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THE BEHAVIOR OF A MARKOV NETWORK
WITH RESPECT TO AN ABSORBING CLASS:

THE TARGET ALGORITHM

Giacomo Aletti
1

Abstract. In this paper, we face a generalization of the problem of
finding the distribution of how long it takes to reach a “target” set T
of states in Markov chain. The graph problems of finding the number
of paths that go from a state to a target set and of finding the n-length
path connections are shown to belong to this generalization. This paper
explores how the state space of the Markov chain can be reduced by
collapsing together those states that behave in the same way for the
purposes of calculating the distribution of the hitting time of T . We
prove the existence and the uniqueness of a optimal projection for this
aim which extends the results given in [G. Aletti and E. Merzbach, J.
Eur. Math. Soc. (JEMS) 8 (2006) 49–75], together with the existence
of a polynomial algorithm which reaches this optimum. Some applied
examples are presented. Markov complexity is defined an tested on
some classical problems to demonstrate the deeper understanding that
is made possible by this approach.
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complexity, graphs and networks.
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1. Introduction

Let (Xn)n be an homogeneous Markov chain on the state set E. E is assumed
to be at most countable. Fixed a subset T ⊆ E, called target, we face in this
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paper the problem of finding the distribution of the hitting time of T for any
initial distribution, called target problem (TP). A TP is hence defined as a triple
(E, P, T ), where P is the transition probability matrix.

The problem of finding general closed-forms for different kinds of waiting prob-
lems is widely studied. As an example, Ebneshahrashoob and Sobel [6] derived
distributional results for the random variables in the case of Bernoulli trials.
Several extensions have appeared recently to Markov-dependent trials via com-
binatorial or Markov chain embedding (see, e.g. Aki and Hirano [3]; Antzoulakos
and Philippou [7]; Koutras and Alexandrou [1]) and in general closed-forms by
Stefanov [9].

Stefanov and Pakes [10] explicitly derive the joint distributions of various quan-
tities associated with the time of reaching an arbitrary pattern of zeros and ones
in a sequence of Bernoulli (or dependent) trials. Their methodology is based on
first embedding the problem into a more general framework for an appropriate
finite-state Markov chain with one absorbing state and then treating that chain
using tools of exponential families. A new approach was given in [2], where it was
proved that there exists an optimal projection for any given TP which leaves the
probability of reaching the target set unchanged. In [2], Section 2, some examples
had been solved underlying the new method, giving solutions to some cumber-
some combinatorial problems. It was stated that numerically efficient algorithms
for the optimal reduction have meaning of real “chaos reduction” algorithms. In
fact, their proof was essentially based on the class of equivalence relationship on a
set, and the Markov chain may be in practice so big that numerical computations
can be not practicable, since a nontrivial reducing map is not a local search. In
the framework of [2], a projection map is an equivalence relationship S on the
indexing set E s.t.

• ∀ei ∈ T , ei S ej ⇐⇒ ej ∈ T ;
• for any {ei, ej , ek} ⊆ E : ei S ej we have

∑
el S ek

P (ei, el) =
∑

el S ek

P (ej , el)

where T (the absorbing target class) and P : E ×E → R+ are given (P is
the Markov matrix of the network).

Note that we may have P (e1, e3) �= P (e2, e3) but P (e1, e3)+P (e1, e4) = P (e2, e3)+
P (e2, e4), which means that e1 S e2 may be found if we know that e3 S e4. More-
over, it is not difficult to build examples where the only nontrivial compressing
map corresponds to the optimal nontrivial projection. Therefore, searching for
a compressing map appears as a non–polynomial search, in the sense that we
have to look at the whole set of equivalent relations on E. The Hidden Markov
Model framework may help to understand what a projection map is. Given a
TP (E, P, T ), an equivalency S : E → E/S is a projection map if one class is
formed by T and the process Yn = Xn/S is still a Markov chain, for any initial
distribution.
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Figure 1. Networks that may be compressed (see [2]).

On the converse, the framework in [2] regards a huge class of problems which
occur in many real situations. We recall here how this class of problem may appear.

(1) In finance the filter rule for trading is a special case of the Markov chain
stopping rule suggested in [2] (see, e.g., [8]).

