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ANALYSIS OF A GI/M/1 QUEUE IN A MULTI-PHASE SERVICE
ENVIRONMENT WITH DISASTERS

Tao Jiang and Liwei Liu
1

Abstract. In this paper, we study a single server GI/M/1 queue in a multi-phase service environment
with disasters, where the disasters occur only when the server is busy serving customers. Whenever
a disaster occurs in an operative service phase, all present customers are forced to leave the system
simultaneously, the server abandons the service and an exponential repair time is set on. After the
system is repaired, the server resumes his service and moves to service phase i immediately with
probability qi, i = 1, 2, . . . , N . Using the matrix analytic approach and semi-Markov process, we obtain
the stationary queue length distribution at both arrival and arbitrary epochs. After introducing tagged
customers and the concept of a cycle, we also derive the sojourn time distribution, the duration of a
cycle, and the length of the server’s working time in a service cycle. In addition, numerical examples
are presented to illustrate the impact of some critical model parameters on performance measures.
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1. Introduction

Due to important applications in complex modern communication systems, networks and manufacturing
systems, there has been a notable interest in the study of queues with disasters. Towsley and Tripathi [22]
studied the M/M/1 queue with disasters for the purpose of studying distributed database systems with site
failures. Jain and Sigman [9], Yang and Chae [23] respectively extended the idea in [22] to M/G/1 queue and
GI/M/1 queue. Since the introduction of disasters, a rapid increase of researches on this topic has appeared,
such as the work on a queue with system disasters and impatient customers (see e.g. [5, 21, 24]). In [24], he
first assumed that the system suffers occasionally a disastrous breakdown. Then, he analyzed the model and
derived some performance measures. Next, Chakravarthy [5] generalized the model in [24] to Markovian arrivals
and obtained the steady state probabilities by the matrix analytic approach. Sudhesh [21] obtained an explicit
transient solution for the state probabilities of the same model studied in [24]. Recently, Dimou and Economou [7]
gave a complementing study of [24], where the customers become impatient and leave the system according to
a geometric distribution while the server is in repair. Baumann and Sandmann [2] studied a state dependent
M/M/c queue with disasters in random environment, and provided a matrix analytic algorithm to obtain the
stationary distribution of the queue length. Kim and Lee [11] dealt with an M/G/1 queue with disasters and
working breakdown services, in which the system continues to providing services for arriving customers during
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the repair period, instead of stopping serving customers completely. Mytalas and Zazanis [16] considered a
queueing system with batch Poisson arrival with catastrophes and repairs under a multiple adapted vacation
policy, and provided a quite complete analysis of the system. Jiang et al. [10] investigated an M/G/1 queue
in a multi-phase random environment, in which the system is subjected to disastrous breakdowns, and they
obtained various important performance measures, such as the sojourn time distribution and the length of the
server’s working time in a service cycle. Due to the discrete-time queues are more suitable for describing the
telecommunication network, digital communication systems and other related areas, there is a growing interest
in the analysis of the discrete-time queues with disasters. For the discrete-time queues with disasters, there
exists a large volume of references as well (see e.g. [1, 18, 19], etc.). Furthermore, Lee et al. [13] discussed a
discrete-time single server Geo/G/1 queue with disasters and general repair time. Lee and Yang [12] studied
a N-policy of a discrete-time Geo/G/1 queue with disasters in order to analyze the power saving scheme in
wireless sensor networks under unreliable network connections. There are also a number of researchers studied
the topic from an economic viewpoint. Some excellent papers can be seen in ([3, 4, 8]). In these papers, all of
the authors studied the queueing systems with the assumption that the arriving customers choose whether to
join the system or balk, relying on a natural reward-cost structure.

Motivated by applications of queueing models on computer networks and telecommunication systems, and
the excellent work of Paz and Yechiali [20], we generalize the queueing model presented by [20] in which the
M/M/1 queue was studied, and extend this model to a GI/M/1 queue operating in a multi-phase service
environment with disasters. The difference between [20] and this paper is that we assume the interarrival times
are independent and identically distributed (iid), follow a general distribution. More importantly, we assume
that the disasters have no effect on the system whenever the server is idle in operative service phase or under
repair. Following the idea provided by Li et al. [14] and Li and Tian [15], which used matrix analytic method
and semi-Markov process in analyzing GI/M/1 queue with working vacations, we obtain the stationary queue
size distribution at both arrival and arbitrary epochs. We also give some important performance measures such
as the cycle analysis, the sojourn time of a customer and the length of the server’s working time in a service
cycle.

The rest of this paper is organized as follows: In Section 2, we give the system description. In Sections 3
and 4, using the matrix analytic method and constructing a semi-Markov process, we derive the stationary
queue length distribution at arrival epochs and arbitrary epochs. Sections 5, 6 and 7 are devoted to the sojourn
time distribution, cycle analysis and results for the length of the server’s working time in a service cycle.
In Section 8, some numerical examples are provided to illustrate the impact of some parameters on some
performance measures. Section 9 is the conclusion.

2. Model description

In this paper, we consider a GI/M/1 queue in a multi-phase service environment with disasters. The queueing
model is described in detail below.

(1) Interarrival times {Ak, k ≥ 1} are iid with a general distribution denoted by A(ν) with a mean 1
λ and a

Laplace Stieltjes transform (LST) denoted by A∗(s).
(2) Under operative service phase i, the service times are exponentially distributed with parameter μi, i =

1, 2, . . . , N .
(3) Time to a disaster in service phase i also follows an exponential distribution with parameter ηi, i =

1, 2, . . . , N .
(4) Whenever a disaster occurs, all customers are forced to leave the system simultaneously, and the server stops

working completely. After a repair time, the system resumes service and moves to operative service phase i
immediately with probability qi, where

∑N
i=1 qi = 1. The repair times follow an exponential distribution

with parameter η0.

We further assume that the disasters have no effect on the system whenever the server is idle in operative
service phase or in repair phase, that is, the disasters occur only when the server is in operation.



ANALYSIS OF A GI/M/1 QUEUE IN A MULTI-PHASE SERVICE ENVIRONMENT WITH DISASTERS 81

3. The stationary queue length distribution at arrival epochs

In this section, we construct an embedded Markov chain to derive the stationary queue length distribution
at arrival epochs. It is worth noting that as long as ηi > 0, i = 0, 1, 2, . . . , N , the system in consideration can be
analyzed in steady state. Actually, whenever a disaster occurs, all customers are forced to abandon the system,
which means that the number of customers never goes to infinity.

