
RAIRO-Oper. Res. 47 (2013) 73–87 RAIRO Operations Research

DOI: 10.1051/ro/2013028 www.rairo-ro.org

SCHEDULING AN INTERVAL ORDERED PRECEDENCE
GRAPH WITH COMMUNICATION DELAYS

AND A LIMITED NUMBER OF PROCESSORS

Alix Munier Kordon
1
, Fadi Kacem

2
,

Benôıt Dupont de Dinechin
3

and Lucian Finta
4

Abstract. We consider the scheduling of an interval order precedence
graph of unit execution time tasks with communication delays, release
dates and deadlines. Tasks must be executed by a set of processors
partitioned into K classes; each task requires one processor from a
fixed class. The aim of this paper is to study the extension of the
Leung–Palem–Pnueli (in short LPP) algorithm to this problem. The
main result is to prove that the LPP algorithm can be extended to
dedicated processors and monotone communication delays. It is also
proved that the problem is NP–complete for two dedicated processors
if communication delays are non monotone. Lastly, we show that list
scheduling algorithm cannot provide a solution for identical processors.

Keywords. Approximation and complexity, combinatorial optimiza-
tion, scheduling.

Mathematics Subject Classification. 90B35.

Received September 1, 2009. Accepted January 24, 2013.

1 LIP6 – Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France.
alix.munier@lip6.fr

2 Laboratoire IBISC, 523 place des terrasses, 91000 Evry, France
3 Kalray, 445 rue Lavoisier, 38330 Montbonnot Saint Martin, France
4 LIPN, Laboratoire d’Informatique de l’Université Paris-Nord, 99 avenue Jean-Baptiste
Clment, 93430 Villetaneuse, France

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2013

http://dx.doi.org/10.1051/ro/2013028
http://www.rairo-ro.org
http://www.edpsciences.org

74 A. MUNIER KORDON ET AL.

1. Introduction

Minimizing the makespan for an interval ordered precedence graph G = (T, A)
on a limited number of processors and unit execution time tasks was intensively
studied. To the best of our knowledge, this class of graphs was introduced by
Papadimitriou and Yannakakis in [10] who developed a polynomial time algorithm
for m identical processors. More recently, Jansen [7] extended this result to typed
tasks systems: processors are partitioned into K classes M1, . . . , MK and each task
i ∈ T must be executed by a processor from a fixed class mi ∈ {M1, . . . , MK}.
Note that typed tasks systems include both identical processors (only one class of
processors) and dedicated processors (only one processor per class).

In computer science applications, tasks may model instructions executed on pro-
cessors and precedence constraints correspond to data transfers through processor
registers. For any precedence constraint between two tasks i and j, a minimum
additional delay �ij ≥ 0 between the end of i and the beginning of j is usually
considered. If ti and tj denotes respectively the starting times of tasks i and j, the
corresponding constraint is ti + pi + �ij ≤ tj where pi is the processing time of the
task i.

Several studies were devoted to interval ordered precedence graphs in this con-
text: each task is associated to an interval, and there exists a precedence relation
(i, j) if the interval of i ends before the begining of the one of j. An interval ordered
precedence graph is said monotone if delays �ij are monotonically increasing with
the distance between the intervals corresponding to the tasks. This natural limi-
tation of delays was first introduced by Palem and Simons in [9], who presented a
polynomial–time algorithm to solve the determination of a feasible schedule for a
monotone interval ordered precedence graph with deadlines and m identical pro-
cessors. Their main idea is to use backward scheduling in order to strengthen the
deadlines, which are then used as priorities in a list scheduling algorithm. Leung
et al. [8] further developed this idea for solving this problem with additional release
dates. Lastly, Dupont de Dinechin [3] considered a similar approach to solve the
determination of a feasible schedule for a monotone interval ordered precedence
graph with release dates, deadlines and typed tasks system.

Another way to model data transfers is to conseider a communication delay only
when two adjacent tasks i and j are executed on two different processors. More
formally, if cij ∈ N denotes the minimum communication delay between tasks i
and j, the precedence constraint is ti + pi +xijcij ≤ tj with xij a boolean variable
equal to 0 if and only if i and j are performed by the same processor. Surveys on
scheduling problems with communication delays can be found in [2, 11].

Communications delays are said large if they are possibly greater than execution
times. Scheduling problems under this assumption are known to be very difficult
to be solved exactly. For instance, for unit execution time tasks and delay equal
to c ≥ 3, Giroudeau et al. in [4] proved that the existence of a schedule of length
smaller that c + 4 is NP-complete for a general precedence graph with no resource
limitation. Note that monotone communication delays include constant delays.

