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FLUID LIMITS FOR THE QUEUE LENGTH OF JOBS
IN MULTISERVER OPEN QUEUEING NETWORKS

Saulius Minkevičius
1

Abstract. The object of this research in the queueing theory is a the-
orem about the Strong-Law-of-Large-Numbers (SLLN) under the con-
ditions of heavy traffic in a multiserver open queueing network. SLLN
is known as a fluid limit or fluid approximation. In this work, we prove
that the long-term average rate of growth of the queue length process
of a multiserver open queueing network under heavy traffic strongly
converges to a particular vector of rates. SLLN is proved for the val-
ues of an important probabilistic characteristic of the multiserver open
queueing network investigated as well as the queue length of jobs.

Keywords. Mathematical models of information systems, perfor-
mance evaluation, queueing theory, multiserver open queueing network,
heavy traffic, limit theorem, queue length of jobs.
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1. Introduction

The paper is devoted to the analysis of queueing systems in the context of the
network and communications theory. We investigate SLLN about the queue length
of customers (jobs) in a multiserver open queueing network under the conditions
of heavy traffic. Queueing networks have been extensively used for the analysis of
manufacturing and transportation systems, and for computer and communications
networks. Therefore, many approximation methods have emerged, and SLLN is
among them.

The investigation of delays arising in communications and computer systems
is a very complicated problem which has not yet been solved in the general case.
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A valuable progress in this area has been achieved for models based on Kleinrock’s
hypothesis on the independence of transmission times of messages at different
nodes (see [3–5, 20, 22, 24, 39]). The most fruitful approach to the calculation of
delays in communication systems is based on limit theorems for heavy traffic and
light traffic regimes. Some results have been obtained both for systems with finite
(see Kelly [21, 24]) and infinite (see [4, 9, 11, 12, 14, 15, 17, 18, 32, 33, 37–39]) wait-
ing rooms. The theoretical base for heavy traffic limit theorems includes the weak
convergence results for stochastic processes (see [1,2,30,35]), as well as the martin-
gale approach to limit theorems (see [10,23,26]). The limit theorems usually state
that, in the heavy traffic regime, properly normalized random variables (or random
processes) describing queue lengths or waiting times converge in distribution to a
normal random variable (or certain diffusion processes).

The first results for open queueing networks in heavy traffic were obtained
by Iglehart and Whitt [17, 18]. They considered a single station, multiserver
and acyclic networks of queues. The limit process for networks in heavy traffic
was described as a complicated functional of multidimensional Brownian motion.
Harrison [11] considered the heavy traffic approximation to the stationary distribu-
tion of the waiting times in single server queues in series. His limit process was also
given as a complicated functional of Brownian motion. In reference [12], Harrison
again considered the diffusion approximation to tandem queues, described the
limit process and found analytical solutions in several special cases. Reiman [31]
proved the heavy traffic limit theorems for the queue length process associated
with open queueing networks. These theorems state that the limit process is a
reflected Brownian motion on the nonnegative orthant with constant directions
to each boundary hyperplane. Harrison and Reiman [14] considered the proper-
ties of distribution of the multidimensional reflected Brownian motion. Harrison
and Williams [15] also analysed Brownian models of open queueing networks with
homogeneous customer populations. Reiman [32] studied a multiclass feedback
queue in heavy traffic. A network of priority queues with one bottleneck station in
heavy traffic was considered by Reiman and Simon [33]. Note that the theory of
heavy traffic analysis is rather well developed for systems that satisfy the Kleinrock
hypothesis. Without this hypothesis the complexity of the problem dramatically
increases.

Limit theorems (diffusion approximations) and SLLN for the queueing system
under the conditions of heavy traffic are closely connected (they belong to the same
field of research, i.e., investigations on the theory of queueing systems in heavy
traffic). Therefore, first we shall try to trace the development of research on the
general theory of a queueing system in heavy traffic. There is a vast literature on
the diffusion approximation. Readers are referred to [7,8,25,39] for a general survey
of the subject. The present work extends the studies by Iglehart and Whitt [17,18]
on a single station of multiserver queues, and by Reiman [31], Johnson [19], Chen
and Mandelbaum [6] on networks of single server queues. Other closely related
papers are by Harrison and Lemoine [13] on networks of infinite server queues,
and Whitt [40] for a GI/G/∞ queue.
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The natural setting for functional limit theorems in this paper is the weak con-
vergence of probability measures on the function space D[0, 1]. Since an excellent
treatment of this subject has been recently published by Billingsley [1], we shall
only make a few remarks here about our terminology and notation. Stochastic
processes characterizing the queueing system give rise to sequences of random
functions in D, the space of all right-continuous functions on [0, 1] having left lim-
its and endowed with Skorohod metric, d. In [1], this metric is denoted by d0. With
d, D is a complete, separable metric space. Let D be the class of Borel sets of D.
Then, if Pn and P are probability measures on D which satisfy

