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TRANSIENT ANALYSIS OF A SINGLE SERVER DISCRETE-TIME QUEUE
WITH SYSTEM DISASTER
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Abstract. A discrete-time Geo/Geo/1 queue with system disaster is considered in this paper. The
time-dependent and steady state probabilities of number of customers present in the system are obtained
in terms of ballot numbers by solving the underlying system of difference equations using the generating
function and continued fractions. Further, the busy period distribution is derived in terms of Catalan
numbers. For special cases, time-dependent system size probabilities and busy period distribution are
verified with the existing results in the literature. Numerical illustrations are provided for different
parameter values to see their effect on performance measures and to get more insight of the model
behavior.

Mathematics Subject Classification. 60K25.

Received August 1, 2015. Accepted January 21, 2016.

1. introduction

Birth-death processes have a rich history in probabilistic modeling, including applications in ecology, genetics,
and evolution. Moreover, populations can suffer dramatic declines from disease or food shortage but, perhaps
surprisingly, such populations can survive for long periods of time and, although they may eventually become
extinct, they can exhibit an apparently stationary regime.Models based on stochastic processes in the presence of
catastrophes have been recently exploited also in another field of mathematical biology, with special reference to
the description of the interaction between a myosin head and an actin filament. In particular, meta-population
models, epidemics, and migratory flows provide practical examples of populations subject to disasters (e.g.,
habitat destruction, environmental catastrophes).

Disaster is a special case of so called a negative arrival that removes one customer or a batch of ones of
random size from the queueing system (that is, with different types of negative arrivals). A disaster is also
called a catastrophe, mass exodus, or queue flushing [6]. Towsley [31] has discussed the presence of disasters
in queueing systems for the purpose of analyzing distributed database systems that undergo site failure and
later this idea was extended to the M/G/1 queue with disasters [15]. During real queueing system operation,
the appearance of disasters is possible which causes the system to loss all customers instantaneously bringing
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system operations to complete halt for a while. Queueing models with disasters seem to be appropriate to model
systems like computer networks which are vulnerable to disasters such as massive power outage and denial of
service virus attacks for instance.

Birth-death processes with catastrophes have been extensively studied during the past two decades. Dur-
ing the last decade, several authors considered the problem of computing the transient distributions of var-
ious processes influenced by Poisson generated total catastrophes/(complete) disasters. The methods used
in the specific models vary. Swift [29] used an ordinary differential equation (ODE) technique to solve di-
rectly the Chapman−Kolmogorov (C-K) equations for the simple immigration-catastrophe process. Brockwell
et al. [3] defined several kinds of catastrophes (geometric, binomial, and uniform). Other contributions are due
to Kyriakidis [17], Stirzaker [27] and, Economou and Fakinos [8] that extend some previous results on birth-
death processes with catastrophes to the more general cases of continuous-time Markov chains with catastrophes
resulting from a point process, and of the non-homogeneous Poisson process with total or binomial catastro-
phes. Economou and Gmez−Corral [10] studied the influence of renewal generated geometric catastrophes on
a population of individuals that grows stochastically according to a batch Markovian arrival process (BMAP).
These ideas have been further developed and applied in the recent contributions of Gani and Swift [11]. In [9]
the authors reviewed the different methodologies for the derivation of the transient distribution and discussed
the pros and cons. Chao and Zheng [5] considered an immigration birth and death population process with total
catastrophes and studied its transient as well as equilibrium behavior.

In [34], Yechiali discussed the quality of stationary service performance measures such as the rate of customers
flushed out of the system due to failures, and the rate of abandonments due to customers impatience for multiple
servers queues when the system is down. Sudhesh [28] proposed an M/M/1 queue in the presence of disastrous
breakdowns, system repair, and customer impatience and derived an explicit expression for the time-dependent
queue size system distributions. A multi-server retrial queue with waiting places in service area along with
negative customers and disasters was introduced by Shin [25]. Queues with negative and positive customers
have been investigated over the decades ([16, 19, 33]).