Suppose τk be the arrival epoch of kth customer with τ0 = 0. Let L(t) denote the number of customers in
the system at time t, and let Lk = L(τk − 0) be the number of customers seen by the kth arrival instant. Define

Jk =

{
0, the kth arrival occurs during a repair period,
i, the kth arrival occurs during operative service phase i,

for i = 1, 2, . . . , N.
Then the system can be described by the process {(Lk, Jk), k ≥ 1}, which is an embedded Markov chain with

state space
{(n, i), n ≥ 0, i = 0, 1, 2, . . . , N}.

Next, we introduce the following transition probabilities of {(Lk, Jk)} to express the transition matrix
{(Lk, Jk), k ≥ 1}. Let

P(h,l),(m,j) = P (Lk+1 = m, Jk+1 = j|Lk = h, Jk = l), 0 ≤ m ≤ h + 1, l, j = 0, 1, 2, . . . , N.

Now, we consider various cases according to the ordering of various times (remaining repair time or time to
a disaster, next interarrival time, overall service time for the present customers, etc.).

Case 1: The system is in an operating mode i, not all present customers are served before the arrival of the next
customer, and the next interarrival time is less than the time to a disaster. Transitions of type (n, i) → (m, i)
with n ≥ 0, 1 ≤ m ≤ n + 1, i = 1, 2, . . . , N .

Case 2: In this case, we consider three different ways. First, the system is in an operating mode i, all present
customers are served before the arrival of the next customer, and the next interarrival time is less than the
time to a disaster. Second, the system is in an operating mode i, all present customers are served before the
occurrence of the next catastrophe, and the next interarrival time is greater than the time to a disaster. Third,
the system is in an operating mode i, not all present customers are served before the occurrence of the next
catastrophe, the server enters into a repair period and the repair process has ended before the next interarrival
time, meanwhile, the server resumes his service and moves to service phase i once again. Transitions of type
(n, i) → (0, i) with n ≥ 0, i = 1, 2, . . . , N .

Case 3: The system is in an operating mode i, not all present customers are served before the occurrence of
the next catastrophe, the server enters into a repair period and the repair process has ended before the arrival
of the next customer, meanwhile, the server resumes his service and moves to service phase j, j �= i. Transitions
of type (n, i) → (0, j) with n ≥ 0, i, j = 1, 2, . . . , N, i �= j.

Case 4: The system is in an operating mode i, the overall service time for the present customers is greater than
the time to a disaster, the server enters into a repair period and the repair process has not ended as the arrival
of the next customer. Transitions of type (n, i) → (0, 0) with n ≥ 0, i = 1, 2, . . . , N .

Case 5: The system is in repairing mode, the next interarrival time is less than the remaining repair time.
Transitions of type (n, 0) → (n + 1, 0) with n ≥ 0.

Case 6: The system is in repairing mode, the remaining repair time is less than the next interarrival time.
After the server is repaired, the system moves to operative service phase i. In operating mode i, not all present
customers are served before the arrival of the next customer, and the arrival of the next customer occurs before
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the occurrence of the next catastrophe. Transitions of type (n, 0) → (m, i) with n ≥ 0, 1 ≤ m ≤ n + 1, i =
1, 2, . . . , N .

Case 7: The system is in repairing mode, the remaining repair time is less than the next interarrival time.
After the server is repaired, the system moves to operative service phase i. In operating mode i, not all present
customers are served before the occurrence of the next catastrophe, the server enters into a new repair period,
and the arrival of the next customer occurs before the end of the repair process. Transitions of type (n, 0) → (0, 0)
with n ≥ 0.

Case 8: The system is in repairing mode, the remaining repair time is less than the next interarrival time.
After the server is repaired, the system moves to operative service phase i. Then, we consider three possible
events. First, in operating mode i, all present customers are served before the arrival of the next customer,
and the arrival of the next customer occurs before the occurrence of the next catastrophe. Second, in operating
mode i, the overall service time for the present customers is less than the time to a disaster, the arrival of
the next customer occurs after the occurrence of the next catastrophe. Third, in operating mode i, not all
present customers are served before the occurrence of the next catastrophe, the server enters into a new repair
period, and the repair period has ended before the arrival of the next customer. After the server is repaired
again, the system resumes its service and moves to service phase i. Transitions of type (n, 0) → (0, i) with
n ≥ 0, i = 1, 2, . . . , N .

In order to give the formulas for each case, we define various random variables as follows:
A stands for the limit of Ak as k → ∞;
Di denotes the interarrival times of disaster in service phase i, i = 1, 2, . . . , N ;
Sh,i denotes the service time of the hth customer in service phase i with S0,i ≡ 0, i = 1, 2, . . . , N ;
T0 denotes the repair time;
{T (k)

0 , k ≥ 0} is an iid sequence of the repair time with T0 = T
(0)
0 .

Then, we will give the explicit expressions for various cases. For Case 1, the probability of the transition from
(n, i) to (m, i) can be obtained by

P(n,i),(m,i) = P (A < Di, n + 1 − m customers are served in A)

=
∫ ∞

0

e−ηit
(μit)

n+1−m

(n + 1 − m)!
e−μitdA(t) = bn+1−m,i, 1 ≤ m ≤ n + 1.

For case 2, we have the transition probability from (n, i) to (0, i)

P(n,i),(0,i) =P

(
A < Di,

n+1∑
h=0

Sh,i < A

)
+ P

(
A > Di,

n+1∑
h=0

Sh,i < Di

)

+ qiP

(
A > Di + T0,

n+1∑
h=0

Sh,i > Di

)

=
∫ ∞

0

e−ηit

[
1 −

n∑
h=0

(μit)
h

h!
e−μit

]
dA(t)

+
∫ ∞

0

∫ t

0

[
1 −

n∑
h=0

(μix)h

h!
e−μix

]
ηie−ηixdxdA(t)

+ qi

∫ ∞

0

∫ t

0

[
1 − e−η0(t−x)

] [ n∑
h=0

(μix)h

h!
e−μix

]
ηie−ηixdxdA(t)

= 1 −
n∑

h=0

bh,i −
n∑

h=0

ch,i + qi

(
n∑

h=0

ch,i −
n∑

h=0

dh,i

)
.
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For Case 3, we have the transition probability from (n, i) to (0, j)

P(n,i),(0,j) = qjP

(
A > Di + T0,

n+1∑
h=0

Sh,i > Di

)

= qj

∫ ∞

0

∫ t

0

[
1 − e−η0(t−x)

] [ n∑
h=0

(μix)h

h!
e−μix

]
ηie−ηixdxdA(t)

= qj

(
n∑

h=0

ch,i −
n∑

h=0

dh,i

)
, j �= i, j = 1, 2, . . . , N.

For Case 4, the probability of the transition from (n, i) to (0, 0) can be obtained by

P(n,i),(0,0) = P

(
Di < A < Di + T0,

n+1∑
h=0

Sh,i > Di

)

=
∫ ∞

0

∫ t

0

e−η0(t−x)

[
n∑

h=0

(μix)h

h!
e−μix

]
ηie−ηixdxdA(t)

=
n∑

h=0

dh,i.