lim
n→∞

∫
D

fdPn =
∫
D

fdP

for every bounded, continuous, real-valued function f on D, we say that Pn weakly
converges to P , as n → ∞, and write Pn ⇒ P. A random function X is a measur-
able mapping from some probability space (Ω,B,P) into D with the distribution
P = PX−1 on (D,D). We say that a sequence of random functions {Xn} weakly
converges to the random function X , and write Xn ⇒ X , if the distribution Pn of
Xn converges to the distribution P of X . A sequence of random functions {Xn}
weakly converges to X in probability if Xn and X are defined on a common do-
main and for all ε > 0, P{d(Xn, X) ≥ ε} → 0. When X is a constant function
(not random), the convergence in probability is equivalent to a weak convergence.
In such cases, we write d(Xn, X) ⇒ 0 or Xn ⇒ X . If Xn and Yn have a common
domain, we also write d(Xn, Yn) ⇒ 0, P{d(Xn, Yn) > ε} → 0 as for all ε > 0. We
also use the uniform metric ρ which is defined by ρ(x, y) = sup0≤t≤1 |x(t) − y(t)|
for x, y ∈ D. Also, note that d(x, y) ≤ ρ(x, y) for x, y ∈ D.

Next, we state two extremely useful theorems for obtaining weak convergence
results in applications. The first one has come to be known as the “converging
together theorem”. For it we assume that Xn and Yn are defined on a common
domain and take values in a separable metric space (S, m). This result can be
found in [1], Theorem 4.1.

Theorem 1.1.

If Xn ⇒ X and d(Xn, Yn) ⇒ 0, then Yn ⇒ X. (1.1)

Now, suppose h is a measurable mapping of S into S′, a second metric space with
Borel sets B. Each probability measure P on (S,B) induces a unique probability
measure Ph−1(A) = P (h−1A) on (S′,B′) for A ∈ B′. Let Dh be a set of dis-
continuities of h. The next result, known as a continuous mapping theorem, is an
analog of the Mann–Wald theorem for Euclidean spaces (see [1], Thm. 5.1). Define
h ◦ X = h(X), X ∈ D.

Theorem 1.2.

If Xn ⇒ X and P{X ∈ Dh} = 0, then h ◦ Xn ⇒ h ◦ X. (1.2)
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In practice we use this result as follows. First we show Xn ⇒ X, often by just
quoting the known results. Then, we find an appropriate mapping h which gives us
the random elements we are really interested in, h◦Xn, and finally, we apply (1.2).

So, we prove here SLLN for the queue length of jobs in a multiserver open
queueing network under heavy traffic conditions. The main tool for the analysis of
these queueing systems in heavy traffic is a functional limit theorem for a complex
renewal process (the proof can be found in [1]).

2. The network model

Consider a network of j stations, indexed by j = 1, 2, . . . , J, and the station j
with cj servers, indexed by (j, 1), . . . , (j, cj). Description of the primitive data and
construction of processes of interest are the focus of this section. No probability
space will be mentioned in this section, and of course, one can always think that
all the variables and processes are defined on the same probability space.

First, {uj(e), e ≥ 1}, j = 1, 2, . . . , J, are J sequences of exogenous interarrival
times, where uj(e) ≥ 0 is the interarrival time between the (e − 1)-job and the
eth job that arrive at the station j exogenously (from the outside of the network).
Define Uj(0) = 0, Uj(n) =

∑n
e=1 uj(e), n ≥ 1 and Aj(t) = sup{n ≥ 0 : Uj(n) ≤ t},

where Aj = {Aj(t), t ≥ 0} is called an exogenous arrival process at the station j,
i.e., Aj(t) counts the number of jobs that arrived at the station j from the outside
of the network.

