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THE MX/M/1 QUEUE WITH WORKING BREAKDOWN

Zaiming Liu and Yang Song1

Abstract. In this paper, we consider a batch arrival MX/M/1 queue
model with working breakdown. The server may be subject to a ser-
vice breakdown when it is busy, rather than completely stoping ser-
vice, it will decrease its service rate. For this model, we analyze a two-
dimensional Markov chain and give its quasi upper triangle transition
probability matrix. Under the system stability condition, we derive the
probability generating function (PGF) of the stationary queue length,
and then obtain its stochastic decomposition, which shows the rela-
tionship with that of the classical MX/M/1 queue without vacation or
breakdown. Besides, we also give the Laplace-Stieltjes transform (LST)
of the stationary waiting time distribution of an arbitrary customer in
a batch. Finally, some numerical examples are given to illustrate the
effect of the parameters on the system performance measures.

Keywords. MX/M/1 queue, working breakdown, probability gener-
ating function (PGF), Laplace–Stieltjes transform (LST), waiting time
distribution, stochastic decomposition.

Mathematics Subject Classification. 68M20, 60K20, 90B22.

1. Introduction

The queueing models with an unreliable server have been studied extensively,
and in real world, there can not exist any perfect server which always operates
as a new one. The machine in manufacturing system is a good example for that.
Therefore, in many papers, the server is assumed to be subject to an unpredictable
breakdown and be sent to repair immediately. The server is not available during
the repair time.
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Jayaraman et al. [5] have considered a queueing system with general bulk service
that alternates stochastically between operational state and failed state. Gray
et al. [3] have discussed a queueing model with multiple types of server breakdowns,
for which each type of breakdown requires a finite random number of stages of
repair. Furthermore, working vacations queueing model with multiple types of
server breakdowns has been considered in Jain [6]. And a batch arrival queue with
randomized vacation and unreliable server has given by Ke and Huang [7]. Besides
these, the unreliable server is related with the retrial queue as well. Falin [4] has
discussed a M/M/1 retrial queue with retrials due to server failures. Wang and
Cao [14] have given an analysis for reliability of the retrial queue with server
breakdowns and repairs. A discrete-time retrial queue with unreliable server could
be found in Atencia and Moreno [1], Wang and Zhang [13].

Anyway, the unreliable server is always supposed to stop working com-
pletely when it is breakdown. However, there are also exceptions. Sridharan and
Jayashree [11] have studied a finite queue with normal, partial and total failures.
And recently, Kalidass and Kasturi [8] proposed the concept of working breakdown,
which means that the service may not be interrupted when the server is break-
down. This concept does make sense in real life. For example, when a computer
is infected with a virus, it may still be able to perform at a lower rate. And the
machine replacement problem provides another example. When the failed machine
is sent to repair, a backup one will work immediately at a lower service rate. It is
worth to note that there is some difference between the working breakdown and
the working vacation. A working breakdown occurs randomly, no matter how many
customers are waiting in the queue, while a working vacation occurs only when the
system is empty. The working vacation policy is brought by Servi and Finn [10],
and there comes out plenty of researches since then. Liu et al. [9] have presented
some stochastic decompositions in M/M/1 queue with working vacations. Baba [2]
and Xu et al. [16] have studied the batch arrival queue with working vacations. In
our paper, we generalize the work of Kalidass and Kasturi [8].

The rest of this paper is organized as follows. Firstly, we give a model descrip-
tion in Section 2. Based on the system stability condition, we deduce the PGF of
the stationary queue length and its stochastic decomposition in Section 3, then
the expected queue length and some probability formulas are obtained. In Sec-
tion 4, according to the properties of the conditional Erlang distribution, we get
the LST of the stationary waiting time distribution of an arbitrary customer in a
batch. Then in Section 5, some numerical examples are given to show the effect
of parameters on the system performance. And we conclude this paper in the last
section.