For Case 5, we have the transition probability from (n, i) to (n + 1, 0)

P(n,0),(n+1,0) = P (A < T0) =
∫ ∞

0

e−η0tdA(t) = A∗(η0).

For Case 6, we have the transition probability from (n, 0) to (m, i)

P(n,0),(m,i) = qiP (T0 < A < T0 + Di, n + 1 − m customers are served inA − T0)

= qi

∫ ∞

0

∫ t

0

e−ηi(t−x) (μi(t − x))(n+1−m)

(n + 1 − m)!
e−μi(t−x)η0e−η0xdxdA(t)

= qiv
(0)
n+1−m,i, 1 ≤ m ≤ n + 1.

For Case 7, we have the transition probability from (n, 0) to (0, 0)

P(n,0),(0,0) =
N∑

i=1

qiP

(
T0 + Di < A < T0 + Di + T

(1)
0 ,

n+1∑
h=0

Sh,i > Di

)

=
N∑

i=1

qi

∫ ∞

0

∫ t

0

[
n∑

h=0

(μix)h

h!
e−μix

]
ηie−ηix((t − x)η0e−η0(t−x))dxdA(t)

=
N∑

i=1

qim
(0)
n,i.
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Similarly, for Case 8, the probability of the transition from (n, 0) to (0, i) can be obtained by

P(n,0),(0,i) = qiP

(
T0 < A < T0 + Di,

n+1∑
h=0

Sh,i < A − T0

)

+ qiP

(
A > T0 + Di,

n+1∑
h=0

Sh,i < Di

)

+ qi

N∑
j=1

qjP

(
A > T0 + Dj + T

(1)
0 ,

n+1∑
h=0

Sh,j > Dj

)

= qi[1 − A∗(η0)] − qi

n∑
h=0

v
(0)
h,i − qiEn,i + qi

N∑
j=1

qj

(
En,j − m

(0)
n,j

)
.

The definition of the various quantities are given by

bk,i =
∫ ∞

0

e−ηit
(μit)

k

k!
e−μitdA(t), k ≥ 0,

ck,i =
∫ ∞

0

∫ t

0

(μix)k

k!
e−μixηie−ηixdxdA(t), k ≥ 0,

dk,i =
∫ ∞

0

∫ t

0

e−η0(t−x) (μix)k

k!
e−μixηie−ηixdxdA(t), k ≥ 0,

v
(0)
k,i =

∫ ∞

0

∫ t

0

e−ηi(t−x) (μi(t − x))k

k!
e−μi(t−x)η0e−η0xdxdA(t), k ≥ 0,

m
(0)
k,i =

∫ ∞

0

∫ t

0

[
k∑

h=0

(μix)h

h!
e−μix

]
ηie−ηix((t − x)η0e−η0(t−x))dxdA(t), k ≥ 0,

Ek,i =
∫ ∞

0

∫ t

0

[
k∑

h=0

(μix)h

h!
e−μix

]
ηie−ηix(1 − e−η0(t−x))dxdA(t), k ≥ 0.

Once the transition probabilities are obtained, by the lexicographic sequence for the states, the transition
probability matrix of {(Lk, Jk), k ≥ 1} can be written as the following block form

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 A0

B1 A1 A0

B2 A2 A1 A0

B3 A3 A2 A1 A0

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗(η0) q1v
(0)
0,1 q2v

(0)
0,2 · · · qNv

(0)
0,N

b0,1

b0,2

. . .

b0,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

An =

⎡
⎢⎢⎢⎢⎢⎣

0 q1v
(0)
n,1 q2v

(0)
n,2 · · · qNv

(0)
n,N

bn,1

bn,2

. . .
bn,N

⎤
⎥⎥⎥⎥⎥⎦ , n ≥ 1,

Bn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

qim
(0)
n,i q1βn,1 q2βn,2 · · · qNβn,N

n∑
h=0

dh,1 γn,1,1 γn,1,2 · · · γn,1,N

n∑
h=0

dh,2 γn,2,1 γn,2,2 · · · γn,2,N

...
...

...
. . .

...

n∑
h=0

dh,N γn,N,1 γn,N,2 · · · γn,N,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with

βn,i = [1 − A∗(η0)] −
n∑

h=0

v
(0)
h,i − En,i +

N∑
j=1

qj

(
En,j − m

(0)
n,j

)
,

γn,i,i = 1 −
n∑

h=0

(bh,i + ch,i) + qi

n∑
h=0

(ch,i − dh,i),

γn,i,j = qj

n∑
h=0

(ch,i − dh,i), i, j = 1, 2, . . . , N, i �= j.

Because of the special upper triangular form of the matrices A0 and An, n ≥ 1, it follows from the matrix

equation R =
∞∑

n=0
RnAn, which can be found in [17], that R is also a special upper triangular matrix having

the following form

R =

⎡
⎢⎢⎢⎢⎣

r0,0 r0,1 r0,2 · · · r0,N

0 r1,1 0 · · · 0
0 0 r2,2 · · · 0
...

...
...

. . .
...

0 0 0 · · · rN,N

⎤
⎥⎥⎥⎥⎦ .
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Lemma 3.1. If ηi > 0, i = 0, 1, 2, . . . , N , then the matrix equation R =
∞∑

n=0
RnAn has the minimal nonnegative

solution

R =

⎡
⎢⎢⎢⎢⎣

r0,0 r0,1 r0,2 · · · r0,N

0 r1,1 0 · · · 0
0 0 r2,2 · · · 0
...

...
...

. . .
...

0 0 0 · · · rN,N

⎤
⎥⎥⎥⎥⎦ ,

where r0,0 = A∗(η0), ri,i is the unique root in the range 0 < z < 1 of the equations z = A∗(ηi + μi(1 − z)), i =
1, 2, . . . , N , and r0,i = qiαi(ri,i − r0,0) with αi =

η0

(η0 − ηi) − μi(1 − r0,0)
, i = 1, 2, . . . , N .

Proof. It is easy to see that r0,0 = A∗(η0), and ri,i satisfies the equation

∞∑
n=0

rn
i,ibn,i = ri,i, i = 1, 2, . . . , N,

that is, ri,i is the unique root in the range 0 < z < 1 of the equation z = A∗(ηi + μi(1− z)). For the expression

of r0,i, by the matrix equation R =
∞∑

n=0
RnAn, we find that r0,i satisfies the following equation

∞∑
n=0

qir
n
0,0v

(0)
n,i +

∞∑
n=1

mi(n)bn,i = r0,i, i = 1, 2, . . . , N,

where mi(n) = r0,i(rn−1
0,0 + rn−2

0,0 ri,i + . . . + r0,0r
n−2
i,i + rn−1

i,i ).