Second, {vjkj (e), e ≥ 1}, j = 1, 2, . . . , J, kj = 1, 2, . . . , cj , are c1 + . . . + cJ se-
quences of service times, where vjkj (e) ≥ 0 is the service time for the e-th job served
by the server kj at the station j. Define Vjkj (0) = 0, Vjkj (n) =

∑n
e=1 vjkj (e), n ≥ 1

and xjkj (t) = sup{n ≥ 0 : Vjkj (n) ≤ t}, where xjkj = {xjkj (t), t ≥ 0} is called
a service process of the server kj at the station j, i.e., xjkj (t) counts the num-
ber of services completed by the server kj at the station j during the server’s
busy time. We write μjkj =

(
E
[
vjkj (e)

])−1
> 0, σjkj = D

(
vjkj (e)

)
> 0 and

λj = (E [uj(e)])
−1

> 0, aj = D (uj(e)) > 0, j = 1, 2, . . . , k; with all of these terms
assumed finite.

In addition, let τ̃j(t) be the total number of jobs routed to the jth station of
the network in the interval [0, t], τj(t) be the total number of jobs after service
departure from the jth station of the network in the interval [0, t], τ̃jkj (t) be the
total number of jobs routed to the kj server at the jth station of the network
in the interval [0, t], let τjkj (t) be the total number of customers after service
departure from the kj server at the jth station of the network in the interval [0, t],
and τijki (t) be the total number of jobs after service departure from the ki server
at the ith station of the network and routed to the kj server of the jth station of
the network in the interval [0, t]. Let pij be a probability of the job after service
at the ith station of the network routed to the jth station of the network. Denote

pt
ijki

=
τijki (t)
τiki (t)

as part of the total number of jobs which, after service at the ki
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server of the ith station of the network, are routed to the jth station of the network
in the interval [0, t], i, j = 1, 2, . . . , J, ki = 1, . . . , ci and t > 0. Also, assume that
arrival and service times are independent identically distributed random variables.

The processes of primary interest are the queue length process Q = (Qj) with
Qj = {Qj(t), t ≥ 0}, where Qj(t) indicates the number of jobs at the station j at
time t. Now we introduce the following processes Qjkj = {Qjkj (t), t ≥ 0}, where
Qjkj (t) indicates the number of jobs waiting to be served by the server kj of the
station j at time t; clearly, we have Qj(t) =

∑cj

ki=1 Qjki(t), j = 1, 2, . . . , J.
The dynamics of the queueing system (to be specified) depends on the service

discipline at each service station. To be more precise, the “first come, first served”
(FCFS) service discipline is assumed for all J stations. When a job arrives at a
station and finds more than one server available, it will join one of the servers
with the smallest index. We assume that the service station is work conserving;
namely, not all servers at a station can be idle when there are customers waiting
for service at that station. In particular, we assume that a station must works at
its full capacity when the number of jobs waiting is equal to or exceeds the number
of servers at that station. Suppose that the queue of jobs in each station of the
open queueing network is unlimited.

Let us denote

βj =
J∑

i=1

ci∑
ki=1

μiki · pij + λj −
cj∑

kj=1

μjkj , σ̂2
j =

J∑
i=1

ci∑
ki=1

μ3
iki

· σiki · p2
ij

+ λ3
j · aj +

cj∑
kj=1

μ3
jkj

· σjkj > 0, j = 1, 2, . . . , J.

Also, we define

μjkj =
(
Evjkj (e)

)−1
> 0, σjkj = Dvjkj (e) > 0, λj =

(
Euj(e)

)−1
> 0,

aj = Duj(e) > 0, j = 1, 2, . . . , J, kj = 1, 2, . . . , cj .

In this work, we also admit that the following “overload conditions” are fulfilled

J∑
i=1

ci∑
ki=1

μiki,n · pij + λj >

cj∑
ki=1

μiki,n, j = 1, 2, . . . , J. (2.1)

Note that conditions (2.1) quarantee that, with probability one, there exists a
queue length of jobs which is constantly growing.

