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CAPACITY BOUNDS FOR THE CDMA SYSTEM
AND A NEURAL NETWORK:

A MODERATE DEVIATIONS APPROACH

Matthias Löwe1 and Franck Vermet2

Abstract. We study two systems that are based on sums of weakly dependent Bernoulli random
variables that take values ±1 with equal probabilities. We show that already one step of the so-called
soft decision parallel interference cancellation, used in the third generation of mobile telecommunication
CDMA, is able to considerably increase the number of users such a system can host. We also consider
a variant of the well-known Hopfield model of neural networks. We show that this variant proposed
by Amari and Yanai [2] has a larger storage capacity than the original model. Both situations lead
to the question of the moderate deviations behavior of a sum of weakly dependent Bernoulli random
variables. We prove a moderate deviations principle for such a sum on the appropriate scale.

Résumé. Nous étudions deux systèmes basés sur des sommes de variables aléatoires de Bernoulli
valant ±1 avec égale probabilité et faiblement dépendantes. Nous montrons qu’une seule étape de
la méthode de suppression d’interférences SD-PIC, utilisée dans la troisième génération de télécom-
munication mobile CDMA, permet déjà d’augmenter considérablement le nombre d’utilisateurs sup-
porté par le système. Nous considérons également une variante du modèle neuronal de Hopfield.
Nous montrons que cette variante, proposée par Amari et Yanai [2], admet une capacité de stock-
age supérieure au modèle original. Les deux situations conduisent à l’étude des déviations modérées
d’une somme de variables aléatoires de Bernoulli faiblement corrélées. Nous montrons un principe de
déviations modérées pour une telle somme convenablement normalisée.
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1. Introduction

In this article we study two questions, which at first glance only have very little in common: how many users
is a third generation mobile communication system able to host, if it works with a certain form of interference
cancellation? and: how much information can be safely stored in an improved form of the Hopfield model of
neural networks?
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The reason that these questions can be treated in an integrative framework is that both models are formulated
in terms of i.i.d. Bernoulli random variables that take the values +1 and −1 with equal probabilities. For both
these models the questions addressed above then boil down to a problem of moderate deviations for a sum of
Bernoulli random variables that are correlated in a rather peculiar way. Interestingly, this correlation is the
same for the mobile communication system and the neural network and even more, one also is interested in the
same order or magnitude for the deviations.

In recent years the analysis of moderate deviations has been introduced as one branch of the theory of limit
theorems, next to well-established subjects such as central limit theorems and large deviations. Here the term
“moderate deviations” refers to the analysis of probabilities in a regime between the regime of the Central Limit
Theorem and the regime of a Law of Large Numbers, which is referred to as the large deviations regime.

For example, it is known that for a sum of i.i.d. random variables Y1, Y2, . . . , under appropriate conditions
(the most general conditions can be found in [15]) the following “subexponential” estimates holds true in the
moderate deviations regime, i.e. for a scaling between the 1√

n
-scaling for a Central Limit Theorem and the

1
n -scaling for the Law of Large Numbers:

lim
n→∞n1−2α log P

(
n∑

i=1

Yi ≥ nαa

)
= −a2/2

as well as

lim
n→∞ n1−2α log P

(
n∑

i=1

Yi ≤ −nαa

)
= −a2/2

for a > 0 and 1/2 < α < 1.
Often, such moderate deviations estimates are very useful (see e.g. [27]) as we will also see in the present

paper. However, in our case the random variables will be dependent and this often makes life much more
complicated.

The rest of this paper is organized as follows. In Section 2 we will address a problem in mobile telecom-
munication. This leads to a question about the moderate deviations behavior of a sum of weakly correlated
Bernoulli variables. Once this is settled we will be able to analyze the number of users the telecommunications
system can host. In Section 3, we will see that the analysis of the storage capacity of a variant of the well known
Hopfield model of neural networks leads to a very similar question. Section 4 will treat the moderate deviations
behavior of a sum of correlated Bernoulli variables in a theoretical way and will thus provide us with the main
estimate for Sections 2 and 3.