(2) “When enough is enough”! For example, an insured has an accident only
occasionally. How many accidents in a specified number of years should be
used as a stopping time for the insured (in other words, when the insurance
contract should be discontinued).

(3) State dependent markov chains. Namely, the transition probabilities are
given in terms of the history. In many situations, the matrix of the em-
bedded problem may be reduced. This is the applied part of the paper:
When a big matrix can be reduced then this paper provides a polynomial
algorithm for reaching the optimal compressed problem.

(4) Small-world Networks. Given one of the networks as in Figure 1 (either
as Markov network or as a graph), is it possible to reduce it in polynomial
time and to preserve the law of reaching a given absorbing state?

There are of course many other such examples (e.g., records: Arnold et al. [4] and
optimization: Cairoli and Dalang [5]). This fact motivates the research of both
exact solutions and ε-approximations in polynomial time for the “target problem”.

In this paper, we first extend the TP framework given in [2] to a more general
framework, where a semiring R replaces R+ and the indexing set of the network
may be countable. The structure of semiring allows us to choose both rings (see
R̃ and Ñ in Exs. 2.3 and 2.4 below) and (boolean) lattices, as in Example 2.5.
The target problem will therefore include stopping laws’ problems on Markov
finite/countable network (see Ex. 2.3), counting problems on how many paths of
length n reach a given target (see Ex. 2.4) and general graph connection (see
Ex. 2.4).

The existence and the uniqueness of the optimal projection for any TP is proven
in Section 3. This is in fact an extension of the results in [2] to the new framework
and, moreover, the new proof underlines links between topological properties of
the TP and the projection maps.



234 G. ALETTI

We note that, in huge chains, P may be computable while Pn cannot, due to
sparsity problems. The main contribution of this article is stated in Section 4,
where a polynomial algorithm for reaching the optimal projection of any given
target problem (E, P, T ) is found. In the last section, we first extend this method
to multi–target problems (where T = {T1, . . . , Tk}) and then we test it on some
classical stopping Markov problems. The behavior of the given chain with respect
to the target T may be better understood by looking at the optimal projection
(see Ex. 5.2).

2. R-networks

Let E be an at most countable indexing set. We denote by E the discrete
topology on E, i.e. we take E = P(E) where P(set) is the power set of set. Recall
that to each topological space (set, top), it is possible to associate a unique closure
operator cltop : P(set)→ P(set) where the closed sets are the fixed points of the
closure operator. Throughout the whole paper, we denote by |A| the cardinality
of a given set A.

Let (R, +, 0, ∗, 1) be a semiring with identity and zero1. Moreover, we as-
sume that (a) R is closed, commutative and distributive under |E|-sums; (b) R is
equipped with a T 0-topologyR of closed sets. Finally, we denote by Hom(E×E, R)
the set of the all functions from E × E to R.

Remark 2.1. The structure of topological space will play a central rôle in the
next section. In fact, a topological proof of the existence and uniqueness theorem
is presented. We made this choice since this can be a way for projecting some
uncountable indexed problems.

Definition 2.2. A monoid (ME(R), ·,1) is called R-monoid over E if
• ME(R) ⊆ Hom(E × E, R);
• the product · · · is defined as the matrix multiplication, i.e.

(P1 · P2)(ei, ej) =
∑
e∈E

(P1(ei, e) ∗ P1(e, ej)); (2.1)

We call R-network over ME(R) any couple (E, P ), where P ∈ ME(R).

As a consequence of the previous definition, for any P ∈ ME(R),
(1) there exists the nth power

Pn = P · P · · · · · P · P︸ ︷︷ ︸
n times

∈ME(R), n ∈ N,

and therefore (E, Pn) is again a R-network overME(R).

1(R, +, 0, ∗, 1) is a semiring with identity and zero if (R, ∗, 1) is a monoid, (R, +, 0) is a
commutative monoid and x ∗ (y + z) = (x ∗ y) + (x ∗ z), (y + z) ∗ x = (y ∗ x) + (z ∗ x), and
0 ∗ x = x ∗ 0 = 0.
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(2) we can set P 0 = 1, and the diagonal of units of the ring is unity 1 of the
monoid:

if 1((ei, ej)) =

{
1 if i = j;
0 if i �= j;

then 1 · P = P · 1 = P

(3) there exists the function PP : (E × E)→ R so defined

PP (e, A) =
∑
a∈A

P (e, a), (2.2)

s.t.