In addition, we assume throughout that

max
1≤j≤J

max
1≤kj≤cj

sup
e≥1

E
(
vjkj (e)

)2+γ
< ∞ for some γ > 0, (2.2)

max
1≤j≤J

max
1≤kj≤cj

sup
e≥1

E(uj(e))
2+γ < ∞ for some γ > 0. (2.3)

Conditions (2.2) and (2.3) imply the Lindeberg conditions for the respective se-
quences, and are easier to verify in practice (usually γ = 1 work).
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3. Main results

At first we prove the key lemma.

Lemma 3.1. If Qj(0) = 0, j = 1, 2, . . . , J, then

|Qj(t) − x̂j(t)| ≤ w(t) + γ(t),

where

x̂j(t) =
J∑

i=1

ci∑
ki=1

xiki (t) · pij + Aj(t) −
cj∑

ki=1

xiki(t), w(t)

=
J∑

j=1

J∑
i=1

ci∑
ki=1

xiki(t)·

|p t
ijki

− pij |, γ(t) =
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki (s) − τiki (s)).

Proof. By definition of the queue of jobs at the stations of the network, we get
that, for j = 1, 2, . . . , J, kj = 1, 2, . . . , cj

Qj(t) = τ̃j(t) − τj(t) =
cj∑

ki=1

Qiki(t) =
cj∑

ki=1

τ̃iki (t) −
cj∑

ki=1

τiki (t)

=
cj∑

ki=1

τ̃iki(t) −
cj∑

ki=1

xiki(t) +
cj∑

ki=1

xiki(t) −
cj∑

ki=1

τiki (t)

≤
cj∑

ki=1

τ̃iki(t) −
cj∑

ki=1

xiki(t) +
cj∑

ki=1

sup
0≤s≤t

(xiki (s) − τiki (s))

=
J∑

i=1

ci∑
ki=1

τijki (t) + Aj(t) −
cj∑

ki=1

xiki (t) +
cj∑

ki=1

sup
0≤s≤t

(xiki (s) − τiki(s))

≤
J∑

i=1

ci∑
ki=1

τiki (t) ·
τijki (t)
τiki(t)

+Aj(t)−
cj∑

kj=1

xjkj (t)+
cj∑

ki=1

sup
0≤s≤t

(xiki (s)−τiki(s))

≤
J∑

i=1

ci∑
ki=1

xiki (t) · pt
ijki

+ Aj(t) −
cj∑

kj=1

xjkj (t) + sup
0≤s≤t

(xjkj (s) − τjkj (s))

=
J∑

i=1

ci∑
ki=1

xiki (t) · (pt
ijki

− pij + pij) + Aj(t) −
cj∑

ki=1

xiki(t)

≤
J∑

i=1

ci∑
ki=1

xiki (t) · pij + Aj(t) −
cj∑

ki=1

xiki (t) +
J∑

i=1

ci∑
ki=1

xiki (t) · |pt
ijki

− pij |

+
cj∑

ki=1

sup
0≤s≤t

(xiki (s) − τiki(s)) = x̂j(t) + w(t) + γ(t),

j = 1, 2, . . . , J and t > 0.
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Hence it follows that

Qj(t) ≤ x̂j(t) + w(t) + γ(t), j = 1, 2, . . . , J and t > 0. (3.1)

Besides, note that

Qj(t) ≥ τ̃j(t) −
cj∑

ki=1

xiki(t) =
J∑

i=1

ci∑
ki=1

τiki(t) · p t
ijki

+ Aj(t) −
cj∑

ki=1

xiki (t)

=
J∑

i=1

ci∑
ki=1

(xiki (t) + τiki (t) − xiki(t)) · pt
ijki

+ Aj(t) −
cj∑

ki=1

xiki (t)

=
J∑

i=1

ci∑
ki=1

xiki (t) · pt
ijki

+
J∑

i=1

ci∑
ki=1

(τiki (t) − xiki (t)) · pt
ijki

+ Aj(t)

−
cj∑

ki=1

xiki (t) =
J∑

i=1

ci∑
ki=1

xiki (t) · pt
ijki

−
J∑

i=1

ci∑
ki=1

(xiki (t) − τiki (t)) · pt
ijki

+ Aj(t) −
cj∑

kj=1

xjkj (t) ≥
J∑

i=1

ci∑
ki=1

xiki (t) · pt
ijki

+ Aj(t) −
cj∑

kj=1

xjkj (t)