Discrete-time queueing models have received considerable growing interest during the last few decades due
to their potential applications to a variety of slotted digital computer, communication systems. These queueing
models are more accurate and efficient than their continuous-time counterparts to analyze and design digital
transmitting systems which are measured in discrete time slots [4]. For comprehensive studies on discrete-time
queueing systems, one may refer to Hunter [14], Takagi [30], Park et al. [22,23], and references therein. The early
work on negative customers in discrete-time queue can be found in [1] where the authors considered the single-
server discrete-time queue with negative arrivals and various killing disciplines caused by negative customers.
Wang and Zhang [32] studied a discrete time single server retrial queue with geometrical arrivals of both positive
and negative customers in which the server is subject to breakdowns and repairs. Lee and Yang [18] have
considered a discrete time Geo/G/1 queue with N policy and disaster and obtained the probability generating
functions of the queue length, the sojourn time, and regeneration cycles such as the idle period and busy period.

In the literature, analytical results for the transient behavior of queueing models are not as widely available as
the steady-state results. It is of interest to practitioners to know how the system will operate in small interval of
time [20,21,24]. Thus, transient analytical results are pertinent for theory and applications of queueing systems.
Continued fractions have been used successfully to find time-dependent probabilities of birth-death queuing
models [7, 28].

In this paper, we studied a single server discrete-time queue with system disasters. Suitable generating
functions are used to convert the system of difference equations of probabilities into a system of difference
equations of generating functions which leads to a continued fraction. We obtained time-dependent and steady
state probabilities in terms of ballot numbers which is the generalization of catalan numbers [26]. Also a busy
period distribution is derived for this single server disaster queue in terms of Catalan numbers. For special cases,
time-dependent system size probabilities and busy period distribution are verified with the existing results in the
literature. Numerical illustrations are provided for different parameter values to see their effect on performance
measures and to get more insight of the model behavior.
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The rest of the paper is organized as follows: Section 2 describes the model under investigation. In Section 3,
transient system size probabilities are derived and verified with existing results in the literature for a special
case. Transient average number of customers and steady-state probabilities are also derived in this section. In
Section 4, the busy period analysis is carried out and verified with the existing results in the literature for a
special case. In addition, the average busy period duration is derived. Finally, in Section 5, numerical results of
transient system size probabilities and busy period distributions are presented to get more insight of the model
under investigation.

2. Model description

We consider a single server discrete-time queueing model where the time axis is divided into equal inter-
vals called slots. All queueing activities such as arrivals, departures and total disasters occur only at the slot
boundaries. We use the early arrival system (EAS) in this paper [14, 30]. In EAS, arrivals occur just after the
beginning of the slots and departures take place just before the end of the slots. An arriving customer who finds
the system empty can get served straight away within the same slot.

The pictorial representation of the system is given as follows (Fig. 1):
Let Xm be a discrete random variable denoting the number of customers in the system at the time epoch m.

Then {Xm : m = 0, 1, 2, · · · } is a discrete time Markov chain with state space {0, 1, 2, · · · , }.
We assume that customer arrivals occur at the beginning of time epoch m = m+, m = 0, 1, 2, · · · with

identically distributed (iid) inter-arrival times following a geometric distribution with parameter α (0 < α < 1).
Let ᾱ = 1−α. We assume that customer service completions occur at discrete time epoch m = m−, m = 1, 2, · · ·
with iid service times following a geometric distribution with parameter β (0 < β < 1). Let β̄ = 1 − β.
Further, when the system is not empty, total disasters/complete catastrophes occur according to a geometric
distribution with parameter ξ (0 < ξ < 1). Let ξ̄ = 1−ξ. A disaster event will make the system instantly empty.
Simultaneously, the system becomes ready to accept new customers. We assume that the probability of more
than one arrival, disaster and/or departure events during a given slot is zero and that the events in different
slots are independent. Therefore, α + β + ξ < 1.

As disaster occurs at rate ξ, the behaviour of the process involves:

1. an arrival from state i to state i + 1 at rate α for i = 0, 1, 2, · · · ;
2. a departure from state i to state i − 1 at rate β for i = 1, 2, 3, · · · ;
3. a catastrophic jump from any state i ≥ 1, i = 1, 2, 3, · · · to state 0 at rate ξ.

The state transition diagram of our model is given in Figure 2.

Figure 1. Schematic diagram of a queueing model.
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Figure 2. Transition rate diagram for the Geo/Geo/1 queue with system disaster.

