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ANALYSIS OF A MX/G(a, b)/1 QUEUEING SYSTEM
WITH VACATION INTERRUPTION

M. Haridass
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1

Abstract. In this paper, a batch arrival general bulk service queue-
ing system with interrupted vacation (secondary job) is considered. At
a service completion epoch, if the server finds at least ‘a’ customers
waiting for service say ξ, he serves a batch of min (ξ, b) customers,
where b ≥ a. On the other hand, if the queue length is at the most
‘a-1’, the server leaves for a secondary job (vacation) of random length.
It is assumed that the secondary job is interrupted abruptly and the
server resumes for primary service, if the queue size reaches ‘a’, dur-
ing the secondary job period. On completion of the secondary job, the
server remains in the system (dormant period) until the queue length
reaches ‘a’. For the proposed model, the probability generating function
of the steady state queue size distribution at an arbitrary time is ob-
tained. Various performance measures are derived. A cost model for the
queueing system is also developed. To optimize the cost, a numerical
illustration is provided.

Keywords. Bulk arrival, single server, batch service, vacation,
interruption.
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1. Introduction

The motivation of this paper comes from a real life situation that exists in an
industry involving Sintering Process. Sintering is a method for making objects
from powder, by heating the material in a sintering furnace below its melting
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point (solid state sintering), until its particles adhere to each other. Sintering is
traditionally used for manufacturing ceramic objects, and has also found uses in
such fields as powder metallurgy. Sintering is part of the firing process used in the
manufacture of pottery, ceramic objects, etc. Sintering strengthens a powder mass
and normally produces densification and, in powdered metals, recrystallization.
After compaction, the components pass through a sintering furnace. This typically
has two heating zones, the first removes the lubricant, and the second higher
temperature zone allows diffusion and bonding between powder particles.

The components arrive for sintering process in batches. The sintering process
is done in bulk by sintering furnace. The sintering furnace will be operated only
if sufficient amount of components are available to start the sintering process.
Once the process is started, the bulk operation has to continue successively for
many batches; otherwise, the operating cost will increase. It is assumed that the
processing time has a general distribution. After completing the sintering process,
if the number of components to be processed is less than the batch quantity, say
‘a’, then the operator stops the sintering process and performs some other work
(secondary job/vacation), like mixing the powders for the next process, cleaning
the outer surface and checking dimensions of the components, etc. During the
secondary job, if the required number of components reaches the required threshold
value ‘a’, the operator returns (vacation interruption) and starts the sintering
process. After completing a secondary job, the operator waits in the system till
the required number of components arrives. This sintering process can be modeled
as a bulk arrival bulk service queue with interrupted vacation.

In this paper, a single server bulk service queueing system with interrupted sec-
ondary job (vacation) is considered. In the literature, all vacation models with the
bulk service consider that the server can start the service only when he completes
the secondary job. But in emergency, the server has to terminate the secondary
job and must give priority for primary job. Once the required level is reached
to start the primary service, there is no point in continuing the secondary job.
This model is proposed to overcome this difficulty and to make the system oper-
ate more efficiently. In this paper, the focus is on a vacation interruption policy
which provides the solution to the situation mentioned above. Under the vacation
interruption policy, the vacation is interrupted and the server resumes to a regular
busy period. These vacation models have important applications in practice.

General single server vacation models have been well studied and surveyed by
Doshi [6,7] and the monographs of Takagi [21] and Tian and Zhang [22]. Detailed
analysis of some bulk queueing models can be seen in the studies of Chaudhry and
Templeton [5] and Medhi [17]. Borthakur and Medhi [4] have studied a queueing
system with arrival and services in batches of variable size. They have derived the
queue length distribution for the MX/G(a, b)/1 model without vacation concepts.
Krishna et al. [14] have discussed a MX/G(a, b)/1 model with N -policy, multiple
vacations, and setup times. Arumuganathan and Jeyakumar [1] analyzed a bulk
queue with multiple vacations, setup times with N -policy and closedown times.
Lee et al. [15] analyzed an Mx/G/1queue with N-policy and multiple vacation
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Balasubramanian et al. [2] discussed steady state analysis of a Non-Markovian
bulk queueing system with overloading and multiple vacations. Haridass and Aru-
muganathan [8] discussed a batch arrival general bulk service queueing system with
variant threshold policy for secondary jobs. Jau-Chuan Ke et al. [10] discussed an
algorithmic analysis of the multi-server system with a modified Bernoulli vacation
schedule. Ji Hong Li and Nai-Shuo Tian [13] discussed performance analysis of a
GI/M/1 queue with single working vacation. In all the aforesaid models with vaca-
tions, the server cannot come back (vacation interruption) to the normal working
level (regular busy period), until the vacation period ends.

For vacation interruption models, Li and Tian [16] analyzed the discrete-time
GI/Geo/1 queue with working vacations and vacation interruption. Ji Hong Li
et al. [12] analyzed GI/M/1 queue with working vacations and vacation inter-
ruption. Mian Zhang and Zhengting Hou [18] studied an M/G/1 queue with
working vacations and vacation interruption. Ji-Hong Li and Nai-Shuo Tian [11]
analyzed the M/M/1 queue with working vacations and vacation interruptions.
Yutaka BABA [23] analyzed the M/PH/1 queue with working vacations and va-
cation interruption. Hongbo Zhang and Dinghua Shi [9] provided a study on the
M/M/1 queue with Bernoulli-Schedule-Controlled vacation and vacation interrup-
tion. Mian Zhang and Zhengting Hou [19] analyzed an MAP/G/1 queue with
working vacations and vacation interruption. All the above models consider sin-
gle arrival and single service only. This stimulates the authors to develop a single
server bulk arrival bulk service queueing system with vacation interruption policy.

The following points are addressed in this paper. Vacation interruption concept
is introduced for a bulk service queueing vacation model. Probability generating
function (PGF) of the steady state queue size distribution at an arbitrary time
epoch is obtained. Various performance measures are derived. A recursive ap-
proach is used to express the unknown function in the PGF of interrupted vacation
queueing system in terms of known values, to break the barrier in solving vacation
interruption model. A cost model has been developed, and an important contri-
bution of this is, the study of cost model for a practical situation and to optimize
the cost.

The structure of the paper is as follows: Introduction and Literature survey
is presented in Section 1. The mathematical model is developed with necessary
balance equations in Section 2. In section 3, the queue size distribution is devel-
oped. Various performance measures are derived in Section 4. Particular case and
some special cases are discussed in Section 5. The cost model for the proposed
queueing system is given in Section 6 and the effects of various parameters on the
system performance are analyzed numerically in Section 7. The conclusion and
future work are presented in Section 8.

2. Model Description

In this section, the mathematical model for a batch arrival and bulk service
queueing system with single vacation and vacation interruption is considered.
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Figure 1. Schematic representation of the model: Q-queue length.

At a service completion epoch, if the server finds at least ‘a’ customers waiting
for service say ξ, he serves a batch of min (ξ, b) customers, where b ≥ a. On
the other hand, if the queue length is at the most ‘a-1’, the server leaves for a
secondary job (vacation) of random length. It is assumed that the secondary job is
interrupted abruptly and the server resumes for primary service, if the queue size
reaches ‘a’ during the secondary job period. On completion of the secondary job,
the server remains in the system (dormant period), until the queue length reaches
‘a’. For the proposed model, the probability generating function of the steady state
queue size distribution at an arbitrary time is obtained. Various performance mea-
sures are derived. The effects of several parameters on the total average cost for
the proposed queueing system and to optimize the cost, a numerical illustration
is provided. The above system is modeled using the supplementary variable tech-
nique, by considering remaining service time of the batch in service and remaining
vacation time of the server as supplementary variables at an arbitrary time. One
can refer the book by Nikolaos Limnios and Gheorghe Opris

›
an [20] for the gen-

eral reference of supplementary variable technique. The figure above illustrates the
schematic representation of the proposed model.

