context.

3. Problem statement and formulation

3.1. Problem description and assumptions

This study presents a multi-objective dual-chain supply network model (depicted in Fig. 1) which comprises a
vendor at the top level, multiple DCs at the middle level and customers from dual-sale channels, either physical
retailers or internet-enabled channels, at the bottom level. A vendor receives an order either from physical
retail stores or online customers directly, and both the vendor and DCs are owned and operated by a central
decision maker who is responsible for the management of both the product flow and inventory policy. The vendor
does not carry inventory and operates as a cross-decking facility that receives the consolidated loads from the
manufacturer, and then delivers these products to the intermediate DC for serving downstream customers such
as retailers or online customers, to meet uncertain demands that occur at the sales locations.

The problem incorporates a VRP with time windows, as the products are shipped from one DC to a set of
geographically scattered downstream customers through the least costly routes. The routes must be designed in
such a way that each point is visited only once by exactly one vehicle and all routes start and end at the same
DC. In addition, the total demands of all customers on one particular route must not exceed the capacity of the
vehicle. In addition, there are two different delivery policies for each DC. A point-to-point policy is adopted for
shipments between DCs and retailers in a traditional channel. In contrast, a home delivery services guarantees
that a shipment should arrive within a designated time window in an internet-enabled channel, since DCs need
to respond quickly to online customers’ requirements, and this is done by subcontracting to an outsourced
carrier.

Vendor

DC1 Retailer 2

Online 
customer zone 1

Retailer i-1
Retailer 3

Retailer 1

Retailer i
Online 

customer zone k

DC j

Figure 1. The dual channel supply chain distribution model.
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In addition to the typical costs associated with a location-inventory problem, the pivotal routing costs between
the DCs and their assigned customers incurred from a VRP are explicitly considered. Three objectives are
provided; the first is to minimize the total facility location and inventory-related costs of a location-inventory
problem, the second is to minimize the total routing costs in a VRP, and the third is to maximize the online
customers’ service level. The problem is then modeled as a multi-objective, nonlinear integer program. The
following assumptions are made throughout the whole paper:

• The product is always available to customers through either physical or internet-enabled channels, and the
product price is identical in both channels.

• The demands from both channels at each DC occur randomly and are identically independent and normally
distributed.

• The centralized inventory policy with the vendor managed inventory is considered, the safety stock are
pooled at DCs for the order of downstream customers.

• A continuous inventory (Qj, rj) policy is assumed to meet a stochastic demand pattern at any DCj . This
means that, when the inventory level at DCj falls to or below a reorder point rj, a fixed quantity Qj is
ordered to the vendor.

• Each online customers/retailer’s order is fulfilled and delivered only by a specific DC, but the assignment of
online customers/retailers to the DC is known a priori.

• For online customers, the last-mile home delivery within time windows is considered and is conducted by
outsource carriers, the time windows are divided into three time segment based on customers requirement.

• The vendor and DCs storage capacities are unlimited, the online customer’s service level is constrained by
specific DC maximum coverage distance.

3.2. Mathematical model

The notation used throughout the paper is predicted before presenting the model.

Indices:

j index of potential DCs;

J set of all potential DCs; ∀ jJ

i index of retailer;

I set of all retailer; ∀i ∈ I

n index of online customer;

N set of all online customer; ∀n ∈ N

Parameters:

B number of online customer contained in set N , i.e. B = N

di mean of annual demand at retailer i

un mean of annual demand at online customer n

δi standard deviation of annual demand at retailer i

δn standard deviation of annual demand at online customer n

fj annual fixed cost for opening and operating DCj

rcj unit transportation cost between the vendor and DCj
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tcji unit transportation cost between DCj and retaileri

vcgh unit transportation cost between node g and node n, ∀ g, h ∈ J ∪ N

ah the earliest time to serve online customer h, ∀h ∈ N

bh the latest time to serve online customer h, ∀h ∈ N

th the specified arrival time for online customer h, ∀h ∈ N

Dmax maximal coverage distance

τn the set of DCs that could attend online customer n

distgh distance from nodeg to node h, ∀g, h ∈J∪N

sp Speed of vehicle

sj inventory holding cost per unit time at DCj

oj inventory ordering cost per order to the supplier from DCj

ζj average lead time in days to be shipped to DCj from the supplier

zα left α-percentile of standard normal random variable Z

Decision Variables:

Yj 1 if DCj is opened; 0 otherwise

Xji 1 if retailer i is assigned to DCj ; 0 otherwise

Wjn 1 if online customer n is assigned to DCj ; 0 otherwise

Vgh 1 if node g precedes node n; 0 otherwise, ∀g, h ∈ J ∪ N

Mn auxiliary variable for online customer n for sub-tour elimination constraints

Qj order quantity at DCj

A multi-objective mixed-integer programming model is formulated according to the aforementioned notations
and assumptions, as described below.