SCHEDULING AN INTERVAL ORDERED PRECEDENCE GRAPH 75

In this context, most of the authors limit their studies to unit execution time
tasks and unit communication delays. Ali and Rewini [1] developed a polynomial–
time algorithm for the minimization of the makespan for an interval ordered prece-
dence graph, m identical processors and unit communication delays. Verriet [13]
developed a polynomial algorithm to solve the determination of a feasible schedule
for an interval ordered precedence graph with release dates, deadlines, unit commu-
nication delays and m identical processors. Verriet developed another polynomial
algorithm [12] to solve the determination of a feasible schedule for an interval
ordered precedence graph with communication delays on a typed tasks system.

We consider the determination of a feasible schedule with large communications
delays for an interval ordered precedence graphs with release dates, deadlines for
a typed tasks system. Problem and notations are presented in Section 2. We prove
in Section 3 that the problem is NP–complete in the strong sense for 2 dedicated
processors and general communication delays. In the rest of the paper, communica-
tion delays are supposed to be monotone. Section 4 describes the extension of the
algorithm presented in [8] by Leung, Palem and Pnueli (in short LPP algorithm) to
interval ordered precedence graphs with release dates, deadlines, monotone com-
munication delays and dedicated processors. The deadline modification scheme
presented in [8] and proofs are also simplified. In Section 5, we show with an ex-
ample that for m identical processors and large communication delays, there is no
optimal list-based scheduling algorithm, so the LPP algorithm cannot be extended
to solve this problem.

2. Model formulation

2.1. General problem

Let T be a set of n unit execution time tasks with arbitrary release dates ri ∈ N

and deadlines di ∈ N, i ∈ T . As mentioned above, our study is limited to an
interval ordered precedence graph G = (T, A): each task i ∈ T can be associated
to a non empty interval Ii =]ai, bi[with (ai, bi) ∈ R

2, ai < bi. The arc (i, j) ∈ A
if bi ≤ aj . Integer communication delays cij ∈ N are associated with every arc
(i, j) ∈ A.

Each class of machines Mp, p ∈ {1, . . . , K} may be composed by τp identical
processors. A schedule is a couple of vector σ = (t, π) where ti, i ∈ T denotes start
time of i and πi ∈ {1, . . . , τmi} denotes the machine of type mi that executes i. A
schedule is feasible if:

1. Release dates and deadlines are fulfilled, i.e.∀i ∈ T , ri ≤ ti < di.
2. Precedence relations are also fulfilled, i.e.∀(i, j) ∈ A, set xij = 0 if mi = mj

and πi = πj , xij = 1 otherwise. We get ti + 1 + xijcij ≤ tj .
3. At each time t, there is at most one task executed by each machine.

The general problem considered here is building a feasible schedule for an interval
ordered precedence graph with communication delays, release dates, deadlines and
typed tasks system.

76 A. MUNIER KORDON ET AL.

a b c

d e f

g h

a b c

d e f

g h

Figure 1. An interval ordered graph and the corresponding intervals.

Table 1. Monotone communication delays for the interval or-
dered precedence graph pictured by Figure 1.

cij b c e f h
a 1 3 2 3 �
b � 2 � 2 �
d � 2 1 2 �
e � 1 � 1 �
g 2 3 2 3 2
h � 1 � 1 �

The precedence relation as defined before is transitive: if (i, j) and (j, k) are
both in A, then (i, k) also belongs to A. Moreover, transitive arcs must not be
removed, since any value cik can be larger than 1 + cij + cjk.

2.2. Monotone communication delays

For any task i ∈ T , Γ+(i) (resp.Γ−(i)) denotes the immediate successors
(resp.predecessors) of i in G. Property 2.1 comes from [10]:

Property 2.1. Let G = (T, A) be an interval ordered precedence graph. For any
couple of tasks (i, j) ∈ T 2, Γ−(i) ⊆ Γ−(j) or Γ−(j) ⊆ Γ−(i).

Definition 2.2. Let G = (T, A) be an interval ordered precedence graph. Com-
munication delays associated with G are monotone if

∀((i, j), (i, k)) ∈ A2, Γ−(j) ⊆ Γ−(k) ⇒ cij ≤ cik.

Γ−(j) ⊆ Γ−(k) is equivalent to aj ≤ ak, and thus aj − bi ≤ ak − bi. Roughly
speaking, cij is increasing with the distance between the two disjunctive intervals
Ii and Ij .

As example, let consider the set of intervals and the corresponding interval
ordered graph pictured by Figure 1. Table 1 presents monotone communication
delays. Release dates, deadlines and machines type are reported in Table 2.