2.1. Notations

Let X be the group size random variable of the arrival, λ be the Poisson ar-
rival rate. gk be the probability that ‘k’ customers arrive in a batch and X(z)
be its probability generating function (PGF). Let S(x)(s(x)){S̃(θ)}[S0(x)] be the
cumulative distribution function (probability density function) {Laplace-Stieltjes
transform} [remaining service time] of service. Let V (x)(v(x)){Ṽ (θ)}[V 0(x)] be the
cumulative distribution function (probability density function) {Laplace-Stieltjes
transform} [remaining vacation time] of vacation. Nq(t) denotes the number of
customers waiting for service at time t, Ns(t) denotes the number of customers
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under the service at time t.

C(t) =

⎧⎨
⎩

0, when the server is busy with service
1, when the server is on vacation
2, when the server is on dormant period.

The state probabilities are defined as follows:
Pij(x, t)dt = Pr

{
Ns(t) = i, Nq(t) = j, x ≤ S0(t) ≤ x+ dt, C(t) = 1

}
, a ≤ i ≤

b, j ≥ 0 is the joint probability that at time t the server is busy, the queue size is
j, the number of customers under service is i and the remaining service time of a
batch under service at an arbitrary time is between x and x+ dt.
Qn(x, t)dt = Pr

{
Nq(t) = n, x ≤ V 0(t) ≤ x+ dt, C(t) = 1

}
, 0 ≤ n ≤ a − 1 is

the joint probability that at time t the server is on a vacation, the queue size is n
and the remaining vacation time is between x and x+ dt.
Tn(t) = Pr {Nq(t) = n,C(t) = 2} , 0 ≤ n ≤ a− 1 is the probability that at time

t, the system size is n and the server is on dormant period.
The following system equations are obtained for the queueing system, using

supplementary variable technique:

Pi0(x −Δt, t+Δt) = Pi0(x, t) (1 − λΔt) +
b∑

m=a

Pmi(0, t)s(x)Δt

+
a−1∑
k=0

Qk(x, t)λgi−ks(x)Δt +
a−1∑
m=0

Tm(t)λgi−ms(x)Δt a ≤ i ≤ b.

The above equation gives the probability that, there are ‘i’ customers under service
and no customer in the queue with the remaining service time x−Δt at time t+Δt
from other states. Similarly, the other system equations as follows are got:

Pij(x−Δt, t+Δt) = Pij(x, t) (1 − λΔt) +
j∑

k=1

Pi,j−k(x, t)λgkΔt

a ≤ i ≤ b− 1; j ≥ 1

Pbj(x−Δt, t+Δt) = Pbj(x, t) (1 − λΔt) +
b∑

m=a

Pm,b+j(0, t)s(x)Δt

+
j∑

k=1

Pb,j−k(x, t)λgkΔt+
a−1∑
m=0

Tm(t)λgb+j−ms(x)Δt

+
a−1∑
k=0

Qk(x, t)λgb+j−ks(x)Δt, j ≥ 1
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Q0(x−Δt, t+Δt) = Q0(x, t) (1 − λΔt) +
b∑

m=a

Pm0(0, t)v(x)Δt

Qn(x−Δt, t+Δt) = Qn(x, t) (1 − λΔt) +
b∑

m=a

Pmn(0, t)v(x)Δt

+
n∑

k=1

Qn−k(x, t)λgkΔt, 1 ≤ n ≤ a− 1

T0(t+Δt) = T0(t) (1 − λΔt) +Q0(0, t)Δt
Tn(t+Δt) = Tn(t) (1 − λΔt) +Qn(0, t)Δt

+
n∑

k=1

Tn−k(t)λgkΔt, 1 ≤ n ≤ a− 1.

3. Steady-state analysis

In this section, the Probability Generating Function (PGF) of the queue size
at an arbitrary time epoch is derived. The PGF will be useful in deriving the
important performance measures.

3.1. Steady state queue size distribution

From the above set of system equations, the steady state queue size equations
for the queueing model are obtained as follows:

0 = −λT0 +Q0(0) (3.1)

0 = −λTn +Qn(0) +
n∑

k=1

Tn−kλgk, 1 ≤ n ≤ a− 1 (3.2)

− d
dx
Pi0(x) = −λPi0(x) +

b∑
m=a

Pmi(0)s(x) +
a−1∑
k=0

Qk(x)λgi−ks(x)

+
a−1∑
m=0

Tmλgi−ms(x) a ≤ i ≤ b (3.3)

− d

dx
Pij(x) = −λPij(x) +

j∑
k=1

Pi,j−k(x)λgk a ≤ i ≤ b − 1, j ≥ 1 (3.4)

− d

dx
Pbj(x) = −λPbj(x) +

b∑
m=a

Pm,b+j(0)s(x) +
j∑

k=1

Pb,j−k(x)λgk

+
a−1∑
m=0

Tmλgb+j−ms(x) +
a−1∑
k=0

Qk(x)λgb+j−ks(x), j ≥ 1 (3.5)
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− d

dx
Q0(x) = −λQ0(x) +

b∑
m=a

Pm0(0)v(x) (3.6)

− d

dx
Qn(x) = −λQn(x) +

b∑
m=a

Pmn(0)v(x) +
n∑

k=1

Qn−k(x)λgk, 1 ≤ n ≤ a− 1.

(3.7)

The Laplace - Stieltjes transforms of Pin(x) and Qjn(x) are defined as

P̃in(θ) =

∞∫
0

e−θxPin(x)dx and Q̃jn(θ) =

∞∫
0

e−θxQjn(x)dx.

Taking Laplace-Stieltjes transform on both sides of the equation (3.3)
through (3.7), we have

λT0 = Q0(0) (3.8)

0 = λTn −Qn(0) −
n∑

k=1

Tn−kλgk, 1 ≤ n ≤ a− 1 (3.9)

θP̃i0(θ) − Pi0(0) = λP̃i0(θ) −
b∑

m=a

Pmi(0)S̃(θ) −
a−1∑
k=0

Q̃k(θ)λgi−kS̃(θ)

−
a−1∑
m=0

Tmλgi−mS̃(θ) a ≤ i ≤ b (3.10)

θP̃ij(θ) − Pij(0) = λP̃ij(θ) −
j∑

k=1

P̃i,j−k(θ)λgk a ≤ i ≤ b− 1, j ≥ 1 (3.11)

θP̃bj(θ) − Pbj(0) = λP̃bj(θ) −
b∑

m=a

Pm,b+j(0)S̃(θ) −
j∑

k=1

Pb,j−k(θ)λgk

−
a−1∑
m=0

Tmλgb+j−mS̃(θ) −
a−1∑
k=0

Q̃k(θ)λgb+j−kS̃(θ), j ≥ 1

(3.12)

θQ̃0(θ) −Q0(0) = λQ̃0(θ) −
b∑

m=a

Pm0(0)Ṽ (θ) (3.13)

θQ̃n(θ) −Qn(0) = λQ̃n(θ)−
b∑

m=a

Pmn(0)Ṽ (θ)−
n∑

k=1

Q̃n−k(θ)λgk, 1 ≤ n ≤ a− 1.