Min
∑
j∈J

fj × Yj +
∑
j∈J

oj ×

∑
i∈I

(di × Xji) +
∑

n∈N

(un × Wjn)

Qj

+

{∑
j∈J

sj ×
[

Qj

2
× Yj + z1−α

(∑
i∈I

δi

√
ζj × Xji +

∑
n∈N

δn

√
ζj × Wjn

)]}
(3.1)

Min

∑
j∈J

rcj ×
[∑

i∈I

(di × Xji +
∑

n∈N

un × Wjn)
]

+
∑

g∈J∪N

∑
h∈J∪N

vcgh × distgh × Vgh

+
∑
j∈J

∑
i∈I

tcji × di × Xji

(3.2)

Max

∑
n∈N

un × ∑
j∈τn

Wjn∑
n∈N

un × Wjn
(3.3)
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subject to:

∑
j∈J

Xji=1, ∀i ∈ I (3.4)

Xji � Yj , ∀i ∈ I, ∀j ∈ J (3.5)

∑
j∈J

Wjn=1, ∀n ∈ N (3.6)

Wjn � Yj , ∀n ∈ N, ∀ j ∈ J (3.7)

Ml − Mn + (B × Vln) � B − 1 , l, n ∈ N (3.8)

∑
h∈J ∪N

Vgh −
∑

g∈J ∪N

Vhg = 0 (3.9)

∑
g∈J ∪N

∑
h∈J ∪N

Vgh � 1 (3.10)

−Wjn + j
∑

u∈J ∪N

(Vju − Vun) � 1, ∀ j ∈ J, ∀n ∈ N (3.11)

th =
(

tg +
distgh

sp

)
× Vgh , g ∈ J ∪ N, h ∈ N (3.12)

ah � th � bh , h ∈ N, (3.13)

Xji ∈ {0, 1} , Yj ∈ {0, 1} , Wjn ∈ {0, 1} , Vgh ∈ {0, 1} . (3.14)

The objective function equation (3.1) in the proposed model minimizes the facility location and inventory-
related costs in a location-inventory problem. The first term indicates the facility operating cost of DCs, while
the second term considers the dual-channel ordering cost and the last term is the holding cost at DCs, including
working inventory and safety stock costs. The objective function equation (3.2) minimizes the transportation
cost in a VRP. The first term indicates the inbound transportation cost from the vendor to DCs, while the
second term represents the outbound transportation cost from DC to online customers, in this proposed model
assume the transportation cost is distance depended. The third term represents the outbound transportation cost
from DC to retailers, which is quantity depended. The objective function equation (3.3) maximizes the online
customer’s service satisfaction which is measured by the percentage of fulfillment for the demand within vehicle
coverage distance. Equation (3.4) restricts a retailer to be serviced by a single DC. Equation (3.5) states that
retailers can only be assigned to open DCs. Equation (3.6) restricts an online customer to be serviced by a single
DC. Equation (3.7) states that online customers can only be assigned to open DCs. Equation (3.8) is the sub-tour
elimination constraint, which guarantees each tour must contain a DC from which it originates, i.e. each tour
must consist of a DC and some online customers [10]. Equation (3.9) conducts the flow conservation indicating
that whenever a vehicle enters an online customer or DC node, it must leave again, ensuring that the routes
remain circular. Equation (3.10) implies that only one DC is included in each route. Equation (3.11) links the
allocation and the routing components of the model: the online customer is assigned to the DC only if a specific
route starts its trip from the DC. Equation (3.12) indicates the vehicle arrival time, equation (3.13) ensures
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that the DC delivery service for online customers can arrive during the designated time window, equation (3.14)
enforces the integrality restrictions on the binary variables.

In equation (3.1) is convex in Qj >0, the optimal order quantity Q∗
j can be obtained by differentiating

equation (3.1) with respect to Qj as follows in equation (3.15).

Q∗
j =

√√√√√2 × oj ×
(∑

i∈I

di × Xji +
∑

n∈N

un × Wjn

)
sj

. (3.15)

A non-liner cost function equation (3.16) is obtained by substituting equation (3.15) in equation (3.1).

min
∑
j∈J

fj × Yj +
∑
j∈J

⎡
⎣
√√√√2 × oj × sj ×

(∑
i∈I

di × Xji +
∑
n∈N

un × Wjn

)⎤⎦

+
∑
j∈J

sj × z1−α

[∑
i∈I

δi

√
ζj × Xji+

∑
n∈N

δn

√
ζj × Wjn)

]
(3.16)

4. Solution methodologies

MOEAs are popular approaches to resolving multi-objective optimization for efficient-solving and easy-
adaptive properties, especially for problems where traditional methods fail to provide good solutions [7]. How-
ever, the well-known MOEA called Non-dominated Sorting Genetic Algorithm II or NSGA-II is one of the
most successful approaches as observed in the existing literature. In our study, a NSGA-II based evolutionary
approach is proposed as illustrated in Figure 2.

Figure 2. The NSGAII-based evolutionary approaches.
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Furthermore, we proposed a heuristic procedure, as depicted shown in Figure 3, where a genetic approach
incorporated with cluster analysis (CA) is used to resolve the dual-channel supply chain network model. The
heuristic procedure is decomposed into location-inventory and vehicle-routing stages. In the first stage, a genetic-
based heuristic procedure as represented by GA1 is firstly applied to determine the number and location of DCs,
and assign the specific retailers to each DC. In the second stage, the procedure clusters the customers based on
the number of open DCs via a K-means CA, and then determines the delivery routing with time windows by
means of a hybrid heuristic as exemplified by GA2. All the costs incurred in the model are obtained via these
heuristics, and subsequently, NSGA-II is adopted to search for the Pareto solutions before TOPSIS is finally
applied to determine the best compromise solution.