2. Model descriptions

We consider a batch arrival MX/M/1 queue with working breakdown. Cus-
tomers arrive at the system according to a Poisson process with rate λ. Batch
sizes are independent and identically distributed with the probability distribution
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function (pdf) {gi}∞i=1, the probability generating function (PGF) G(z) =∑∞
i=1 giz

k, the expectation g and the second order moment g(2). A working break-
down only occurs when the server is busy and in the normal state. In the normal
working period, the service time S follows an exponential distribution with pa-
rameter μ. When the server is subject to a random breakdown, the service rate
decreases to ν at once, that is, the service time S

′
follows an exponential distribu-

tion with parameter ν when the server is defective. The life time T and the repair
time V of the server are assumed to be exponentially distributed with parameters
α and θ, respectively. The processes above mentioned are mutually independent,
and the service discipline is first come first served (FCFS).

Let Q(t) be the number of customers in the system and J(t) the state of server
at time t. J(t) = 0 represents that the server is in a normal state, while J(t) = 1
represents that the server is defective. Then X(t) = {Q(t), J(t)} is a continuous
time Markov process with the state space Ω = {(k, j); k ≥ 0, j = 0, 1}. Using
the lexicographical order for the states, the infinitesimal generator of the process
{Q(t), J(t)} can be written as the Block–Jacobi matrix

Q̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

B0 A1 A2 A3 . . .

C A0 A1 A2 . . .

C A0 A1 . . .

C A0 . . .

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where

B0 =

(
−λ 0

θ −(λ + θ)

)
, Ai =

(
λgi 0

0 λgi

)
, i ≥ 1,

C =

(
μ 0

0 ν

)
, A0 =

(
−(λ + μ + α) α

θ −(λ + ν + θ)

)
.

3. Stability condition and stationary queue length
distribution

At first, we give the sufficient condition for ergodicity of Markov process X(t)
with discrete state space Ω, which is the stability condition for the system in the
following Theorem 3.1. We finish its proof based on the Statement 1 in Falin [4].

Theorem 3.1. The queueing system is stable if ρ = λg(α+θ)
αν+θμ < 1.

Proof. Let {tr; r ∈ Z+} be a sequence of epochs at which an event occurs, the event
could be a batch arrival, a departure, a working breakdown or the system becoming
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normal after repair. {Q(t+r ), J(t+r )} is an embedded (at state transitions) Markov
chain for X(t). We adopt Foster’s criterion here, which states that an irreducible
and aperiodic Markov chain χk with state space Ω is ergodic if there exists a non-
negative function f(s), s ∈ Ω, called Lyapunov function, and ε > 0 such that the
mean drift

xs = E[f(χk+1) − f(χk)|χk = s]

is finite for all s ∈ Ω and xs ≤ −ε for all s ∈ Ω except perhaps a finite number.
Here we take the same Lyapunov function as in [8]

f(s) =

{
k + B, if s = (k, 0)

k + B
′
, if s = (k, 1)

where B and B
′
denote the constants which will be determined. For k ≥ 0, s ∈ Ω,

xs =

⎧⎪⎨⎪⎩
λg−μ+

(
B

′−B
)

α

λ+ν+α , if s = (k, 0)

λg−ν+
(

B−B
′)

θ

λ+ν+θ , if s = (k, 1).

The constants B and B
′
should satisfy the following inequations

λg − μ +
(
B

′ − B
)

α < 0

λg − ν +
(
B − B

′)
θ < 0.

Therefore, λg−ν
θ < B

′ −B < μ−λg
α , and λg−ν

θ < μ−λg
α leads to λg(α+θ)

αν+θμ < 1. Denote

ρ = λg(α+θ)
αν+θμ . So if ρ < 1, the Markov process X(t) is ergodic and the system is

stable. �

Next we consider the stationary distribution for {Q(t),J(t)}. Assume that

πk = (πk0, πk1), k ≥ 0;
πkj = lim

t→∞P{Q(t) = k, J(t) = j}, (k, j) ∈ Ω,

then the equilibrium equations could be written as follows:

λπ00 = θπ01 + μπ10; (3.1)

(λ + μ + α)πk0 = λ
k∑

i=1

giπk−i,0 + θπk1 + μπk+1,0, k ≥ 1; (3.2)

νπ11 = (λ + θ)π01; (3.3)

(λ + ν + θ)πk1 = λ

k∑
i=1

giπk−i,1 + απk0 + νπk+1,1, k ≥ 1. (3.4)
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Denote

Q0(z) =
∞∑

k=1

πk0z
k, Q1(z) =

∞∑
k=0

πk1z
k, |z| ≤ 1,

then the probability generating function (PGF) of stationary queue length L(z)
could be written as

L(z) = π00 + Q0(z) + Q1(z).