3. Transient and steady state system probabilities

In this section, we derive the time-dependent and steady state system probabilities in closed form for the
Geo/Geo/1 queue described in Section 2.

Let Pm(n) = P (Xm = n|X0 = 0), m, n = 0, 1, 2, · · · be the probability that there are n customers in the
system at time epoch m given that the system is empty at the initial epoch.

Let P = (Pij) be the transient probability matrix of the Markov chain.
The (i,j)-component Pij of P is given by

Pij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αβ̄ξ̄ if j = i + 1, i ≥ 0
βᾱξ̄ if j = i − 1, i ≥ 1

(1 − αβ̄ξ̄) if j = 0 i = 0
αβξ̄ + ᾱβ̄ξ̄ if j = i, i ≥ 1

ξ if j = 0, i ≥ 1.

Theorem 3.1. The system size probabilities Pm(n) are given by

Pm(n) =
{

0, if m < n
η(n, m − n) − γ(n, m − n), if m ≥ n

, (3.1)

where η(n, r) and γ(n, r) are given by

η(n, m) =
[ m

2 ]∑
k=0

b(k, n)λn+kμk
m−2k∑
j=0

(
n + 2k − 1 + j

j

)
(1 − λ − μ − ξ)j (3.2)

and

γ(n, m) =
[ m−1

2 ]∑
k=0

b(k, n + 1)λn+k+1μk
m−2k−1∑

j=0

(
n + 2k + j

j

)
(1 − λ − μ − ξ)j , (3.3)

where [x] is the integral part of x, η(0, m) = 1, for all m ≥ 0, γ(n, 0) = 0, for all n ≥ 0, λ = αβ̄ξ̄, μ = βᾱξ̄,
and

b(k, n) =
n

2k + n

(
2k + n

k

)
(3.4)

is a ballot number with b(0, n) = 1 for n ≥ 1, b(0, 0) = 1 (see [26]).
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Proof. The difference equations governing the model described in Section 2 are given as follows:

Pm+1(0) = ᾱPm(0) + αβξ̄Pm(0) + αξPm(0) + βᾱξ̄Pm(1)

+ ξ[αβ + αβ̄ + βᾱ + ᾱβ̄]
∞∑

m=1

Pm(n)

= [1 − αβ̄ξ̄ − ξ]Pm(0) + βᾱξ̄Pm(1) + ξ, (3.5)

Pm+1(n) =αβ̄ξ̄Pm(n − 1) + [αβξ̄ + ᾱβ̄ξ̄]Pm(n) + βᾱξ̄Pm(n + 1)
=αβ̄ξ̄Pm(n − 1) + [1 − αβ̄ξ̄ − βᾱξ̄ − ξ]Pm(n)

+ βᾱξ̄Pm(n + 1), n = 1, 2, 3, · · · (3.6)

Let λ = αβ̄ξ̄ and μ = βᾱξ̄.
Then the above equations (3.5) and (3.6) can be rewritten as

Pm+1(0) = (1 − λ − ξ)Pm(0) + μPm(1) + ξ, (3.7)

Pm+1(n) = λPm(n − 1) + (1 − λ − μ − ξ)Pm(n) + μPm(n + 1), n = 1, 2, 3, · · · (3.8)

Let

Gz(n) =
∞∑

m=0

Pm(n)zm, |z| ≤ 1 (3.9)

be the generating function. �

On applying (3.9) in (3.7) and (3.8), we get

Gz(0)
(

1
z
− 1 + λ + ξ

)
=

P0(0)
z

+ μGz(1) +
ξ

1 − z
, (3.10)

Gz(n)
(

1
z
− 1 + λ + μ + ξ

)
− μGz(n + 1) − λGz(n − 1) =

P0(n)
z

· (3.11)

For the sake of simplicity we set s =
1
z
− 1. This reduces the above system as follows:

Gs(0) =
(s + 1)(1 + ξ

s )

s + λ + ξ − μGs(1)
Gs(0)

(3.12)

and

Gs(n)
Gs(n − 1)

=
λ

(s + λ + μ + ξ) − μGs(n+1)
Gs(n)

, n ≥ 1.