(3.14)
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To obtain the probability generating function (PGF) of the queue size at an arbi-
trary time, the following probability generating functions are defined.

P̃i(z, θ) =
∞∑

j=0

P̃ij(θ)zj ; Pi(z, 0) =
∞∑

j=0

Pij(0)zj; a ≤ i ≤ b;

Q̃(z, θ) =
a−1∑
n=0

Q̃n(θ)zn; Q(z, 0) =
a−1∑
n=0

Qn(0)zn; T (z) =
a−1∑
n=0

Tnz
n. (3.15)

Theorem 3.1. If pn is the steady state probability of ‘n’ customers in the queue,
then the probability generating function of the queue size at an arbitrary time epoch
P (z) is given by

P (z) =

(−λ+ λξ(z))

⎛
⎜⎜⎜⎜⎜⎜⎝

b−1∑
i=a

g(S̃, E1, E2, E3, z)−
(
S̃(λ− λX(z)) − 1

) b−1∑
j=0

pjz
j

+
(
S̃(λ− λX(z)) − 1

)
λE4 + h(S̃,X(z), z)

+λ
a−1∑
i=0

zi f
(
S̃, Q̃, z

)
− λ

a−1∑
i=0

zi−bψ
(
S̃, Q̃, z

)

⎞
⎟⎟⎟⎟⎟⎟⎠

+
(

(−λ+ λX(z))
(
zb − S̃(λ− λX(z))

)(
Ṽ (λ− λξ(z)) − 1

) a−1∑
n=0

pnz
n

)

(−λ+ λξ(z)) (−λ+ λX(z))
(
zb − S̃(λ− λX(z))

)
(3.16)

where

g(S̃, E1, E2, E3, z) =
((
zb − 1

)
S̃(λ− λX(z))λE1 +

(
S̃(λ− λX(z)) − 1

)
zbE3

−
(
zb − S̃(λ− λX(z))

)
λE2

)
,

h(S̃,X(z), z) =
(
zb − S̃(λ− λX(z))

)
(−λ+ λX(z))T (z),

f(S̃, Q̃, z) =
(
Q̃i(λ−λX(z))S̃(λ−λX(z)) − Q̃i(0)

)⎛⎝X(z) −
b−i−1∑
j=1

gjz
j

⎞
⎠ ,

ψ(S̃, Q̃, z) =
(
Q̃i(λ−λX(z))−Q̃i(0)

)
S̃(λ−λX(z))

⎛
⎝X(z)−

b−i−1∑
j=1

gjz
j

⎞
⎠ ,

E1 =
a−1∑
k=0

Q̃k(λ− λX(z))gi−k, E2 =
a−1∑
k=0

Q̃k(0) gi−k,

E3 = pi + λ

a−1∑
m=0

Tmgi−m and E4 = T (z)X(z)

−
a−1∑
m=0

⎛
⎝Tmz

m
b−m−1∑

j=1

gjz
j

⎞
⎠.
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Proof. Given in Appendix A.

The probability generating function P (z) has to satisfy P (1) = 1. In order
to satisfy this condition, applying L’Hospital’s rule and evaluating lim

z→1
P (z) and

equating the expression to 1, it is derived that, ρ < 1 is the condition to be
satisfied for the existence of steady state for the model under consideration, where
ρ = λE(X)E(S)

b . �

3.2. Computational aspects

Equation (3.16) gives the probability generating function of the number of cus-
tomers in the queue, which involves the unknowns Ti and Q̃i(θ). Using the following
theorems, Ti and Q̃i(θ) are expressed in terms of pi and the known function Ṽ (λ)
respectively. To find the unknown constants, Rouche’s theorem of complex vari-
ables can be used. It follows that the expression zb − S̃(λ−λX(z)) has b− 1 zeros
inside and one on the unit circle |z| = 1. Since P (z) is analytic within and on the
unit circle, the numerator of (3.16) must vanish at these points, which gives ‘b’
equations and ‘b’ unknowns. These equations can be solved by suitable numerical
techniques. MATLAB is used for programming.

Theorem 3.2. The unknown constants qn involved in Tn are expressed in terms

of pn as, qn =
n∑

i=0

pn−i βi; n = 0, 1, 2, . . . , a− 1, where βi is the probability that ‘i’

customers arrive during the vacation.

Proof. From equation (A.4), we have Q(z, 0) = Ṽ (λ− λξ(z))
a−1∑
n=0

pnz
n

a−1∑
n=0

qnz
n =

( ∞∑
n=0

βnz
n

)(
a−1∑
n=0

pnz
n

)

a−1∑
n=0

qnz
n =

a−1∑
n=0

(
n∑

i=0

pn−iβi

)
zn+

∞∑
n=a

(
a−1∑
i=0

βn−ipi

)
zn. (3.17)

Equating the coefficient of zn; n = 0, 1, 2, 3, . . . a − 1, on both sides of the equa-
tion (3.17), we get

qn =
n∑

i=0

pn−iβi. (3.18)

�

The unknown constants Tn involved in P (z) are expressed in terms of pn in the
following theorem.

Theorem 3.3. Let Bj be the collection of set of positive integers (not nec-
essarily distinct) A, such that, sum of elements in A is j, then, Tn =
1
λ

(
n∑

j=0

qn−j

n(Bj)∑
j=1

∏
l∈A

gl

)
, n = 0, 1, 2, 3, . . . a− 1.
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Proof. From the equations (3.1) and (3.2), we have λT0 = Q0(0) = q0

λTn = Qn(0) + λ

n∑
k=1

Tn−kgk; 1 ≤ n ≤ a− 1.

When n = 1,
λT1 = Q1(0) + λT0g1

= q1 + q0g1.

When n = 2,

λT2 = Q2(0) +
2∑

k=1

λT2−kgk

= Q2(0) + λT1g1 + λT0g2

= q2 + q1g1 + q0(g2
1 + g2).

When n = 3,

λT3 = Q2(0) +
3∑

k=1

λT3−kgk

= Q3(0) + λT2g1 + λT1g2 + λT0g3

= q3 + q2g1 + q1(g2
1 + g2) + q0(g3

1 + 2g1g2 + g3)

T3 =
1
λ

⎛
⎝ 3∑

j=0

q3−j

n(Bj)∑
j=1

∏
l∈A

gl

⎞
⎠

where B1 = {{1}}, B2 = {{1, 1}, {2}} and B3 = {{3}, {1, 1, 1}, {1, 2}, {2, 1}}
By induction, we get

T (z) =
a−1∑
n=0

Tnz
n =

1
λ

⎛
⎝a−1∑

n=0

⎛
⎝ n∑

j=0

qn−j

n(Bi)∑
j=1

∏
l∈A

gl

⎞
⎠ zn

⎞
⎠ . (3.19)

Therefore,

Tn =
1
λ

⎛
⎝ n∑

j=0

qn−j

n(Bi∑
j=1

∏
l∈A

gl

⎞
⎠ . (3.20)

�
An important theorem, which breaks the barrier in solving vacation interruption
model, is proved. The following theorem gives a compact way of representing the
unknown functions Q̃i(θ) in terms of known values.

Theorem 3.4. The Laplace-Stieltjes transform of the unknown function Q̃i(θ);
i = 0, 1, 2, 3 . . . a−1 are expressed in terms of Ṽ (λ) and higher derivatives Ṽ (n)(λ)
as,
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Q̃i(θ) =
i∑

j=0

∑
Aj∈φ

⎛
⎝(−1)n(Aj)

⎛
⎝∏

i∈Aj

λgi

⎞
⎠ pi−jkn(Aj)

⎞
⎠

where

kl =
Ṽ n(Al)(λ) + kl−1

θ − λ
;

l = 1, 2, 3, . . . i, k0 = Ṽ (λ)−Ṽ (θ)
θ−λ and φ is the collection of all possible distinct sets

of positive integers Aj such that, sum of elements in Aj is j.