PP1·P2(e, A) =
∑
ei∈E

P1(e, ei) ∗ PP2(ei, A) , ∀e ∈ E , A ⊆ E. (2.3)

Equation (2.3) is a (Chapman–Kolmogorov type) convolution equation. It
is a consequence of the fact that R is closed, commutative and distributive
under |E|-sums.

Example 2.3 (Markov matrices). Let R̃ = R+ ∪ {0} ∪ {∞}, we can put ∗ as
the real product, + the sum, and we define a) ∞x = x∞ = ∞ ∀x �= 0 (while,
by definition, ∞ 0 = 0∞ = 0); b) ∞ + x = x +∞ = ∞ ∀x ∈ R. A nontrivial
monoidME(R̃) strictly contained in the ring of nonnegative matrices is the space
of stochastic matrices, i.e. P ∈ ME(R̃) if

∑
ei∈E P (e, ei) = 1 ∀e ∈ E. Note

thatME(R̃) � Hom(E ×E, R̃). When P is a stochastic matrix, Pn is clearly the
n-time transition matrix; while PP (e, A) represent the probability of reaching the
set A starting from e.

Now, let E be the set of the vertexes of graphs. A (symmetric) E × E–matrix
with values in {0, 1} may be seen as the adjacency matrix of a simple (un)directed
graph. If the matrix has values in N, it may be seen as the adjacency matrix of a
pseudograph (i.e., a N edge-labelled directed graph).

Different semirings may be used for different aims.

Example 2.4 (graphs on the ring Ñ). Take Ñ = N+ ∪ {0} ∪ {∞}, ∗ and + as
in Example 2.3 and take ME(R) = Hom(E × E, R). In this case, if P is an
adjacency matrix, Pn(ei, ej) counts how many paths of length n start in ei and
reach ej ; while PP (e, A) represent number of paths that reach the set A starting
from e.

Another interesting example on graphs is the following, where the semiring is
a lattice (it is not a ring).

Example 2.5 (graphs on the boolean lattice). Take R = {0, 1}, ∗ and + as the
logical AND and OR, respectively. In this case, if P is the adjacency matrix of
a simple (un)directed graph, then Pn(ei, ej) counts if there exists a n-length path
starting in ei and reaching ej ; while PP (e, A) represent if e is connected with the
set A.
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3. Target problem

Form now on, let (E, P ) be a fixed (R, +, 0, ∗, 1)-network over a given network
monoid (ME(R), ·,1).

Definition 3.1. A closed subset T ∈ E is a target set on (E, P ) if it is an absorbing
class: PP (t, T ) = 1 and PP (t, E \ T ) = 0, for any t ∈ T . We call target problem
any (E, P, T ), where T is a target set on (E, P ).

Note that one may always change the matrix P in order to satisfy Definition 3.1,
by defining

P ′(e1, e2) =

⎧⎪⎨⎪⎩
P (e1, e2), if e1 �∈ T ;
1, if e1 ∈ T and e1 = e2;
0, if e1 ∈ T and e1 �= e2.

We define now the problem of reducing the number of the state space E, in terms
of equivalence relationships on E.

Let Ẽ be the set of all equivalence relations on E and let V, S ∈ Ẽ. We say
that V � S if a1 V a2 implies a1 S a2. The relation � is just set-theoretic inclusion
between equivalence relations, since any relation is a subset of E × E.

Definition 3.2. Let (E, P, T ) be a target problem. An equivalence relationship
S ∈ Ẽ is called compatible projection with respect to the target problem (E, P, T ) if

(1) ∀e ∈ T , e S ej ⇐⇒ ej ∈ T ;
(2) there exists P ∗ ∈ME/S(R) s.t. the following diagram commutes

E × E

E × E/S R

E/S × E/S

������������������������

PP

��

��

(IdE ,π−1)

��

PP ◦ (IdE ,π−1)

��

(π,IdE/S)

������������
P∗

(3.1)

where π : E → E/S is the canonical projection.
We call S = S(E, P, T ) the set of all compatible projections.