2. On the performance of third generation wireless communication systems

In this section we will study the performance of third generation mobile communication systems, which are
based on a technique called code division multiple access (CDMA). In these systems, users receive their own
coding sequence to distinguish them from other users. The resulting systems are much more flexible than
systems used earlier and bandwith can be used much more efficiently.

In mathematical terms these CDMA systems can be described as follows. Suppose that k users want to
transmit data across a channel simultaneously. To this end, each user multiplies his data by an individual
coding sequence. The signals are decoded at the receiver by taking the inner product with the corresponding
coding sequence. Ideally, all the coding sequences of k users are orthogonal. In this case, taking the inner
product with the mth coding sequence will yield solely the information sent by the mth user (1 ≤ m ≤ k).
However, in practice almost-orthogonal codes (pseudo-random codes) are used. The technique of coding signals
in order to transmit various signals simultaneously is known as code division multiple access (CDMA), see for
example [39]. So, let bm(t) be the data signal of the mth user. We let bm(t) = bm[t/T ], for 1 ≤ m ≤ k, where

bm = (. . . , bm,−1, bm0, bm1, . . .) ∈ {−1, +1}Z.
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Here for some real number x, [x] denotes the smallest integer larger than or equal to x.
In order to encode this signal, for each m, 1 ≤ m ≤ k, we have a sequence

am = (. . . , am,−1, am0, am1, . . .) ∈ {−1, +1}Z.

We put am(t) = am[t/Tc], where Tc = T/n, for some integer n. The coded signal of the mth user is then

sm(t) =
√

2Pmbm(t)am(t) cos(ωct), 1 ≤ m ≤ k, (2.1)

where Pm is the power of the mth user and ωc the carrier frequency. The factor cos(ωct) is used to transmit the
signal at frequency ωc. CDMA turns out to reduce the signal-to-noise ratio of the transmitter and the jammer
by a factor n. The code am(t) is known to the mobile phone of the transmitting person and to the base station.

The total transmitted signal is given by

r(t) =
k∑

j=1

sj(t).

To avoid technical complications we will assume that all users transmit using the same time grid. For simplicity,
we also assume that we are working on a noiseless channel, such that the transmitted and received signals agree.

To retrieve the data bit bm1 from the received data, the signal r(t) is multiplied by am(t) cos(ωct) and then
averaged over [0, T ]. For simplicity, we pick ωcTc = πfc, where fc ∈ N to get

1
T

∫ T

0

r(t)am(t) cos(ωct)dt =
1
2

√
2Pm bm1 +

k∑
j=1
j�=m

1
2

√
2Pj bj1

1
n

n∑
i=1

ajiami. (2.2)

The above procedure is often referred to as Matched Filter (MF). As can be seen from (2.2) the decoded
signal consists of the desired bit (amplified by 1

2

√
2Pm) and interference due to the other users. If the vec-

tors (am1, . . . , amn) and (aj1, . . . , ajn), j = 1 . . . , k, j �= m, were orthogonal, then their inner product would
disappear, such that

n∑
i=1

ajiami = 0.

However in practice, the a-sequences are often generated by a random number generator. We model this by
an array (Am

i ), m = 1, 2, . . . k, i = 1, 2, . . . n of independent and identically distributed random variables taking
values in {−1, +1} and accepting both values with equal probability:

P(Am
i = +1) = P(Am

i = −1) =
1
2
·

In this case the signal (2.2) is turned to

Z(1)
m :=

1
2

√
2Pm bm1 +

k∑
j=1
j�=m

1
2

√
2Pj bj1

1
n

n∑
i=1

Aj
iA

m
i .