Proof. Given in Appendix B. �

4. Performance measures

In a waiting line, it is customary to access the mean number of waiting units
and mean waiting time. In this section, some useful performance measures of the
proposed model like expected number of customers in the queue E(Q), expected
length of idle period E(I), expected length of busy period E(B) are derived, which
are useful to find the total average cost of the system. Also, expected waiting time
in the queue WQ, probability that the server is on vacation P (V ) and probability
that the server is busy P (B), are derived.

4.1. Expected queue length

The expected queue length E(Q) (i.e. mean number of customers waiting in the
queue) at an arbitrary time epoch, is obtained by differentiating P (z) at z = 1
and is given by

lim
z→1

P (z) = E(Q)

E(Q) =

b−1∑
i=a

(4(T 11)f1− 2(f7)(f14)) −
b−1∑
j=0

pj (4(T 11)(f2)− 2(f7)(f9)

−3(f13)(S1)) +
a−1∑
n=0

(4(T 11)λ(f5 − f6)− 2(f7)λ(f12)

−3(f13)λ(f16)) + 4(T 11)f4− 2(f7)(f11)− 3(f13)(f15)
24(T 11)2

+

a−1∑
n=0

pn (f3 + f10)

(T 27)2
(4.1)
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where

S1 = λE(X)E(S), S2 = λX ′′(1)E(S) + λ2E2(X)E(S2),
S3 = λ3E3(X)E(S3), S4 = λ2E(X)E(X2)E(S2),
S5 = λE(S)E(X3), S6 = λ2E(X)E(X2), S7 = λ2E(S)E(S3),
S8 = λE(S)E(X2), V 1 = λE(X)E(V ),

V 2 = λX ′′(1)E(V ) + λ2E2(X)E(V 2), G1 = 1 −
b−i−1∑
j=1

gj ;

G2 = E(X) −
b−i−1∑
j=1

j gj , G3 = E(X2) −
b−i−1∑
j=1

j (j − 1)gj,

G4 = T (1)−
a−1∑
m=0

b−m−1∑
j=1

Tmgj ,

G5 =
a−1∑
m=0

b−m−1∑
j=1

(m+ j)(m+ j − 1)Tmgj,

G6 =
a−1∑
m=0

b−m−1∑
j=1

(m+ j)Tmgj,

G7 = E(X)T ′(1), G8 = E(X)T (1), G9 = E(X2)T ′(1);

G10 = pi + qi + λ

a−1∑
m=0

Tmgi−m,

T 1 =

(
a−1∑
k=0

Q̃k(λ− λX(z))gi−k

)
z=1

,

T 2 =

(
d
dz

(
a−1∑
k=0

Q̃k(λ− λX(z)) gi−k

))
z=1

,

T 3 =

(
a−1∑
k=0

Q̃k(λ− λX(z))

)
z=1

,

T 4 =

(
d
dz

(
a−1∑
k=0

Q̃k(λ− λX(z))

))
z=1

,

T 5 =

(
d2

dz2

(
a−1∑
k=0

Q̃k(λ− λX(z))

))
z=1

, T 6 =
a−1∑
k=0

Q̃k(0) gi−k;

T 7 =
d
dz

(
a−1∑
k=0

Q̃k(0)

)
, T 8 =

a−1∑
k=0

Q̃k(0),



ANALYSIS OF A MX/G(A, B)/1 QUEUEING SYSTEM 317

T 9 =

(
d3

dz3

(
a−1∑
k=0

Q̃k(λ− λX(z))

))
z=1

,

T 10 =

(
d2

dz2

(
a−1∑
k=0

Q̃k(λ− λX(z))gi−k

))
z=1

,

T 11 = λE(X)(b − S1)
T 12 = T 2 + (T 1)(S1); T 13 = T 4 + (T 3)(S1);
T 14 = S3 + 3(S4) + S5; T 15 = S3 + 3(S4) + S7;
T 16 = T 10 + (b− 1)(T 12); T 17 = (S1)(T 2) + (T 1)(S2);
T 18 = 9(S4) + 8(S5) + 6(S8) − 3(S3);
T 19 = 3i(i− 1)(G1) +G3 + (G2)[2 + 4i];
T 20 = (T 3)(S2) + 2(T 4)(S1) + T 5; T 21 = 2G1(2i+ 1) +G2;

T 22 = 2T 4(G2 + (S1)(G1)) + (T 5)(S1);
T 23 = G3 + 2(S1)(G2) + (S2)(G1);
T 24 = 2T 2 + (T 1)((b− 1) + 2S1)− (b − 1)(T 6);
T 25 = (G1)(2i) + 2(G2); T 26 = (T 8)(S2) + 2(T 3)(S1) + T 5;

T 27 = (−λ+ λξ(1)), ξ(1) =
a−1∑
k=1

gk, ξ
′(1) =

a−1∑
k=1

kgk,

f1(λ, b, S,G, Q̃) = 3λb(T 16 + T 17 + (S1)(T 2)) + λb(b− 1)(b − 2)(T 1 − T 6)

+G10[b(b− 1)(3S1 + 2S2)] + T 14 + b(S2)
− λT 6(S3 − S5 + S4 − 2(S6)),

f2(λ,X, S) = 3j(S2 + (j − 1)S1) + T 14;

f3(λ, ξ, Ṽ ) =
[
Ṽ (λ − λξ(1)) − 1

]
(n(T 27)− λξ′(1)) ,

f4(λ, b, S,G) = 3λS1[G9 + 2(G7) + T ′′(1) −G5] + 3λ(S2)[G8 + T ′(1) −G6]
+ λ(T 15)(G4)+(G8)λ[b(b+1)−3] − λ(b− S1)[2(G7) + 3(G9)],

f5(λ, S,G, Q̃) = (T 13)(T 19) + (T 20)(T 21) + [(T 3)(T 14)
+ 3(T 4)(S2) + 3(T 5)(S1) + T 9](G1),

f6(λ, S,G, Q̃) = 3(i− b)[(i− b− 1)(G1)(T 4) + T 22] + (3T 4)(T 23)
+ (3T 5)[G2 + (S1)(G1)] + (T 9)(G1),

f7(λ,X, b, S) = 3[λX ′′(1)(b − S1) + λE(X)b(b− 1) − S3 − S4],

f8(λ, b, S,G, Q̃) = λ[b(T 24) + (T 6)(S2)] + (G10)[2bS1 + S2],

f9(λ,X, S) = 2jS1 + S2,

f10(λ, ξ′, Ṽ ′) = (T 27)
[
−λξ′(1)Ṽ ′(λ− λξ(1))

]
,
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f11(λ, S,G) = 2λS1[G8 − T ′(1) −G6 + λ(S2)(G4)] + 2λ(b− S1)G8,

f12(λ, S,G, Q̃) = [(S1)(T 8) + T 3]T 25 + (G1)(T 26)− 2(T 4)(G1)[i− b+ S1]
− 2(T 4)(G2) − (T 5)(G1),

f13(λ, b,X, S) = 2λb(b− 1)[2(b− 2)E(X) + 3X ′′(1)]
− λ[E(X)(T 18)4bX ′′′(1) − 9S4],

f14(λ, b, S, Q̃) = λb(T 1) + (G10)(S1) − λ(T 6)[b− S1],

f15(λ, S,G) = λ(S1)(G4) and f16(S, Q̃) = (S1)(T 8).