4.1. A hybrid heuristic procedure

4.1.1. Genetic-based heuristic procedure (GA1) for location inventory

The major task of this GA1 procedure is to determine the number of potential DCs and the allocation of
downstream retailers to specific opening DCs so as to minimize the initial cost in equation (3.1). Each individual
of the initial population is generated by producing random strings of 0’s and 1’s of length |J| (the number of
DC and ∀ j ∈ J). Thus, a gene representing Yj for every candidate locationj carries a value of 1 if a DC is
open at that candidate’s site and 0 otherwise. The procedure then conducts the assignment of retailers to one
of the open DCs by a minimal distance discipline. That is, each retailer is allocated to a specific open DC
based on the shortest distance between them. A value of 1 indicates that retailer i was successfully assigned
to DCj and 0 otherwise. Figure 4 illustrates an example of chromosome representation and allocation scheme
for a problem with 5 DCs and 5 retailers. Figure 4a shows the chromosome and describes the initial status of
DCs (i.e. Y1 = Y4 = 0; Y2 = Y3 = Y5 = 1) indicating that DC1 and DC4 is close but DC2, DC3 and DC5 are
open. Figure 4b depicts the distance matrix between DCs and retailers in our problem. Figure 4c represents an
allocation table. A value of 1 in the table indicates the retailer i has the shortest distance to a specific open
DCj (Yj = 1), therefore, DCj is responsible for the distribution of retailer i.

4.1.2. Cluster procedure (CA) for customers

According to Jain and Dubes [16], “Clusters may be described as connected regions of a multi-dimensional
space containing a relatively high density of points, separated from other such regions by a region containing a
relatively low density of points.” This definition of a group is an excellent reason to use a CA in the resolution
of a location problem within a vehicle routing consideration. The potential of a CA for the problem has been
recognized by prior research [3]. K-means, a least-square partitioning method that resolves many well-known
clustering problems, is applied in this study to classify customers into k online customer zones according to
the number of open DCs given priori. After clustering customers into k customer zones, the next process is to
allocate each customer zone to specific opening DCs based on the shortest distance between DCs and the zone’s
centroids. The cluster procedure is depicted in Figure 5.

4.1.3. Genetic-based heuristic procedure (GA2) for online customer’s VRP with time window and fulfillment
rate

The purpose of the VRP with time window and fulfillment rate procedure is to determine the delivery route
plan from each DC to each online customer group that is performed by a GA2 procedure. In this procedure, a
genetic algorithm is applied again and obtained the initial transportation cost and online customers’ fulfillment
rate from the objective functions equations (3.2) and (3.3). Owing to the fact that the supply chain network
design discussed in this study is a strategic decision, rather than an assumption of the customers expecting
to receive their goods at an exact time at the traditional VRP with time window, three daily time periods
representing morning, afternoon, and evening of the customers receiving the goods are considered in our problem.
The algorithm is conducted by randomly clustering each group of online customers into three sub-groups, with
each sub-group representing one of three time windows. Further, the chromosome is encoded in an integer string
of length N , where N is the number of online customers allocated to a specific DC within selected time windows.
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Met the 
population

criterion ?

GA1

GA2

CA

Met the 
generation

criterion ?

YES
NO

YES

NO

Input data and initialize generation

Initialize population

Generate opening DCs  randomly ( gen Yj =1)

Allocation of each retailer to specific opening DCs base on shortest distance (Xji =1)

Cluster the online customer Into several zones coordinated with the number of open DCs 

Allocation of each of online customer zone to specific DC

Partition  online customer zone into three sub-groups represent three time windows demand

Generate the initiate vehicle routing in each time window for each sub-group 

Inter-route improvement (insert, slide, swap move)

Obtained optimal solution through iterated selection, mutation, and crossover process

NSGA II: Obtain Pareto Solutions

TOPSIS &Shannon entropy :  Obtain the best promising solution 

End

Obtained the Z2 value (vehicle routing cost)

Obtained the initial Z1 values ( fixed cost, inventory cost, order cost )

Calculate the online customers fulfillment rate and obtained the Z3 value

Figure 3. The flow chart of the proposed heuristic procedure.
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Figure 4. DC Allocation scheme for GA1.

Figure 5. The online customers’ clustering procedure in CA.

The value of each gene denotes a specific online customer, and the genetic sequence of the chromosome represents
the vehicle visiting order. The online customers’ vehicle inter-route improvement procedure is depicted as follows
in Figure 6. Once the route plan is determined via above routing algorithms, the value for objective of Z3 is
then obtained by accounting the number of online customers within the scheme and compare to the number of
customers in the group that plan to visit.

Similar to other evolutionary algorithms, GA2 randomly generated the individuals in the initial population.
Then, a vehicle’s inter-route improvement procedure is activated based on two schemes: tournament selection
and reproduction. The tournament selection scheme with a 75% selection rate to select the individuals from the
population is used to choose parents from the cross-over pool. In other words, the better fit individuals have a 75%
chance of being selected. However, a simple cross-reproduction scheme is not valid since some gen values are
repeated while others are missed. A remedy for this problem is to apply flip, swap and slide cross-over operators
to the original parents to reproduce new offspring. Figure 7 illustrates an example how the reproduction scheme
of three operators is implemented in GA2. As shown in Figure 7, for example, there are six online customers in
a chromosome in each row of the table. The genetic sequence of a chromosome represents a vehicle route plan
indicating the visiting order of the online customer. In this example, it is assumed that the second chromosome
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Figure 6. Genetic-based heuristic procedure (GA2) for online customer’s VRP.

Figure 7. A reproduction scheme of three operators for GA2.

which has the best fitting value in the initial solution. Therefore, the mutation operator is conducted to randomly
select two points among these nodes. Afterward, flip, swap, and slide processes are applied respectively to obtain
another three new chromosomes. Finally, four vehicle schemes including the best fitting one are combined to
form a new parent set.