Multiplying (3.1) and (3.2) by appropriate powers of z and summing over k ≥ 0,
we obtain

[λz (1 − G(z)) + αz + μ(z − 1)] Q0(z) − θzQ1(z) = λz (G(z) − 1)π00; (3.5)

the same way to (3.3) and (3.4) leads to

−αzQ0(z) + [λz (1 − G(z)) + θz + ν(z − 1)] Q1(z) = ν(z − 1)π01. (3.6)

Solving the above equations (3.5) and (3.6), we get

Q0(z) =
λz (G(z) − 1) [λz (1 − G(z)) + θz + ν(z − 1)] π00 + νθz(z − 1)π01

[λz (1 − G(z)) + αz + μ(z − 1)] [λz (1 − G(z)) + θz + ν(z − 1)] − αθz2
,

(3.7)

Q1(z) =
λαz2 (G(z) − 1)π00 + ν(z − 1) [λz (1 − G(z)) + αz + μ(z − 1)] π01

[λz (1 − G(z)) + αz + μ(z − 1)] [λz (1 − G(z)) + θz + ν(z − 1)] − αθz2
·

(3.8)

Take the denominator of Q0(z) and Q1(z) as f(z), then

f(z) = ξ(z) [μ(1 − z) − λz (1 − G(z))] − αz [ν(1 − z) − λz (1 − G(z))] ,

where ξ(z) = ν(1−z)−λz (1 − G(z))−θz is a convex function and has the unique
root z = z̃ in (0, 1). Since

f(0) = μν > 0,

f(z̃) = −αθz2 < 0,

f(1) = 0,

f
′
(0) = −λμ − λν − θμ − αν − 2μν < 0,

f
′
(1) = −λ(α + θ)g + θμ + αν > 0,

and a unique stationary distribution exists due to the ergodicity of Markov process
X(t), we suppose γ be the unique root of f(z) which lies in (0, 1), so the numerator
of Q0(z) will vanish at z = γ. Substituting z = γ into the numerator of the right
side of (3.7), we get

π01 =
λ (1 − G(γ)) ξ(γ)

νθ(1 − γ)
π00.
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Using the normalizing condition lim
z→1

L(z) = 1, we have

π00 =
θ(1 − ρ)

θ + ρ
g

1−G(γ)
1−γ ξ(γ)

·

Therefore,

L(z) = π00 + Q0(z) + Q1(z) = π00

+
λz (1 − G(z)) [ν(1 − z) − σ(z)]+ λ(1−G(γ))ξ(γ)

θ(1−γ) (1−z) [μ(1 − z)−σ(z)]

f(z)
π00

=
f(z)+λz (1−G(z)) [ν(1−z)−σ(z)]+ λ(1−G(γ))ξ(γ)

θ(1−γ) (1 − z) [μ(1 − z)−σ(z)]

f(z)

× θg(1 − ρ)

θg + ρξ(γ)1−G(γ)
1−γ

, (3.9)

where σ(z) = αz + λz(1 − G(z)) + θz and ν(1 − z) − σ(z) = ξ(z) − αz. As we
already know that the PGF of the classical MX/M/1 queue is

L0(z) =
(λg − μ)(1 − z)

(λ + μ)z − μ − λzG(z)
, (3.10)

then the PGF of stationary queue length L(z) can be decomposed further as
follows:

L(z) = L0(z)
g(1 − ρ)
μ − λg

(λ + μ)z − μ − λzG(z)
ξ(z) [(λ + μ)z − μ − λzG(z)] + αz [ξ(z) + θz]