SCHEDULING AN INTERVAL ORDERED PRECEDENCE GRAPH 77

Table 2. Release date, deadline and machine type for tasks in
example of Figure 1.

i ∈ T a b c d e f g h
ri 0 1 2 0 4 1 0 1
di 3 3 7 3 6 6 3 6
mi 2 1 1 1 2 2 1 2

2.3. List schedules

A priority list is a bijection L : T → {1, . . . , n}. It is usually built using the
precedence graph structure, release dates, deadlines, and resource constraints. The
determination of a list schedule using an extension of the LPP algorithm [8] will
be discussed in Section 4.

Let us suppose here that L is fixed. A list schedule with (large) communication
delays may be built as described in [6]: consider task i ∈ T having it’s start time ti
not yet fixed at current time t. Task i is said to be ready to be executed at time t
by processor π of type mi if

1. t ≥ ri;
2. Every task j ∈ Γ−(i) was scheduled before t. Moreover, if j is not performed

by π, the communication delay between j and i is fulfilled and allows i to be
performed at time t;

3. π is idle at time t.

The goal of the algorithm is to find for every couple (t, π), π ∈ ⋃K
p=1 Mp the ready

task i with the highest priority (i.e.with value L(i) minimal among ready tasks)
and set ti = t and πi = π if i exists. It starts with time t = 0 and increases t as
soon as there is no more ready task or idle slot at time t.

One may observe that if time increment step equals 1, the previous algorithm
may have a complexity equal to O(n2 max(i,j)∈A cij), which is not polynomial.
However, it is proved in [6] that values of t may be limited to get an algorithm of
time complexity following O(n3).

3. Complexity for general communication delay

We prove here that the scheduling problem of a (general) communication delay
interval ordered precedence graph and 2 dedicated processors is NP–complete in
the strong sense. This result justifies the limitation of our study to monotone
communication delays. For that purpose, let us consider Sequencing Bipartite

Graph with Communication Delays (SBC) defined as follows:

SCHEDULING BIPARTITE GRAPH WITH COMM. DELAYS (SBC)
Input: Let A = {1, . . . , k} and B = {k + 1, . . . , 2k}, k ∈ N

� two sets of k unit
execution time tasks, ∀(i, j) ∈ A× B, a delay cij ∈ N, ∀i ∈ A ∪B, mi ∈ {1, 2}
and an integer D ≥ 0.

78 A. MUNIER KORDON ET AL.

Question: is there a vector ti, i ∈ A∪B such that, ∀(i, j) ∈ (A∪B)2, if mi = mj

then ti
= tj , maxi∈A∪B ti < D and ∀(i, j) ∈ A×B, xij = 0 if mi = mj, xij = 1
otherwise and ti + xijcij + 1 ≤ tj?

Sequencing Couples with Latencies (SCL) defined as follows was prove
to be NP–complete in the strong sense by Yu et al. [14]. In the following, we will
show that SBC is NP-complete in the strong sense by reducing SCL to SBC.

SEQUENCING COUPLES WITH LATENCIES (SCL)
Input: Let A = {1, . . . , k} and B = {k + 1, . . . , 2k}, k ∈ N

� be two sets of k unit
execution time tasks, k values �i ∈ N, i ∈ {1, . . . , k} and an integer D ≥ 0.

Question: is there a vector ti, i ∈ A ∪ B such that, ∀(i, j) ∈ (A ∪ B)2, ti
= tj ,
maxi∈A∪B ti < D and ∀i ∈ {1, . . . , k}, ti + 1 + �i ≤ ti+k?

Theorem 3.1. There exists a polynomial transformation from SCL to SBC.

Proof. Let Π be an instance of SCL. An instance f(Π) of SBC is built by setting,
∀(i, j) ∈ A × B, cij = �i if j = k + i, cij = 0 otherwise. Moreover, ∀i ∈ A, mi = 1
and ∀i ∈ B, mi = 2. Figure 2 illustrates this transformation.

1. Let ti, i ∈ A ∪ B be a solution to Π . We show that all tasks from A are
completed without interruption in the time interval [0, k]:
• Let suppose that there exists two successive tasks i and j with i ∈ B

and j ∈ A. Then, because of precedence relations, they can be exchanged
without any influence on the other tasks. Thus, we can suppose that tasks
from A are all performed before tasks from B.

• Tasks from A have no predecessor. Thus they can be performed without
any interruption.