According to the result of v
(0)
n,i , we have

∞∑
n=0

qir
n
0,0v

(0)
n,i =

qiη0

(η0 − ηi) − μi(1 − r0,0)
(A∗(ηi + μi(1 − r0,0)) − r0,0).

Since

∞∑
n=1

mi(n)bn,i = r0,i
1

r0,0 − ri,i

∞∑
n=1

(rn
0,0 − rn

i,i)bn,i

= r0,i
1

r0,0 − ri,i
(A∗(ηi + μi(1 − r0,0)) − ri,i),

we have
r0,i = qiαi(ri,i − r0,0),

where αi =
η0

(η0 − ηi) − μi(1 − r0,0)
. Then we can gain the conclusion. �

If ηi > 0, i = 0, 1, 2, . . . , N , the system under consideration can be analyzed in steady state. Let (L, J) be the
stationary limit of the Markov chain (Lk, Jk). Denote

πn = (πn,0, πn,1, πn,2, . . . , πn,N ), n ≥ 0,

πn,i = lim
k→∞

P (Lk = n, Jk = i), n ≥ 0, i = 0, 1, 2, . . . , N.
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Theorem 3.2. If ηi > 0, i = 0, 1, 2 . . . , N , the steady state probability

π0 = (π0,0, π0,1, π0,2, . . . , π0,N )

satisfies the following set of equations

(B[R] − I)T (π0,0, π0,1, π0,2, . . . , π0,N )T = (0, 0, 0, . . . , 0)T , (3.1)
π0(I − R)−1e = 1, (3.2)

and πn satisfies
πn = π0R

n, n ≥ 1,

where

B[R] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −
N∑

i=1

δi δ1 δ2 · · · δN

θ1,0 1 −
N∑

j=0,j �=1

θ1,j θ1,2 · · · θ1,N

θ2,0 θ2,1 1 −
N∑

j=0,j �=2

θ2,j · · · θ2,N

...
...

...
. . .

...

θN,0 θN,1 θN,1 · · · 1 −
N∑

j=0,j �=N

θN,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

θi,0 =
1

1 − ri,i

ηi[A∗(η0) − ri,i]
ηi − η0 + μi(1 − ri,i)

, i = 1, 2, . . . , N,

θi,j = qjξi − qjσi, j = 1, 2, . . . , N, j �= i,

δi =
∞∑

n=0

rn
0,0qi

⎛
⎝[1 − A∗(η0)] −

n∑
h=0

v
(0)
h,i − En,i +

N∑
j=1

qj(En,j − m
(0)
n,j)

⎞
⎠

+
∞∑

n=1

N∑
j=1

mj(n)γn,j,i,

with

ξi =
ηi

μi + ηi − μiri,i
,

σi = θi,0 =
1

1 − ri,i

ηi[A∗(η0) − ri,i]
ηi − η0 + μi(1 − ri,i)

,

∞∑
n=0

rn
0,0

n∑
h=0

v
(0)
h,i =

1
1 − r0,0

αi[A∗(ηi + μi − μir0,0) − A∗(η0)],

∞∑
n=0

rn
0,0En,i =

1
1 − r0,0

ηi

ηi + μi − μir0,0
[1 − A∗(ηi + μi − μir0,0)]

+
1

1 − r0,0

ηi

ηi − η0 + μi − μir0,0
[A∗(ηi + μi − μir0,0) − A∗(η0)],

∞∑
n=0

rn
0,0m

(0)
n,i =

1
1 − r0,0

ηiη0

ηi − η0 + μi(1 − r0,0)

∫ ∞

0

te−η0tdA(t)

− 1
1 − r0,0

ηiη0[A∗(η0) − A∗(ηi + μi − μir0,0)]

[ηi − η0 + μi(1 − r0,0)]
2 ,
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∞∑
n=1

N∑
j=1

mj(n)γn,j,i = qiαi − qiαi
ηi

μi + ηi − μiri,i
+ qi

N∑
j=1

qjαj
ηj

μj + ηj − μjrj,j

− qi

N∑
j=1

qj
αj

1 − rj,j

ηj [A∗(η0) − rj,j ]
ηj − η0 + μj(1 − rj,j)

− qi
αi

1 − r0,0
[1 − A∗(μi + ηi − μir0,0)]

+ qi
αi

1 − r0,0

ηi[1 − A∗(μi + ηi − μir0,0)]
μi + ηi − μir0,0

− qi

N∑
j=1

qj
αj

1 − r0,0

ηj [1 − A∗(μj + ηj − μjr0,0)]
μj + ηj − μjr0,0

+ qi

N∑
j=1

qj
αj

1 − r0,0

ηj [A∗(η0) − A∗(μj + ηj − μjr0,0)]
ηj − η0 + μj(1 − r0,0)

·

Proof. The proof of this theorem can be seen in Appendix. �

4. The stationary queue length distribution at arbitrary epochs

In this section, using the semi-Markov process (SMP), we derive the limit distribution of L(t).
Let L be the number of customers in the system at an arbitrary epoch, and let

Pn = P{L = n} = lim
t→∞P{L(t) = n}.

We will construct a semi-Markov process to find Pn.
First, we define a new process {(Z(t), K(t)), t ≥ 0}, where Z(t) is the number of customers in the system just

before the most recent arrival and K(t) equals to 0 or i, if the most recent arrival sees the system in repair period
or in operative service phase i, i = 1, 2, . . . , N . In fact, Z(t) = Lk, τk ≤ t < τk+1, and K(t) = Jk, τk ≤ t < τk+1.
Obviously, the Markov chain (Lk, Jk) is irreducible, aperiodic and positive recurrent, so, from the theory of semi-
Markov process, {(Z(t), K(t)), t ≥ 0} is a SMP having {(Lk, Jk), k ≥ 1} for its embedded Markov chain. Let
wn,i be the expected time that the semi-Markov process resides in the state (n, i), where

(n, i) ∈ {(m, j)|m ≥ 0, j = 0, 1, 2, . . . , N}.
According to the definition of semi-Markov process, we have wm,i = 1

λ for all (m, i). Let fn,i denote the limiting
probability that the SMP is in state (n, i). Note that

fn,i = lim
t→∞P{(Z(t), K(t)) = (n, i)} = lim

k→∞
P{(Lk, Jk) = (n, i)} = πn,i.

From the theory of semi-Markov process, we also have

fn,i =
πn,iwn,i

N∑
j=0

∞∑
h=0

πh,jwh,j

= πn,i,

for all
(n, i) ∈ {(m, j)|m ≥ 0, j = 0, 1, 2, . . . , N}.