Given this setup the signal bm1 can be estimated by

b̂
(1)
m1 := sgn

(
Z(1)

m

)
,

where sgn(·) is the sign-function while sgn(0) = U where U is a random variable with

P(U = +1) = P(U = −1) =
1
2
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and each time one needs to decide sgn(0) a fresh realization of U is taken.
The MF-system is used in the third generation telecommunication systems. The superscript (1) indicates

that potentially b̂
(1)
m1 is only a first step and further steps may be taken. We will show how such further steps

can improve the performance.
We will be interested in the probability of a bit-error, i.e., in

P(b̂(1)
m1 �= bm1) and P(∃m : b̂

(1)
m1 �= bm1)

and when this probability will go to zero, depending on k, when n goes to infinity. One can analyze this
probability using Gaussian approximations as in [16,20,25], or other approximation techniques as in [3,24,41].

In [44] we were able to give sharp bounds on the number of users k (as a function of n) such that the
probability of a bit error P(∃m : b̂

(1)
m1 �= bm1) converges to zero. More precisely, we were able to show that for

k = c n
log n with c < 1/2 the above probability converges to zero, while for c > 1/2 this probability converges to

one.
There are various ways to exploit that interference experienced in a CDMA system is different from completely

random noise, and to thus improve the performance of matched filter systems. A straightforward technique is
called interference cancellation. The idea is that we try to cancel the interference due to the other users (i.e.,
the users with subscript j �= m). Interference cancellation comes in various flavours. The one we will focus on in
this paper is called soft decision parallel interference cancellation (SD-PIC) (see e.g. [43]). It is best understood
when first explaining the concept of hard decision parallel interference cancellation (HD-PIC) (see [1,8,9,18,23]
and references therein). To this end, note that from our estimate b̂

(1)
m1 for bm1, we obtain an estimate for the

signal sm(t) sent by the mth user, where for t ∈ [0, T ], our estimator is given by

ŝ(1)
m (t) = hm(Z(1)

m ) am(t) cos(ωct), 1 ≤ m ≤ k,

where, for general powers,

hm(x) =

{√
2Pm sgn(x) for HD-PIC,

2x for SD-PIC.

Obviously, for HD-PIC, we need to know the powers of the submitting users, whereas for SD-PIC this is not
necessary. The total multiple access interference experienced by the mth user (i.e., the interference of the mth
user from all other users) can be estimated by r̂

(1)
m (t) =

∑
j �=m ŝ

(1)
j (t). In the absence of noise, the multiple

access interference is the only possible cause for bit-errors.
The above estimate allows to correct our estimate of bm,1 by subtracting the estimator of the multiple access

interference from the signal. We thus obtain

b̂
(2)
m,1 = sgn(Z(2)

m ),

where Z
(2)
m is obtained by replacing r(t) in (2.2) by r(t) − r̂

(1)
m (t), so that, if we set all powers equal to 2 to

simplify things, we obtain

Z(2)
m = bm1 +

k∑
j=1
j �=m

1
n

n∑
i=1

Aj
iA

m
i (bj1 − hj(Z

(1)
j )).

If this procedure is successful, then we may iterate it. After s−1 (note that our first estimator does not involve
any interference cancellation) steps of parallel interference cancellation, we obtain b̂

(s)
m,1 = sgn(Z(s)

m ), where

Z(s)
m = bm1 +

k∑
j=1
j �=m

1
n

n∑
i=1

Aj
iA

m
i

(
bj1 − hj(Z

(s−1)
j )

)
.
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The question is, of course, how reliable these estimators are. In other words, we need to investigate, how
P(∃m : b̂

(s)
m,1 �= bm,1) behaves. In [44] we were able to show that a large number (order log n) of iterations

increases the capacity to k = kn = δn users (for some δ > 0 small enough). However, simulations (cf. [44]) show
that already one step of interference cancellation can improve the capacity and the performance of the system
considerably. In this respect our theoretical results in [44] were rather poor. Our moderate deviations estimates
in Section 4 below now give us the opportunity to give a theoretical analysis of the SD-PIC with just one step
of parallel interference cancellation. We will see that this single step improves the capacity from kn = n

2 log n in
the matched filter system to kn = n√

2 log n
for one step of parallel interference cancellation in the SD-PIC.