4.2. Expected waiting time in the queue

The mean waiting time of the customers in the queue E(W) can be easily
obtained using Little’s formula

E(W ) =
E(Q)
λE(X)

· (4.2)

4.3. Expected length of idle period

The time period from the vacation initiation epoch to the busy period initiation
epoch is called the idle time period. Let I be the random variable for ‘idle period’.
πj , j = 0, 1, 2, . . . a − 1, is the probability that the system state (number of

customers in the system) visits ‘j’ during an idle period.

Let Ij =
{

1 if the state ‘j’ is visited during an idle period
0 otherwise

Conditioning on the queue size at service completion epoch, we have π0 = α0

πj = P (Ij = 1) = αj +
j−1∑
k=0

αk P (I1
j−k = 1); j = 1, 2, 3, . . . a− 1,

where P (I1
j = 1) is the probability that the system state becomes j during an idle

period of MX/G(a, b)/1 queueing system without vacation and αj is the proba-
bility that ‘j’ customers in the queue at a service completion epoch.

P (I1
j = 1) is obtained as P (I1

j = 1) = φj ; where φ0 = 1, φn =
n∑

i=1

giφn−i.

Thus the expected length of the idle period is obtained as

E(I) =
1
λ

a−1∑
j=0

πj . (4.3)

where 1
λ is the expected staying time in the state ‘j’ during an idle period.
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4.4. Expected length of busy period

Let B be the busy period random variable. A random variable J is defined
as, J = 0, if the server finds less than ‘a’ customers in the queue at a service
completion epoch and J = 1, if the server finds ‘a’ or more customers in the queue
at a service completion epoch. Then,

E(B) = E(B/J = 0)P (J = 0) +E(B/J = 1)P (J = 1)
= E(S)P (J = 0) + (E(S) + E(B))P (J = 1)

and since P (J = 0) + P (J = 1) = 1, solving for E(B), we get

E(B) =
E(S)

P (J = 0)
=
E(S)
a−1∑
i=0

pi

. (4.4)

4.5. Probability that the server is on vacation

Let P (V ) be the probability that the server is on vacation at time t.
From equation (A.7), we have

Q̃(z, 0) =
1

(−λ+ λξ(z))

(
Ṽ (λ− λξ(z)) − 1

) a−1∑
n=0

pnz
n.

Therefore,

P (V ) = lim
z→1

Q̃(z, 0) =

(
Ṽ (λ− λξ(1)) − 1

)
λ− λξ(1)

a−1∑
n=0

pn. (4.5)

4.6. Probability that the server is busy

Let P (B) be the probability that the server is in the busy period at time t.
From equations (A.8) and (A.9), we have

P (B) = lim
z→1

(
b∑

i=a

P̃i(z, 0)

)

= lim
z→1

(
b−1∑
i=a

P̃i(z, 0) + P̃b(z, 0)

)

=

⎛
⎜⎜⎝

b−1∑
i=a

(
f1(X,S, Q̃) − f2(X,S, Q̃)

)
−

b−1∑
i=0

((pj) (2j S1 + S2))

+f3(X,S, Q̃) + λ
a−1∑
i=0

(
f4(X,S, Q̃) − f5(X, Q̃)

)
⎞
⎟⎟⎠

2λE(X) (b− S1)
(4.6)
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where
f1(X,S, Q̃) = 2λb(T 2 + S1.T 1) + λb(b − 1).T 1 +

(
pi + λ

a−1∑
m=0

Tmgi−m

)
2bS1.S2,

f2(X,S, Q̃) = λT 6 (b(b− 1) − S2) ,

f3(X,S, Q̃) = 2λS1

⎛
⎝T (1)E(X) + T ′(1) −

a−1∑
m=0

b−m−1∑
j=1

(m+ j)Tmgj

⎞
⎠

+ λS2

⎛
⎝T (1)−

a−1∑
m=0

b−m−1∑
j=1

Tmgj

⎞
⎠ ,

f4(X,S, Q̃) = 2 (T 8.S1 + T 4) (iG1 +G2) +G1.T 8.S2 and

f5(X, Q̃) = 2T 4 ((i− b)G1 +G2) .

5. Special cases

The model so developed is general in nature as the service time and vacation
time are arbitrary. But for practical purposes, service time and vacation time
with particular distribution is required. In this section, some special cases of the
proposed model by specifying vacation time random variable as Hyper Exponential
distribution and bulk service time random variable as Exponential distribution,
are discussed.

Case (i): Single server batch arrival queue with Hyper exponential
vacation time

Now, the case of hyper-exponential vacation time random variable is considered.
The probability density function of hyper- exponential vacation time is given as
follows:
v(x) = cue−ux + (1 − c)we−wx, where u and w are the parameters.

Then, Ṽ (λ− λξ(z)) =
(

uc
u+λ(1−ξ(z))

)
+
(

w(1−c)
w+λ(1−ξ(z))

)
Hence, the PGF of the queue size distribution of this model can be obtained by,

P (z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−1∑
i=a

((
zb − 1

)
S̃(λ−λX(z))λE1 +

(
S̃(λ−λX(z)) − 1

)
zbE3

−
(
zb − S̃(λ−λX(z))

)
λE2

)
−
(
S̃(λ−λX(z)) − 1

) b−1∑
j=0

(pj)zj

+
(
S̃(λ−λX(z)) − 1

)
λE4 +

(
zb − S̃(λ−λX(z))

)
(−λ+ λX(z))T (z)

+λ
a−1∑
i=0

zi f
(
S̃, Q̃, z

)
− λ

a−1∑
i=0

zi−bψ
(
S̃, Q̃, z

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(−λ+ λX(z))
(
zb − S̃(λ−λX(z))

)

+

((
uc

u+λ(1−ξ(z))

)
+
(

w(1−c)
w+λ(1−ξ(z))

)
− 1
)

(−λ+ λξ(z))

a−1∑
n=0

pn.
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Case (ii): Single server batch arrival queue with exponential bulk service
time

Now, the case of exponential service time random variable is considered. The
probability density function of exponential service time is given as follows:

s(x) = μ e−μx, where γ is the parameter. Then,

S̃(λ − λX(z)) =
(

μ

μ+ λ(1 −X(z))

)
.

Hence, the PGF of the queue size distribution of this model can be obtained by,

P (z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−1∑
i=a

((
zb − 1

) (
μ

μ+λ(1−X(z))

)
λE1 +

((
μ

μ+λ(1−X(z))

)
− 1
)
zbE3

−
(
zb −

(
μ

μ+λ(1−X(z))

))
λE2

)
−
((

μ
μ+λ(1−X(z))

)
− 1
) b−1∑

j=0

(pj)zj

+
((

μ
μ+λ(1−X(z))

)
− 1
)
λE4

+
(
zb −

(
μ

μ+λ(1−X(z))

))
(−λ+ λX(z))T (z) + λ

a−1∑
i=0

zi f
(
S̃, Q̃, z

)
−λ

a−1∑
i=0

zi−bψ
(
S̃, Q̃, z

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(-λ+ λX(z))
(
zb −

(
μ

μ+λ(1−X(z))

))

+

(
Ṽ (λ− λξ(z)) − 1

) a−1∑
n=0

pnz
n

(−λ+ λξ(z))

where

f(S̃, Q̃, z) =
(
Q̃i(λ− λX(z))

(
μ

μ+ λ(1 −X(z))

)
− Q̃i(0)