By iterating, the above equation yields the following continued fraction for n = 1, 2, 3, · · · ,
Gs(n)

Gs(n − 1)
=

λ

s + λ + μ + ξ−
λμ

s + λ + μ + ξ−
λμ

s + λ + μ + ξ− · · · (3.13)

Using (3.13) in (3.12), we get

Gs(0) =
(s + 1)(1 + ξ

s )
s + λ + ξ−

λμ

s + λ + μ + ξ−
λμ

s + λ + μ + ξ− · · · , (3.14)
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where the notation for the continued fraction is used as
a1

b1−
a2

b2−
a3

b3− · · · =
a1

b1 − a2

b2 − a3

b3 − · · ·

·

Equation (3.14) can be written as

Gs(0) = (s + 1)
(

1 +
ξ

s

)(
1

s + λ + ξ−
λμ

s + λ + μ + ξ−
λμ

s + λ + μ + ξ− · · ·
)
·

After some simple algebraic manipulations, the above equation can be rewritten as

Gs(0) =
s + 1

s

[
1 − λ

(
s + λ + μ + ξ −√(s + λ + μ + ξ)2 − 4λμ

2λμ

)]

=
s + 1

s

[
1 − λ

∞∑
r=0

Cr

(
λμ

(s + λ + μ + ξ)2)

)r 1
s + λ + μ + ξ

]
,

(see [13]) where

Cr =
1

r + 1

(
2r

r

)
, r ≥ 0 (3.15)

is known as Catalan numbers with C0 = 1 (see [26]). The relationship between continued fractions and Catalan
numbers is given by [13]:

1− x

1−
x

1− · · · =
1 −√

1 − 4x

2x
=

∞∑
r=0

Crx
r = C(x), (3.16)

|x| ≤ 1/4, where C(x) is the generating function of Catalan numbers.

Then for n = 1, 2, 3, · · · ,
Gs(n)

Gs(n − 1)
=

λ

s + λ + μ + ξ

[ ∞∑
r=0

Cr

(
λμ

(s + λ + μ + ξ)2

)r
]

=
λC(x)

s + λ + μ + ξ
= g(s), (say)

where C(x) is the generating function of Catalan numbers with x =
λμ

(s + λ + μ + ξ)2
·

After some simple algebra we get,

Gs(n) = [g(s)]nGs(0), (3.17)

where

g(s) =
λ

s + λ + μ + ξ
C(x).

It is known that (see [12], p. 1033):

[C(x)]n =

( ∞∑
r=0

Crx
r

)n

=
∞∑

k=0

b(k, n)xk, (3.18)

where b(k, n) is the ballot number given in (3.4).
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By replacing s by 1
z − 1 in (3.17) and after some simplification we get,

Gz(n) =
1

1 − z
[Bn(z) − Bn+1(z)], n ≥ 1,

where

Bn(z) =
[

λz

(1 − z(1 − λ − μ − ξ))

]n [
C

(
λμz2

(1 − z(1 − λ − μ − ξ))2

)]n

, n ≥ 0,

which will be obtain from (g(s))n after changing s by 1
z − 1.

And by using (3.18) for n = 0, 1, 2, · · · , we obtain,

Gz(n) =
∞∑

m=0

zm(Bn(z) − Bn+1(z))

=
∞∑

m=0

zm

[
λz

1 − z(1 − λ − μ − ξ)

]n ∞∑
k=0

b(k, n)
(

λμz2

(1 − z(1 − λ − μ − ξ))2

)k

−
∞∑

m=0

zm

(
λz

[1 − z(1 − λ − μ − ξ)]

)n+1 ∞∑
k=0

b(k, n + 1)
(

λμz2

[1 − z(1 − λ − μ − ξ)]2

)k

,

where |λ + μ + ξ| < 1.

The binomial expansion of the terms in the above expression leads to the following for n ≥ 0:

Gz(n) = (λz)n
∞∑

m=0

zm
∞∑

j=0

(1 − λ − μ − ξ)j
∞∑

k=0

b(k, n)
(

n + 2k − 1 + j

j

)
zj(λμ)kz2k

−λn+1zn
∞∑

m=0

zm+1
∞∑

j=0

(1 − λ − μ − ξ)j
∞∑

k=0

b(k, n + 1)
(

n + 2k + j

j

)
zj(λμ)kz2k

= (λz)n
∞∑

m=0

zm
m∑

j=0

(1 − λ − μ − ξ)j
∞∑

k=0

b(k, n)
(

n + 2k − 1 + j

j

)
(λμ)kz2k

−λn+1zn
∞∑

m=0

zm+1
m∑

j=0

(1 − λ − μ − ξ)j
∞∑

k=0

b(k, n + 1)
(

n + 2k + j

j

)
(λμ)kz2k.