Thus ti, i ∈ A ∪ B is also a solution to f(Π).
2. Conversely, let us assume that ti, i ∈ A ∪ B is a solution to f(Π). By con-

struction of the graph, the first task from B starts after the completion time of
the last tasks from A. Thus, for every couple (i, j) ∈ (A ∪ B)2, ti
= tj and ti,
i ∈ A ∪ B is also a feasible schedule for Π . �

Now, a complete bipartite graph is clearly an interval order such that every task
from A (resp.from B) is associated with an interval I =]a, b[(resp.I ′ =]a′, b′[) with
b ≤ a′. Moreover, SBC is clearly in NP. Since SCL is strongly NP–complete [14],
we get the following corollary:

Corollary 3.2. The existence of a schedule for the problem with due dates for a
(general) communication delay interval ordered precedence graph and 2 dedicated
processors is NP–complete in the strong sense.

SCHEDULING AN INTERVAL ORDERED PRECEDENCE GRAPH 79

1

2

3

4

A

5

6

7

8

B

5

4

1

1

Instance Π of Sequencing

Couples with Latencies

1

2

3

4

A

5

6

7

8

B

5

4

1

1

Instance f(Π) of Scheduling bipartite

graph with communication delays

Figure 2. Transformation from Sequencing couples with la-

tencies to Scheduling bipartite graph with communica-

tion delays.

4. Extended LPP algorithm for dedicated processors

and monotone communication delays

The aim of this section is to present an extension of the LPP algorithm [8] for
an interval ordered precedence graph with monotone communication delays and
dedicated processors. We first present a simple polynomial algorithm to compute
an upper bound of the completion time of a task based on Jackson’s rule, a process
called backward scheduling by Leung et et al. [8]. Backward scheduling is applied
iteratively in next subsection to modify the deadline of every task until a fix-point.
It is lastly proved that, using a list algorithm based on an “earliest deadline first”
priority list, modified deadlines lead to a feasible solution if it exists.

4.1. An upper bound of the completion time of a task

Let k ∈ T and Sk = Γ+(k) ∪ indep(k), where indep(k) is the set of tasks from
T having no precedence relation with k. Let us suppose that every task � from
Sk ∪ {k} has a release date r� and a deadline d�. Moreover, since there is exactly
one machine per type (dedicated processors), we can set for every arc (i, j) ∈ A,
xij = 0 if mi = mj, xij = 1 otherwise.

Let t ∈ {rk + 1, . . . , dk}. Then, we consider the decision problem Existencek(t,
r, d) defined as follows. Roughly speaking, it fixes the schedule of task k at instant
t−1 and it returns true if a feasible schedule exists for tasks in Sk∪{k} (considering
release dates, deadlines, resource constraints and precedence relations between k
and its immediate successors).

80 A. MUNIER KORDON ET AL.

Table 3. Effective delays for the interval ordered precedence
graph pictured by Figure 1 considering the allocation of the tasks
to 2 dedicated processors expressed by Table 2.

xijcij b c e f h
a 1 3 0 0 �
b � 0 � 2 �
d � 0 1 2 �
e � 1 � 0 �
g 0 0 2 3 2
h � 1 � 0 �

Table 4. Release dates, deadlines and feasible start times for the
decision problem Existencee(5, r, d) with answer true.

i ∈ T ′ b c e f h
ri 1 6 4 5 1
di 3 7 5 6 6
ti 1 6 4 5 1

Existencek(t, r, d)
Input: Set of tasks Sk ∪ {k} of unit execution time with deadlines d′k = t and

∀j ∈ Sk, d′j = dj . Every task j ∈ Sk ∪ {k} has to be executed by mj . Release
dates of tasks are computed as follows:
1. r′k = t − 1; ∀j ∈ indep(k), r′j = rj ;
2. ∀j ∈ Γ+(k), r′j = max(rj , t + xkjckj).

Question: Is there a schedule of tasks from Sk ∪ {k} meeting release dates r′,
deadlines d′ and resource constraints?

Let consider the example defined previously by Figure 1, Table 1 and Table 2.
The delays xijcij for any arc (i, j) ∈ A are reported by Table 3.

For this example, Se = {c, f}∪{b, h}. Thus Existencee(5, r, d) asks the question
of the existence of a schedule for tasks T ′ = {b, c, e, f, h} with releases dates,
deadlines and resource constraints presented in Table 4. The answer to the question
is here clearly positive.

If Existencek(t, r, d) is false, then k cannot be performed at time t− 1 without
violating a precedence or a resource constraint of the initial problem. This deci-
sion problem can be solved easily by an O(n log n) algorithm using Jackson’s rule
(i.e.tasks are sorted following their deadline and are scheduled by a priority list
algorithm using earliest deadline first) [5].

