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THROUGH DIFFERENTIAL EQUATIONS ∗
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Abstract. The paper concerns a model of influence in which agents
make their decisions on a certain issue. We assume that each agent is
inclined to make a particular decision, but due to a possible influence
of the others, his final decision may be different from his initial inclina-
tion. Since in reality the influence does not necessarily stop after one
step, but may iterate, we present a model which allows us to study
the dynamic of influence. An innovative and important element of the
model with respect to other studies of this influence framework is the
introduction of weights reflecting the importance that one agent gives
to the others. These importance weights can be positive, negative or
equal to zero, which corresponds to the stimulation of the agent by the
‘weighted’ one, the inhibition, or the absence of relation between the
two agents in question, respectively. The exhortation obtained by an
agent is defined by the weighted sum of the opinions received by all
agents, and the updating rule is based on the sign of the exhortation.
The use of continuous variables permits the application of differential
equations systems to the analysis of the convergence of agents’ deci-
sions in long-time. We study the dynamic of some influence functions
introduced originally in the discrete model, e.g., the majority and guru
influence functions, but the approach allows the study of new concepts,
like e.g. the weighted majority function. In the dynamic framework, we

Received June 22, 2011. Accepted April 2, 2012.

∗ Emmanuel Maruani was a student at the Université de Paris 1 and École Nationale des
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describe necessary and sufficient conditions for an agent to be follower
of a coalition, and for a set to be the boss set or the approval set of
an agent. equations to the influence model, we recover the results of
the discrete model on on the boss and approval sets for the command
games equivalent to some influence functions.

Keywords. Social network, inclination, importance weight, decision,
influence function, differential equations.

Mathematics Subject Classification. C7, C6, D7.

1. Introduction

The phenomenon of influence between individuals or, more broadly, influence
of a group of agents on an individual, is studied carefully in numerous works, e.g.,
in psychology, sociology, economics, physics and mathematics. The economics lit-
erature offers several surveys of different models of influence and of different ap-
proaches to this phenomenon; see, e.g., Jackson [19], Grabisch and Rusinowska [12],
Rusinowska [24].

Some of the works on influence and interaction, in particular in the game the-
oretical literature, are one-step models. In reality, however, the influence does not
necessarily stop after one step, but may iterate. Consequently, in order to study
the iteration of influence, different dynamic models of influence are proposed by
sociologists and economists. One of the leading works of opinion formation is in-
troduced in DeGroot [4]. In that model, individuals start with initial opinions on
a subject and place some (nonnegative) weights on the current beliefs of other
agents in forming their own beliefs for the next period. These beliefs are updated
over time. Several other authors study the DeGroot model and propose its gener-
alizations, in particular, models in which the updating of beliefs can vary in time
and circumstances; see e.g. Berger [3], DeMarzo et al. [5], Krause [21], Lorenz [22],
Friedkin and Johnsen [6,7], Jackson [19], Golub and Jackson [8]. A related dynamic
framework of influence is also presented in Asavathiratham [1], Asavathiratham
et al. [2] and Koster et al. [20].

A cooperative approach to influence is presented in Hu and Shapley [17, 18],
where the command structure is applied to model players’ interaction relations
by simple games. Boss sets and approval sets for a player are defined, and based
on these sets a simple game called the command game for the player is con-
structed. Also the concept of command function is defined. The authors introduce
an authority distribution over an organization and define the authority equilibrium
equation. In particular, they consider multi-step commands, where commands can
be implemented through command channels.

The present paper is related to another framework of influence originally in-
troduced in Hoede and Bakker [16]. In the original one-step model, agents have
to make their acceptance-rejection decision on a certain issue. Each agent has an
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inclination to say either ‘yes’ or ‘no’, but due to a possible influence of the other
agents, his final decision (‘yes’ or ‘no’) may be different from his initial inclina-
tion. Refinements and generalizations of this model are presented in several works.
Grabisch and Rusinowska [10] investigate some tools to analyze influence in this
framework. In particular, they define the influence indices to measure the influence
of a coalition on an agent, introduce several influence functions and study their
properties, and investigate the concept of a follower of a coalition. In Grabisch
and Rusinowska [11] the yes-no model of influence is generalized to a framework
in which each agent has an ordered set of possible actions, and in [14] the model is
extended to a continuum of actions. Grabisch and Rusinowska [9] compare the in-
fluence model with the framework of simple games called command games [17,18].
It is shown that the presented framework of influence is more general than the
framework of command games. In Grabisch and Rusinowska [13] the exact re-
lations between the key concepts of the influence model and the framework of
command games are established. There are also some studies of the dynamic of
influence in the model mentioned above, i.e., the model of initial inclinations and
final decisions. In Grabisch and Rusinowska [15] the yes-no model with a single
step of mutual influence is generalized to a dynamic model of influence based on
aggregation functions. The decision process in which the mutual influence does not
stop after one step but iterates, and the convergence of an influence function are
studied. In particular, the authors investigate stochastic influence functions and
apply Markov chains theory to the analysis of such functions.

The aim of the present paper is to apply another approach proposed in
Maruani [23] to study the dynamic of influence. We propose a dynamic model in
which an agent gives a certain importance, reflected by a weight, to other agents
in making his final decision. Such a weight might be positive, negative, or equal to
zero, which corresponds to the stimulation of the agent by the ‘weighted’ one, the
inhibition, and the absence of relation between the agents in question, respectively.
Furthermore, we define the exhortation of an agent which is the weighted sum of
the opinions that the agent receives from all agents. The opinions of the agents are
updated over time and the updating rule is based on the sign of the exhortation.
The use of continuous variables permits the application of differential equations
systems to the analysis of the convergence of agents’ decisions in long-time. We
study the dynamic of some influence functions introduced originally in the discrete
model, e.g., the majority and guru influence functions, but the approach allows
the study of new concepts, like e.g. the weighted majority function. In the dy-
namic framework, we describe necessary and sufficient conditions for an agent to
be follower of a coalition, and for a set to be the boss set or the approval set of an
agent. By applying the approach based on differential equations to the influence
model, we recover the results of the discrete model on classical influence functions,
and the results on the boss and approval sets for command games equivalent to
some selected influence functions.