By rearranging the powers of z in the above equation we get,

Gz(n) =
∞∑

k=0

b(k, n)λn+kμkzn+2k
∞∑

m=0

zm
m∑

j=0

(
n + 2k − 1 + j

j

)
(1 − λ − μ − ξ)j

−
∞∑

k=0

b(k, n + 1)λn+k+1μkzn+2k
∞∑

m=1

zm
m−1∑
j=0

(
n + 2k + j

j

)
(1 − λ − μ − ξ)j
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which yields

Gz(n) = zn
∞∑

m=0

η(n, m)zm − zn
∞∑

m=1

γ(n, m)zm, (3.19)

where η(n, r) and γ(n, r) are given by (3.2) and (3.3), respectively.
By comparing the coefficients of zm on both sides of (3.19), we obtain the system size probabilities as in (3.1).

Hence the theorem.

Remark 3.2. The average number of customers E[Xm] in the system at time m is given by

E[Xm] =
∞∑

n=0

nPm(n), m = 0, 1, 2 · · · (3.20)

Remark 3.3. Since s = 1
z − 1, using the limit theorem of z-transforms, we can obtain the steady state proba-

bilities πn for n = 0, 1, 2, · · · as

πn = lim
m→∞Pm(n) = lim

s→0
sGs(n)

=
(

λ

λ + μ + ξ

)n ∞∑
k=0

[
b(k, n) − λ

λ + μ + ξ
b(k, n + 1)

](
λμ

(λ + μ + ξ)2

)k

·

4. Busy period analysis

Busy period of a single server queue is the first passage time to state zero starting from state one. In busy
period analysis, we modify the actual model in Section 2 by making state 0 an absorbing state. Let T be a
random variable denoting the time until the process reaches the absorbing state 0 starting from state 1 initially.
That is, the variable T denotes the duration of a busy period. Let B(m) = P (T = m), m = 1, 2, 3, · · · , the
probability mass function of T .

Theorem 4.1. The busy period probability B(m) is given by

B(m) = μqm−1(1) + ξ[1 − qm−1(0)], m = 1, 2, 3, · · · , (4.1)

where

qm(n) = P (Xm = n, | X0 = 1) (4.2)

with Xm denoting the number of customers in the system at time m. In particular,

qm+1(0) = ξ

m∑
k=0

(1 − ξ)m−k + μ

[ m
2 ]∑

k=0

Ck(λμ)k

×
m−2k∑
j=0

(
2k + j

j

)
(1 − λ − μ − ξ)j(1 − ξ)m−j−2k, (4.3)

and

qm(1) =
[ m

2 ]∑
k=0

Ck

(
m

2k

)
(λμ)k(1 − λ − μ − ξ)m−2k, (4.4)

where λ = αβ̄ξ̄, μ = βᾱξ̄, and Ck is the Catalan number given by (3.15).
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Proof. We note that the function qm(n) satisfies the following difference equations:

qm+1(0) = (1 − ξ)qm(0) + μqm(1) + ξ, n = 0, (4.5)
qm+1(1) = (1 − λ − μ − ξ)qm(1) + μqm(2), n = 1, (4.6)
qm+1(n) = λqm(n − 1) + (1 − λ − μ − ξ)qm(n) + μqm(n + 1), n = 2, 3 · · · (4.7)

By definition of qm(n), the system starts with one customer at the initial epoch of time.

If Gz(n) =
∞∑

m=0

qm(n)zm, |z| ≤ 1, then the above equations lead to,

Gz(1) =
1
z

1
z − 1 + λ + μ + ξ−

λμ
1
z − 1 + λ + μ + ξ−

λμ
1
z − 1 + λ + μ + ξ−·

and

Gz(0) =
1

1 − z(1 − ξ)

[
ξz

1 − z
+
(

μ
1
z − 1 + λ + μ + ξ−

λμ
1
z − 1 + λ + μ + ξ− · · ·

)]
.