Theorem 2.1 (Absence of bit-errors in SD-PIC systems with one iteration). Assume that kn = n√
γ log n

for
some γ > 2. Then

lim
n→∞ P(b̂(2)

m,1 = bm,1, ∀m = 1, . . . , kn) = 1. (2.3)

Remarks 2.2. (1) In [44] we proved that for k = kn = δn with δ < (
√

2− 1)2 there exists M = M(δ) such
that after s = M log n many steps the probability of having no bit-error converges to one:

lim
n→∞ P(b̂(s)

m,1 = bm,1, ∀m = 1, . . . , kn) = 1.

However, for all practical purposes, n ranges between 32 and 512, in which case our bound on kn in
Theorem 2.1 (for just one iteration) is superior to the bound kn = δn quoted above for many iterations.

(2) In [44] we also showed that for the matched filter system kn = n
2 log n is the optimal bound, if we are

interested in having no bit-errors. It would be interesting to see, whether the same holds true for
the bound kn = n√

2 log n
in Theorem 2.1. However, the corresponding techniques (basically tilting and

negative association) do not easily carry over from the matched filter to the SD-PIC situation.
(3) It would be interesting to show a similar estimate for the HD-PIC system, which in simulations even

performs better than the SD-PIC system. However, here the situation is mathematically much more
involved.

Proof of Theorem 2.1. By definition, b̂
(2)
m1 = sgn(Z(2)

m ), where

Z(2)
m = bm1 +

k∑
j=1
j �=m

1
n

n∑
i=1

Aj
i A

m
i (bj1 − Z

(1)
j )

and

Z(1)
m = bm1 +

k∑
j=1
j �=m

bj1
1
n

n∑
i=1

Aj
iA

m
i .

Without loss of generality, we may assume that bm1 = 1, for all m = 1, . . . , k, and we have

P[∃ m = 1, . . . , k, b̂
(2)
m1 �= bm1] ≤ k P[b̂(2)

11 �= b11]
≤ k P[Yn ≥ 1],

where

Yn =
1
n2

n∑
i1=1

n∑
i2=1

k∑
j1=2

k∑
j2( �=j1)=1

A1
i1A

j1
i1

Aj1
i2

Aj2
i2

.

We decompose Yn into three parts

Yn =
1
n2

n∑
i1=1

n∑
i2=1
i2 �=i1

k∑
j1=2

k∑
j2=2

j2 �=j1

A1
i1A

j1
i1

Aj1
i2

Aj2
i2

+
1
n2

k∑
j1=2

(
n∑

i1=1

A1
i1A

j1
i1

)2

+
k − 2
n2

k∑
j1=2

n∑
i1=1

A1
i1A

j1
i1

.
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From here we obtain for any δ > 0

P[b̂(2)
11 �= b11] ≤ P

⎡⎢⎣ 1
n2

n∑
i1=1

n∑
i2=1

i2 �=i1

k∑
j1=2

k∑
j2=2

j2 �=j1

A1
i1A

j1
i1

Aj1
i2

Aj2
i2

≥ 1 − δ

⎤⎥⎦

+P

⎡⎣ 1
n2

k∑
j1=2

(
n∑

i1=1

A1
i1A

j1
i1

)2

≥ δ1

⎤⎦ + P

⎡⎣k − 2
n2

k∑
j1=2

n∑
i1=1

A1
i1A

j1
i1

≥ δ2

⎤⎦,

with δ1, δ2 ∈ (0, 1) to be chosen later and δ = δ1 + δ2.
Now, we denote A1

i1A
j1
i1 by Āj1

i1 for all i1 = 1, . . . , n and j1 = 2, . . . , k. These new variables Āj1
i1 are i.i.d.