For any task k ∈ T , Existence can be used to tighten the upper bound of the
completion time of k considering precedence and resources constraints. Indeed, the
maximum value t� in {rk + 1, . . . , dk} such that Existencek(t�, r, d) is true is an
upper bound of the completion time of k. Let us denote by BSk(r, d) an algorithm
that computes t� if it exists. This algorithm is referred as the backward schedule
algorithm, or BS algorithm in short.

SCHEDULING AN INTERVAL ORDERED PRECEDENCE GRAPH 81

For any fixed task k ∈ T , BS algorithm is based on successive calls of Existencek

until t� is reached. As explained in [3, 8], two binary searches in the time interval
[rk + 1, dk] are needed, leading to an algorithm of time complexity bounded by
O(log(dk − rk) × n log n).

The following lemma describes an important property on BS algorithm:

Lemma 4.1. Let d1 and d2 be two elements from N
n with d1 ≤ d2 (i.e.∀i ∈

T, d1
i ≤ d2

i). For any vector r ∈ N
n such as r ≤ d1 and any task i ∈ T , BSi(r,

d1)≤BSi(r, d2).

Proof. For every integer value t ∈ {ri + 1, . . . , d1
i }, if Existencei(t, r, d1) is true,

then Existencei(t, r, d2) is. Now, as BS is a maximization algorithm, BSi(r,
d1)≤BSi(r, d2), the result. �

4.2. Deadline modification algorithm

The idea here is to modify deadlines of all the tasks by computing successively
upper bounds of the completion times following Algorithm 1.

If a call of BS has no solution, Algorithm 1 stops. In the following, we suppose
that d� can be computed. For any couple (i, k) ∈ {1, . . . , n}2, let us note by d�

k(i)
the modified deadline of task k at the end of the ith iteration of the loop for. We
also set d�

k = d�
k(n) at the end of Algorithm 1.

Algorithm 1 Computation of the modified deadlines
Require: A precedence graph G with communication delays, release dates r, deadlines

d and K dedicated processors.
Ensure: Modified release dates r� and deadlines d�.

Compute ∀i ∈ {1, . . . , n}, r�
i = maxj∈Γ−(i)(ri, r

�
j + 1 + xjicji) following a topological

order;
Renumber tasks such as r�

1 ≥ r�
2 ≥ . . . ≥ r�

n;
Compute ∀i ∈ {1, . . . , n}, d�

i = minj∈Γ+(i)(di, d
�
j − 1 − xijcij) following an inverse

topological order;
for i = 1 to n do

d�
i = BSi(r

�, d�);
Compute ∀i ∈ {1, . . . , n}, d�

i = minj∈Γ+(i)(di, d
�
j − 1 − xijcij) following an inverse

topological order;
end for

For instance, let’s consider the execution of Algorithm 1 on the instance of the
scheduling problem presented by Figure 1, Table 1 and Table 2. Table 5 shows
the vector r� computed by the algorithm and a possible associated renumbering
of tasks. Values d�

k(i), (i, k) ∈ {1, . . . , n}2 are reported by Table 6 (as well as the
vector d�(0) computed before the loop for).

82 A. MUNIER KORDON ET AL.

Table 5. Modified release dates r� and a corresponding possible
renumbering of tasks.

T a b c d e f g h
r� 0 2 6 0 4 5 0 3
i 8 5 1 7 3 2 6 4

Table 6. Modified deadlines d�
k(i), (i, k) ∈ {1, . . . , 8}2.

k ∈ T 1 2 3 4 5 6 7 8
d�(0) 7 6 5 5 3 2 3 1
d�(1) 7 6 5 5 3 2 3 1
d�(2) 7 6 5 5 3 2 3 1
d�(3) 7 6 5 5 3 2 3 1
d�(4) 7 6 5 4 3 1 1 1
d�(5) 7 6 5 4 3 1 1 1
d�(6) 7 6 5 4 3 1 1 1
d�(7) 7 6 5 4 3 1 1 1
d�(8) 7 6 5 4 3 1 1 1

Following lemma characterizes vectors d�(i), i ∈ {1, . . . , n}:
Lemma 4.2. For any task k ∈ T , the function i → d�

k(i) is non increasing for
i ∈ {0, . . . , n}. Moreover, for every value i ∈ {k, . . . , n}, d�

k(i) = d�
k(k) =BSk(r�,

d�(k − 1)).

Proof. By definition of the BS algorithm, BSk(r�, d�(k−1)) is in {r�
k+1, . . . , d�

k(k−
1)} and thus BSk(r�, d�(k − 1))≤ d�

k(k − 1). Moreover, adjusting values of d�

following an inverse topological order also decreases d�. Thus, d� may only decrease
and the first part of lemma is proved.