Definition 3.2 states when we can project our target problem (E, P, T ) in the
smaller one (E/F, P ∗, t = π(T )). Note that the set S is trivially nonempty: the
following relationship

e1 S e2 ⇐⇒ {e1, e2} ⊆ T or e1 = e2

belongs to S. The problem is: is there a maximum element of the �–partially
ordered set S?
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Before stating the main theorem of this section, we underline the strong link
between the set of the topologies on E and Ẽ. In fact, note that each topology
P on E induces a natural equivalence relationship on E, given by the relationship
ei V ej ⇐⇒ clP(ei) = clP(ej)2. Moreover, fixed V ∈ Ẽ, we denote by (E/V, ẼV )
the topological quotient space: ẼV is the finest topology for which the canonical
projection πV : (E, E)→ (E/V, ẼV ) is continuous. Define PV as the coarsest topol-
ogy for which the canonical projection πV : (E,PV ) → (E/V, ẼV ) is continuous.
The topology PV on E will be called canonical topology associated to V .

We have the following lemma.

Lemma 3.3. For any V ∈ Ẽ and PV as above,

ei V ej ⇐⇒ clPV (ei) = clPV (ej) , ∀ei, ei ∈ E. (3.2)

Proof. Since E = P(E), then ẼV = P(E/F ). Therefore, PV is generated by the
union of the disjoint classes of equivalence, which is the thesis. �

Now we state and prove the theorem of existence and uniqueness of the optimal
projection.

Theorem 3.4. For any target problem (E, P, T ), there exists the optimal projec-
tion, i.e. ∃S ∈ S s.t. V � S, ∀V ∈ S, where S = S(E, P, T ).

Proof. For any V ∈ S, let PV the canonical topology associated to V . We define
the topology P :

P =
⋂
{PV , V ∈ S}, (3.3)

and the associated equivalence relationship S on E:

ei S ej ⇐⇒ clP(ei) = clP(ej), ∀ei, ej ∈ E. (3.4)

The closed sets of (E,P) are the common fixed points of all {clV , V ∈ S}, identified
by the fixed points of the closure operator clP : P(E)→ P(E). Therefore, by (3.2)
and (3.3), a subset F ⊆ E belongs to P if and only if it is a union of equivalence
classes of E/V , ∀V ∈ S. Moreover, since P ⊆ PV , then V � S, ∀V ∈ S. We are
going to show now the main step of the proof, namely that S ∈ S.

By Definition 3.2.1 clPV (e) = T , ∀V ∈ S ∀e ∈ T . Therefore, clP(e) = T ∀e ∈ T ,
i.e. Definition 3.2.1 holds for S.

Now, define P (e1, e) = PP (e1, clP(e)) (clearly, P : E ×E → R). Since clP(e) is
an equivalency class, P = PP ◦ (IdE , π−1 ◦π), where π : E → E/S is the canonical
projection. What remains to prove is P (e1, e) = P (e2, e), if clP(e1) = clP(e2).

Take e, e1, e2 ∈ E s.t.

r1 = P (e1, e) �= P (e2, e) = r2. (3.5)

2Here and in the sequel, we use the notation cl·(ei) instead of cl·({ei}) for reading simplicity.
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Now, by Definition 3.2.2, for any V ∈ S, ∃P ∗
V : E/V × E/V → R s.t. (3.1) holds.

Since P ⊆ PV , then C = π−1
V (πV (C)), for any C closed set in P .