−
J∑

i=1

ci∑
ki=1

(xiki (t) − τiki (t)) ≥
J∑

i=1

ci∑
ki=1

xiki (t) · pt
ijki

+ Aj(t) −
cj∑

kj=1

xjkj (t)

− sup
0≤s≤t

J∑
i=1

ci∑
ki=1

(xiki (s) − τiki (s)) ≥
J∑

i=1

ci∑
ki=1

xiki (t) · pt
ijki

+ Aj(t)

−
cj∑

kj=1

xjkj (t) −
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki (s) − τiki (s))

=
J∑

i=1

ci∑
ki=1

xiki (t) · (pt
ijki

− pij + pij) + Aj(t) −
cj∑

kj=1

xjkj (t)

−
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki (s) − τiki (s)) =
J∑

i=1

ci∑
ki=1

xiki (t) · pij + Aj(t)

−
cj∑

ki=1

xiki (t) +
J∑

i=1

ci∑
ki=1

xiki (t) · (pt
ijki

− pij)

−
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki (s) − τiki (s)) ≥ x̂j(t)

−
J∑

i=1

ci∑
ki=1

xiki (t) · |pt
ijki

− pij | −
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki (s) − τiki(s))

= x̂j(t) − w(t) − γ(t), j = 1, 2, . . . , J and t > 0. (3.2)
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Hence it follows that

Qj(t) ≥ x̂j(t) − w(t) − γ(t), (3.3)

j = 1, 2, . . . , J and t > 0.
By combining (3.1) and (3.3), we can write

|Qj(t) − x̂j(t)| ≤ w(t) + γ(t), (3.4)

j = 1, 2, . . . , J and t > 0. The proof of the lemma is complete. �

Now we use the formulation of Lemmas 3.2 and 3.3 the proof of which is presented
in [28].

Lemma 3.2. If conditions (1) are fulfilled, then for every ε > 0

P

⎛⎝ lim
t→∞

sup
0≤s≤t

(xjkj (s) − τjkj (s))

t
> ε

⎞⎠ = 0,

j = 1, 2, . . . , J, kj = 1, 2, . . . , cj.

Lemma 3.3. If conditions (1) are fulfilled, then

pt
ijki

⇒ pij , i, j = 1, 2, . . . , J, ki = 1, 2, . . . , ci.

Finally, applying the results of Lemmas 3.1–3.3, we prove the following theorem
about SLLN for the queue length of jobs in multiserver open queueing networks.

Theorem 3.4. If conditions (2.1)–(2.3) are fulfilled, then(
Q1(t)

t
;
Q2(t)

t
. . . ;

QJ(t)
t

)
⇒ (β1; β2; . . . ; βJ).

Proof. At first we can find that for ε > 0

P

(∣∣∣∣Qj(t)
t

− βj

∣∣∣∣ > ε

)
≤ P

(
sup

0≤s≤t

∣∣∣∣Qj(s)
s

− x̂j(s)
s

∣∣∣∣ >
ε

2

)

+ P

(
sup

0≤s≤t

∣∣∣∣ x̂j(s)
s

−βj

∣∣∣∣> ε

2

)
, j = 1, 2, . . . , J and t>0.

(3.5)
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Denote c = 2 · J2 · (c1 + c2 + · · ·+ cJ ), Wj(t) = Qj(t)− x̂j(t), j = 1, 2, . . . , J and
t > 0. Let us estimate the first term in inequality (3.6):

P

( |Wj(t)|
t

> ε

)
≤ P

⎛⎜⎜⎜⎜⎝
sup

0≤s≤t

{
J∑

j=1

J∑
i=1

ci∑
ki=1

xiki (s) · |ps
ijki

− pij |
}

t
>

ε

2

⎞⎟⎟⎟⎟⎠

+ P

⎛⎜⎜⎜⎜⎝
sup

0≤s≤t

{
J∑

i=1

ci∑
ki=1

sup
0≤l≤s

(xiki (s) − τiki(s)