Now, by Algorithm 1, for any k ∈ {1, . . . , n}, d�
k(k) =BSk(r�, d�(k − 1)). Since

r�
n ≤ r�

n−1 ≤ . . . ≤ r�
k, there is no successor of k in {k + 1, . . . , n}. Thus, modifica-

tions of d�
j , j ∈ {k + 1, . . . , n} have no influence on d�

k and d�
k(i) = d�

k(k) for any
value i ∈ {k, . . . , n}. �

Lemma 4.3. For every arc (k, j) ∈ A and every i ∈ {0, . . . , n}, d�
k(i) < d�

j (i).

Proof. This lemma comes from the adjustment procedure called at each step fol-
lowing an inverse topological order. �

The following lemma proves that at the end of the algorithm, values d�
� , � ∈ T

cannot be modified again using BS algorithm:

Lemma 4.4. If a feasible schedule exists, then at the end of Algorithm 1, ∀k ∈
{1, . . . , n}, d�

k = BSk(r�, d�).

SCHEDULING AN INTERVAL ORDERED PRECEDENCE GRAPH 83

Proof. By contradiction, let assume that there exists k ∈ {1, . . . , n} such as d�
k
=

BSk(r�, d�). By Lemma 4.2, d�
k = d�

k(k) =BSk(r�, d�(k − 1)). Since deadlines
are decreasing following the iterations of Algorithm 1, d�(k − 1) ≥ d�. Thus, by
Lemma 4.1, d�

k =BSk(r�, d�(k − 1)) > BSk(r�, d�).
As a consequence, Existencek(d�

k, r�, d�) is false. Let’s denote by r′ and d′ the
release dates and dealines of this call of Existence. ∀� ∈ Sk ∪ {k}, let t� be the
starting time of � obtained by using a list schedule governed by Jackson’s rule. Let
us consider the first instant t such that a task j ∈ Sk misses its deadline d′j , thus
t = d′j .

Let Δ be the minimum value in {−1, 0, . . . , d′j − 1} such that every slot in
[Δ+1, d′j] is filled on machine mj by a task � with d′� ≤ d′j . Let also B = {j}∪{� ∈
Sk ∪ {k}|m� = mj and Δ < t� < d′j}.

Every slot on mj during the time interval [Δ + 1, d′j] is filled by a task from B.
Moreover, j is not performed during this interval. The consequence is that |B| =
1 + (d′j −Δ), and thus there are no sufficient slots on mj to perform tasks from B
during the interval [Δ + 1, d′j].

Moreover every task � ∈ B has a priority larger than the one (if any) performed
at time Δ, thus r′� ≥ Δ + 1.

Two cases are to be considered:

1. Let suppose first that, for every task � ∈ B − {k}, � < k. The, by Lemma 4.2,
d�

� (k − 1) = d�
� = d′�. The consequence is that every task from B has to be

performed during the interval [Δ+1, d′j] in Existencek(d�
k, r�, d�(k−1)), which

is impossible. Thus, d�
k
=BSk(r�, d�(k − 1)), a contradiction.

2. Otherwise, there exists a task � ∈ B − {k} with � > k. We first show that, for
any task i ∈ B, r�

� ≥ Δ + 1.
• Let suppose that � ∈ B with � > k. By definition of the numbering, r�

� ≤ r�
k.

By definition of r�, we get that �
∈ Γ+(k), so r′� = r�
� and r�

� ≥ Δ + 1 by
definition of B.

• Let consider now a task i ∈ B with i ≤ k, then r�
i ≥ r�

k ≥ r�
� with � ∈ B

and � > k. Thus, as seen just before, r�
i ≥ r�

� ≥ Δ + 1.
Moreover, for any task i ∈ B, d′i = d�

i ≤ d′j . The consequence is that it is
impossible to schedule tasks from B with release dates r� and deadlines d�.
The scheduling problem is thus not feasible. �

4.3. Optimality of the extended LPP algorithm

The extended LPP algorithm consists in computing the modified deadlines using
Algorithm 1 and in building a priority-list based schedule with a priority list L
such that, for any couple (i, j) ∈ T 2, L(i) < L(j) ⇒ d�

i ≤ d�
j .

As an example, the schedule obtained for the example depicted in Figure 1 with
modified deadlines from Table 6 is shown in Figure 3. The next theorem shows
that, in case of dedicated processors and monotone communication delays, there
exists a feasible schedule if and only if the schedule built by the extended LPP
algorithm is feasible.

84 A. MUNIER KORDON ET AL.

a h e f

g d b c

Figure 3. LPP algorithm for the example from Figure 1 and the
modified deadlines from Table 6.