What are the innovative elements of the model with respect to other studies of
the influence framework, and what are the improvements and advantages that the
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model brings to the analysis of influence? First of all, we like to stress that to the
best of our knowledge the approach based on differential equations has not been
used in the influence frameworks so far. We see two original features of the present
model compared to our previous studies as well as to other ones.

First, the main aim is the analysis of the dynamic aspects of influence, where
the opinion of agents is evolving in time, instead of considering as in our studies
so far that influence stops after one step. Generally speaking, there are two main
streams in analyzing the dynamic aspects of a system. The first one is to model
the system with a set of states, and assume a probabilistic transition between
states. This leads to stachastic processes, and in particular, Markovian processes.
In a recent paper, Grabisch and Rusinowska [15] follow this line and provide a
general analysis of convergence of the dynamic yes-no model of influence, assuming
that agents update their opinion by aggregating opinions of the other agents. The
second stream is to establish a set of differential equations governing the evolution
of the system. This is the way we follow in this paper. We believe that new insights
in the analysis of influence can be brought by this approach. This paper constitutes
a first step in this direction.

Its second original feature lies in incorporating the importance weights of pos-
itive and negative signs. This allows to model the positive (direct) and negative
(opposite) influence at the same time, and in a very simple way. The yes-no model
introduced in Grabisch and Rusinowska [10] and its generalization to the multi-
action model presented in Grabisch and Rusinowska [11] are one-step models for
which the authors define the indices of positive and negative influence separately,
and they do not assume any weights of importance. The same remark holds for
our study of command games in Grabisch and Rusinowska [9] and Grabisch and
Rusinowska [13]. Grabisch and Rusinowska [15] do provide a general analysis of
convergence of the dynamic yes-no model of influence in which every agent updates
his opinion according to his aggregation function. However, the nondecreasingness
assumption in the definition of an aggregation function implies positive influence,
and therefore the model based on aggregation functions does not cover a frame-
work of negative influence. The model of DeGroot [4] and its modifications (for an
overview, see e.g., Jackson [19]) assume that the opinion of an agent is a number
in [0, 1] and the aggregation is done through a weighted arithmetic mean (convex
combination). Players place weights on the current beliefs of the others in forming
their own beliefs for the next period, but these weights are nonnegative and no
inhibition possibility is incorporated in the model. The convergence of the process
(of the updating/interaction matrix) is studied.

The paper is structured as follows. In Section 2 the main concepts of the influ-
ence model in question and the framework of command games are presented. In
Section 3 we introduce the dynamic model of influence. The dynamic of selected
influence functions is studied in Section 4. Section 5 concerns followers in the dy-
namic model and under selected influence functions. The analysis of the dynamic
model in terms of command games, in particular, the determination of the boss
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and approval sets in the presented framework is delivered in Section 6. Concluding
remarks are given in Section 7.

2. The model of influence and command games

2.1. Main concepts of the influence model

Let us start by mentioning some notations used in the paper. (1, 1, . . . , 1) ∈
{−1, +1}n is denoted by 1N , (−1,−1, . . . ,−1) ∈ {−1, +1}n by −1N , and mixed
cases by (−1N\S , 1S). For every real number x ∈ R, �x� denotes the largest integer
not greater than x. By δij we denote the Kronecker delta, i.e., δij = 1 if i = j,
and 0 otherwise.

In this section we recapitulate main concepts of the one-step yes-no model of
influence investigated in Grabisch and Rusinowska [10]. We consider a social net-
work with the set of all players (agents, voters) denoted by N := {1, . . . , n}. Each
player has to make an acceptance-rejection decision concerning a certain issue,
and he has an inclination to say either ‘yes’ (denoted by +1) or ‘no’ (denoted by
−1). An inclination vector is denoted by I = (I1, . . . , In), where Ik ∈ {−1, +1}
indicates the inclination of agent k, for each k ∈ N . For any I ∈ {−1, +1}n, I+

denotes the set of players with the positive inclination

I+ := {k ∈ N : Ik = +1}.

Moreover, for any S ⊆ N , we denote by UIS the set of all inclination vectors under
which all members of S have the same inclination

UIS := {I ∈ {−1, +1}n : ∀k, j ∈ S [Ik = Ij ]}.

In particular, UIk = {−1, +1}n for any k ∈ N . We denote by IS the value Ik for
some k ∈ S, I ∈ UIS .

It is assumed that agents may influence each other in the network, and due to the
influences the final decision of an agent may be different from his original inclina-
tion. Formally, each inclination vector I ∈ {−1, +1}n is transformed into a decision
vector B(I) = (B1(I), . . . , Bn(I)), where B : {−1, +1}n → {−1, +1}n, I �→ B(I)
is the influence function4, and Bk(I) indicates the decision made by agent k, for
each k ∈ N . The set of all influence functions is denoted by B.

One of the key concepts of the influence model is the concept of follower. An
agent is said to be follower of a coalition if he always decides according to the
inclination of that coalition, assuming that the coalition in question is unanimously
inclined. Formally, for ∅ 
= S ⊆ N and B ∈ B, the set of followers of S under B is
therefore defined as

FB(S) := {j ∈ N : ∀I ∈ UIS [Bj(I) = IS ]}.
4We can also speak of the influence function of agent k, Bk : {−1, +1}n → {−1, +1}, I �→

Bk(I), for each k ∈ N .
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We recapitulate three particular influence functions that have been introduced
and investigated in Grabisch and Rusinowska [10]:

– Let n ≥ t > �n
2 �. The majority influence function Maj[t] ∈ B is defined by

Maj[t](I) :=

{
1N , if |I+| ≥ t

−1N , if |I+| < t
, ∀I ∈ {−1, +1}n.