× θ(1 − γ) (μξ(z) − ανz) + λξ(γ) (1 − G(γ)) [μ(1 − z) − σ(z)]
(1 − γ)θg + ρ(1 − G(γ))ξ(γ)

· (3.11)

Let

Ld(z) =
g(1 − ρ)
μ − λg

(λ + μ)z − μ − λzG(z)
ξ(z) [(λ + μ)z − μ − λzG(z)] + αz [ξ(z) + θz]

× θ(1 − γ) (μξ(z) − ανz) + λξ(γ) (1 − G(γ)) [μ(1 − z) − σ(z)]
(1 − γ)θg + ρ(1 − G(γ))ξ(γ)

, (3.12)

and note that lim
z→1−

Ld(z) = 1, which means Ld(z) is also a PGF. Rewrite (3.11)
as

L(z) = L0(z) × Ld(z).

Now we summarize these in the following stochastic decomposition theorem.

Theorem 3.2. If ρ < 1, the stationary queue length L can be decomposed into the
sum of two independent random variables

L = L0 + Ld,
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where L0 is the stationary queue length of the classical MX/M/1 queue model
and has the PGF L0(z), Ld is an additional queue length introduced by the server
working breakdown and has the PGF Ld(z). The expressions of L0(z) and Ld(z)
are given by (3.10) (3.12), respectively.

Corollary 3.3. The expectation of the stationary queue length is given by

E(L) = E(L0) + E(Ld),

where

E(L0) =
λ(g + g(2))
2(μ − λg)

, (3.13)

and

E(Ld) =
g(1 − ρ)
μ − λg

1
(1 − γ)θg + ρ(1 − G(γ))ξ(γ)

×
{

λ
(
g + g(2)

)
[θ(1 − γ)(αν + θμ) + λξ(γ)(1 − G(γ))(α + θ)]

2(αν + θμ)(ρ − 1)

+
(μ−λg) [θ(1−γ)(λμg−θμ−αν−μν)+λξ(γ)(1−G(γ))(λg−α−θ−μ)]

(αν + θμ)(ρ − 1)

+
[
2(λg − ν − θ)(μ − λg) + 2α(λg − ν) + λ(α + θ)

(
g + g(2)

)]
× (μ − λg) [θ(1 − γ)(αν + θμ) + λξ(γ)(1 − G(γ))(α + θ)]

2(αν + θμ)2(ρ − 1)2

}
· (3.14)

Proof. We obtain the expectation of the stationary queue length by differentiat-
ing (3.10) (3.12) separately, and then substituting z = 1. Especially, E(Ld) =
lim

z→1−
L

′
(z), after using the L’Hospital’s rule, we get (3.14). �

Corollary 3.4. The probability that the server is normal and idle is given by π00,
the probability that the server is defective and idle is given by π01. Let Pn be the
probability of the server in normal and busy and Pd the probability of the server
being defective and busy, then

Pn = Q0(1) =
λθg

αν + θμ

θg(1 − γ) + ξ(γ) (1 − G(γ))
θg(1 − γ) + ρξ(γ) (1 − G(γ))

,

Pd = Q1(1) − π01 =
λg

ν(αν + θμ)
ανθg(1 − γ) + ξ(γ) (1 − G(γ)) [λg(α + θ) − θμ]

θg(1 − γ) + ρξ(γ) (1 − G(γ))
·

Remark 3.5. For each arrival, if the batch size is one, i.e., P (X = 1) = 1, the
above results are accordant with the known results in Kalidas and Kasturi [8].
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4. Stationary waiting time analysis

In this section, we will obtain the Laplace-Stieltjes transform (LST) of the
stationary waiting time of an arbitrary customer in a batch. Denote W ∗(s) as the
LST of the waiting time with distribution W, B∗(s) and C∗(s) as the LST of
the service time in the normal and defective period, respectively, where B∗(s) =

μ
s+μ and C∗(s) = ν

s+ν . Firstly, we list several properties of conditional Erlang
distribution, which will be used for calculating W ∗(s). Let {Si}∞i=1 be a sequence
of service times when the server is normal, and denote S(h) =

∑h
i=1 Si, h ≥ 0,

especially S(0) = 0, then S(h) follows an Erlang distribution with parameters h
and μ, and its LST is ( μ

s+μ )h. Another independent random variable T follows an
exponential distribution with parameter α, we give the following lemma and the
more details can be found in Xu, Zhang [15] and Xu et al. [16].