symmetric Bernoulli random variables as the initial variables Aj1
i1 . Then the second summand on the right will

now be estimated with the help of an exponential Chebyshev inequality

P

⎡⎣ 1
n2

k∑
j1=2

(
n∑

i1=1

Āj1
i1

)2

≥ δ1

⎤⎦ ≤ e−tδ1E

⎡⎣exp

⎛⎝ t

n2

k∑
j1=2

(
n∑

i1=1

Āj1
i1

)2
⎞⎠⎤⎦

= e−tδ1

k∏
j1=2

ENE

[
exp

(√
2t

n2

(
n∑

i1=1

Āj1
i1

)
N

)]
,

where N is a standard normal random variable, and EN is the expectation with respect to N . The last equality
simply uses that for a Gaussian random variable G with zero mean and any b ∈ R

EebG = e
1
2 b2EG2

.

Now, using that

E

[
e
√

2t
n2 Ā

j1
i1

N
]

= cosh

(√
2t

n2
N

)
≤ e

t
n2 N2

we obtain for t ∈ (0, n/2)

P

⎡⎣ 1
n2

k∑
j1=2

(
n∑

i1=1

Āj1
i1

)2

≥ δ1

⎤⎦ ≤ e−tδ1

(
EN

[
exp(

t

n
N2)

])k−1

≤ exp
(
−tδ1 − k

2
log

(
1 − 2t

n

))
.

From the Taylor expansion of the natural logarithm we see that there exists u0 ∈ (0, 1) such that for all
u ∈ (0, u0), we have − log(1 − u) ≤ u + u2. We suppose now that 2t/n < u0. Then

P

⎡⎣ 1
n2

k∑
j1=2

(
n∑

i1=1

Āj1
i1

)2

≥ δ1

⎤⎦ ≤ exp
(
−t

(
δ1 − k

n

)
+ 2k

t2

n2

)
·
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If we choose δ1 = λ
k

n
, t = (δ1 − k

n
)
n2

4k
for some λ > 1 such that 2t/n = (λ − 1)/2 < u0, then we finally get

P

⎡⎣ 1
n2

k∑
j1=2

(
n∑

i1=1

Āj1
i1

)2

≥ δ1

⎤⎦ ≤ exp

(
− (δ1 − k

n )2

8
n2

k

)

≤ exp
(
− (λ − 1)2

8
k

)
· (2.4)

For the third term, we also obtain by the exponential Chebyshev inequality

P

⎡⎣k − 2
n2

k∑
j1=2

n∑
i1=1

Āj1
i1

≥ δ2

⎤⎦ ≤ exp
(
−δ2

2n3

2k3
(1 + rn)

)
, (2.5)

with rn → 0 as n → +∞.
For the first term, we can apply Theorem 4.1 in Section 4 below to obtain

P

[
1
n2

n∑
i1=1

n∑
i2=1

i2 �=i1

k∑
j1=2

k∑
j2=2

j2 �=j1

Āj1
i1

Āj1
i2

Āj2
i2

≥ 1 − δ

]
≤ 2 exp

(
− n2

2k2
(1 − δ)2

)
. (2.6)

Finally, putting the above estimates together, we see that the contribution stemming from the second summand

is of order e−const.k, while the one stemming from the first summand is of order e−const. n2

k2 (possibly with different
constants, of course), such that the contribution of the second summand becomes negligible as soon as

e−k � e−n2/k2

which is the case as soon as k ≥ nβ with β > 2/3. Choosing k = c n√
log n

, δ2 =
√

k
n , we obtain that

P
[∃ m = 1, . . . , k, b̂

(2)
m1 �= bm1

] ≤ k exp
(
− n2

2k2
+ O((log n)3/4)

)
≤ k exp

(
− 1

2c2
log n + O((log n)3/4)