According to the majority influence function if a majority of players has the
positive inclination, then all agents decide +1, otherwise all decide −1. For
each S ⊆ N , the set of followers under the majority function is equal to

FMaj[t](S) =

{
N, if |S| ≥ t

∅, if |S| < t,
(2.1)

i.e., everybody follows a coalition with a cardinality of at least t, and nobody
follows a coalition with less than t members.

– Let k̃ ∈ N be a particular player called the guru. The guru influence function
Gur[k̃] ∈ B is defined by

Gur
[k̃]
j (I) := Ik̃, ∀I ∈ {−1, +1}n, ∀j ∈ N.

Hence, according to this function, when a guru exists, every agent follows the
guru. For each S ⊆ N , the set of followers under the guru function is given by

F
Gur[k̃](S) =

{
N, if k̃ ∈ S

∅, if k̃ /∈ S.
(2.2)

In other words, all agents follow a coalition containing the guru, and nobody
follows a coalition without the guru.

– The identity function Id ∈ B depicts the absence of any influence and is defined
by

Id(I) := I, ∀I ∈ {−1, +1}n.

Moreover, we have for each S ⊆ N ,

FId(S) = S, (2.3)

which means that all members of a coalition and only them follow that coalition.

2.2. Command games and equivalence with influence functions

Next, we present some of the main concepts concerning command games that
have originally been introduced by Hu and Shapley [17, 18].
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Let N = {1, . . . , n} be the set of agents (players, voters). With each k ∈ N , two
collections of coalitions, the so called boss set and approval set are associated. Hu
and Shapley [17] define these sets as follows. For k ∈ N and S ⊆ N \ k:

• S is a boss set for k if S determines the choice of k;
• S is an approval set for k if k can act with the approval of S.

It is assumed that any superset (in N \ k) of a boss set is a boss set. For each
k ∈ N , a simple game (N,Wk) called the command game for k is created, with
the set of winning coalitions given by

Wk := {S : S is a boss set for k} ∪ {S ∪ k : S is a boss or approval set for k}.
We recover the boss sets for agent k

Bossk = {S ⊆ N \ k : S ∈ Wk} = Wk ∩ 2N\k

and the approval sets for k

Appk = {S ⊆ N \ k : S ∪ k ∈ Wk but S /∈ Wk}.
Obviously, Bossk ∩ Appk = ∅. Given the set of command games Ω = {(N,Wk) :
k ∈ N}, for any coalition S ⊆ N , the command function ω(S) is defined as the set
of all members that are commandable by S:

ω(S) := {k ∈ N : S ∈ Wk}.
In Grabisch and Rusinowska [9] the model of influence is applied to the frame-

work of command games and the relations between these two frameworks are
shown; see also Grabisch and Rusinowska [13]. We present one of these relations,
i.e., the equivalence between command games and (command) influence functions.

Let Ω = {(N,Wk) : k ∈ N} be a set of command games, ω(S) be a set of agents
commandable by S, and FB(S) denote the set of followers of S under an influence
function B. The influence function B and the set of command games Ω are said
to be equivalent if FB ≡ ω, i.e., if for each coalition S ⊆ N , the set of followers of
S under the influence function B and the set of agents commandable by S under
Ω coincide.

In Grabisch and Rusinowska [9] we construct command games equivalent to the
influence functions recapitulated in Section 2.1 and determine boss and approval
sets for these command games:

(i) Let n ≥ t > �n
2 � and Maj[t] ∈ B be the majority influence function and let

{(N,WMaj[t]

k ) : k ∈ N} be a set of command games given by

WMaj[t]

k = {S ⊆ N : |S| ≥ t}, ∀k ∈ N.

The majority influence function Maj[t] and the set of command games
{(N,WMaj[t]

k ) : k ∈ N} are equivalent. In other words, the command games
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in which winning coalitions for each player are the ones with the cardinality
at least t, n ≥ t > �n

2 �, are equivalent to Maj[t]. Moreover, we have for n > 2,
n ≥ t > �n

2 �, and k ∈ N

BossMaj[t]

k = {S ⊆ N : |S| ≥ t ∧ k /∈ S} (2.4)

AppMaj[t]

k = {S ⊆ N : |S| = t − 1 ∧ k /∈ S}. (2.5)

In particular, for t = n, k ∈ N ,

BossMaj[t]

k = ∅, AppMaj[t]

k = N \ k.

(ii) Let Gur[k̃] ∈ B be the guru function with the guru k̃ ∈ N and let
{(N,WGur[k̃]

k ) : k ∈ N} be a set of command games given by

WGur[k̃]

k = {S ⊆ N : k̃ ∈ S}, ∀k ∈ N.

The guru function Gur[k̃] and the set of command games {(N,WGur[k̃]

k ) : k ∈
N} are equivalent. Hence, the command games in which winning coalitions
for each player are the coalitions containing a certain player k̃, are equivalent
to the guru function Gur[k̃] with the guru k̃. Moreover,

BossGur[k̃]

k̃
= ∅, AppGur[k̃]

k̃
= 2N\k̃ (2.6)

BossGur[k̃]

k = {S ⊆ N : k̃ ∈ S ∧ k /∈ S}, AppGur[k̃]

k = ∅, for k 
= k̃. (2.7)

(iii) Let Id ∈ B be the identity function and let {(N,W Id
k ) : k ∈ N} be a set of

command games given by

W Id
k = {S ⊆ N : k ∈ S}, ∀k ∈ N.