4.2. NSGA-II for Pareto solutions

NSGA-II is adopted to search for the Pareto solutions. In the selection process for the next generation, chro-
mosome fitness depends on the evaluation of the decoded solution in the objective functions and its comparison
with other chromosomes. First, the non-domination sorting updates a tentative set of Pareto optimal solutions
by ranking a population according to non-domination. After that, each individual p in the population is given
two attributes: (i) non-domination rank in the optimization objectives (p.rank); (ii) local crowding distance in
the objectives space directions (p.distance). If both chromosomes are at the same non-domination rank, the one
with fewer chromosomes around in the front is preferred. Thus, a partial order (�n) defined in Definition 4.1 is
used to guide the selection process of the algorithms to decide among two chromosomes which one is fitter.

Definition 4.1. Let p, q ∈ R(t) be two chromosomes in population R(t). We say that p is better fitted than
q(p �n q), either if (p.rank <q.rank) or ((p.rank = q.rank) and (p.distance >q.distance)).

Suppose that Zk(p) and Zk(q) be the kth objective function evaluated at two decoded chromosomes p and q,
respectively. In the our NSGA-II approach, Z1(•) indicates the facility location and inventory-related costs
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Figure 8. The NSGA-II solution scheme.

obtained by CA1, Z2(•) indicates the transportation cost and Z3(•) indicates the online customer’s service
satisfaction rate obtained by CA2. To allow for diversification, NSGA-II also estimates the solution density
surrounding a particular solution in the population by computing a crowding distance operator. During selection,
a crowded-comparison operator that considers both the non-domination rank of an individual and its crowding
distance is used to select the offspring, without losing good solutions (elitism strategy). However, the crossover
and mutation operators remain the same.

The NSGA-II solution scheme for Pareto solutions is illustrated in Figure 8. The procedure begins by gener-
ating a random population P (1) of size L. The algorithm evaluates the cost of each chromosome in P (1) using
an encoded solution expression. Then, it applies non-dominated sorting to P (1) and assigns a front to each chro-
mosome to which it belongs. Next, the algorithm applies a binary tournament selection (to form the cross-over
pool), crossover, and mutation operators to generate the child population C(1) of size L. After that, a combined
population R(1) = P (1)∪C(1) of size 2L is sorted according to the aforementioned elitism strategy. Therefore,
a new parent population P (2) is formed by adding solutions from the first front until the size exceeds L. Once
initialized, the algorithm is repeated for T generations.

4.3. TOPSIS and Shannon entropy for the best compromise solution

Although NSGA-II is usually applied to generate Pareto solutions, it is crucial for decision makers to find
the best compromise solution from the Pareto set as an ultimate goal. Inspired by [5, 13, 19], our research uses
TOPSIS to find the best compromise solution. TOPSIS, introduced by Hwang and Yoon [15], is used to rank
the given alternatives of the Pareto solutions obtained by NSGA-II. The basic concept of TOPSIS determines
the positive ideal solution (PIS or S+), as well as the negative ideal solution (NIS or S−), and then finds the
best compromise solution which is closest to S+ and furthest from S− from the Pareto set according to the
decision makers’ objective weights.

The process of TOPSIS to determine the best compromise solution is presented as follows:

Step 1: Input the decision matrix X , where the element xij ofX is the jth objective value of the ith alternative.
That is, X is composed of the Pareto solutions based on three objectives Z1, Z2 and Z3 of equation (3.1),
equations (3.2) and (3.3) which are generated by NSGA-II.

Step 2: Calculate the normalized decision matrix P = [p11,p12,p13;p21,p22,p23;. . . ;pn1,pn2,pn3] of X to transform
different scales of attributes into common measurable units. Shin et al. [28] had classified the normalization
methods as vector, liner and non-monotonic normalization, furthermore, Chakraborty and Yeh [5] compared



148 S.-H. LIAO ET AL.

the performance of vector and various liner normalization in terms of ranking consistency and weight sensitivity,
the result show the vector normalization has better performance than others methods, for the reason, this paper
adopted the vector normalization which is the initial form presented in the original manuscript of Hwang and
Yoon [15]. X is normalized to be P according to equation (4.1).

pij =
xij√

n∑
i=1

(xij)2
, i = 1.2 . . . , n, j = 1, 2, 3. (4.1)

Step 3: Decide the objective weights based on the concept of Shannon entropy in information theory [34]. The
entropy value (ej) of the attribute Aj is determined by equation (4.2). Let dj = 1 − ej represents the inherent
contrast intensity of the attribute Aj . The higher the value of dj , the more important the attribute Aj is.
Finally, the objective weight for each attribute can be obtained by equation (4.3)

ej = − 1
lnn

n∑
i=1

pij ln pij , j= 1, 2, 3 (4.2)

wj = − dj∑3
j=1 dj

, j= 1, 2, 3. (4.3)

Step 4: Construct the weighted normalized decision matrix Ŝ = [ŝ11,, ŝ12, ŝ13; ŝ21,, ŝ22, ŝ23; . . . ; ŝn1,, ŝn2,ŝn3]
using equation (4.3).

ŝij = wj · pij , i = 1, . . . , n and j = 1, 2, 3. (4.4)

Step 5: Use equations (4.5) and (4.6) to determine the positive ideal solution (PIS or S+) as well as the negative
ideal solution (NIS or S−).