Theorem 4.5. The extended version of the LPP algorithm solves polynomially
the determination of a feasible schedule for a unit execution time typed tasks sys-
tem with arbitrary release dates and deadlines, monotone communication delays,
precedence constraints ruled by an interval ordered precedence graph and a limited
number of typed processors with one processor for each type.

Proof. By contradiction, let us assume that the extended LPP algorithm provides
a schedule σ = (t1, . . . , tn), which is not feasible. Let i be the earliest task that
misses its modified deadline i.e.ti � d�

i . We show that there must be an earlier
task k that also misses its modified deadline.

A task j ∈ T is said saturated if mj = mi and d�
j � d�

i . Define Δ < d�
i as

the latest time slot that is not filled with a saturated task on the processor of
type mi; consider the task sets Σ = {� saturated : Δ < t� < d�

i } ∪ {i} and
Σ′ = {� ∈ Σ : r�

� � Δ}.
We first prove by contradiction that Σ′
= ∅ and Δ ≥ 0. Indeed, if Σ′ = ∅, then

∀� ∈ Σ, r�
� > Δ. Now, since Σ is composed by i and all the tasks performed by

mi in the interval [Δ + 1, d�
i], we get |Σ| = (d�

i − Δ) + 1 > 0. Moreover, there
are exactly d�

i − Δ slots from Δ + 1 to d�
i available on processor mi. Thus, the

scheduling problem is unfeasible. The consequence is that Σ′
= ∅ and thus Δ ≥ 0.
Since Σ′ is a finite non empty set of tasks, there exists j ∈ Σ′ such that |Γ−(j)|

is minimum in Σ′. As j is not scheduled at date Δ or earlier, there must be a
constraining task k ∈ Γ−(j). Note that, ∀� ∈ Σ′, k ∈ Γ−(�): indeed, ∀� ∈ Σ′,
|Γ−(j)| ≤ |Γ−(�)|, thus by Property 2.1, Γ−(j) ⊆ Γ−(�) and then k ∈ Γ−(�).
Lastly, after the computation of r�, r�

k < r�
j . As j ∈ Σ′, r�

j ≤ Δ and thus r�
k < Δ.

Task k is either of type mi or of a type different than mi:

Case 1. Let us assume that mk = mi. In that case, there is no communication
delay from k to tasks from Σ′. Besides, task k constrains task j to be
executed after date Δ, thus tk ≥ Δ.
We prove that k
∈ Σ: since k ∈ Γ−(j), Γ−(k) ⊂ Γ−(j) and thus k /∈ Σ′.
As r�

k < Δ, we get that k
∈ Σ.
Now, d�

k < d�
j ≤ d�

i , so k is saturated. As k
∈ Σ, tk ≤ Δ and thus,
tk = Δ, which is impossible by definition of Δ.

Case 2. Let us suppose that mk
= mi. In that case, there will be an additional
communication delay between k and j, i.e.tk + 1 + ckj > Δ.

SCHEDULING AN INTERVAL ORDERED PRECEDENCE GRAPH 85

1

2

3

4

3

3

3

3

2

1

4

3

A list schedule

1 2 3 4

An optimal schedule

Figure 4. List schedules are not optimal for 2 identical processors.

Now, let us prove that Σ ⊂ Sk. By definition of Sk,

T = Γ−(k) ∪ {k} ∪ Γ+(k) ∪ indep(k) = Γ−(k) ∪ {k} ∪ Sk.

We show that Γ−(k) ∩ Σ = ∅. For every task � ∈ Γ−(k), the inequality
r�
� < r�

k holds. Since r�
k < Δ, we obtain r�

� < Δ. Thus, if � ∈ Σ, then
� ∈ Σ′. But, if � ∈ Σ′, then by the structure of interval ordered graphs
and since j is minimum, k ∈ Γ−(�) and thus there is a circuit in G, which
is impossible. So, Σ ⊂ Sk.
Now, by Lemma 4.4, d�

k = BSk(r�, d�) and Existencek(d�
k, r�, d�) is true.

As Σ ⊂ Sk, a list scheduling algorithm using Jackson’s rule computes
feasible start times for the (d�

i −Δ)+1 tasks from Σ before d�
i . Thus, there

must be at least one task j′ ∈ Σ′ that is processed at date t′ ≤ Δ by this
last algorithm. Thus, d�

k + ckj′ ≤ t′ ≤ Δ. Now, as Γ−(j) ⊆ Γ−(j′) and
communication delays are monotone, ckj ≤ ckj′ and then d�

k + ckj ≤ Δ.
Lastly, since tk + 1 + ckj > Δ and Δ ≥ d�

k + ckj , we get tk + 1 > d�
k and

thus, task k misses its deadline, a contradiction. �

5. Non optimality of list scheduling for identical

processors

For m identical processors, list schedules may be never optimal, as shown by
Figure 4. Thus, the extension of Leung–Palem–Pnueli to m processors for typed
tasks systems is not optimal, even without initial release dates and deadlines.