Lemma 4.1. (i) P
(
S(h) < T < S(h+1)

)
= α

α+μ

(
μ

α+μ

)h

, and P
(
T > S(h)

)
=(

μ
α+μ

)h

for h ≥ 0;

(ii) if S(h) < T < S(h+1), h ≥ 0,
(
T |S(h) < T < S(h+1)

)
follows an Erlang distri-

bution with parameters h + 1 and α + μ, and its LST is
(

α+μ
s+α+μ

)h+1

;

(iii) if S(h) < T , h ≥ 1,
(
S(h)|S(h) < T

)
follows an Erlang distribution with pa-

rameters h and α + μ, and its LST is
(

α+μ
s+α+μ

)h

.

Theorem 4.2. If the queue system is stable, the LST of the stationary waiting
time of an arbitrary customer in a batch could be written as

W ∗(s) =
1 − G (B∗(s + α))
g [1 − B∗(s + α)]

[π00 + Q0 (B∗(s + α))]

+
1 − G (C∗(s + θ))
g [1 − C∗(s + θ)]

Q1 (C∗(s + θ))

+
αν

g [αν + (ν − μ)s]
[π00 + Q0 (C∗(s))] [1 − G (C∗(s))]

1 − C∗(s)

− αν

g [αν + (ν − μ)s]
[π00 + Q0 (B∗(s + α))] [1 − G (B∗(s + α)]

1 − B∗(s + α)

+
θμ

g [θμ + (μ − ν)s]
Q1 (B∗(s)) [1 − G (B∗(s))]

1 − B∗(s)

− θμ

g [θμ + (μ − ν)s]
Q1 (C∗(s + θ)) [1 − G (C∗(s + θ))]

1 − C∗(s + θ)
·

Proof. We divide W ∗(s) into two parts and calculate them separately.
• Case 1: If a batch of customers arrives in the state (k, 0), and the jth customer
in the batch is the tagged customer, then the waiting time of the tagged customer
equals to the total customers’ service times ahead of it. Obviously, there are k
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customers out of its batch and j − 1 customers in its batch. Let Y be the order
of the position of a randomly selected tagged customer in a batch and denote
rj = P (Y = j), then from Sections 2–5 in Wollf [12], we know that rj =

∑
i≥j gi

E(X) =
1
g

∑∞
i=j gi. Especially, we denote S̃(h) as the sum of service times of h customers.

Then

W ∗
k0(s) =

∞∑
j=1

rj

[∫ ∞

0

e−sxdP
(
S̃(k+j−1) < x

)]

=
∞∑

j=1

rj

∫ ∞

0

e−sxdP
(
S̃(k+j−1) < x, S̃(k+j−1) < T

)
+

∞∑
j=1

rj

∫ ∞

0

e−sxdP
(
S̃(k+j−1) < x, S̃(k+j−1) > T

)
. (4.1)

The first part of the formula (4.1) equals

∞∑
j=1

rj

[
P
(
S(k+j−1) < T

)∫ ∞

0

e−sxdP
(
S(k+j−1) < x|S(k+j−1) < T

)]

=
∞∑

j=1

rj

(
μ

α + μ

)k+j−1 (
α + μ

s + α + μ

)k+j−1

.