The identity function Id and the set of command games {(N,W Id
k ) : k ∈ N}

are equivalent. This means that the command games, in which for each player
k winning coalitions for k are the coalitions containing k, are equivalent to
the identity function. We have also for each k ∈ N

BossId
k = ∅, AppId

k = 2N\k. (2.8)

3. The dynamic model of influence

3.1. Description of the model and stable states

In order to analyze the dynamic aspects of influence, we consider the following
model introduced originally in Maruani [23].

Let N = {1, 2, . . . , n} denote the set of agents. We are interested in the influence
of all n agents on a player i ∈ N . Let ej denote the inclination of agent j ∈ N ,
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ej

ei ek

pikek

pijejpjiei

piiei

Ei = pijej + pikek + piiei

Figure 1. The exhortation.

where ej = ±1. Agent i gives to agent j a certain importance which is reflected
by a weight pij ∈ [−1, 1]. pij > 0 corresponds to the stimulation of i by j, pij < 0
corresponds to the inhibition, and pij = 0 means the absence of relation. The
state (inclination) ej will contribute to the decision of agent i with the weight
cij = pijej.

What is the interpretation of the contribution weights cij? Obviously, they can
be positive, negative or zero, which means that if player i would consult only
the state ej, then i’s decision would be ‘yes’, ‘no’ or would be equal to i’s state,
respectively. More precisely, suppose that agent i when forming his decision does
not take into account the inclination of agent j, i.e., pij = 0. Then obviously
pijej = 0, independently of the inclination of agent j, which reflects no contribution
of j’s state to i’s decision. Suppose that j stimulates the decision of agent i, i.e.,
pij > 0. Then the weight of the contribution of j’s state to the decision of agent
i has the same sign as ej , which means that i’s decision would be as the state
of j when i considered only the state ej. Moreover, the higher pij the more ej

contributes to i’s decision being the same as ej when all players are considered.
Suppose now that j inhibits or discourages the decision of agent i, i.e., pij < 0.
Then the weight of the contribution of j’s state to the decision of agent i has
the opposite sign than ej, which means that i’s decision would be opposite to
the state of j when i considered only the state ej. In particular, if j is inclined
negatively, then i’s decision would be positive when consulting only ej. The higher
the absolute value of pij the more ej contributes to i’s decision being opposite to
ej when all players are considered.

Since the players interact, every agent consults the states of all agents, and
based on the importance weights he aggregates all contributions to his decision.
Hence, the exhortation Ei obtained by agent i ∈ N is defined by the weighted sum
of the inclinations of all agents, or saying differently, by the weighted sum of the
opinions that i receives from the agents (including his own opinion):

Ei =
∑
j∈N

cij =
∑
j∈N

pijej . (3.1)

Figure 1 presents the idea of the exhortation.



92 E. MARUANI ET AL.

The updating rule is the following. If Ei > 0, then agent i goes to the state +1.
If Ei < 0, then he goes to the state −1, and if Ei = 0, then i stays in his present
state.

The influence function Bi of agent i ∈ N is defined by

Bi(e) = sgn(Ei), where e = (e1, . . . , en) and sign(Ei) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if Ei > 0

−1, if Ei < 0

ei, if Ei = 0.

(3.2)

Remark 3.1. In this dynamic model, we can express the influence functions re-
capitulated in Section 2.1 as follows:

(i) the majority influence function with t = �n
2 � + 1 in which every agent plays

a role can be represented by pij = 1
n ;

(ii) the guru function with the guru k̃ in which every agent is influenced only by
the guru can be represented by pij = 0 for each j 
= k̃ and pik̃ = 1;

(iii) the identity function in which every agent influences only himself can be
represented by pij = δij .

Stable states of the system satisfy e
(k+1)
i = e

(k)
i for each i ∈ N , starting from

a certain k, where k is the number of iteration and e
(k)
i denotes the inclination

(state) of i at time k. This means that the state ei and the exhortation Ei have
the same sign, and therefore eiEi > 0. In other words, the stable states satisfy the
following inequality: ∑

j∈N

pijeiej > 0 for each i ∈ N.

The evolution of the population can be expressed by

e
(k+1)
i = Bi(e

(k)
1 , e

(k)
2 , . . . , e

(k)
j , . . . , e(k)

n ) (3.3)

where Bi is the influence function of voter i ∈ N . A stable state satisfies therefore

e
(k)
i = Bi(e

(k)
1 , e

(k)
2 , . . . , e

(k)
j , . . . , e(k)

n ).

An obvious way to get stability is to forbid any relation between agents, i.e., to
assign the weights as pij = δij .

3.2. Dynamic of the model in the continuous framework

Let us consider an extension of the dynamic influence model to the continuous
framework; see also Maruani [23]. The influence function remains

e
(k+1)
i = sgn

(
E

(k)
i

)
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which together with E
(k)
i =

∑
j∈N pije

(k)
j can be written as

e
(k+1)
i − e

(k)
i

(k + 1) − k
= sgn

⎛⎝∑
j

pije
(k)
j

⎞⎠− e
(k)
i . (3.4)

For a small time step, we can make the approximation

e
(k+1)
i − e

(k)
i

(k + 1) − k
≈ dei

dt
(3.5)

and also the approximation

sgn

⎛⎝∑
j

pijej

⎞⎠ ≈ tanh

⎛⎝a
∑

j

pijej

⎞⎠ (3.6)

where the parameter a controls the tendency towards the function sgn. This ap-
proximation keeps the properties of the function sgn that are essential for our
analysis: it is increasing and bounded between −1 and 1 and nullifies in 0.