)
which goes to 0 as n → +∞ if c < 1√

2
. �

3. Capacity of the Hopfield model with a nonmonotonic dynamics

The Hopfield model is one of the best-studied models of a neural network. It was originally introduced
by Pastur and Figotin [36] as a so-called frustrated spin system but it received most of its attention by its
reinterpretation by Hopfield [17] as a very simple model for the associative memory in the brain (for reviews on
mathematical work on this model, see [6,7,29,37,38] and all the references given there). The Hopfield model is
based on a set of N formal neurons interconnected one to one. The state of the ith unit is given by a spin variable
σi with values in S = {−1, +1}, and the state of the network by the configuration σ = (σi)i=1,...,N ∈ SN . This
network is designed to memorize M patterns ξμ = (ξμ

i )i=1,...,N , μ = 1, . . . , M . Note that M = M(N) may and
actually will depend on N . First, we define a discrete time dynamical system on SN : given a configuration σ(t)
at time t, the configuration of the network at time t + 1 is

σi(t + 1) = sgn

⎛⎝ N∑
j=1

Wijσj(t)

⎞⎠ , i = 1, . . . , N,
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where the synaptic weights Wij are defined according to the Hebb rule:

Wij =
1
N

M∑
μ=1

ξμ
i ξμ

j , for i, j ∈ {1, . . . , N}. (3.1)

The dynamics can be parallel, i.e., the updating is done simultaneously, or sequential if we update all σi one
after the other. Under some conditions, basically on the number of stored patterns, starting from a configuration
“close” to one of these patterns ξμ, the dynamics will converge to ξμ. Naturally, this is only possible if the
patterns ξμ are stable points for the dynamics, and if we consider a starting point in a basin of attraction of an
original pattern. So, the first and most basic question for this model is whether the patterns are fixed points of
the dynamics: this question was first considered for i.i.d. symmetric Bernoulli patterns by McEliece et al. [30].
We will adopt their definition of storage capacity as the maximum number of patterns M that are stable under
the dynamics described above, with a probability converging to one as N → +∞.

It appears that in the standard Hopfield model (where the patterns are i.i.d. and take values ±1 with equal
probabilities) for this notion of capacity, where no error is tolerated, and for this dynamics, the maximum
number of stored patterns is N/2 logN . More precisely, if M = cN/ logN for some c < 1/2 then any original
pattern ξμ is stable with a probability converging to 1 as N → +∞ ([37,45]), while if M = cN/ logN for some
c > 1/2, any original pattern is unstable ([5]). This notion of capacity has also been analyzed by Löwe and
Vermet in more general situations: different types of dependent patterns ([26,27]), patterns with q ≥ 2 possible
states for each pixel ([28]).

Various modifications of the original model have been proposed to increase the memory capacity. One
interesting idea is to consider nonmonotonic neurons (see [10,21,32–35]). Among these models, the so-called
“partial reverse method” is worth to be mentioned. This method was proposed by Morita et al. [32,33]. There,
the authors define a two-stage dynamics to realize the nonmonotonic behavior of a single neuron. This technique
was generalized by Amari and Yanai [2]. For their model the authors obtain a memory capacity of order
N/

√
log N , larger than N/ logN of the classical Hopfield model. However, their analysis relies on a non-rigorous

approximation by Gaussian random variables, while a rigorous mathematical treatment of their improvement
of the memory capacity is missing.

We will now define the dynamics proposed by Amari and Yanai, and we will see that the mathematical
analysis of the stability of the original patterns is very close to the problem that we considered in the previous
section for the SD-PIC model.

We consider the application T = TN ◦ . . . ◦ T1 : {−1, +1}N → {−1, +1}N , where

Ti(σ) = sgn

⎛⎝ N∑
j=1

(W − aW 2)ij σj

⎞⎠ , i = 1, . . . , N.

Here W = (Wij) i=1,...N,
j=1,...N

is the matrix of the synaptic weights Wij defined according to the Hebb rule (3.1), and
a ∈ (0, 1) is a parameter. Amari and Yanai set Wii = 0 for all i = 1, . . . , N , but this minor difference becomes
negligible for N large and does not change the capacity. We will prove the following result, that was already
announced in [2].