}
t

>
ε

2

⎞⎟⎟⎟⎟⎠

≤ P

⎛⎜⎜⎜⎝
J∑

j=1

J∑
i=1

ci∑
ki=1

sup
0≤s≤t

{
xiki(s) · |ps

ijki
− pij |

}
t

>
ε

2

⎞⎟⎟⎟⎠

+ P

⎛⎜⎜⎜⎝
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

sup
0≤l≤s

{xiki(l) − τiki(l)}

t
>

ε

2

⎞⎟⎟⎟⎠

≤ P

⎛⎜⎜⎜⎝
J∑

j=1

J∑
i=1

ci∑
ki=1

sup
0≤s≤t

{
xiki(s) · |ps

ijki
− pij |

}
t

>
ε

2

⎞⎟⎟⎟⎠

+ P

⎛⎜⎜⎜⎝
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki(s) − τiki (s))

t
>

ε

2

⎞⎟⎟⎟⎠

≤
J∑

j=1

J∑
i=1

ci∑
ki=1

P

⎛⎜⎜⎝
sup

0≤s≤t

{
xiki (s) · |ps

ijki
− pij |

}
t

>
ε

c

⎞⎟⎟⎠

+
J∑

i=1

ci∑
ki=1

P

⎛⎝ sup
0≤s≤t

(xiki (s) − τiki(s))

t
>

ε

c

⎞⎠ ,

j = 1, 2, . . . , J, t > 0. (3.6)
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Consequently, it follows from (3.6) that for ε > 0

P

( |Wj(t)|
t

> ε

)
≤

J∑
j=1

J∑
i=1

ci∑
ki=1

P

⎛⎜⎜⎝ sup
0≤s≤t

{
xiki (s) · |ps

ijki
− pij |

}
t

>
ε

c

⎞⎟⎟⎠
+

J∑
i=1

ci∑
ki=1

P

⎛⎝ sup
0≤s≤t

(xiki (s) − τiki(s))

t
>

ε

c

⎞⎠,

j = 1, 2, . . . , J, t > 0. (3.7)

Suppose μ = max1≤j≤J sup1≤kj≤cj
μiki < ∞. Let us estimate the first term

in (3.7). We have for ε > 0 that

P

⎛⎜⎜⎝
sup

0≤s≤t

{
xiki (s) · |ps

ijki
− pij |

}
t

> ε

⎞⎟⎟⎠ ≤ P

⎛⎝xiki (t) · sup
0≤s≤t

|ps
ijki

− pij |
t

> ε

⎞⎠

≤ P

(⎧⎨⎩
xiki (t) · sup

0≤s≤t
|ps

ijki
− pij |

t
> ε

⎫⎬⎭ ∩
{

xiki (t) ≤ ε · t + μiki · t
})

+ P

(
xiki(t)

t
− μiki > ε

)
≤ P

(
(ε · t + μiki · t) · sup

0≤s≤t
|ps

ijki
− pij | > ε · t

)

+ P

(
xiki (t)

t
− μiki > ε

)
≤ P

(
sup

0≤s≤t
|ps

ijki
− pij | >

ε

ε + μiki

)

+ P

(
sup

0≤s≤t
|xiki(s)

s
− μiki | > ε

)
≤ P

(
sup

0≤s≤t
|ps

ijki
− pij | >

ε

2 · μiki

)

+ P

(
sup

0≤s≤t
|xiki (s)

s
− μ| > ε

)
, i = 1, 2, . . . , J, ki = 1, 2, . . . , ci. (3.8)

Thus, we achieve for ε > 0 that

P

⎛⎜⎜⎝
sup

0≤s≤t

{
xiki (s) · |ps

ijki
− pij |

}
t

> ε

⎞⎟⎟⎠ ≤ P

(
sup

0≤s≤t
|ps

ijki
− pij | >

ε

2 · μ

)

+ P

(
sup

0≤s≤t
|xiki(s)

s
− μiki | > ε

)
,

(3.9)

i = 1, 2, . . . , J , ki = 1, 2, . . . , ci.