Again, by Definition 3.2.2,

P̃e(·) := P (·, e) = PP (·, clP(E)) = PP (·, π−1
V (πV (clP(e)))) (3.6)

=
∑

f∈πV (cl(e))

P ∗
V (πV (·), f) =: Qe,V (πV (·)), (3.7)

where again πV : E → E/V is the canonical projection.
We recall that if ẼV = P(E/F ) denotes the discrete topology on E/V , πV :

(E,PV ) → (E/V, ẼV ) is continuous by definition of PV . Therefore, the function
Qe,V ◦ πV : (E,PV ) → (R,R) is continuous. Since (R,R) is T 0, ∃C ∈ R s.t.
either r1 ∈ C and r2 �∈ C, or r2 ∈ C and r1 �∈ C; r1 and r2 are given in (3.5)).
π−1

V (Q−1
e,V (C)) is hence a closed set in (E,PV ), ∀V ∈ S. Note that, since P̃−1

e (C) =
π−1

V (Q−1
e,V (C)), the set π−1

V (Q−1
e,V (C)) does not depend on V . As a consequence,

since

P̃−1
e (C) ∈ PV , ∀V ∈ S

then P̃−1
e (C) ∈ P , i.e. cl(e1) �= cl(e2). �

4. Target algorithm

The proof of the optimal solution’s existence was based on the fact that the set
of compatible equivalence Ẽ has its �–join in Ẽ.

We act again on the set of equivalence relations on a set, but we will focus
our attention on E/S instead of on E, where S is the optimal projection, whose
existence and uniqueness is given in Theorem 3.4.

We state the following trivial lemma without proof.

Lemma 4.1. Let A be a set. | · | is monotone with respect to � in Ã, i.e.

∀S1, S2 ∈ Ã, S1 � S2 =⇒ |A/S1| ≥ |A/S2|. (4.1a)

Moreover, if |A| <∞, | · | is strictly monotone:

|A/S1| = |A/S2|, S1 � S2 =⇒ S1 = S2. (4.1b)

Let (E, T, P ) be a a target problem. We denote by Fπ ∈ Ẽ the optimal projection,
by π : E → E/Fπ the canonical projection, by F the quotient set E/Fπ and by
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P ∗ the function defined in (3.1):

E × E

E × E/Fπ R

E/Fπ × E/Fπ

������������������������

PP

��

��

(IdE,π−1)

��

PP ◦ (IdE,π−1)

��

(π,IdE/Fπ )

������������
P∗

(4.2)

Let F̃t be the set of all equivalence relations on F such that the target state t ∈ F

is left “alone”: i.e. R ∈ F̃t if t R f ⇐⇒ f = t.
Note that F̃t ↪→ Ẽ; more precisely, since E

π−→F , we have:

F̃t
j

↪→P(F × F )
(π,π)−1

−→ P(E × E).

It is obvious that (π, π)−1 ◦ j : F̃t → P(E×E) defines an equivalence relationship
on E. With this inclusion in mind, we can state that F̃t ⊆ Ẽ:

F̃t ←→ {R ∈ Ẽ : Fπ � R}, (4.3)

and hence we refer to F̃t both as a class of equivalence relations on F and on E.
We call IF the identity relationship on F :

f1 IF f2 ⇐⇒ f1 = f2

i.e. IF is just Fπ on F̃t, and let ME be maximal relationship on F̃t. As a relation-
ship in Ẽ it becomes

e1 ME e2 ⇐⇒ {e1, e2} ⊆ T or {e1, e2} ⊆ (E \ T ).

Clearly, ME ∈ F̃t and IF � S � ME, ∀S ∈ F̃t (i.e., IF and ME are the mini-
mal and maximal relationships on F̃t). Note that we can compute ME without
knowing F .

We build now a monotone operator F on Ẽ (the algorithm’s idea will be to
reach Fπ – unknown – starting from ME – known –).

Let F : Ẽ → Ẽ so defined: for any S ∈ Ẽ, let s1, s2, . . . be the classes of
equivalence of E induced by S. Define

e1Fsie2 ⇐⇒ PP (e1, si) = PP (e2, si)

F(S) =
⋂

i=1,2,...

Fsi ∩ S.
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Now, we focus our attention on the action of F on F̃t. First, we prove that
F : F̃t → F̃t and then we will show that the unique fixed point of F : F̃t → F̃t

is IF .

Lemma 4.2. F|F̃t
: F̃t → F̃t is a �-monotone operator on F̃t.

Proof. First, note that F̃t is trivially closed for intersection. Let S ∈ F̃t ↪→ Ẽ.
Since every si ∈ E/S is a subset of F , the existence of P ∗ in (4.2) ensures that
Fsi ∈ F̃t. Therefore, F(S) ∈ F̃t. Since F(S) ⊆ S, it is a monotone operator. �

Theorem 4.3. IF is the unique fixed point of F : F̃t → F̃t.