)⎛⎝X(z) −
b−i−1∑
j=1

gjz
j

⎞
⎠

and

ψ(S̃, Q̃, z) =
(
Q̃i(λ− λX(z)) − Q̃i(0)

)( μ

μ+ λ(1 −X(z))

)⎛⎝X(z)−
b−i−1∑
j=1

gjz
j

⎞
⎠.
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Case(iii): If the server doesn’t avail any vacation (i.e., Ṽ (λ − λξ(z)) = 1), then
the equation (3.16) reduces to

P (z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−1∑
i=a

(
S̃(λ−λX(z)) − 1

) (
zb − zi

)
pi

λ
b−1∑
i=a

((
S̃(λ−λX(z)) − 1

)
zb

(
a−1∑
m=0

Tmgi−m

))

−
(
S̃(λ−λX(z))−1

) a−1∑
j=0

pjz
j+
(
zb−S̃(λ−λX(z))

)
(−λ+λX(z))T (z)

+
(
S̃(λ−λX(z)) − 1

)
λ

(
T (z)(X(z)−

a−1∑
m=0

Tmz
m

b−m−1∑
j=1

gjz
j

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(−λ+ λX(z))
(
zb − S̃(λ−λX(z))

) ·

(5.1)
Equation (5.1) is the PGF of queue size distribution of MX/G(a, b)/1 queueing
system without vacation and it coincides with the result ofMX/G(a, b)/1 queueing
system without modified vacation and constant arrival rate of Balasubramanian
and Arumuganathan [3].

6. Cost model

Cost analysis is the most important phenomenon in any practical situation at
every stage. Cost involves startup cost, operating cost, holding cost, set up cost
and reward cost (if any). It is quite natural that the management of the system
desires to minimize the total average cost. Addressing this, in this section, the cost
model for the proposed queueing system is developed and the total average cost
is obtained with the following assumptions:

Ch : holding cost per customer
Co : operating cost per unit time
Cs : startup cost per cycle
Cr : reward cost per cycle due vacation.

Since the length of the cycle is the sum of the idle period and busy period, from
equations (4.3) and (4.4), the expected length of cycle, E(Tc) is obtained as

E(Tc) = E(length of the Idle Period) +E(length of the Busy Period)

E(Tc) =
1
λ

a−1∑
j=0

πj +
E(S)
a−1∑
i=0

pi

.

Now, the total average cost per unit time is obtained as
Total average cost = Start-up cost per cycle + holding cost of number of cus-

tomers in the queue per unit time + Operating cost per unit time * ρ – reward
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due to vacation per cycle.

TAC = [Cs − CrE(I)]
1

E(Tc)
+ ChE(Q) + Coρ (6.1)

where ρ = λE(X)E(S)
b .

It is difficult to have a direct analytical result for the optimal value a∗ (minimum
batch size in MX/G(a, b)/1 queueing system), to minimize the total average cost.
The simple direct search method to find optimal policy for a threshold value a∗ to
minimize the total average cost, is defined.

Step 1 : Fix the value of maximum batch size ‘b’
Step 2 : Select the value of ‘a’ which will satisfy the following relation

TAC (a∗) ≤ TAC(a), 1 ≤ a ≤ b

Step 3 : The value a∗ is optimum, since it gives minimum total average cost.

By using the above procedure to find optimal value of ‘a’ which minimizes the total
average cost function, some numerical example to illustrate the above solution is
presented in the next section.

7. Numerical illustration

In this section, a numerical example is analyzed to illustrate how the manage-
ment of a sintering processing system can effectively use the results obtained in
Sections 3 and 4 to take decision regarding effectively utilizing the idle time and to
identify the threshold value to minimize the total average cost with the following
assumptions:

Service time distribution is k-Erlang with k = 2
Batch size distribution of the arrival is geometric with mean 2
Vacation period is exponential with parameter γ
Minimum service capacity a
Maximum service capacity b

7.1. Effects of various parameters on performance measures

In this section, the effects of various parameters such as arrival rates, service
rates, threshold value ‘a’, and the total average cost are discussed numerically.
These results are presented in Tables 1–3 and represented in Figures 2–3. All
numerical results are obtained using Mat Lab 7.1 software.

7.1.1. Effects of arrival rates on the performance measures

The effect of performance measures for various arrival rates are presented in
Table 1. From the table, it is clear that, if the arrival rate increases, the expected
queue length, the expected busy period and the expected waiting time increases
whereas the expected idle period decreases.
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Table 1. Effect of performance measures of the system. (For
μ = 2.0; a = 3; b = 10; γ = 8).

λ E(Q) E(B) E(I) E(W ) TAC
3.0 0.9649 1.2411 0.4707 0.1608 3.2189
3.2 1.0087 1.3030 0.4330 0.1681 3.3309
3.4 1.0474 1.3825 0.3997 0.1746 3.4209
3.6 1.0819 1.4812 0.3699 0.1803 3.4914
3.8 1.1089 1.6055 0.3438 0.1848 3.5398
4.0 1.1245 1.7586 0.3204 0.1874 3.5701

Table 2. Arrival rate (Vs) Servers state. (For a = 2, b = 10, μ = 2.0).

λ P (B) P (V ) P (D)
1.0 0.2517 0.0563 0.6920
1.5 0.3525 0.0666 0.5809
2.0 0.4254 0.0681 0.5065
2.5 0.4715 0.0639 0.4645
3.0 0.4942 0.0568 0.4490
3.5 0.4975 0.0485 0.4339

Table 3. Effect of threshold value ‘a’ on the total average cost.
(For μ = 1.0; λ = 0.5; b = 10; γ = 6).

a EQ EB EI TAC
1 0.3196 3.8041 1.6000 0.8390
2 0.4666 4.2897 2.5600 0.6809
3 0.5309 6.8133 3.5360 0.5809
4 0.9822 6.5855 4.5220 0.6084
5 1.0171 12.4155 5.5130 0.6141
6 1.1445 17.0667 6.5070 0.6374
7 1.3262 22.7955 7.5034 0.6829
8 1.8138 20.0865 8.5010 0.7610
9 2.8266 14.6888 9.4993 0.9380

7.1.2. Effects of arrival rates on the server states

The effect of server’s states for various arrival rates are presented in Table 2.
From the table, it is observed that, as the arrival rate increases, the probabil-
ity of busy period increases whereas the probability of vacation period and the
probability of dormant period decrease.

7.2. Optimal cost

In this section, a numerical example is analyzed to illustrate how the manage-
ment of a sintering processing system can effectively use the results obtained in
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Figure 2. Threshold value (V s) total average cost. (For μ = 1.0;
λ = 0.5; b = 10; γ = 6).

Sections 3 and 4, to make the decision regarding the threshold value to minimize
the total average cost. The maximum capacity of the sintering process in bulk is
10 (i.e. b = 10). If the management of the sintering process allows the operator
to start the process even for a single piece (i.e. a = 1) without waiting for further
arrival, clearly, the operating cost will increase. On the other hand, if they start
the process until all 10 pieces arrive, the holding cost/vacation cost may increase;
hence, there must be some value between 1 and 10 that will optimize the cost.
An optimal policy regarding the threshold value ‘a’ which will minimize the to-
tal average cost is wished to be obtained. The total average costs are obtained
numerically with the following assumptions:

Operating cost per unit time = Rs.5.00
Holding cost per customer = Rs.0.25

Start up cost = Rs.3.00
Reward cost due to vacation = Rs.1.00.
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Threshold Value Expected Queue 

Cost 

Figure 3. Threshold value (V s) total average cost.(For μ = 1.0;
λ = 0.5; b = 10; γ = 6)

Optimal value of ‘a’

The effects of the threshold value ‘a’ on the total average cost with b = 10 are
reported in Table 3 and Figures 2 and 3. From the table and the figures, one can
observe that, to minimize the overall cost of the sintering process center, which is
capable of processing 10 pieces at a time, the management has to fix the threshold
value ‘a’ as 3, i.e., the operator can start the service process only when 3 pieces
have been accumulated.