FLUID LIMITS FOR THE QUEUE LENGTH OF JOBS IN MULTISERVER 359

Finally, we obtain that for ε > 0 (see (3.8)–(3.10))

lim
t→∞P

( |Wj(t)|
t

> ε

)
≤

J∑
j=1

J∑
i=1

ci∑
ki=1

lim
t→∞ P

(
sup

0≤s≤t
|ps

ijki
− pij | >

ε

c · μ

)

+
J∑

j=1

J∑
i=1

ci∑
ki=1

lim
t→∞ P

(
sup

0≤s≤t
|xiki (s)

s
− μiki | >

ε

c

)

+
J∑

j=1

ci∑
ki=1

lim
t→∞ P

⎛⎝ sup
0≤s≤t

(xiki (s) − τiki (s))

t
>

ε

c

⎞⎠
≤

J∑
j=1

J∑
i=1

ci∑
ki=1

P

(
lim

t→∞ sup
0≤s≤t

|ps
ijki

− pij | > ε

)

+
J∑

j=1

J∑
i=1

ci∑
ki=1

P

(
lim

t→∞ sup
0≤s≤t

|xiki (s)
s

− μiki | > ε

)

+
J∑

j=1

ci∑
ki=1

P

⎛⎝ lim
t→∞ sup

0≤s≤t
(xiki (s) − τiki (s))

t
> ε

⎞⎠ ,

j = 1, 2, . . . , J. (3.10)

Let us prove that the first term in (3.10) converges to zero. Thus, we get (see
the lemma of [34])

P

(
lim

t→∞ sup
0≤s≤t

|ps
ijki

− pij | > ε

)
≤ P

(
lim

t→∞ lim
δ↓0

sup
0≤s≤t

|ps
ijki

− pij | > δ

)

= lim
δ↓0

P

(
lim

t→∞ sup
0≤s≤t

|ps
ijki

− pij | > δ

)
= 0,

i, j = 1, 2, . . . , J, ki = 1, 2, . . . , ci. (3.11)

Using the limit theorem for a renewal process, we see that the second term in
(3.10) converges to zero (see [1]). Hence we get that the third term in (3.10) also
converges to zero (see Lem. 3.2).

Thus, we prove that (see (3.10) and (3.11))

sup
0≤s≤t

|Wj(s)|
s

⇒ 0, j = 1, 2, . . . , J. (3.12)
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Note that (see, for example, [4])

x̂j(t) − βj · t
t

=
J∑

i=1

ci∑
ki=1

(xiki(t) − μiki · t) · pij

t

+

(Aj(t)−λj · t)−
{

ci∑
ki=1

(xiki (t)−μiki · t)
}

t
⇒ 0, j = 1, 2, . . . , J.

(3.13)

Thus, using the convergence together theorem (see Thm. 2.1), (3.12) and (3.13),
we derive that

Qj(t) − βj · t
t

⇒ 0, j = 1, 2, . . . , J. (3.14)

As a result, we complete the proof of the theorem. �

Let us denote V (t) =
∑J

j=1 Qj(t), t > 0. Finally, we prove the following limit
theorem on the total queue length of jobs in open multiserver queueing networks.

Theorem 3.5. If conditions (2.1)–(2.3) are fulfilled, then

sup
0≤s≤t

∣∣∣∣V (s)
s

− β

∣∣∣∣⇒ 0.

Proof. It suffices to note that |V (t)−∑J
j=1 x̂j(t)| ≤

∑J
j=1 |Wj(t)| and apply The-

orem 3.1. The proof of Theorem 3.2 is complete. �

4. Applications of the main results

First of all we present a theorem about the diffusion limit of the queue length
of jobs in a multiserver open queueing network.

Theorem 4.1. If conditions (2.1)–(2.3) are satisfied, then(
Q1(nt) − β1 · nt√

n
;
Q2(nt) − β2 · nt√

n
; . . . ;

QJ(nt) − βJ · nt√
n

)
⇒ (σ̂1 · z1(t); σ̂2 · z2(t); . . . ; σ̂J · zJ(t)), where zj(t), j = 1, 2, . . . , J, 0 ≤ t ≤ 1 are
independent standard Wiener processes.

Proof. The proof is based on Lemma 3.1, the convergence together theorem (see
Thm. 2.1), and the limit theorem for the renewal process (see, for example, [1]).
The proof is now complete. �

Next, we present the law of the iterated logarithm for the queue length of jobs in
a multiserver open queueing network under heavy traffic conditions.
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Theorem 4.2. If conditions (2.1)–(2.3) are satisfied, then

P

(
lim

t→∞
Qj(t) − βj · t

σ̂j · a(t)
= 1
)

= P

(
lim

t→∞
Qj(t) − βj · t

σ̂j · a(t)
= −1

)
= 1,

j = 1, 2, . . . , J.