S+ = (min (ŝ11, ŝ21, .., ŝn1) , min (ŝ12, ŝ22, ..,ŝn2) , max (ŝ13,,ŝ23,,.., ŝn3)) (4.5)

S− = (max (ŝ11, ŝ21, .., ŝn1) , max (ŝ12, ŝ22, ..,ŝn2) , min (ŝ13,,ŝ23,,.., ŝn3)). (4.6)

Step 6: Calculate the separation measures h+
i and h−

i for each alternative. The separation measures h+
i in

equation (4.7) and h−
i in equation (4.8) are the Euclidean distances of alternative i from PIS (S+) and NIS

(S−) respectively.

h+
i =

√√√√ 3∑
j=1

(ŝij − s+
j )

2
, i = 1, . . . , n and s+

j ∈ S+, j = 1, 2, 3 (4.7)

h−
i =

√√√√ 3∑
j=1

(ŝij − s−j )
2
, i = 1, . . . , n and s−j ∈ S−, j = 1, 2, 3. (4.8)

Step 7: Calculate relative closeness Ci for each Pareto solution according to equation (4.9).

Ci =
h−

i

h+
i + h−

i

, i = 1, . . . , n. (4.9)

Step 8: Choose the best compromising solution whose relative closeness Ci is the closest to 1.
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5. Numerical experience

This section attempts to evaluate the performance of the overall solution scheme for a dual-chain supply
chain network by providing some computational results.

5.1. Data generation

The proposed multi-objective dual-chain supply chain network model involves the three aforementioned sub-
problems. However, to the best of our knowledge, there are no similar instances in the public domain, nor has
any benchmarking been made available in previous studies. Thus, we develop a baseline problem to explore the
decision dimension. The test problems are constructed by generating examples of problems in a supply chain
network with 25 potential DCs, 80 retailers, and 500 online customers in a square of 50 distance units of width.
In other words, Euclidean distance is used to measure the distribution distances. The vehicle maximum reach
distance is 250 km, the average travel speed is 50 km/h, the transportation cost from vendor to DCs is distance
and volume dependent which is set as 40 per unit distance and 1 per unit volume, but DCs to retailers and
to online customers are only distance dependent which is set as 50 and 10 per unit distance, respectively. The
remaining model parameters are depicted as follows:

uk is uniformly drawn from [150,200].
δi and δk are uniformly drawn from [2,4].
fj is uniformly drawn from [900,1000].
sj is uniformly drawn from [16,32].
oj is uniformly drawn from [1,3].
ζj is uniformly drawn from [2,4].

The approach program is coded in MATLAB 7 and executed on an INTEL I5 2.40 GHz processor. We use the
following input parameters for the hybrid GA implementation: population size of GA1 = 1000; population size
of GA2 = 100; maximum number of generations = 200; cloning = 20%; crossover rate = 80%; mutation rate
varies from 5% to 10% as the number of generations increase.

5.2. Computational results

The non-dominated solution set of a dual-chain supply chain network obtained by applying NSGA-II is
illustrated in Table 1, where 40 alternatives of non-dominated solutions are listed. Each alternative contains the
number of opening DCs, the objective function values for operation cost in a location-inventory problem (Z1),
the transportation cost in a VRP (Z2), as well as the online customer service level (Z3). The best values for Z1,
Z2, and Z3 are demonstrated in bold and italic text, and the values Z1, Z2, and Z3 obtained from Table 1 are
used to form a decision matrix X for the TOPSIS process. Thereafter, the computational results of the TOPSIS
and Shannon entropy information theory are depicted in Table 2. The relative closeness Ci and its corresponding
rank among the five top-ranking solutions are also highlighted. Hence, the decision maker may select one of the
top-ranked solutions based on the practical market environment. From Tables 1 and 2, we observe that decision
makers will not choose an inefficient alternative by considering a single performance measurement of either cost
minimization or service level maximization. Instead, they might choose a compromised but satisfied solution.
Figure 9 indicates the results of the Pareto-fronts using NSGA-II for the baseline problem in two and three
dimensions, respectively.

5.3. Sensitivity analysis

To evaluate the magnitude of the impact of online customers on the DC location decision for the proposed
model, we establish three different problem instance sets based on size – representing small, medium, and large −
of online customer groups scattered in a specific area. In addition, various inventory holding and transportation
costs are considered again. Subsequently, two different types of transportation cost components (T1 or T2) and
two different types of inventory holding cost scenarios (S1 or S2) are introduced; where S1, T1 stand for low-cost
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Table 1. Non-dominated solution set from NSGA-II.

Alternative
# of

Operation
cost (Z1)

Transportation
cost (Z2)

Fill rate
(Z3)

Alternative
# of

Operation cost
(Z1)

Transportation
cost (Z2)

Fill rate
(Z3)