Proof. Fπ is trivially a fixed point for F : Ẽ → Ẽ by (4.2) and therefore IF is a
fixed point for F : F̃t → F̃t.

Now, let S ∈ F̃t s.t. S = F(S). Define the canonical map πS : F → F/S. We
have

• (πS ◦ π)(E) = F/S;
• (πS ◦ π)(T ) = πS(π(T )) = πS(t) = t,

(πS ◦ π)−1(t) = π−1(π−1
S (t)) = π−1(t) = T ;

• S ⊆ Fsi ∀i, and hence the following diagram commutes:

E ×P(E)

E × F/S R

F/S × F/S

�����������������������
P

��

��

(IdE ,(πS◦π)−1)

��

P ◦ (IdE,(πS◦π)−1)

��

(πS◦π,IF/S)

������������

Since π is the optimal projection such that (3.1) holds, then F/S ≡ F , i.e. S = IF .
�

4.1. Polynomial-time algorithm

In this section, we assume that |E| = M <∞3. As a consequence, |E/S| ≤M

for any equivalence relationship S ∈ Ẽ.

Theorem 4.4. Let (E, T, P ) be given and let N be the cardinality of F , i.e.
N = |E/Fπ|. Then FN−2(ME) = Fπ, where Fn := (F ◦ Fn−1) and F0 is the
identity operator (i.e. F0(R) = R, ∀R).

Proof. First, note that Fn(ME) ∈ F̃t ∀n (by Lem. 4.2). Therefore, we may con-
sider Fn : F̃t → F̃t. We have IF � Fn+1(ME) � Fn(ME) �ME ∀n.

3Note that in this case, assumption (a) (page 234) on the semiring is superfluous.
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Let Cn = |E/(Fn(ME))|. We now prove by induction on n that

Fn(ME) �= IF =⇒ Cn > n + 1. (4.4)

For n = 0, C0 = 2 (otherwise E = T and the problem is trivial). For the
induction step, if Fn(ME) �= IF , then Cn > n + 1. F is a monotone operator,
then Fn+1(ME) � Fn(ME) and hence Cn+1 ≥ Cn by (4.1a). Now, if Cn+1 = Cn,
then Fn+1(ME) = Fn+1(ME) by (4.1b) which means that Fn(ME) = IF by
Theorem 4.3. Therefore, (4.4) holds.

If FN−3(ME) = IF , then FN−2(ME) = IF by Theorem 4.3. As a conse-
quence of (4.4), if FN−3(ME) �= IF , then CN−2 ≥ N = |F |. Therefore, since
FN−1(ME) ∈ F̃t, we have FN−2(ME) = IF by (4.1b), i.e. FN−2(ME) = Fπ . �

Remark 4.5. Note that the operator F may be computed in a |E|-polynomial
time. Corollary 4.4 ensures that

F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
at most |E/Fπ| − 2 times (≤|E|)

will reach F , given any triple (E, T, P ).

5. Extension to multiple targets and examples

of Markov networks

The previous results and those in [2] may be extended to multiple target prob-
lems. More precisely, let T = {T1, T2, . . .} be target disjoint sets on the same
R-network (E, P ) over ME(R). We are interested in the optimal {T1, T2, . . .}-
compatible relationship S such that (3.1) holds.

The answer is trivial, since each target class Ti defines its equivalence relation-
ship Si. It is not difficult to show that the required set S is just S = ∩Si. In the
sequel, we call Markov complexity of the problem (E,T, P ) the cardinality of the
optimal set E/S.

Example 5.1 (negative binomial distribution). Repeat independently a game
with probability p of winning until you win n games.

Let Sn =
∑n

i=1 Yi, where {Yi, i ∈ N} is a sequence of i.i.d. bernoulli random
variable with Prob({Yi = 1}) = 1 − Prob({Yi = 0}) = p. Our interest is engaged
by the computation of the probability of reaching n starting from 0. Let E =
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{0, 1, . . . , n} be the set of levels we have reached. We have

0 1 2 . . . n− 1 n = T

0 (1− p) p 0 . . . 0 0

1 0 (1− p) p
. . . 0 0

2 0 0 (1− p)
. . . 0 0

...
...