In the second part of the formula (4.1),∫ ∞

0

e−sxdP
(
S̃(k+j−1) < x, S̃(k+j−1) > T

)
=

k+j−2∑
h=0

∫ ∞

0

e−sxdP
(
S̃(k+j−1) < x, S(h) < T < S(h+1)

)

=
k+j−2∑

h=0

P
(
S(h) < T < S(h+1)

) ∫ ∞

0

e−sxdP
(
S̃(k+j−1) < x|S(h) < T < S(h+1)

)

=
k+j−2∑

h=0

P
(
S(h) < T < S(h+1)

)
×
∫ ∞

0

e−sxdP
(
V + S

′(k+j−h−1) < x|S(h) < T < S(h+1)
)

=
k+j−2∑

h=0

α

α + μ

(
μ

α + μ

)h(
α + μ

s + α + μ

)h+1(
ν

s + ν

)k+j−h−1

,

where S
′(k+j−h−1) means the sum of the k + j − h − 1 service times when the

server is in defective. Since B∗(s) = μ
s+μ and C∗(s) = ν

s+ν , by some calculations
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we have

W ∗
k0(s)=

∞∑
j=1

rj

[
B∗(s+α)k+j−1+

αν

(ν − μ)s + αν

(
C∗(s)k+j−1 − B∗(s + α)k+j−1

) ]
.

• Case 2: If a batch of customers arrives in the state (k, 1), it is straightforward
to obtain a similar formula just as the above case:

W ∗
k1(s)=

∞∑
j=1

rj

[
C∗(s+ θ)k+j−1+

θμ

(μ − ν)s + θμ

(
B∗(s)k+j−1 − C∗(s + θ)k+j−1

) ]
.

Finally, W ∗(s) is given by

W ∗(s) =
∞∑

k=0

πk0W
∗
k0(s) +

∞∑
k=0

πk1W
∗
k1(s)

=
1 − G (B∗(s + α))
g [1 − B∗(s + α)]

[π00 + Q0 (B∗(s + α))]

+
1 − G (C∗(s + θ))
g [1 − C∗(s + θ)]

Q1 (C∗(s + θ))

+
αν

g [αν + (ν − μ)s]
[π00 + Q0 (C∗(s))] [1 − G (C∗(s))]

1 − C∗(s)

− αν

g [αν + (ν − μ)s]
[π00 + Q0 (B∗(s + α))] [1 − G (B∗(s + α))]

1 − B∗(s + α)

+
θμ

g [θμ + (μ − ν)s]
Q1 (B∗(s)) [1 − G (B∗(s))]

1 − B∗(s)

− θμ

g [θμ + (μ − ν)s]
Q1 (C∗(s + θ)) [1 − G (C∗(s + θ))]

1 − C∗(s + θ)
· �

5. Numerical examples

In this section, we present a concrete example to illustrate the effect of the
different parameters on the system performance measures. Suppose that the batch
size of the arrival follows a geometric distribution with parameter p (0 < p < 1)
, denote p̄ = 1 − p, thus the expectation, the second order moment and the PGF
are easy to get, i.e.,

g = E(X) =
1
p
, g(2) =

2 − p

p2
, G(z) =

pz

1 − p̄z
, |z| ≤ 1.

Figure 1 shows that the probability of the server being busy in normal or defec-
tive state decreases with increasing the value of p, which is consistent with the fact
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Figure 1. The probability of server being busy versus p.
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Figure 2. The probability of server being busy versus θ.

that, the less average batch size causes the less possibility of the server being busy.
Moreover, the probability of the server being busy in defective state is bigger than
that of the server is in normal state because α is bigger than θ. While in Figure 2,
the curve of Pn is above the curve of Pd due to α smaller than θ. And with the
average repair time decreasing, the probability of the server being busy in normal
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Figure 3. E(L) versus p for different batch arrival model.

state increases, but that of the server being defective decreases. From Figures 1
and 2, we note that Pd is more sensitive to the parameter p and θ than Pn.

Next we compare the average queue length in three different queueing models,
that is, the classical MX/M/1 queue, the MX/M/1 queue with multiple working
vacation (MWV) and the MX/M/1 queue with working breakdown. The concrete
expressions of the mean length are presented in Appendix.