Open Open
DCs DCs

1 5 $191 486 $324 203 38.40% 21 8 $265 784 $334 188 65.20%
2 6 $217 848 $328,083 45.60% 22 9 $263 876 $338 284 71.40%
3 6 $207 436 $327 375 43.60% 23 9 $264 156 $338 095 74.00%
4 10 $299 966 $338 629 86.60% 24 11 $319 546 $340 812 89.00%
5 12 $366 262 $332 668 86.20% 25 9 $275 320 $333 720 66.80%
6 6 $194 276 $332 859 46.60% 26 9 $263 876 $338 726 71.80%
7 9 $291 995 $333 608 73.00% 27 12 $338 780 $333 235 82.20%
8 7 $243 199 $332 917 56.80% 28 8 $274 528 $333 846 63.60%
9 6 $231 475 $331 224 53.40% 29 9 $293 822 $332 945 71.20%
10 6 $207 436 $323 823 38.80% 30 9 $277 792 $333 746 74.80%
11 8 $242 550 $336 134 62.80% 31 9 $264 156 $336 091 73.80%
12 6 $207 436 $329 110 44.40% 32 13 $385 346 $333 198 90.40%
13 8 $256 901 $332 298 60.40% 33 12 $311 480 $338 028 84.60%
14 12 $331 409 $336 130 85.80% 34 13 $368 025 $334 824 88.80%
15 8 $272 160 $331 212 58.00% 35 12 $366 262 $336 509 91.20%
16 13 $367 780 $335 744 88.80% 36 6 $194 276 $330 004 46.20%
17 8 $261 818 $337 073 68.60% 37 10 $311 709 $334 302 81.20%
18 7 $248 778 $334 837 59.20% 38 7 $243 199 $332 903 56.40%
19 11 $286 807 $344 729 83.60% 39 6 $207 436 $329 598 44.60%
20 12 $332 839 $335 320 83.20% 40 8 $242 550 $341 392 73.00%
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Figure 9. The Pareto-fronts for the base line instances.
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Table 2. Computational results incurred from TOPSIS.

Altern Normalized decision Weighted normalized Separation

ative Matrix S decision matrixŜ measures
Ci Ranking

p′i1 p′i2 p′i3 ŝi1 ŝi2 ŝi3 h+
i h−

i

1 0.1082 0.1534 0.0868 0.0359 0.0523 0.0288 0.0396 0.0365 0.4796 38
2 0.1231 0.1553 0.1031 0.0409 0.0529 0.0342 0.0346 0.0320 0.4806 37
3 0.1172 0.1549 0.0985 0.0389 0.0528 0.0327 0.0358 0.0337 0.4847 36
4 0.1695 0.1603 0.1957 0.0563 0.0546 0.0650 0.0208 0.0396 0.6557 3
5 0.2069 0.1574 0.1948 0.0687 0.0537 0.0647 0.0330 0.0361 0.5222 26
6 0.1098 0.1575 0.1053 0.0364 0.0537 0.0350 0.0335 0.0364 0.5209 28
7 0.1650 0.1579 0.1650 0.0548 0.0538 0.0548 0.0233 0.0314 0.5734 15
8 0.1374 0.1576 0.1284 0.0456 0.0537 0.0426 0.0276 0.0301 0.5214 27
9 0.1308 0.1568 0.1207 0.0434 0.0534 0.0401 0.0294 0.0310 0.5140 33
10 0.1172 0.1533 0.0877 0.0389 0.0522 0.0291 0.0394 0.0335 0.4597 40
11 0.1370 0.1591 0.1419 0.0455 0.0542 0.0471 0.0234 0.0325 0.5807 14
12 0.1172 0.1558 0.1003 0.0389 0.0531 0.0333 0.0352 0.0338 0.4893 35
13 0.1451 0.1573 0.1365 0.0482 0.0536 0.0453 0.0262 0.0293 0.5277 25
14 0.1872 0.1591 0.1939 0.0621 0.0542 0.0644 0.0266 0.0370 0.5815 13
15 0.1538 0.1568 0.1311 0.0510 0.0534 0.0435 0.0292 0.0259 0.4705 39
16 0.2078 0.1589 0.2007 0.0690 0.0542 0.0666 0.0332 0.0380 0.5338 22
17 0.1479 0.1595 0.1550 0.0491 0.0544 0.0515 0.0216 0.0324 0.6003 11
18 0.1406 0.1585 0.1338 0.0467 0.0540 0.0444 0.0264 0.0300 0.5326 24
19 0.1620 0.1632 0.1889 0.0538 0.0556 0.0627 0.0191 0.0386 0.6695 2
20 0.1881 0.1587 0.1880 0.0624 0.0541 0.0624 0.0272 0.0351 0.5627 16
21 0.1502 0.1582 0.1473 0.0498 0.0539 0.0489 0.0240 0.0302 0.5566 17
22 0.1491 0.1601 0.1614 0.0495 0.0546 0.0536 0.0203 0.0337 0.6243 8
23 0.1492 0.1600 0.1672 0.0495 0.0546 0.0555 0.0189 0.0351 0.6498 4
24 0.1805 0.1613 0.2011 0.0599 0.0550 0.0668 0.0242 0.0399 0.6223 9
25 0.1556 0.1579 0.1510 0.0516 0.0538 0.0501 0.0242 0.0297 0.5513 19
26 0.1491 0.1603 0.1623 0.0495 0.0547 0.0539 0.0200 0.0339 0.6282 6
27 0.1914 0.1577 0.1858 0.0635 0.0538 0.0617 0.0285 0.0340 0.5445 21
28 0.1551 0.1580 0.1437 0.0515 0.0539 0.0477 0.0260 0.0281 0.5202 29
29 0.1660 0.1576 0.1609 0.0551 0.0537 0.0534 0.0244 0.0301 0.5519 18
30 0.1570 0.1580 0.1690 0.0521 0.0538 0.0561 0.0204 0.0340 0.6250 7
31 0.1492 0.1591 0.1668 0.0495 0.0542 0.0554 0.0190 0.0350 0.6483 5
32 0.2177 0.1577 0.2043 0.0723 0.0538 0.0678 0.0364 0.0390 0.5176 32
33 0.1760 0.1600 0.1912 0.0584 0.0545 0.0635 0.0232 0.0373 0.6172 10
34 0.2079 0.1585 0.2007 0.0690 0.0540 0.0666 0.0332 0.0380 0.5335 23
35 0.2069 0.1593 0.2061 0.0687 0.0543 0.0684 0.0328 0.0398 0.5478 20
36 0.1098 0.1562 0.1044 0.0364 0.0532 0.0347 0.0338 0.0364 0.5186 30
37 0.1761 0.1582 0.1835 0.0585 0.0539 0.0609 0.0238 0.0350 0.5949 12
38 0.1374 0.1576 0.1275 0.0456 0.0537 0.0423 0.0279 0.0299 0.5178 31