Define AE as the elapsed interarrival time at an arbitrary epoch in steady state. The density function of AE

is known as λP (A > t), where A is the interarrival time.
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Then, for n ≥ 1,

Pn = fn−1,0 +
N∑

i=1

∞∑
j=n−1

fj,i

∫ ∞

0

e−ηit
(μit)

j+1−n

(j + 1 − n)!
e−μitλ(1 − A(t))dt

= πn−1,0 +
N∑

i=1

∞∑
j=n−1

πj,i

∫ ∞

0

e−ηit
(μit)

j+1−n

(j + 1 − n)!
e−μitλ(1 − A(t))dt, (4.1)

and P0 = 1 −
∞∑

n=1
Pn.

The expectation of L is given by

E[L] =
∞∑

n=0

nPn.

5. The stationary sojourn time distribution

In this section, considering a tagged customer, we will derive the LST of the stationary sojourn time of an
arbitrary customer under the first-come-first-served (FCFS) discipline, where the sojourn time is defined as the
period from the epoch at which he enters into the system to the epoch at which he leaves the system by either
the occurrence of a disaster or the service completion. Let W and W ∗(s) denote the stationary sojourn time of
an arbitrary customer and its LST, respectively.

First, we give a lemma below.

Lemma 5.1. Let X, Y and Z be the random variables, and Z = min (X, Y ), where X follows a general
(arbitrary) distribution with mean 1

μ . The distribution function and its LST are FX(ν) and F ∗
X(s). If Y follows

an exponential distribution with parameter η, and X and Y are assumed to be independent, then

E[e−sZ ] = E[e−s min(X,Y )] =
η + sF ∗

X(s + η)
s + η

·

Proof. First, we have

P (Z > t) = P (min(X, Y ) > t) = P (X > t)P (Y > t) = e−ηt(1 − FX(t)), t > 0,

and
P (Z < t) = 1 − e−ηt(1 − FX(t)).

Then

E[e−sZ ] =
∫ ∞

0

e−stdP (Z < t)

= −
∫ ∞

0

e−(s+η)td[1 − FX(t)] +
∫ ∞

0

ηe−(s+η)t[1 − FX(t)]dt

= F ∗
X(s + η) +

η[1 − F ∗
X(s + η)]

s + η

=
η + sF ∗

X(s + η)
s + η

· (5.1)

We can also prove the lemma with the following method.

E[e−sZ ] = P (X < Y )E[e−sX |X < Y ] + P (X > Y )E[e−sY |X > Y ],
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where E[e−sX |X < Y ] can be derived by conditional expectation, i.e.,

E[e−sX |X < Y ] =
1

P (X < Y )

∫ ∞

0

[∫ ∞

x

E[e−sX |X = x]dP (Y < t)
]
dP (X < x)

=
1

P (X < Y )

∫ ∞

0

e−(s+η)xdP (X < x)

=
1

P (X < Y )
F ∗

X(s + η). (5.2)

Similarly, E[e−sY |X > Y ] can be obtained by

E[e−sY |X > Y ] =
η

s + η

1 − F ∗
X(s + η)

P (X > Y )
·

So, the result is obtained. �

Let Bh,i and B∗
h,i(s) denote the total service time of h customers in service phase i and its LST, respectively.

In order to derive the results, we consider two cases.

Case 1: The tagged customer arrives in state (n, i), n ≥ 0, i = 1, 2, . . . , N . Based on the result of Lemma 5.1,
we have

∞∑
n=0

πn,iE
[
e−s min(Bn+1,i,Di)

]
=

∞∑
n=0

πn,i

ηi + sB∗
n+1,i(s + ηi)
ηi + s

=
∞∑

n=0

πn,i

(
ηi

ηi + s
+

s

ηi + s

(
μi

s + ηi + μi

)n+1
)

. (5.3)

Case 2: The tagged customer arrives in state (n, 0), n ≥ 0. In this case, we have

∞∑
n=0

πn,0E
[
e−sT0

] N∑
i=1

qiE
[
e−s min(Bn+1,i,Di)

]
=

N∑
i=1

∞∑
n=0

πn,0
η0qi

η0 + s

(
ηi

ηi + s
+

s

ηi + s

(
μi

s + ηi + μi

)n+1
)

. (5.4)

Then the LST of the stationary sojourn time W can be obtained by

W ∗(s) =
N∑

i=1

∞∑
n=0

πn,iE
[
e−s min(Bn+1,i,Di)

]
+

N∑
i=1

∞∑
n=0

πn,0qiE
[
e−sT0 ]E[e−s min(Bn+1,i,Di)

]
.

After some manipulations, the explicit expression of W ∗(s) is derived by the following theorem.

Theorem 5.2. If ηi > 0, i = 0, 1, 2 . . . , N , the LST of the stationary sojourn time W is

W ∗(s) =
N∑

i=1

ηi

ηi + s

(
π0,0r0,i

(1 − r0,0)(1 − ri,i)
+

π0,i

1 − ri,i

)

+
N∑

i=1

s

ηi + s

π0,0r0,iμ
2
i

(s + ηi + μi − μir0,0)(s + ηi + μi − μiri,i)

+
N∑

i=1

s

ηi + s

π0,iμi

s + ηi + μi − μiri,i

+
N∑

i=1

η0π0,0qi

η0 + s

(
ηi

ηi + s

1
1 − r0,0

+
s

ηi + s

μi

s + ηi + μi − μir0,0

)
. (5.5)
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From Theorem 5.2, we obtain the expected sojourn time of an arbitrary customer

E[W ] = −dW ∗(s)
ds

|s=0 =
N∑

i=1

1
ηi

(
π0,0r0,i

(1 − r0,0)(1 − ri,i)
+

π0,i

1 − ri,i

)

−
N∑

i=1

1
ηi

(
π0,0r0,iμ

2
i

(ηi + μi − μir0,0)(ηi + μi − μiri,i)
+

π0,iμi

ηi + μi − μiri,i

)

+
π0,0

η0

(
1

1 − r0,0

)
+

N∑
i=1

π0,0qi

ηi

(
1

1 − r0,0
− μi

ηi + μi − μir0,0

)
.

6. Cycle analysis

This section mainly gives the cycle analysis. To avoid confusion, a cycle considered here is defined as the time
interval between two consecutive instants at which a repair process commences. In our system, We define two
types of cycle.

Type-1: there are no customers arrive during repair period,
Type-2: there are k, k ≥ 1 customers arrive during repair period.