However, the question remains open for unit communication delays (i.e.cij = 1,
∀(i, j) ∈ A). In that case, the feasibility problem is polynomial for identical

86 A. MUNIER KORDON ET AL.

1

2

3

4 5

cij = 1, ∀(i, j) ∈ A

d1 = 1

d2 = d3 = d4 = 3

d5 = 4

∀i ∈ T , di = di

1 2 3

4

5

A non feasible LPP schedule

1 4 3

2

5

A feasible schedule

Figure 5. LPP algorithm may compute a non feasible schedule
(for unit communication delays).

processors [13]. However, the computation of the modified deadlines as developed
previously doesn’t lead to a feasible solution as illustrated by Figure 5: the modi-
fied deadline algorithm does not modify the deadlines initially fixed and the LPP
algorithm may compute a non feasible schedule.

6. Conclusions

We prove that the algorithm of Leung et al. [8] may be extended to communica-
tion delays to compute a feasible schedule for an interval ordered precedence graph
with monotone communication delays, unit execution time tasks, release dates and
due dates for dedicated processors. The first open question is the extension of this
work to a typed task system with unit communication delays. Another interesting
open question is the computation of a feasible schedule for a non limited number
of identical processors for an interval ordered precedence graph with monotone
communication delays and unit execution time tasks.

References

[1] H.H. Ali and H.H. El.-Rewini, An optimal algorithm for scheduling interval ordered tasks
with communication on processors. J. Comput. Syst. Sci. 2 (1995) 301–307.

[2] P. Chrétienne and C. Picouleau, Scheduling with communication delays : a survey. in
Scheduling Theory and its Applications, edited P. Chrétienne, E.G. Coffman, J.K. Lenstra
and Z. Liu. John Wiley Ltd (1995) 65–89.

SCHEDULING AN INTERVAL ORDERED PRECEDENCE GRAPH 87

[3] B. Dupont de Dinechin, Scheduling monotone interval orders on typed task systems. In
PLANSIG 2007, 26th Worshop of the UK Planning and Scheduling Special Interest Group
(2007) 25–31.

[4] R. Giroudeau, J.-C. Konig, F.K. Moulai and J. Palaysi, Complexity and approximation
for precedence constrained scheduling problems with large communication delays. Theor.
Comput. Sci. 401 (2008) 107–119.

[5] W. Horn, Some simple scheduling algorithms. Naval Research Logistics Quarterly 21 (1974)
177–185.

[6] J. Hwang, Y. Chow, F. Anger and C. Lee, Scheduling precedence graphs in systems with
interprocessor communication times. SIAM J. Comput. 18 (1989) 244–257.

[7] K.Jansen, Analysis of Scheduling Problems with Typed Task Systems. Discrete Appl. Math.
52 (1994) 223–232.

[8] A. Leung, K.V. Palem and A. Pnueli, Scheduling Time-Constrained Instructions on
Pipelined Processors. ACM Transact. Program. Languages Syst. 23 (2001) 73–103.

[9] K. Palem and B. Simons, Scheduling time-critical instructions on risc machines. ACM
Transactions on Programming Languages and Systems 4 (1993) 632–658.

[10] C.H Papadimitriou and M. Yannakakis, Scheduling interval-ordered tasks. SIAM J. Comput.
8 (1979) 405–409.

[11] B. Veltman, B.J. Lageweg and J.K. Lenstra, Multiprocessor scheduling with communication
delays. Parallel Comput. 16 (1990) 173–182.

[12] J. Verriet, The complexity of scheduling typed task systems with and without communica-
tion delays. External Report 1998-26, UU-CS (1998).

[13] J. Verriet, Scheduling interval-ordered tasks with non-uniform deadlines subject to non-zero
communication delays. Parallel Comput. 25 (1999) 3–21.

[14] W. Yu, H. Hoogeveen and J.K. Lenstra, Minimizing makespan in a two-machine flow shop
with delays and unit-time operations is np-hard. J. Scheduling 7 (2004) 333–348.

	Introduction
	Model formulation
	General problem
	Monotone communication delays
	List schedules

	Complexity for general communication delay
	Extended LPP algorithm for dedicated processors and monotone communication delays
	An upper bound of the completion time of a task
	Deadline modification algorithm
	Optimality of the extended LPP algorithm

	Non optimality of list scheduling for identical processors
	Conclusions
	References