39 0.1172 0.1560 0.1008 0.0389 0.0532 0.0335 0.0351 0.0338 0.4904 34
40 0.1370 0.1616 0.1650 0.0455 0.0551 0.0548 0.0169 0.0373 0.6880 1

scenarios and S2, T2 represent high-cost scenarios. These are implemented in each of the problem sets, namely,
T1 S1, T1 S2 and T2 S1. The rest of model parameters are kept the same as the baseline problem.

Tables 3–5 summarize the computational results for the various problem sets discussed above. These tables
contain the optimal number of DCs, the percentage of cost components, the closeness Ci and the five top-ranking
solutions among the alternatives. As mentioned in reference [33], when increasing the number of opening DCs,
the facility and inventory costs also rise in the different problem sets, but the inbound transportation cost
from the supplier to DCs is reduced. This phenomenon indicates that when more potential DCs are opened,
there are more opportunities to locate them close to the retailers/online customers’ locations to decrease the
transportation cost; these results support prior studies [1,27]. However, as this study assumes that the amount
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Table 3. Computational results of 5 top-ranking solutions for P25 500.

Scenarios
Cost component percentage Objectives # of open Score Rank

FC IC OC TC RC Z1 Z2 Z3 DC Ci

T1 S1

16.1 32.1 3.87 41.9 5.97 $242 550 $341 392 73.00% 8 0.688 1
17.3 31.1 3.83 41.8 5.86 $286 807 $344 729 83.60% 11 0.6695 2
17.4 31.1 3.71 41.9 5.73 $299 966 $338 629 86.60% 1 0.6557 3
17.0 32.5 3.98 40.9 5.38 $264 156 $338 095 74.00% 9 0.6498 4
16.2 32.3 3.90 42.1 5.45 $264 156 $336 091 73.80% 9 0.6483 5

T1 S2

13.5 30.4 4.35 44.9 6.79 $298 841 $389 800 75.80% 10 0.6608 1
15.8 28.9 4.44 44.4 6.22 $340 367 $392 341 84.40% 11 0.6458 2
14.9 29.4 4.26 45.2 6.08 $301 574 $389 475 74.00% 9 0.6450 3
14.7 30.8 4.40 44.2 5.79 $293 513 $388 408 72.20% 8 0.6444 4
14.1 27.8 4.41 46.7 6.80 $342 047 $391 241 83.20% 12 0.6385 5

T2 S1

16.1 22.6 3.10 52.4 5.70 $242 223 $479 317 75.80% 9 0.6864 1
13.9 23.3 3.31 53.2 6.09 $234 110 $479 867 71.80% 7 0.6758 2
15.8 24.1 3.24 51.3 5.50 $279 480 $481 131 84.60% 10 0.6595 3
16.1 22.7 3.10 52.4 5.63 $273 274 $479 867 81.40% 9 0.6572 4

15.8 24.1 3.25 51.4 5.33 $275 465 $478 718 81.80% 10 0.6551 5

FC: facility Cost; IC: inventory cost; OC: ordering Cost; TC: distribution cost from vendor to DCs and DCs to retailers,
RC: routing cost from DCs to customers.

Table 4. Computational results of 5 top-ranking solutions for P25 800.

Scenarios
Cost component percentage Objectives # of open Score Rank

FC IC OC TC RC Z1 Z2 Z3 DC Ci

T1 S1

18.7 27.1 3.68 41.6 8.80 $333 389 $392 390 79.25% 13 0.6434 1
18.8 26.6 3.64 41.7 9.13 $375 110 $395 609 88.88% 15 0.6304 2
19.2 29.4 3.90 39.7 7.64 $323 773 $392 640 71.25% 13 0.6114 3
17.6 28.2 3.76 42.0 8.25 $375 110 $391 752 83.13% 15 0.6107 4
17.5 28.7 3.65 41.9 8.03 $324 975 $389 162 70.75% 11 0.6072 5

T1 S2

19.5 30.5 4.68 37.1 8.07 $333 164 $376 870 78.00% 12 0.7102 1
19.7 29.7 4.50 37.9 8.01 $333 164 $375 074 71.75% 12 0.6693 2
17.7 30.9 4.49 38.4 8.39 $375 562 $373 859 81.63% 14 0.6667 3
18.0 29.3 4.45 39.0 9.14 $346 484 $374 060 72.50% 12 0.6557 4
18.7 31.6 4.65 37.6 7.32 $370 307 $372 331 75.63% 12 0.6430 5