From (3.4)–(3.6), in order to study the dynamic of the model, we need to solve
the following system:

dei

dt
+ ei = tanh

⎛⎝a
∑

j

pijej

⎞⎠, i = 1, . . . , n (3.7)

and then put ei = sgn [ei(t)]. In Section 4 we apply this dynamic approach of
differential equations to classical influence functions. The results that we present
have been originally shown in Maruani [23].

4. The dynamic of selected influence functions

4.1. The majority influence function with t = �n
2 � + 1

As mentioned in Remark 3.1(i), the majority influence function with t = �n
2 �+

1 can be represented by the weights pij = 1
n . The system (3.7) of differential

equations that we need to solve is therefore

dei

dt
+ ei = tanh

⎛⎝ a

n

∑
j

ej

⎞⎠ , i = 1, . . . , n. (4.1)

The dynamic approach allows for the analysis of the influence model introduced
in Grabisch and Rusinowska [14] in which agents have a continuum of actions, i.e.,
the set of all inclinations is equal to an interval [x, y], where x, y ∈ R.
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Lemma 4.1. For a > 1, the differential equation dx
dt + x = tanh(ax) has an

unstable fixed point in 0 and another stable fixed point.

Proof. In the equation
dx

dt
+ x = tanh(ax)

we put ax = y. Hence,

dy

dt
+ y = a tanh(y) =

1
p

tanh(y)

with p = 1
a . The fixed points satisfy tanh(y) = py. There is always y = 0 and

another fixed point y0 iff p < 1 (a > 1). We are interested in the stability of fixed
points. In the neighborhood of y = 0

dy

dt
+ y =

1
p

tanh(y) ≈ y

p

dy

dt
+

p − 1
p

y = 0

y(t) = y(0) exp
1 − p

p
t.

For 0 < p < 1 the origin is unstable.
In the neighborhood of y0, we put y(t) = y0 + ε(t)

dy

dt
+ y =

1
p

tanh(y)

dε

dt
+ y0 + ε(t) =

1
p

tanh (y0 + ε(t))

=
1
p

tanh(y0) + tanh (ε(t))
1 + tanh(y0) tanh (ε(t))

=
1
p

py0 + tanh (ε(t))
1 + py0 tanh (ε(t))

where we have used py0 = tanh(y0). A first order approximation yields

dε

dt
+ y0 + ε(t) ≈ 1

p

py0 + ε(t)
1 + py0ε(t)

≈ 1
p

[py0 + ε(t)] [1 − py0ε(t)]

≈ y0 − py2
0ε(t) +

ε(t)
p

and ultimately
dε

dt
+
(

1 + py2
0 − 1

p

)
ε(t) = 0.
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If
(
1 + py2

0 − 1
p

)
> 0, then the solution is the decreasing exponential and point y0

is stable. Let us show that
(
1 + py2

0 − 1
p

)
> 0. Let

A = 1 + py2
0 − 1

p

py0 = tanh(y0)

A = 1 + y0 tanh(y0) − y0

tanh(y0)
= 1 + y0

[
tanh(y0) − 1

tanh(y0)

]
= 1 + y0

[
tanh2(y0) − 1

tanh(y0)

]
= 1 − y0

[
1

cosh2(y0) tanh(y0)

]
= 1 − y0

[
1

cosh(y0) sinh(y0)

]
= 1 − 2y0

sinh(2y0)

= 1 − u

sinh(u)
·

We have

sinh(u)
u

= 1 +
u2

3!
+

u4

5!
+ . . .

sinh(u)
u

> 1 ⇒ 1 − u

sinh(u)
> 0. �

Proposition 4.2. If agents make their decisions according to the majority influ-
ence function with t = �n

2 � + 1, then the decision of each agent converges to the
sign of the sum of the agents’ inclinations.

Proof. Let us consider the system

dei

dt
+ ei = tanh

⎡⎣a

n

∑
j

ej(t)

⎤⎦ , i = 1, . . . , n.

With εi = a
nei, we have, for each i,

dεi

dt
+ εi =

a

n
tanh

⎡⎣∑
j

εj(t)

⎤⎦ .

Adding term by term the equations of the system, the sum S(t) =
∑

j εj(t) satisfies

dS

dt
+ S = a tanh [S(t)] .

According to Lemma 4.1, S converges to a stable fixed point S∞, which satisfies
for a > 1

S∞ = a tanh(S∞).
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The system that we consider becomes

dεi

dt
+ εi =

a

n
tanh [S(t)] .

By changing the function εi(t) = Ei(t) exp(−t) (εi(0) = Ei(0)), we get the equa-
tion

dEi

dt
=

a

n
exp(t) tanh [S(t)]

whose general solution is

Ei(t) = Ei(0) +
a

n

∫ t

0

exp(u) tanh [S(u)] du.

The solution for εi is therefore

εi(t) = εi(0) exp(−t) +
a

n
exp(−t)

∫ t

0

exp(u) tanh [S(u)] du. (4.2)

We are interested in the asymptotic form of the solution. The first term of the
right hand side of (4.2) vanishes. Let us denote by ηi the second term, i.e.,

ηi(t) =
a

n
exp(−t)

∫ t

0

exp(u) tanh [S(u)] du.

Let us fix for the moment some T . Then, for t > T we decompose the integral in
two terms

ηi(t) =
a

n
exp(−t)

[∫ T

0

exp(u) tanh [S(u)] du +
∫ t

T

exp(u) tanh [S(u)] du

]
= η

(1)
i (t) + η

(2)
i (t)

and consider successively the two components. We analyze the first term

η
(1)
i (t) =

a

n
exp(−t)

∫ T

0

exp(u) tanh [S(u)] du.

The tanh is bounded by 1, so we have∣∣∣∣∣
∫ T

0

exp(u) tanh [S(u)] du

∣∣∣∣∣ ≤
∫ T

0

exp(u)du = exp(T ) − 1.