Similarly, the management has to fix the threshold value ‘a’ to minimize the
total average cost for various arrival rates, service rates and vacation rates.

8. Conclusion

In this paper, a “MX/G (a, b) /1 queueing system with interrupted vacation” is
analyzed. The model so considered is unique in the sense that, vacation interrup-
tion concept is introduced for a bulk service queueing vacation model. Probability
generating function (PGF) of the steady state queue size distribution at an ar-
bitrary time epoch is obtained. Expressions for various performances are derived.
Some special cases of PGF of the queue size are discussed. The effect of various
parameters on the system performance measures are also illustrated numerically
with the cost model. A recursive approach is used to express the unknown function
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in the PGF of interrupted vacation queueing system in terms of known values to
break the barrier in solving vacation interruption model. The results so obtained
in this paper can be used for managerial decision to optimize the overall cost and
search for the best operating policy in a waiting line system. The theoretical devel-
opment of the model is justified with numerical results which are consistent with
the fact that the total average cost decreases based on the threshold value ‘a’.

In the direction of future research, the model can be extended with service
interruptions, start up and close down concepts. An attempt may be made to
derive the busy period distributions and idle period distributions. A discrete time
model can also be developed.

Appendix A

Proof of Theorem 3.1

Using PGF (3.15) and taking Z-transforms on equations (3.10)–(3.14), we get
the following equations:

(θ − λ+ λξ(z))Q̃(z, θ) = Q(z, 0) − Ṽ (θ)
a−1∑
n=0

b∑
m=a

Pmn(0)zn,

where ξ(z) =
a−1∑
k=1

gkz
k (A.1)

(θ − λ+ λX(z))P̃i(z, θ) = Pi(z, 0) − S̃(θ)

(
b∑

m=a

Pmi(0) +
a−1∑
k=0

Q̃k(θ)λ gi−k

+
a−1∑
m=0

Tm λ gi−m

)
a ≤ i ≤ b− 1 (A.2)

zb(θ − λ+ λX(z))P̃b(z, θ) = Pb(z, 0)
(
zb − S̃(θ)

)

− S̃(θ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−1∑
m=a

Pm(z, 0) −
b∑

m=a

b−1∑
j=0

Pmj(0) zj

+λ

(
T (z)X(z)−

a−1∑
m=0

(
Tmz

m
b−m−1∑

j=1

gjz
j

))

+λ

(
X(z)

a−1∑
i=0

Q̃i(θ)zi −
a−1∑
i=0

(
Q̃i(θ)zi

b−i−1∑
j=1

gjz
j

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.3)

Substituting θ = λ− λξ(z) in equation (A.1), we get

Q(z, 0) = Ṽ (λ− λξ(z))
a−1∑
n=0

b∑
m=a

Pmn(0)zn. (A.4)
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Substituting θ = λ− λX(z) in equations (A.2) and (A.3), we get

Pi(z, 0) = S̃(λ− λX(z))

(
b∑

m=a

Pmi(0) +
a−1∑
k=0

Q̃k(λ− λX(z))λ gi−k

+
a−1∑
m=0

Tm λgi−m

)
, a ≤ i ≤ b− 1 (A.5)

Pb(z, 0) =
1

zb − S̃(λ− λX(z))

(
S̃(λ− λX(z)) f(z)

)
(A.6)

where

f(z) =
b−1∑
m=a

Pm(z, 0) −
b∑

m=a

b−1∑
j=0

Pmj(0)zj

+ λ

⎛
⎝T (z)X(z)−

a−1∑
m=0

⎛
⎝Tmz

m
b−m−1∑

j=1

gjz
j

⎞
⎠
⎞
⎠

+ λ

⎛
⎝X(z)

a−1∑
i=0

Q̃i(λ− λX(z))zi −
a−1∑
i=0

⎛
⎝Q̃i(λ− λX(z))zi

b−i−1∑
j=1

gjz
j

⎞
⎠
⎞
⎠ .

From equations (A.1) and (A.4), we have

Q̃(z, θ) =
1

(θ − λ+ λξ(z))

(
Ṽ (λ− λξ(z)) − Ṽ (θ)

) a−1∑
n=0

b∑
m=a

Pmn(0)zn. (A.7)

From equations (A.2) and (A.5), we have

P̃i(z, θ) =

⎛
⎜⎜⎝
[
S̃(λ− λX(z)) − S̃(θ)

]( b∑
m=a

Pmi(0) +
a−1∑
m=0

Tm λ gi−m

)

+S̃(λ − λX(z))
a−1∑
k=0

Q̃k(λ− λX(z))λ gi−k − S̃(θ)
a−1∑
k=0

Q̃k(θ)λ gi−k

⎞
⎟⎟⎠

(θ − λ+ λX(z))
,

a ≤ i ≤ b− 1. (A.8)
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From equations (A.3) and (A.6), we have

P̃b(z, θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
S̃(λ − λX(z)) − S̃(θ)

)
g(z)

+λ
a−1∑
i=0

zi
((
Q̃i(λ− λX(z))S̃(λ− λX(z)) − Q̃i(θ)S̃(θ)

)

×
(
X(z) −

b−i−1∑
j=1

gjz
j

))

−λ
a−1∑
i=0

zi−b
((
Q̃i(λ− λX(z)) − Q̃i(θ)

)
S̃(θ)S̃(λ − λX(z))

×
(
X(z) −

b−i−1∑
j=1

gjz
j

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(θ − λ+ λX(z))
(
zb − S̃(λ− λX(z))

) (A.9)

where

g(z) =
b−1∑
m=a

Pm(z, 0) −
b∑

m=a

b−1∑
j=0

Pmj(0) zj

+ λ

⎛
⎝T (z)X(z)−

a−1∑
m=0

⎛
⎝Tmz

m
b−m−1∑

j=1

gjz
j

⎞
⎠
⎞
⎠ .

Let

pi =
b∑

m=a

Pm i(0), qi = Qi(0).

Let P (z) be the probability generating function of the queue size at an arbitrary

time epoch. Then P (z) =
b−1∑
i=a

P̃i(z, 0) + P̃b(z, 0) + Q̃(z, 0) + T (z).