Figure 3 illustrates the change trends of average queue length in three different
batch arrival queue models, it shows that the smaller the average batch size is, the
shorter the average queue length is. Obviously, these change trends conform with
our tuition. It is also worth to note that, for a fixed p, our model has the longest
average queue length and the classical MX/M/1 queue has the shortest one. This
is because the queue system with working breakdown is more vulnerable than the
queue with multiple working vacation (MWV), and the classical MX/M/1 queue is
the most stable. In Figure 4, it presents the average queue length of the MX/M/1
with working breakdown versus ν for different θ. If ν < μ, for a fixed ν, the longer
the average repair time leads to a longer average queue length. Especially, when
ν goes to μ = 0.8, θ has less and less influence on the average queue length. And
if ν = μ = 0.8, the three models will be the same as the classical MX/M/1 queue
model.

6. Conclusions

In this paper, we consider a MX/M/1 queue with working breakdown. We
generalize the results in [8]. In fact, the concept of working breakdown is totally
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Figure 4. E(L) versus ν for different θ in MX/M/1 with working
breakdown model.

different from the working vacation policy. That means if the server is subject to
an unpredictable breakdown, the interrupted customer will be served immediately
at a lower service rate by a backup one. Such examples could be found in the
communication system, transportation, manufacturing system and so on. It could
be interesting to consider this policy in queue models just as those with working
vacation.
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Appendix

We suppose that the batch size of the arrivals follow the same geometric dis-
tribution with parameter p (0 < p < 1) in the classical MX/M/1 queue, the
MX/M/1 queue with MWV and the MX/M/1 queue with working breakdown.
All other random variables follow the exponential distributions, that is, the batch
arrival rate is λ, the normal service rate is μ, the service rate during the working
vacation or the repair period is ν, the average working vacation time and the re-
pair time are both 1/θ. If the server would be subject to the working breakdown,
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the average life time of the server is 1/α. Next we show the expectations of the
stationary queue length in the above three models.

At first, the average queue length of the classical MX/M/1 queue model is given
by (3.13), that is,

E(L0) =
λ

μp2 − λp
·

Then according the Corollary 1 in [2], we have the average queue length of the
MX/M/1 with multiple working vacation, i.e.,

E(LMWV ) =
λ(μ − ν) [θ(1 − p̄β) + (λ − νp)(1 − β)]

p [μθ2(1 − p̄β) + λθ(μ − ν)(1 − β)]
+ E(L0),

where β is the unique root in (0, 1) of

f(z) = (λ + νp̄ + θp̄)z2 − (λ + ν + θ + νp̄)z + ν.

Finally, we can compute the expectation of the stationary queue length in our
model directly from Corollary 3.1. Let

φ(z) = − [(λ + μp̄)(νp̄ + λ + θp̄) + αp̄(λ + νp̄)] z3

+ [(λ + μp̄)(νp̄ + ν + λ + θ) + μ(νp̄ + λ + θp̄) + α(λ + 2νp̄)] z2

− [μ(νp̄ + ν + λ + θ) + ν(λ + μp̄ + α)] z

+ μν.

Suppose γ is the unique root of φ(z) in (0, 1), and

ρ =
λ(α + θ)

p(αν + θμ)
< 1,

ξ(z) = ν(1 − z) − λz
1 − z

1 − p̄z
− θz,

π00 =
θ(1 − ρ)(1 − p̄γ)

θ(1 − p̄γ) + pρξ(γ)
,

we have

E(Ld) = π00

{
λ[αν + θμ + λξ(γ)

θ(1−p̄γ) (α + θ)]

p(μp − λ)(αν + θμ)(ρ − 1)

+
[(λμ − θμp − ανp − μνp) + λξ(γ)

θ(1−p̄γ)(λ − αp − θp − μp)]

p(αν + θμ)(ρ − 1)

+
[αν + θμ + λξ(γ)

θ(1−p̄γ) (α + θ)][(λ − νp − θp)(μp − λ) + αp(λ − νp) + λ(α + θ)]

p2(αν + θμ)2(ρ − 1)2

}
,

and
E(L) = E(Ld) + E(L0).
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