Given T , exp(T ) − 1 is a fixed number and we denote it by B. Then∣∣∣η(1)
i (t)

∣∣∣ ≤ aB

n
exp(−t)

and therefore
lim

t→∞ η
(1)
i (t) = 0.
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The second term is

η
(2)
i (t) =

a

n
exp(−t)

∫ t

T

exp(u) tanh [S(u)] du.

For u large enough, which is the case, S(u) is close to S∞. By continuity tanh [S(u)]
is close to tanh (S∞), which is equal to S∞

a . It is then appropriate to choose T as
follows. Setting

tanh [S(u)] =
S∞
a

[1 + δ(u)]

introduces the function δ(u) which vanishes at infinity. The free parameter T is
then chosen such that for any given positive ε and for t > T , |δ(t)| < nε

|S∞| . We
have then

η
(2)
i (t) =

a

n
exp(−t)

∫ t

T

exp(u) tanh [S(u)] du

=
a

n
exp(−t)

∫ t

T

exp(u)
S∞
a

[1 + δ(u)] du

=
S∞
n

exp(−t)
∫ t

T

exp(u)du +
S∞
n

exp(−t)
∫ t

T

δ(u) exp(u)du

=
S∞
n

(1 − exp(T − t)) + ϕ(t),

where the asymptotic value of the first term is S∞
n , and the second term is

ϕ(t) =
S∞
n

exp(−t)
∫ t

T

δ(u) exp(u)du

|ϕ(t)| ≤ S∞
n

exp(−t)
∫ t

T

exp(u)
nε

|S∞|du

≤ ε exp(−t)
∫ t

T

exp(u)du

≤ ε.

The asymptotic value of εi is then S∞
n , and the asymptotic value of

∑
j εj is∑n

j=1
S∞
n = S∞. �

Remark 4.3 (The majority vote decreases costs). The fixed points of the differ-
ential system dek

dt = gk(e1, e2, . . . , en), k = 1, . . . , n satisfy by definition dek

dt = 0,

k = 1, . . . , n, which is equivalent to
∑

k

(
dek

dt

)2
= 0.

Let us suppose the existence of a function G of n variables such that for each k

gk(e1, e2, . . . , en) = − ∂G

∂ek
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and calculate

dG

dt
=
∑

k

∂G

∂ek

dek

dt
= −

∑
k

gk
dek

dt
= −

∑
k

(
dek

dt

)2

≤ 0

which means that G is decreasing in time and reaches its minimum when each
dek

dt = 0, i.e., for the fixed point of the system. We have

dek

dt
+ ek = fk(e1, e2, . . . , en) ⇒ dek

dt
= fk(e1, e2, . . . , en) − ek (gk = fk − ek).

Let us apply this to our differential system (4.1), letting εk = a
nek:

dεk

dt
=

a

n
tanh

⎡⎣∑
j

εj(t)

⎤⎦− εk

(all f being identical). We multiply both sides of each differential equation by dεk

dt(
dεk

dt

)2

=
a

n

dεk

dt
tanh

⎡⎣∑
j

εj(t)

⎤⎦− εk
dεk

dt

and obtain

∑
k

(
dεk

dt

)2

=

⎧⎨⎩ a

n
tanh

⎡⎣∑
j

εj(t)

⎤⎦
⎫⎬⎭∑

k

dεk

dt
−
∑

k

εk
dεk

dt
·

With S(t) =
∑

k εk(t) we have then

∑
k

(
dεk

dt

)2

=
a

n

dS

dt
tanh [S(t)] − 1

2
d
∑

k(εk)2

dt
·

Note that

dS

dt
tanh [S(t)] =

1
cosh [S(t)]

d
dt

cosh [S(t)] =
d
dt

ln {cosh [S(t)]} ·

Hence, up to some unessential additive constant, we get the cost function

G(ε1, ε2, . . . , εn) =
1
2

∑
k

ε2
k(t) − a

n
ln

{
cosh

[∑
k

εk(t)

]}
.

4.2. The guru function and the identity function

As mentioned in Remark 3.1(ii), the guru function with the guru k̃ can be
represented by

∀j 
= k̃, pij = 0, pik̃ = 1.
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The system of differential equations given in (3.7) that we need to solve becomes

dei

dt
+ ei = tanh(aek̃), i = 1, . . . , n. (4.3)

One can see that, on the one hand, the guru evolves only according to its own
inclinations, and on the other hand, for all the remaining agents the guru evolution
acts as a forcing term. The respective evolution equations of the agents differ only
in their respective initial values. Hence, the following Proposition 4.4 is coherent
with the intuition:

Proposition 4.4. If agents make their decisions according to the guru function,
then the decision of each agent converges to the inclination of the guru.

Proof. Let g0 
= 0 be a stable fixed point of the equation dy
dt + y = a tanh(y) (it

exists by virtue of Lem. 4.1). This means that asymptotically (in long term) we
can write, letting g = ek̃ for simplicity:

g(t) = g0 + γ(t)

where pg0 = tanh(g0), p = 1
a , and γ(t) converges to zero with t tending to infinity.

There exists t0 such that for t > t0, γ(t) < ε
pg0

. For each agent i, we have

dei

dt
+ ei =

1
p

tanh[g(t)] =
1
p

tanh [g0 + γ(t)]

=
1
p

tanh(g0) + tanh [γ(t)]
1 + tanh(g0) tanh [γ(t)]

≈ 1
p

pg0 + γ(t)
1 + pg0γ(t)

≈ 1
p

[pg0 + γ(t)] [1 − pg0γ(t)]

≈ 1
p

(
pg0 − (pg0)

2
γ(t) + γ(t)

)
= g0 + Bγ(t)

where we used that 1
1+ε = 1 − ε (|ε| � 1).