...
...

. . . . . .
...

n− 1 0 0 0 . . . (1− p) p
n = T 0 0 0 . . . 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=: P.

Since the length of the minimum path for reaching the target state n from different
states is different, the problem is irreducible by [2], Proposition 31. Its Markov
complexity is n + 1. We show how the target algorithm reaches this solution.
It starts from ME which divides E into the two classes C0

0 = T = {n} and
C0

1 = E \ T = {0, . . . , n − 1}. For any e ∈ E, the algorithm computes pe =
(P(e, C0

0 ), P(e, C0
1 )), finding

pe =

⎧⎪⎨⎪⎩
(1, 0) if e = n;
(p, 1− p) if e = n− 1;
(0, 1) if e ∈ {0, . . . , n− 2}.

Therefore, F(ME) divides E into three classes C1
0 = T = {n} and C1

1 = {n− 1}
and C1

2 = {0, . . . , n− 1}. Since the number of classes is increased, the algorithm
does not stop. It computes again pe = (P(e, C1

0 ), P(e, C1
1 ), P(e, C1

2 )) and it finds
four classes. It stops (in this case) only when it divides all the states (in n + 1
steps, the maximum allowed).

Example 5.2 (random walk on a cube). A particle performs a symmetric random
walk on the vertices of a unit cube, i.e., the eight possible positions of the particle
are (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0),. . . ,(1, 1, 1), and from its current
position, the particle has a probability of 1/3 of moving to each of the 3 neighboring
vertices. This process ends when the particle reaches (0, 0, 0) or (1, 1, 1).

Let T1 = (0, 0, 0), T2 = (1, 1, 1). The following transition matrix

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(0, 0, 0) 1 0 0 0 0 0 0 0
(1, 0, 0) 1/3 0 0 0 1/3 1/3 0 0
(0, 1, 0) 1/3 0 0 0 1/3 0 1/3 0
(0, 0, 1) 1/3 0 0 0 0 1/3 1/3 0
(1, 1, 0) 0 1/3 1/3 0 0 0 0 1/3
(1, 0, 1) 0 1/3 0 1/3 0 0 0 1/3
(0, 1, 1) 0 0 1/3 1/3 0 0 0 1/3
(1, 1, 1) 0 0 0 0 0 0 0 1
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can be easily reduced on

t1 f1 f2 t2
t1 1 0 0 0
f1 1/3 0 2/3 0
f2 0 2/3 0 1/3
t2 0 0 0 1

where ti = Ti and fi = {e = (e1, e2, e3) :
∑

ej = i}, i.e. its Markov complexity
is 4. We show how the target algorithm reaches this results on the more general
matrix

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(0, 0, 0) 1 0 0 0 0 0 0 0
(1, 0, 0) 1/3 0 0 0 α1 2/3 − α1 0 0
(0, 1, 0) 1/3 0 0 0 α2 0 2/3 − α2 0
(0, 0, 1) 1/3 0 0 0 0 α3 2/3 − α3 0
(1, 1, 0) 0 α4 2/3 − α4 0 0 0 0 1/3
(1, 0, 1) 0 α5 0 2/3 − α5 0 0 0 1/3
(0, 1, 1) 0 0 α6 2/3 − α6 0 0 0 1/3
(1, 1, 1) 0 0 0 0 0 0 0 1

where 0 ≤ αi ≤ 2/3, for any i = 1, . . . , 6. The algorithm starts from ME which
divides E into the three classes C0

0 = T1 = {(0, 0, 0)}, C0
1 = T2 = {(1, 1, 1)} and

C0
2 = E\(T1∪T2). For any e ∈ E, the algorithm computes pe = (P(e, C0

0 ), P(e, C0
1 ),

P(e, C0
2 )), finding

pe =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 0, 0) if e ∈ f0 = C0

0 ;
(1/3, 0, 2/3) if e ∈ f1 = {(e1, e2, e3) :

∑
ej = 1};

(0, 1/3, 2/3) if e ∈ f2 = {(e1, e2, e3) :
∑

ej = 2};
(0, 1, 0) if e ∈ f3 = C0

1 .