Theorem 3.1. Under the hypotheses that the (ξμ
i )i,μ are i.i.d. random variables with

P(ξμ
i = +1) = P(ξμ

i = −1) =
1
2
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the following holds true:

(i) If a = 1
2 and M is such that M = c

N√
2 logN

, for some c ∈ (0, 1), then for any μ = 1, . . . , M ,

lim
N→+∞

P[T (ξμ) = ξμ] = 1.

(ii) If a ∈ (0, 1) )\{ 1
2} and M is such that M = c

N

log N
, for some c ∈ (0, (1−a)2

2(1−2a)2 ), then for any μ = 1, . . . , M ,

lim
N→+∞

P[T (ξμ) = ξμ] = 1.

Remarks 3.2. (1) The dynamics proposed by Amari and Yanai is in fact related to the pseudo-inverse
learning rule, also called projection learning rule ([12,13,19]). The idea of this learning rule is to search a
matrix C which guarantees the stability of all original patterns through the strong conditions Cξμ = ξμ,
for all μ = 1, . . . , M . This can be written equivalently as Cξ = ξ, where ξ is the matrix N × M with
columns ξμ = (ξμ

i )i=1,...,N , μ = 1, . . . , M . A non-trivial solution is the orthogonal projection matrix
into the subspace spanned by the vectors ξμ, μ = 1, . . . , M , which can be written as C = ξξ+, where
ξ+ is the Moore-Penrose pseudoinverse of ξ. Some papers, based on not totally rigourous techniques
and simulations, indicate that this rule allows a higher capacity than the classical Hebbian learning rule
(see [12,13,19]). But theoretically, this rule involves calculating the inverse of a M × M matrix to get
the pseudoinverse matrix. To avoid matrix inversion, it is possible to consider iterative algorithms. For
instance, a Neumann-type expansion for ξ+ is a series representation of ξ+ analogous to the Neumann
expansion for the inverse of a non-singular matrix (see e.g. [4,31]):

ξ+ = α
∞∑

k=0

(I − αξT ξ)k ξT ,

for α ∈]0, mindii �=0 2/|dii|2[, where D = (dij) is the diagonal matrix in the singular value decomposition
of ξ and ξT is the transpose of ξ. Truncating the series to the second term, we get

C = ξξ+  C(2) := 2α(W̃ − α

2
W̃ 2),

where W̃ = NW and the dynamics

Ti(σ) = sgn

⎛⎝ N∑
j=1

C
(2)
ij σj

⎞⎠ , i = 1, . . . , N

coincides with the dynamics proposed by Amari and Yanai.
(2) In the case a ∈ (0, 1) )\{ 1

2}, the capacity is of the same order as for the classical Hopfield model (a = 0),
with a larger constant for a ∈ (0, 2/3).

(3) In the same paper, Amari and Yanai consider also the following dynamics:

Ti(σ) = sgn

⎛⎝ N∑
j=1

Wijσj +
N∑

j=1

Wijf

(
N∑

k=1

Wjkσk

)⎞⎠ , i = 1, . . . , N

where f(u) = −au − (1 − 2a) sgn(u), for u ∈ R, a > 0. They assert that the capacity is N√
2 log N

,
independently of a. However, the situation is mathematically much more complicated, resembles in a
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way the HD-PIC systems from the previous sections and cannot be analyzed with the help of Theorem 4.1
in Section 4.

Proof. Without loss of generality, we may consider μ = 1. We can also replace everywhere ξ1
i ξμ

i by ξμ
i for all

i = 1, . . . , N and μ = 2, . . . , M for the same reasons as in the previous section. Then we have

P[T (ξ1) �= ξ1] ≤ N P
[
T1(ξ1) �= ξ1

1

]
≤ N P

⎡⎣ N∑
j=1

W1j − a

N∑
j=1

W1j

N∑
k=1

Wjk ≤ 0

⎤⎦.