Using equations (A.7), (A.8) and (A.9), we get

P (z) =

(−λ+ λξ(z))

⎛
⎜⎜⎜⎜⎜⎝

b−1∑
i=a

g(S̃, E1, E2, E3, z)−
(
S̃(λ− λX(z)) − 1

) b−1∑
j=0

pjz
j

+
(
S̃(λ− λX(z)) − 1

)
λE4 + h(S̃,X(z), z)

+λ
a−1∑
i=0

zi f
(
S̃, Q̃, z

)
− λ

a−1∑
i=0

zi−bψ
(
S̃, Q̃, z

)

⎞
⎟⎟⎟⎟⎟⎠

+
(

(−λ+ λX(z))
(
zb − S̃(λ− λX(z))

)(
Ṽ (λ− λξ(z)) − 1

) a−1∑
n=0

pnz
n

)

(−λ+ λξ(z)) (−λ+ λX(z))
(
zb − S̃(λ− λX(z))

)
(A.10)
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where

g(S̃, E1, E2, E3, z) =
((
zb − 1

)
S̃(λ − λX(z))λE1 +

(
S̃(λ− λX(z)) − 1

)
zbE3

−
(
zb − S̃(λ− λX(z))

)
λE2

)
,

h(S̃,X(z), z) =
(
zb − S̃(λ− λX(z))

)
(−λ+ λX(z))T (z),

f(S̃, Q̃, z) =
(
Q̃i(λ− λX(z))S̃(λ− λX(z)) − Q̃i(0)

)

×
⎛
⎝X(z) −

b−i−1∑
j=1

gjz
j

⎞
⎠ ,

ψ(S̃, Q̃, z) =
(
Q̃i(λ− λX(z)) − Q̃i(0)

)
S̃(λ− λX(z))

×
⎛
⎝X(z) −

b−i−1∑
j=1

gjz
j

⎞
⎠ ,

E1 =
a−1∑
k=0

Q̃k(λ− λX(z)) gi−k, E2 =
a−1∑
k=0

Q̃k(0) gi−k,

E3 = pi + λ

a−1∑
m=0

Tmgi−m and

E4 = T (z)X(z)−
a−1∑
m=0

⎛
⎝Tmz

m
b−m−1∑

j=1

gjz
j

⎞
⎠

Appendix B

Proof of Theorem 3.4

Substituting θ = λ in equation (3.13), we get Q̃0(0) = Ṽ (λ)p0

therefore

Q̃0(θ) =

(
Ṽ (λ) − Ṽ (θ)

)
θ − λ

p0

= k0p0 where k0 =

(
Ṽ (λ) − Ṽ (θ)

)
θ − λ

. (B.1)

Substituting n = 1 in equation (3.14), we get

(θ − λ)Q̃1 (θ) = Q1(0) − p1Ṽ (θ) −
1∑

k=1

Q̃1−k(θ)λ gk (B.2)
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when θ = λ, the above equation reduces to

Q1(0) = p1Ṽ (λ) + λg1Q̃0(λ) (B.3)

Substituting (B.3) in (B.2), we get

Q̃1(θ) =

(
Ṽ (λ) − Ṽ (θ)

)
θ − λ

p1 +
λg1
θ − λ

⎛
⎝Q̃0 (λ) −

(
Ṽ (λ) − Ṽ (θ)

)
θ − λ

p0

⎞
⎠

= k0p1 − λg1

(
Ṽ 1(λ) + k0

θ − λ

)
p0

= k0p1 − λg1k1p0 where k1 =
Ṽ 1(λ) + k0

θ − λ
.

Substituting n = 2 in equation (3.14), we get

(θ − λ)Q̃2(θ) = Q2(0) − p2Ṽ (θ) −
2∑

k=1

Q̃2−k(θ)λgk) (B.4)

when θ = λ, the above equation reduces to

Q2(0) = p2Ṽ (λ) + λ g1Q̃1(λ) + λ g2Q̃0(λ). (B.5)

Substituting (B.5) in (B.4), we get

Q̃2(θ) =

(
Ṽ (λ) − Ṽ (θ)

θ − λ

)
p2 + λg2p0

⎛
⎝ Ṽ 1(λ) + Ṽ (λ)−Ṽ (θ)

θ−λ

θ − λ

⎞
⎠

− λg1p1

⎛
⎝ Ṽ 1(λ) + Ṽ (λ)−Ṽ (θ)

θ−λ

θ − λ

⎞
⎠

+ (λg1)(λg1)p0

⎛
⎜⎝ Ṽ 2(λ) +

Ṽ 1(λ)+ Ṽ (λ)−Ṽ (θ)
θ−λ

θ−λ

θ − λ

⎞
⎟⎠

= k0p2 − λg2k1p0 − λg1k1p1 + (λg1)(λg1)k2p0 where k2 =
Ṽ 2(λ) + k1

θ − λ
.

Substituting n = 3 in equation (3.14), we get

(θ − λ)Q̃3(θ) = Q3(0) − p3Ṽ (θ) −
3∑

k=1

Q̃3−k(θ)λ gk (B.6)

when θ = λ, the above equation reduces to

Q3(0) = p3Ṽ (λ) + λg1Q̃2(λ) + λ g2Q̃1(λ) + λg3Q̃0(λ). (B.7)
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Substituting (B.7) in (B.6), we get

Q̃3(θ) =

(
Ṽ (λ) − Ṽ (θ)

θ − λ

)
p3 − λg1p2

⎛
⎝ Ṽ 1(λ) + Ṽ (λ)−Ṽ (θ)

θ−λ

θ − λ

⎞
⎠

− λg2p1

⎛
⎝ Ṽ 1(λ) + Ṽ (λ)−Ṽ (θ)

θ−λ

θ − λ

⎞
⎠

+ (λg1)(λg1)p1

⎛
⎜⎝ Ṽ 2(λ) +

Ṽ 1(λ)+ Ṽ (λ)−Ṽ (θ)
θ−λ

θ−λ

θ − λ

⎞
⎟⎠

− λg3p0

⎛
⎝ Ṽ 1(λ) + Ṽ (λ)−Ṽ (θ)

θ−λ

θ − λ

⎞
⎠

+ (λg1)(λg2)p0

⎛
⎜⎝ Ṽ 2(λ) +

Ṽ 1(λ)+ Ṽ (λ)−Ṽ (θ)
θ−λ

θ−λ

θ − λ

⎞
⎟⎠

+ (λg1)(λg2)p0

⎛
⎜⎝ Ṽ 2(λ) +

Ṽ 1(λ)+ Ṽ (λ)−Ṽ (θ)
θ−λ

θ−λ

θ − λ

⎞
⎟⎠

− (λg1)(λg1)(λg1)p0

⎛
⎜⎜⎝ Ṽ

3(λ) +
Ṽ 2(λ)+

Ṽ 1(λ)+ Ṽ (λ)−Ṽ (θ)
θ−λ

θ−λ

θ−λ

θ − λ

⎞
⎟⎟⎠

Q̃3(θ) = k0 p3 − (λg1) k1p2 − (λg2) k1p1 + (λg1) (λg1) k2p1{
k = 0

A0 = ϕ

} {
k = 1

A1 = {1}

} {
k = 2

A2 = {2}

} {
k = 2

A2 = {1, 1}

}

−λg3k1 p0+ (λg2) (λg1) k2p0+ (λg1) (λg2) k2p0− (λg1) (λg1) (λg1) k3p0{
k = 3
A3 = {3}

} {
k = 3
A3 = {2, 1}

} {
k = 3
A3 = {1, 2}

} {
k = 3
A3 = {1, 1, 1}

}

where

k3 =
Ṽ 3(λ) + k2

θ − λ
· (B.8)
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Using appropriate notations, Q̃3(θ) is expressed in a compact form as

Q̃3(θ) =
3∑

j=0

∑
Aj∈φ

⎛
⎝(−1)n(Aj)

⎛
⎝∏

i∈Aj

λgi

⎞
⎠ p3−j kn(Aj)

⎞
⎠.

Generalizing by recursive approach, we get

Q̃i(θ) =
i∑

j=0

∑
Aj∈φ

⎛
⎝(−1)n(Aj)

⎛
⎝∏

i∈Aj

λgi

⎞
⎠ pi−j kn(Aj)

⎞
⎠; i = 0, 1, 2, 3, . . . a− 1

where kl = Ṽ n(Al)(λ)+kl−1
θ−λ ; l = 1, 2, 3,

ldotsi and k0 = Ṽ (λ)−Ṽ (θ)
θ−λ .
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