The value B is not important. The change of the function ei(t) = g0 +zi(t) (the
aim is to show that zi(t) converges to 0) gives

dzi

dt
+ zi = Bγ(t).

We will show that limt→∞ zi(t) = 0. Let us consider the equation

dz

dt
+ z(t) = Bγ(t).

The homogeneous solution is

z(t) = z0 exp(−t).
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For t > t0 the particular solution is of the form

z(t) = u(t) exp(−t)

and it must satisfy

dz

dt
+ z(t) =

du

dt
exp(−t)

du

dt
= Bγ(t) exp(t).

We have

u(t) = B

∫ t

t0

γ(u) exp(u)du.

The general solution is therefore of the form

z(t) = z0 exp(−t) + u(t) exp(−t) = z0 exp(−t) + B exp(−t)
∫ t

t0

γ(u) exp(u)du.

Asymptotically, the exponential disappears and

z(t) = B exp(−t)
∫ t

t0

γ(u) exp(u)du.

Hence, ∣∣∣∣∫ t

t0

γ(u) exp(u)du

∣∣∣∣ ≤ ∣∣∣∣ ε

pg0

∫ t

t0

exp(u)du

∣∣∣∣∣∣∣∣∫ t

t0

γ(u) exp(u)du

∣∣∣∣ ≤ ε

pg0
[exp(t) − exp(t0)]

and therefore

|z(t)| ≤ Bε

pg0
exp(−t) [exp(t) − exp(t0)] =

Bε

pg0
[1 − exp(t0 − t)]

and
|z(t)| ≤ Bε

pg0
·

Since this converges to zero, we have for each i,

ei(t) = g0 + zi(t) → g0. �
As mentioned in Remark 3.1(iii), the identity function can be represented by

pij = δij .
The system of differential equations that we need to solve for each i is

dei

dt
+ ei = tanh(aei).

Proposition 4.5. If agents make their decisions according to the identity func-
tion, then the decision of each agent converges to his own inclination.

Proof. Evident from Lemma 4.1. �
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5. Followers in the dynamic model

As recapitulated in Section 2.1, followers of a coalition S are the agents who
always follow the inclination of S, assuming that S is unanimously inclined. The
set of followers of coalition S under the influence function B is therefore defined
as

FB(S) := {i ∈ N : ∀e ∈ ES [Bi(e) = eS]},
where in our model, Bi(e) = sgn

(∑
j pijej

)
.

In order to determine the followers for every influence function B, first we
consider a particular case with S = {e1}. Agent i is the follower of S if and only if

∀e ∈ E, sgn

⎛⎝∑
j

pijej

⎞⎠ = sgn(e1)

⇔ ∀e ∈ E, e1

∑
j

pijej > 0

⇔ ∀e ∈ E, pi1 + e1

∑
j≥2

pijej > 0

⇔ pi1 >
∑
j≥2

|pij |

Proposition 5.1. Agent i is the follower of coalition S if and only if∑
j∈S

pij >
∑
j /∈S

|pij |.

Proof. In the general case, agent i is the follower of S if and only if

∀e ∈ ES , sgn

⎛⎝∑
j

pijej

⎞⎠ = sgn(ek) = sgn(el) = . . . for each ek, el ∈ S

⇔ ∀e ∈ ES , ek

∑
j

pijej > 0

⇔ ∀e ∈ ES ,
∑
j∈S

pij + ek

∑
j /∈S

pijej > 0

⇔
∑
j∈S

pij >
∑
j /∈S

|pij | �

Note that for |S| = 1, if pik < 0 for each i, then FB(ek) = ∅.
Proposition 5.1 gives a very simple condition to test whether an agent is a

follower of a coalition S: the algebraic sum of the weights (that is, negative influence
acts as a discounting factor) for the agents in S should be greater than the sum
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of the absolute values of weights (that is, positive and negative influence are not
distinguished) for the other agents.

Let us apply Proposition 5.1 to the majority influence function with t = �n
2 �+1.

We have pij = 1
n for each i, j. For each S, agent i is the follower of coalition S if

and only if ∑
j∈S

pij >
∑
j /∈S

|pij | ⇔ |S|
n

>
n − |S|

n
⇔ |S| >

n

2
·

This shows that in case of the majority influence function, the followers of S depend
only on the cardinality of S and

FMaj[t](S) =

{
N, if |S| > n

2

∅, if |S| ≤ n
2

which is coherent with (2.1).
Let player k̃ be the guru. We have then for each i

pij =

{
0 if j 
= k̃

1 if j = k̃.

Hence, ∑
j∈S

pij =

{
1 if k̃ ∈ S

0 if k̃ /∈ S
,

∑
j /∈S

|pij | =

{
0 if k̃ ∈ S

1 if k̃ /∈ S

and therefore ∑
j∈S

pij >
∑
j /∈S

|pij | ⇔ k̃ ∈ S. (5.1)

This result shows that in case of the guru function, the followers of S depend only
on the presence of the guru in coalition S. We get then

F
Gur[k̃](S) =

{
N, if k̃ ∈ S

∅, if k̃ /∈ S

which is equal to (2.2).
For the identity function pij = δij for each i, j. We have

∑
j∈S

pij =

{
1 if i ∈ S

0 if i /∈ S
,

∑
j /∈S

|pij | =

{
0 if i ∈ S

1 if i /∈ S.

Hence, ∑
j∈S

pij >
∑
j /∈S

|pij | ⇔ i ∈ S. (5.2)

This means that the followers of S under the identity function are the players of
S and only them, i.e.,

FId(S) = S

which confirms (2.3).
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6. Boss and approval sets in the dynamic model

Using our dynamic model, we can also determine the boss and approval sets of
command games. We have the following:

Proposition 6.1.