Therefore, F(ME) divides E into the four classes {fi, i = 0, . . . , 3}. Since the
number of classes is increased, the algorithm does not stop. It computes again
pe = (P(e, f0), P(e, f1), P(e, f2), P(e, f3)) and it finds:

pe =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 0, 0, 0) if e ∈ f0;
(1/3, 0, 2/3, 0) if e ∈ f1;
(0, 2/3, 0, 1/3) if e ∈ f2;
(0, 0, 0, 1) if e ∈ f3.

The algorithm stops, since the number of classes is not increased, and in pe we
may read the optimal projected matrix P ∗.

If we are only interested in the time of stopping (i.e. T = T1 ∪ T2), the
previous problem may be reduced to a geometrical one (Markov complexity equal
to 2). Clearly, this results hold also for random walk on a d-dimensional cube or
symmetric groups.
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Example 5.3 (coupon collector’s problem). Let n objects {e1, . . . , en} be picked
repeatedly with probability pi that object ei is picked on a given try, with

∑
i pi =

1. Find the earliest time at which all n objects have been picked at least once.

Let Λ be the set of permutations of the n objects. For a fixed permutation
λ = (eλ1 , eλ2 , . . . , eλn) ∈ Λ we denote by Eλi

= {eλ1 , eλ2 , . . . , eλi} the set of the
first i-objects in λ (without order!).

Now, let Aλ be the set of all the paths that have picked all the n objects with
the order given by λ. In Pattern–Matching Algorithms framework (see [2], Sect. 3
and Rem. 18), the stopping λ-rule we consider here is denoted by

Tλ = eλ1{Eλ1}∗eλ2{Eλ2}∗ · · · eλn−1{Eλn−1}∗eλn ,

and it becomes a target state of an embedded Markov problem on a graph (see [2],
Sect. 3). The stopping class for the Coupon Collector’s Problem is accordingly
T = ∪λ∈ΛTλ.

It is not difficult to show that the general Coupon Collector’s Problem may
be embedded into a Markow network of 2n − 1-nodes (its general Markov hard
complexity), where E = {T, {Eλi

: λ ∈ Λ, 1 < i < n}, the transition matrix is
given by

P (Eλi

, Eζj

) =

⎧⎨⎩
∑

k∈λi pk, if Eλi

= Eζj

;
pk, if j = i + 1 and Eζj

= {Eλi

, ek};
0, otherwise;

λ, ζ ∈ Λ and Prob({X1 = ek}) = pk. Note that this matrix is not in general
reducible.

If some pi are equal, i.e., when some states act with the same law with respect
to the problem, the set E can be projected into a minor one. The easiest case
(namely, pi = 1/n ∀i) is projected into a n-state problem:

f1 f2 f3 . . . fn−1 T

f1 1/n 1− 1/n 0 . . . 0 0

f2 0 2/n 1− 2/n
. . . 0 0

f3 0 0 3/n
. . . 0 0

...
...

...
...

. . . . . .
...

fn−1 0 0 0 . . . (n− 1)/n 1/n
T 0 0 0 . . . 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=: P

with Prob({X1 = f1}) = 1. Here, fi = {Eλi

, λ ∈ Λ}. The problem is again
irreducible by [2], Proposition 31 and its Markov complexity is n. In general,
when we have m different values of {pi, i = 1, . . . , n} (namely, q1, . . . , qm), if nm =
|k : pk = qm|, then the Markov complexity can be easily proven to be

∏m
k=1(nk +

1)− 1.
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6. Conclusions

The behavior of a Markov chain with respect to a target T may be better
understood by looking at the optimal projection. In this work we consider a
general framework and we describe a polynomial-time algorithm in order to reach
the minimal equivalent target problem. Theorem 3.4 can be viewed as an extension
of the analogue result stated in [2]. Different examples are provided with their
minimal set of states. A Matlab Version 6.5 of such an algorithm for multitarget
T may be downloaded at http://www.mat.unimi.it/~aletti/.
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