After some algebra, we get

Gz(0) =
1

1 − z(1 − ξ)

[
ξz

1 − z
+ μ

∞∑
k=0

Ck
(λμ)kz2k+1

[1 − z(1 − λ − μ − ξ)]2k+1

]
(4.8)

and

Gz(1) =
∞∑

k=0

Ck
(λμ)kz2k

[1 − z(1 − λ − μ − ξ)]2k+1
· (4.9)

On comparing the coefficients of zm in (4.8) and (4.9), we get the probabilities qm+1(0) and qm(1) as in (4.3)
and (4.4), respectively. For m = 1, 2, 3, · · · ,

B(m) = P (T = m) = P (T ≤ m) − P (T ≤ m − 1) (4.10)
= qm(0) − qm−1(0), m = 1, 2, 3, · · · , (4.11)
= μqm−1(1) + ξ[1 − qm−1(0)]. (4.12)

The last equation follows from (4.5). Hence the theorem. �

Remark 4.2. If ξ = 0, then B(m) agrees with Böhm ([2], p. 10).

Remark 4.3. The average busy period duration E[T ] is given by

E[T ] =
∞∑

m=1

mB(m). (4.13)
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Figure 3. System size probabilities Pm(n) for α = 0.6, β = 0.2 and ξ = 0.1.

Table 1. Expected busy period for different parameter values.

β = 0.2; ξ = 0.2 α = 0.2; ξ = 0.2 α = 0.2; β = 0.2

α E[T ] β E[T ] ξ E[T ]

0.1 3.168 0.1 4.185 0.1 5.648

0.2 3.517 0.2 3.517 0.2 3.517

0.3 3.821 0.3 2.979 0.3 2.604

0.4 4.080 0.4 2.547 0.4 2.091

0.5 4.299 0.5 2.199 0.5 1.757

5. Numerical results

In this section, we provide some numerical results of the system size probabilities Pm(n), busy period prob-
abilities B(m), expected system size E[X(m)] and busy period E(T ) for specific values of α, β and ξ.

Example 5.1. Consider an Geo/Geo/1 with arrival, service completion, and disaster probabilities α = 0.6, β =
0.2 and ξ = 0.1, respectively. Using (3.1), the system size probabilities Pm(n) for n = 0, 1, 2, · · · , 10 are calculated
and are plotted in Figure 3 for different values of m. For clarity sake, the x- and y-axes are adjusted to show
times from 0 to 25 and probabilities from 0 to 0.7, respectively. Because the system starts with 0 customers at
time 0, the graph of Pm(0) decreases from 1 while the graphs of Pm(n) for n ≥ 1 increase from 0, and reach the
steady-state around m = 20 time units. Note that for n ≥ 1, the graphs of Pm(n) remain zero until m < n as
we expected.

Example 5.2. Consider an Geo/Geo/1 with arrival and service completion probabilities α = 0.2 and β = 0.2,
respectively. Using (3.20) and (4.1), we computed the average number of customers E[Xm] in the system at
time m and busy period probabilities B(m) for different disaster probabilities ξ = 0.1, 0.2, 0.3, 0.4 and 0.5, and
are plotted in Figures 4 and 5 for different values of m. The expected behavior that the E[Xm] decreases as ξ
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Figure 4. E[Xm] for α = 0.2, β = 0.1, 0.2, 0.3, 0.4, 0.5 and ξ = 0.2.
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Figure 5. B(m) for α = 0.2, β = 0.1, 0.2, 0.3, 0.4, 0.5 and ξ = 0.2.

increases is clear from Figure 4 (more disasters result in less number of customers in the system). The graph
of E[Xm] for ξ = 0.1 (less disastrous) takes longer time to reach steady-state when compared to the case when
ξ = 0.5 (more disastrous). The B(m) values in Figure 5 are smaller for larger values of ξ (because large ξ means
more disasters which in turn result in shorter busy periods). This behavior is noticed when m ≥ 3. Further
investigation is needed to understand the behavior of graphs of B(m) when m < 3. Note that the chance for a
busy period to last longer than 10 time units is less than 10%.
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Using (4.13), the expected busy period E[T ] are computed and tabulated for different parameter values in
Table 1. The E[T ] increases as α increases and decreases as β and ξ increase.
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