T2 S1

10.6 15.9 2.19 63.8 7.36 $242 223 $479 317 75.80% 9 0.6864 1
11.5 22.4 3.11 56.6 6.17 $234 110 $479 867 71.80% 7 0.6758 2
9.61 16.5 1.99 65.4 6.40 $279 480 $481 131 84.60% 10 0.6595 3
13.1 23.1 2.88 54.5 6.34 $273 274 $479 867 81.40% 9 0.6572 4
7.23 19.2 2.24 65.7 5.48 $275 465 $478 718 81.80% 10 0.6551 5

of delivery from each DC to specific online customer zones is restricted by vehicle capacity, more opening DCs
would imply that more products need to be delivered, which in turn will increase the routing cost. Hence, the
magnitude of objective function value Z2 affected by the number of opening DCs is dependent on the trade-off
between inbound and outbound transportation costs. Moreover, we observe that when holding costs increase
(T1 S2 versus T1 S1) in each problem set of online customers, it is noteworthy that the number of opening DCs
also simultaneously increases among the top five alternatives. This phenomenon could be explained as follows:
the scope of each alternative is obtained from a balance of the three objective function values. Hence, when
the alternative containing the value of Z1 remains constant, the higher inventory cost decreases the number
of opening DCs, causing the value of Z3 to also fall. In contrast, the higher weight of Z3 compared with Z1

brings down the alternative’s ranking on the list of top-ranking solutions. Conversely, the other alternatives



MULTI-OBJECTIVE SUPPLY CHAIN NETWORK DESIGN 153

Table 5. Computational results of 5 top-ranking solutions for P25 1000.

Scenarios
Cost component percentage Objectives # of open Score Rank

FC IC OC TC RC Z1 Z2 Z3 DC Ci

T1 S1

22.2 28.1 3.73 36.8 8.95 $350 303 $669 466 84.20% 15 0.6585 1
19.9 27.2 3.74 39.2 9.83 $347 256 $666 417 77.40% 14 0.6391 2
19.7 28.0 3.88 38.7 9.63 $376 338 $664 708 79.00% 15 0.6162 3
20.0 26.7 3.63 39.3 10.1 $304 744 $666 377 63.70% 12 0.6137 4
21.0 30.0 3.98 36.5 8.49 $392 845 $666 723 81.30% 16 0.6091 5

T1 S2

25.9 37.3 5.77 20.2 10.7 $368 146 $221 202 74.00% 13 0.6619 1
27.1 35.3 5.53 21.1 10.9 $413 756 $226 381 82.40% 17 0.6564 2
26.1 37.5 5.80 20.3 10.1 $360 504 $225 476 70.70% 13 0.6446 3
26.9 37.6 5.72 20.0 9.66 $387 381 $222 079 74.30% 14 0.6429 4
26.9 37.6 5.72 20.0 9.65 $428 064 $230 490 83.10% 16 0.6429 5

T2 S1

18.8 28.7 3.51 41.6 7.29 $381 010 $494 818 79.50% 13 0.6657 1
18.8 28.8 3.52 41.7 7.06 $369 260 $494 457 74.50% 13 0.6512 2
17.0 28.0 3.38 44.1 7.98 $369 260 $492 797 73.30% 13 0.6439 3
16.3 27.5 3.22 44.9 7.21 $441 315 $495 919 87.10% 16 0.6318 4

17.0 28.1 3.38 44.2 7.43 $369 260 $488 608 71.30% 13 0.6311 5
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Figure 10. The number of open DCs for various problem top ranking.

which contain more opening DCs will have a higher scope and may rank higher in the list of top-ranking
solutions. A similar phenomenon is also observed in high transportation problem sets (T2 S1 versus T1 S1).
Furthermore, Figure 10 demonstrates how as the number of online customers increases, more DCs will need to
be set up to extend their coverage to meet these customers’ requirements. In summary, the results from the
above experiment suggest that the proper number and location of DCs is a critical factor that has a significant
impact on the supply chain network performance. If a facility location decision only considers the physical
store but ignores the steady growth of web shoppers, this could result in DCs being located far away from web
customers, and lead to inefficiencies in the whole supply chain network.
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6. Conclusion

This study considers a multi-objective dual-sale channel supply chain network model comprising a single
vendor, multiple DCs, and a set of customers − either physical retailers or online customers. A novel formulation
which integrates three issues within supply chain, namely facility location, inventory, and vehicle routing, is
developed. A two-stage NSGA-II and TOPSIS-based approach is proposed to resolve this problem. In the first
stage, NSGA-II is applied to determine a finite set of non-dominate Pareto solutions. In the second stage, the
Shannon entropy information theory from the decision makers’ perspective is first applied to weigh both the
cost and service satisfaction criteria, and then TOPSIS is used to determine the best compromise solution.
The feasibility of the developed model is evaluated by presenting several small-sized random instances. In the
experiments, the proposed approach displays good behavior on the near-reality data and yields a near-optimal
solution in a stochastic demand environment. The benefit of this proposed study is twofold. First, it develops a
dual-chain supply chain network model that considers the issue of online customers within a traditional location-
inventory problem that so far only involves a physical retail sale channel. Second, it presents a multi-objective
method that involves both financial and service performance indicators. A sensitivity analysis is performed
to evaluate the way in which DC selection impacts transportation, inventory, and routing costs, and several
interesting phenomena were perceived.

As for future work, the model can be extended in several realistic and practical directions. In recent years,
increasing number of studies are dealing with environmental issues and the integration of forward and reverse
supply chains, therefore a consideration of the closed-loop aspect of this proposed dual-chain supply chain
network model can be an attractive future research direction. Moreover, it would be interesting to develop more
effective and elegant heuristic methods to resolve the integration model. In addition, determining the weight of
the attributes in the model is an important but complex process. Comparative research could adopt a structured
technique, such as an AHP or Analytic Network Process, to determine the weight to evaluate its influence on
these objectives.
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