Let C denote the length of a cycle, let C1 denote the length of Type-1 cycle, let C2,k denote the length of
Type-2 cycle, and let Hi,h denote the length of busy period caused by h, h ≥ 1 customers in service phase i,
i = 1, 2, . . . , N . We also define Ui as the time duration from the end of the repair period to the next occurrence
point of a disaster during the Type-1 cycle in service phase i. Since the interarrival times don’t have the
memoryless property, we further define AR as the residual lifetime of an interarrival time. It is known that AE

and AR have the same limiting distribution, so the density function of AR is λP (A > t). According to our
assumptions, the expression of Ui can be easily obtained by

Ui =
{

U1,i, Di < Hi,1

U2,i + Ui, Di > Hi,1
,

where
U1,i = AR + (Di|Di < Hi,1), U2,i = AR + (Hi,1|Di > Hi,1).

First, we have

A∗
R(s) =

∫ ∞

0

e−stdP (AR < t) =
∫ ∞

0

e−stλ[1 − P (A < t)]dt =
λ

s
[1 − A∗(s)].

Then, based on Lemma 5.1, U∗
1,i(s) and U∗

2,i(s) are obtained as follows:

U∗
1,i(s) = A∗

R(s)E(e−sDi |Di < Hi,1) =
λ[1 − A∗(s)]

s

ηi

s + ηi

1 − H∗
i,1(s + ηi)

P (Di < Hi,1)
,

U∗
2,i(s) = A∗

R(s)E(e−sHi,1 |Di > Hi,1) =
λ[1 − A∗(s)]

s

H∗
i,1(s + ηi)

P (Di > Hi,1)
·

From the above expressions, U∗
i (s) is obtained as

U∗
i (s) = P (Di < Hi,1)U∗

1,i(s) + P (Di > Hi,1)U∗
2,i(s)U

∗
i (s),

i.e.,

U∗
i (s) =

P (Di < Hi,1)U∗
1,i(s)

1 − P (Di > Hi,1)U∗
2,i(s)

=
ηi

s + ηi

λ[1 − A∗(s)][1 − H∗
i,1(s + ηi)]

s − λ[1 − A∗(s)]H∗
i,1(s + ηi)

·
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From the proof of Lemma 5.1, we have

E[e−sT0 |AR > T0] =
η0

s + η0

1 − A∗
R(s + η0)

P (AR > T0)

=
η0

(s + η0)
2

s + η0 − λ[1 − A∗(s + η0)]
P (AR > T0)

·

Expressing C1 in terms of Ui, we have C1 = (T0|AR > T0) +
N∑

i=1

qiUi. Therefore, C∗
1 (s) can be obtained by

C∗
1 (s) = E[e−sT0 |AR > T0]

N∑
i=1

qiU
∗
i (s)

=
η0

(s + η0)
2

s + η0 − λ[1 − A∗(s + η0)]
P (AR > T0)

×
[

N∑
i=1

qi
ηi

s + ηi

λ[1 − A∗(s)][1 − H∗
i,1(s + ηi)]

s − λ[1 − A∗(s)]H∗
i,1(s + ηi)

]
, (6.1)

where P (AR > T0) = 1 − A∗
R(η0).

Next, we consider Type-2 cycle. In this case, we first define pk, k ≥ 1 as the probability that there are k
customers in the system at the instant of a repair completion, i.e., k customers arrive during a repair period.
Then, pk can be given by

pk = P (AR +
k−1∑
h=1

Ah < T0 < AR +
k∑

h=1

Ah)

= P (AR +
k−1∑
h=1

Ah < T0) − P (AR +
k∑

h=1

Ah < T0).

Let A(k)(t) denote the distribution function of
k∑

h=1

Ah, it is easy to find that

A(1)(t) = A(t),

A(k)(t) =
∫ t

0

A(k−1)(t − x)dA(x), k ≥ 2.

That is A(k)(t) is the k-fold convolution of A(t) (denoted as A(k) = A(k−1) ∗ A for convenience). Then the

probability of P (AR +
k∑

h=1

Ah < T0) is given by

P

(
AR +

k∑
h=1

Ah < T0

)
=
∫ ∞

0

P

(
AR +

k∑
h=1

Ah < t

)
η0e−η0tdt

=
∫ ∞

0

∫ t

0

P

(
k∑

h=1

Ah < t − x

)
η0e−η0tdAR(x)dt

=
∫ ∞

0

∫ t

0

A(k)(t − x)η0e−η0tλ(1 − A(x))dxdt,
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and

pk =
∫ ∞

0

∫ t

0

[A(k−1)(t − x) − A(k)(t − x)]η0e−η0tλ(1 − A(x))dxdt.

Similarly to Ui in Type-1 cycle, we define the random variable Vk,i as the remaining Type-2 cycle after the
repair completion in service phase i. The subscript k in Vk,i denotes the number of customers at the instant of
the repair completion. Then, we have

Vk,i =
{

V1,k,i, Di < Hi,k

V2,k,i + Ui, Di > Hi,k
, i = 1, 2, . . . , N,

where V1,k,i = (Di|Di < Hi,k), V2,k,i = (Hi,k|Di > Hi,k), and V ∗
1,k,i(s) and V ∗

2,k,i(s) can be obtained by

V ∗
1,k,i(s) = E(e−sDi |Di < Hi,k) =

ηi

s + ηi

1 − H∗
i,k(s + ηi)

P (Di < Hi,k)
,

V ∗
2,k,i(s) = E(e−sHi,k |Di > Hi,k) =

H∗
i,k(s + ηi)

P (Di > Hi,k)
·

From the above expressions, V ∗
k,i(s) is obtained as

V ∗
k,i(s) = P (Di < Hi,k)V ∗

1,k,i(s) + P (Di > Hi,k)V ∗
2,k,i(s)U

∗
i (s).

Expressing C2,k in terms of Vk,i, we have

C2,k =

(
T0|AR +

k−1∑
h=1

Ah < T0 < AR +
k∑

h=1

Ah

)
+

N∑
i=1

qiVk,i.

Therefore, C∗
2,k(s) is given by

C∗
2,k(s) = E

[
e−sT0 |AR +

k−1∑
h=1

Ah < T0 < AR +
k∑

h=1

Ah

]
N∑

i=1

qiV
∗
k,i(s), (6.2)

where

E

[
e−sT0 |AR +

k−1∑
h=1

Ah < T0 < AR +
k∑

h=1

Ah

]
=

η0A
∗
R(s + η0)(A∗(s + η0))

k−1 (1 − A∗(s + η0))
(s + η0)pk

·

In fact, H∗
i,k(s), k ≥ 1 have very complex expressions, and the results can be seen in Cohen [6] (see p. 227).

From [6], we have the distribution function of the busy period by

H(t) =
∞∑

n=1

e−μit
(μit)

n−1

n!

∫ t

0

[1 − A(n)(ν)]μidν,

and its LST by

H∗
i,1(s) =

∫ ∞

0

e−stdH(t), H∗
i,k(s) = (H∗

i,1(s))
k.