Proof. This proof is also based on Lemma 3.1, the convergence together theorem
(see Thm. 2.1), and the law of the iterated logarithm for the renewal process
(see [16]). The proof is now complete. �

5. Concluding remarks and future research

1. If the conditions of the theorem on SLLN are fulfilled (i.e., conditions (2.1)
are satisfied), the network is occupied at first (see Corollary 4.1) and if con-
ditions (2.1) are satisfied later on, the network becomes uncontrollable after a
certain time (as t ≥ max

1≤j≤J
max

1≤kj≤cj

mjkj

βjkj

) (see Cor. 4.2).

2. Conditions (2.1) are fundamental, – the behaviour of the whole network and its
evolution is not clear, if conditions (2.1) are not satisfied. Therefore, this fact
is the object of a further research and discussion.

3. The theorems of this paper are proved for a class of multiserver open queueing
network in heavy traffic with the service principle “first come, first served”,
endless waiting time of a customer in each node of the queueing system, and
the times between the arrival of customers at the multiserver open queueing
networks are independent identically distributed random variables. However,
analogous theorems can be applied to a wider class of multiserver open queueing
networks in heavy traffic: when the arrival and service of customers in a queue is
by groups, when interarrival times of customers at a multiserver open queueing
network are weakly dependent random variables, etc.
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[10] B. Grigelionis and R. Mikulevičius, Diffusion approximation in queueing theory. Fundamen-
tals of Teletraffic Theory. Proc. Third Int. Seminar on Teletraffic Theory (1984) 147–158.

[11] J.M. Harrison, The heavy traffic approximation for single server queues in series. Adv. Appl.
Probab. 10 (1973) 613–629.

[12] J.M. Harrison, The diffusion approximation for tandem queues in heavy traffic. Adv. Appl.
Probab. 10 (1978) 886–905.

[13] J.M. Harrison and A.J. Lemoine, A note on networks of infinite-server queues. J. Appl.
Probab. 18 (1981) 561–567.

[14] J.M. Harrison and M.I. Reiman, On the distribution of multidimensional reflected Brownian
motion. SIAM J. Appl. Math. 41 (1981) 345–361.

[15] J.M. Harrison and R.J. Williams, Brownian models of open queueing networks with homo-
geneous customer populations. Stochastics 22 (1987) 77–115.

[16] D.L. Iglehart, Multiple channel queues in heavy traffic. IV. Law of the iterated logarithm.
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 17 (1971) 168–180.

[17] D.L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic I. Adv. Appl. Probab.
2 (1970) 150–175.

[18] D.L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic II: Sequences, networks
and batches. Adv. Appl. Probab. 2 (1970) 355–364.

[19] D.P. Johnson, Diffusion Approximations for Optimal Filtering of Jump Processes and for
Queueing Networks. Ph.D. dissertation, University of Wisconsin (1983).

[20] F.I. Karpelevitch and A.Ya. Kreinin, Joint distributions in Poissonian tandem queues.
Queueing Systems 12 (1992) 274–286.

[21] F.P. Kelly, An asymptotic analysis of blocking. Modelling and Performance Evaluation
Methodology. Springer, Berlin (1984) 3–20.

[22] G.P. Klimov, Several solved and unsolved problems of the service by queues in series (in
Russian). Izv. AN USSR, Ser. Tech. Kibern. 6 (1970) 88–92.

[23] E.V. Krichagina, R.Sh. Liptzer and A.A. Pukhalsky, The diffusion approximation for queues
with input flow, depending on a queue state and general service. Theory Prob. Appl. 33
(1988) 124–135.

[24] Ya.A. Kogan and A.A. Pukhalsky, Tandem queues with finite intermediate waiting room
and blocking in heavy traffic. Prob. Control Int. Theory 17 (1988) 3–13.

[25] A.J. Lemoine, Network of queues – A survey of weak convergence results. Management
Science 24 (1978) 1175–1193.

[26] R.Sh. Liptzer and A.N. Shiryaev, Theory of Martingales. Kluwer, Boston (1989).
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