(i) S ⊆ N \ i is the boss set for agent i if and only if

∀e ∈ E,
∑
j∈S

pij >
∑
j /∈S

|pij |.

(ii) S ⊆ N \ i is the approval set for agent i if and only if

∀e ∈ E,

{∑
j∈S pij + pii >

∑
i�=j /∈S |pij |∑

j∈S pij ≤∑j /∈S |pij |.

Proof. It is clear from the proof of Proposition 5.1. �

Proposition 6.1 provides simple conditions for determining boss sets and ap-
proval sets. Boss sets for i are those sets S such that the algebraic sum of weights
for agents in S is greater than the sum of absolute values for the other agents.
From Proposition 5.1, we see that an agent follows his boss sets. The condition
for approval sets shows that roughly speaking, an approval set of i together with
i has “more weight” than the remaining agents, but it is not the case anymore if
i’s weight is counted for the weights of agents outside the approval set.

Let us apply Proposition 6.1 to the majority influence function with t = �n
2 �+1.

We have pij = 1
n for each i, j. S is the boss set for agent i if and only if

∑
j∈S

pij >
∑
j /∈S

|pij | ⇔ |S|
n

>
n − |S|

n
⇔ |S| >

n

2
·

We have therefore
BossMaj[t]

i =
{
S ⊆ N \ i : |S| >

n

2

}
which is coherent with (2.4).

S is the approval set for agent i if and only if

∀e ∈ E,

{∑
j∈S pij + pii >

∑
i�=j /∈S |pij |∑

j∈S pij ≤∑j /∈S |pij | ⇔
{ |S|

n + 1
n > n−|S|−1

n|S|
n ≤ n−|S|

n ·

We have therefore

AppMaj[t]

i =
{

S ⊆ N \ i : |S| =
⌊n

2

⌋}
which is coherent with (2.5).
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Let k̃ be the guru. By virtue of Proposition 6.1(i) and (5.1), we have

BossGur[k̃]

k̃
= ∅ and BossGur[k̃]

k = {S ⊆ N \ k : k̃ ∈ S} for k 
= k̃.

Using Proposition 6.1(ii), we conclude that S is the approval set for agent i if and
only if pii = pk̃k̃ = 1. Hence, every set not containing k̃ is the approval set for k̃,
and every agent different from k̃ has the empty approval set:

AppGur[k̃]

k̃
= 2N\k̃ and AppGur[k̃]

k = ∅ for k 
= k̃.

We get therefore the results given in (2.6) and (2.7).
For the identity function, we have pij = δij for each i, j. Using Proposition 6.1(i)

and (5.2), By virtue of Proposition 6.1(ii), we conclude that S is the approval set
for agent i if and only if pii = 1, that is, each set not containing i is the approval
set for i. Hence, AppId

i = 2N\i, which gives exactly (2.8).

7. Conclusions

The paper concerns the influence model originally introduced in [16] and later
studied and generalized in several works. We have proposed a new approach to
analyze the dynamic of the model. This approach is based on the use of differential
equations.

To be more precise, we have introduced a dynamic model of influence in which
an agent may give a certain importance to other agents in making his final decision.
This importance is reflected by a weight which, depending of the sign (positive,
negative or zero), corresponds to the stimulation, the inhibition or the absence
of relation, respectively. We have defined the exhortation obtained by an agent
as the weighted sum of the opinions that the agent receives from the others. The
updating rule is based on the sign of the exhortation: its positive (negative) value
means going to the positive (negative) state, and the exhortation equal to zero
corresponds to staying in the present state.

The main ideas of the application of this approach to the model of influence is to
switch to the continuum case and to apply some approximations allowing the use of
differential equations systems. The solutions of these systems give the same results
obtained earlier for the classical influence functions. It also leads to the results on
followers obtained for the discrete case, and to the results on the boss and approval
sets of command games. In the paper we have shown that if the majority function is
used, then the decision of each agent converges to the sign of the sum of the agents’
inclinations, and in case of the guru function, the decision of each agent converges
to the inclination of the guru. Under the identity function, the agents’ decisions
converge obviously to their own inclinations. Furthermore, we have described the
necessary and sufficient condition that an agent is the follower of a coalition in the
dynamic framework. We have used that result to determine the sets of followers
for the majority function, the guru function, and the identity function. We have
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also determined the necessary and sufficient conditions that a coalition is the boss
set or the approval set for an agent in the dynamic model. We have applied these
results to determine the boss and approval sets of command games equivalent
to the three influence functions in question: the majority influence function, the
guru function, and the identity function. Both in the case of followers and boss
and approval sets, the conditions depend on the relation(s) between the weights
that reflect the importance given by the agents to the inclinations of the others in
making their own decisions.

To the best of our knowledge, the differential equations approach has never
been applied before to the influence model in question and is also innovative with
respect to analysis of the influence framework in general. We believe that this
approach can bring new insights in the analysis of the dynamic aspects. Moreover,
modeling positive and negative influence in the same time by incorporating the
importance weights that can be of any sign increases significantly the applicability
of the model.

In the paper, we aimed at introducing this new and useful framework of influence
and at studying the dynamic of the standard influence functions defined in the
one-step yes-no model of influence. Although we have focused on these classical
influence functions, we would like to stress that the approach allows the study
of new concepts, like e.g. the weighted majority function. In our future research
on this model, we would like to deliver a detailed analysis of the concepts that
were not defined in the original yes- no model of influence, but could be defined in
the present stimulation-inhibition framework. There are several possible research
issues related to this model that could be raised. In the future research on this
framework, we would like to analyze, in particular, non-linear influence functions
and to consider temporary effects in the behavior of a group of agents.
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d’Economie de la Sorbonne, Université Paris 1 (2010).
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