Once C∗
1 (s) and C∗

2,k(s) are derived, the expression of C is given by

C∗(s) = P (AR > T0)C∗
1 (s) +

∞∑
k=1

pkC∗
2,k(s).
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7. The length of working time in a cycle

In this section, we mainly concentrate on the LST of the length of the server’s working time in a cycle. To
avoid terminological confusion, the working time is the duration that the server is busy in service phase (it
doesn’t contain the time that the server is idle). According to the section of cycle analysis, this section gets
much easier. Let Y denote the length of working time in a cycle. In Type-1 cycle, we define Y0,i as the length
of working time in service phase i of Type-1 cycle. Then, we have

Y0,i =

{
Y

(1)
1,0,i, Di < Hi,1

Y
(1)
2,0,i + Y0,i, Di > Hi,1

,

where
Y

(1)
1,0,i = (Di|Di < Hi,1), Y

(1)
2,0,i = (Hi,1|Di > Hi,1).

Similarly to the analysis of the above section, Y ∗
0,i(s) can be obtained by

Y ∗
0,i(s) =

ηi

s + ηi
[1 − H∗

i,1(s + ηi)] + H∗
i,1(s + ηi)Y ∗

0,i(s),

i.e.,
Y ∗

0,i(s) =
ηi

s + ηi
·

In Type-2 cycle, we define Yk,i as the length of working time in service phase i of Type-2 cycle. Then, we
have

Yk,i =

⎧⎨
⎩

Y
(2)
1,k,i, Di < Hi,k

Y
(2)
2,k,i + Y0,i, Di > Hi,k

, k ≥ 1,

where Y
(2)
1,k,i = (Di|Di < Hi,k), Y

(2)
2,k,i = (Hi,k|Di > Hi,k). Then

Y ∗
k,i(s) =

ηi

s + ηi
[1 − H∗

i,k(s + ηi)] + H∗
i,k(s + ηi)Y ∗

0,i(s) =
ηi

s + ηi
·

So the expression of Y ∗(s) can be obtained by

Y ∗(s) = P (AR > T0)
N∑

i=1

qiY
∗
0,i(s) +

∞∑
k=1

pk

N∑
i=1

qiY
∗
k,i(s) =

N∑
i=1

qi
ηi

s + ηi
·

8. Numerical examples

In this section, we provide a set of numerical examples on the basis of the results obtained by this paper.
In particular, we assume that the interarrival times are exponentially distributed with parameter λ, then, the
system in consideration translates into an M/M/1 queue in a multi-phase service environment with disasters.
Hence, ri,i is the unique root of μi(1 − z)z + (λ + ηi)z − λ = 0 in (0, 1), and an immediately result of ri,i can
be directly calculated by

ri,i =
(λ + μi + ηi) −

√
(λ + μi + ηi)

2 − 4λμi

2μi
, i = 1, 2, . . . , N.

The nonzero entries of matrix R can be easily obtained:

r0,0 =
λ

λ + η0
,

r0,i =
qiη0(ri,i − r0,0)

(η0 − ηi) − μi(1 − r0,0)
=

qiη0r0,0

(λ + μi + ηi) − (ri,i + r0,0)μi
, i = 1, 2, . . . , N.
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Figure 1. π0,0, π0,1, π0,2 versus η0 (λ = 1.1, M/M/1).
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Figure 2. π0,0, π0,1, π0,2 versus λ(η0 = 0.7, M/M/1).

In [20], if λ0 = λ1 = . . . = λN , all entries of R obtained by Paz and Yechiali [20] are in accordance with the
result in our paper.

Next, based on Theorem 3.2, we have the steady state probabilities

πk = (πk,0, πk,1, πk,2, . . . , πk,N ), k ≥ 0.

Once the steady state probabilities are obtained, the stationary queue length distribution at arbitrary epochs,
the sojourn time distribution of an arbitrary customer and the duration of a cycle can be respectively obtained.

In the following part, we give some figures to show the effect of system parameters on the steady state queue
length distributions π0,0, π0,1, π0,2 and the expected sojourn time E[W ]. Without loss of generality, we assume
N = 2, i.e., the system has two operative phase and a repair phase.

In Figures 1 and 2, we illustrate the steady state queue length distributions π0,0, π0,1, π0,2 in the M/M/1
queue with parameters q1 = 0.6, μ1 = 1.5, μ2 = 2, η1 = 0.2, η2 = 0.4. Obviously, from Figure 1, with the increase
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Figure 3. The mean sojourn time E[W ] versus η0 (λ = 1.1, M/M/1).
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Figure 4. The mean sojourn time E[W ] versus λ (η0 = 0.7, M/M/1).

of η0, the steady state probabilities π0,1 and π0,2 become larger and π0,0 declines. From Figure 2, we find that
π0,1 and π0,2 decrease with the increase of λ, π0,0 firstly increases and then descends with the increasing of λ.
Furthermore, Figures 1 and 2 indicate that the effect of η0 and λ on π0,0 is less than the effect on π0,1 and π0,2.

In Figures 3 and 4, we plot the trend of the change for the expected sojourn time E[W ] as η0 increases from
0.4 to 2 and λ increases from 0.5 to 2 for different values of q1, respectively. Figures 3 and 4 confirm that E[W ]
decreases with the increase of η0 and increases with the increase of λ, which are consistent with the intuitive
expectations. It is noteworthy that, in Figures 3 and 4, if η0 and λ are fixed, the smaller q1 is, the smaller
E[W ] becomes. Actually, it is in accordance with the fact. This is because that after the server is repaired, as q1

decreases, the system moves to operative phase 2 with a higher probability. Based on our assumption μ1 < μ2,
the server has a higher service rate in operative phase 2, which leads to the smaller values of E[W ]. Although
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we only focus on showing the effect of the parameters on the expected sojourn time for M/M/1 queue, we
believe that the similar change trends exist for other queues (D/M/1 queue and E2/M/1 queue etc.).

9. Conclusion

In this paper, we investigated a GI/M/1 queue in a multi-phase service environment with disasters in order
to establish the theoretical foundations for applications and obtain the explicit computation formulas for the
performance measures. By the matrix analytic method and semi-Markov process, we obtained the stationary
queue length distribution both at arrival and arbitrary epochs. Furthermore, we derived the LST of the stationary
sojourn time distribution of an arbitrary customer. More importantly, we presented an elaborate analysis of the
duration of a cycle and the server’s working time in a cycle, respectively. Beside, we performed some numerical
examples to show the effect of parameters on the steady state probabilities and the expected sojourn time. We
expect that the results and the method can be applied to more queueing systems.

Appendix.

In this Appendix, we will give the proof of Theorem 3.2.

First, let B[R] =
∞∑

n=0
RnBn. Substituting R and Bn into B[R],we have

B[R] =
∞∑

n=0

RnBn =

⎡
⎢⎢⎢⎢⎣

F0,0 F0,1 F0,2 · · · F0,N

F1,0 F1,1 F1,2 · · · F1,N

F2,0 F2,1 F2,2 · · · F2,N

...
...

...
. . .

...
FN,0 FN,1 FN,2 · · · FN,N

⎤
⎥⎥⎥⎥⎦ ,

where

F0,0 =
∞∑

n=0

rn
0,0

N∑
i=1

qim
(0)
n,i +

∞∑
n=1

N∑
i=1

mi(n)
n∑

h=0

dh,i

=
∞∑

n=0

rn
0,0

N∑
i=1

qim
(0)
n,i +

∞∑
n=1

N∑
i=1

qiαi(rn
i,i − rn

0,0)
n∑

h=0

dh,i,

F0,i =
∞∑

n=0

rn
0,0qiβn,i +

∞∑
n=1

N∑
j=1

mj(n)γn,j,i,

Fi,0 =
∞∑

n=0

rn
i,i

n∑
h=0

dh,i, i = 1, 2, . . . , N,

Fi,i =
∞∑

n=0

rn
i,iγn,i,i, i = 1, 2, . . . , N,

Fi,j =
∞∑

n=0

rn
i,iγn,i,j , i �= j, i = 1, 2, . . . , N, j = 1, 2, . . . , N.

Next, we will give the explicit results of the above expressions. For Fi,0, it is easy to obtain

Fi,0 =
∞∑

n=0

rn
i,i

n∑
h=0

dh,i =
1

1 − ri,i

ηi[A∗(η0) − ri,i]
ηi − η0 + μi(1 − ri,i)

= σi = θi,0. (A.1)
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For Fi,i, we first have

∞∑
n=0

rn
i,iγn,i,i =

∞∑
n=0

rn
i,i

(
1 −

n∑
h=0

(bh,i + ch,i) + qi

n∑
h=0

(ch,i − dh,i)

)
,

then Fi,i can be obtained by

Fi,i =
1

1 − ri,i

(
1 − ri,i − qi

ηi[A∗(η0) − ri,i]
ηi − η0 + μi(1 − ri,i)

)
− (1 − qi)

ηi

μi + ηi − μiri,i

= 1 − qiσi − (1 − qi)ξi = 1 −
N∑

j=0,j �=i

θi,j , i = 1, 2, . . . , N. (A.2)

and Fi,j can be easily obtained by

Fi,j = qj
ηi

μi + ηi − μiri,i
− qj

1
1 − ri,i

ηi[A∗(η0) − ri,i]
ηi − η0 + μi(1 − ri,i)

= qjξi − qjσi = θi,j , i = 1, 2, . . .N, j = 1, 2, . . .N, j �= i. (A.3)

Finally, we will give the expressions of F0,0 and F0,i. First, we have

∞∑
n=0

rn
0,0qiβn,i =

∞∑
n=0

rn
0,0qi

⎛
⎝[1 − A∗(η0)] −

n∑
h=0

v
(0)
h,i − En,i +

N∑
j=1

qj

(
En,j − m

(0)
n,j

)⎞⎠,

where

∞∑
n=0

rn
0,0

n∑
h=0

v
(0)
h,i =

∞∑
n=0

rn
0,0

n∑
h=0

∫ ∞

0

∫ t

0

e−ηi(t−x) (μi(t − x))h

h!
e−μi(t−x)η0e−η0xdxdA(t)

=
1

1 − r0,0
αi[A∗ (ηi + μi − μir0,0) − A∗(η0)],

∞∑
n=0

rn
0,0En,i =

[1 − A∗(ηi + μi − μir0,0)]
1 − r0,0

− αi[A∗(ηi + μi − μir0,0) − A∗(η0)]
1 − r0,0

,

and

∞∑
n=1

N∑
j=1

mj(n)γn,j,i =
∞∑

n=1

N∑
j=1

qjαj(rn
j,j − rn

0,0)γn,j,i

=
∞∑

n=1

qiαi(rn
i,i − rn

0,0)γn,i,i +
∞∑

n=1

N∑
j=1,j �=i

qjαj(rn
j,j − rn

0,0)γn,j,i.

After some calculations, we have the explicit expression of
∞∑

n=1

N∑
j=1

mj(n)γn,j,i as present in Theorem 3.2, and

F0,i can be also obtained by substituting the above equations, which is denoted by δi.
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For F0,0, we have

N∑
i=1

qi

∞∑
n=0

rn
0,0m

(0)
n,i =

N∑
i=1

qi
1

1 − r0,0

ηiη0

ηi − η0 + μi(1 − r0,0)

∫ ∞

0

te−η0tdA(t)

−
N∑

i=1

qi
1

1 − r0,0

ηiη0[A∗(η0) − A∗(ηi + μi − μir0,0)]
[ηi − η0 + μi(1 − r0,0)]

2 ,

and

∞∑
n=1

N∑
i=1

qiαi(rn
i,i − rn

0,0)
n∑

h=0

dh,i =
N∑

i=1

qiαi

(
1

1 − ri,i

ηi[A∗(η0) − ri,i]
ηi − η0 + μi(1 − ri,i)

)

−
N∑

i=1

qiαi

(
1

1 − r0,0

ηi[A∗(η0) − A∗(ηi + μi − μir0,0)]
ηi − η0 + μi(1 − r0,0)

)
,

then, the expression of F0,0 can be obtained, and it is equal to F0,0 = 1−
N∑

i=1

δi. Once all elements of the matrix

B[R] are given, we can derive the result of stationary probability π0 = (π0,0, π0,1, π0,2, . . . , π0,N ).
According to the equation π0B[R] = π0, which is equal to

(B[R] − I)T (π0,0, π0,1, π0,2, . . . , π0,N )T = (0, 0, 0, . . . , 0)T , (A.4)

where

(B[R] − I)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
N∑

i=1

δi θ1,0 θ2,0 · · · θN,0

δ1 −
N∑

j=0,j �=1

θ1,j θ2,1 · · · θN,1

δ2 θ1,2 −
N∑

j=0,j �=2

θ2,j · · · θN,1

...
...

...
...

δN θ1,N θ2,N · · · −
N∑

j=0,j �=N

θN,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easy to find that det((B[R] − I)T ) = 0, that is equation (A.4) has non-zero solutions. Using the normalizing
condition

π0(I − R)−1e = 1, (A.5)

the unique solution of π0 can be derived by simultaneously solving (A.4) and (A.5) with Cramer’s Rule. Then,
πn, n ≥ 1 can be obtained by

πn = π0R
n, n ≥ 1.
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