This last event can be rewritten as

AN + BN

N∑
k=2

M∑
μ=2

ξμ
1 ξμ

k − a

N2

M∑
μ=2

⎛⎝ N∑
j=1

ξμ
j

⎞⎠2

− a

N2

N∑
j=2

M∑
μ1=2

N∑
k=2
k �=j

M∑
μ2=2

μ2 �=μ1

ξμ1
1 ξμ1

j ξμ2
j ξμ2

k ≤ 0,

with

AN = (1 − a)
(

1 +
M − 1

N

)
− a

(M − 1)2

N2

and

BN =
1 − 2a

N
− 3a

M − 1
N2

+
2a

N2
·

With this notation we obtain:

P[T1(ξ1) �= ξ1
1 ] ≤ P

⎡⎢⎣ a

N2

N∑
j=2

M∑
μ1=2

N∑
k=2
k �=j

M∑
μ2=2

μ2 �=μ1

ξμ1
1 ξμ1

j ξμ2
j ξμ2

k ≥ AN − δ

⎤⎥⎦
+P

⎡⎢⎣ a

N2

M∑
μ=2

⎛⎝ N∑
j=1

ξμ
j

⎞⎠2

≥ δ1

⎤⎥⎦ + P

[
−BN

N∑
k=2

M∑
μ=2

ξμ
1 ξμ

k ≥ δ2

]
,

with δ1 and δ2 strictly positive to be chosen later on and δ = δ1 + δ2 such that AN − δ > 0.
Note that, no matter whether M = cN/ logN or M = cN/

√
log N , M satisfies the conditions on k in

Theorem 4.1, if we set n = N .
For the first term, we have

P

⎡⎢⎣ a

N2

N∑
j=2

M∑
μ1=2

N∑
k=2
k �=j

M∑
μ2=2

μ2 �=μ1

ξμ1
1 ξμ1

j ξμ2
j ξμ2

k ≥ AN − δ

⎤⎥⎦ = P

⎡⎢⎣ a

N2

N∑
j=2

M∑
μ1=2

N∑
k=2
k �=j

M∑
μ2=2

μ2 �=μ1

ξμ1
j ξμ2

j ξμ2
k ≥ AN − δ

⎤⎥⎦,

and we apply Theorem 4.1 in the next section to get

P

⎡⎢⎣ a

N2

N∑
j=2

M∑
μ1=2

N∑
k=2
k �=j

M∑
μ2=2

μ2 �=μ1

ξμ1
j ξμ2

j ξμ2
k ≥ AN − δ

⎤⎥⎦ ≤ exp

(
− N2

2M2

(
AN − δ

a

)2

(1 + εN )

)
,

where εN → 0 as N → +∞.
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For the second term, we can prove as in the second part that we can find δ1 = O(M
N ) and a constant c1 > 0

such that

P

⎡⎢⎣ a

N2

M∑
μ=2

⎛⎝ N∑
j=1

ξμ
j

⎞⎠2

≥ δ1

⎤⎥⎦ ≤ exp(−c1M).

For the third term, the exponential Markov inequality together with

E

[
etξμ

i

]
= cosh(t) ≤ et2/2

gives

P

[
−BN

N∑
k=2

M∑
μ=2

ξμ
1 ξμ

k ≥ δ2

]
≤ exp

(
− δ2

2

2BN
2(M − 1)(N − 1)

)
·

The important fact is that for a = 1/2, BN is of order M/N2, while for a �= 1/2, BN is of order 1/N . We will
now treat the two cases separately.

• If a = 1/2, we get from the preceding estimates

P[T1(ξ1) �= ξ1
1 ] ≤ e−

N2

2M2 ((1−2δ)2+O( M
N ))(1+εN ) + e−c1M + e−

2
9 δ2

2 N3

M3 (1+ε′
N ).

If we choose M = c N√
2 log N

, δ2 = (log N)−1/8, then we get

P[T (ξ1) �= ξ1] ≤ Ne−
1
c log N(1+rN ) + Ne−c1M + Ne−c2(log N)5/4

,

with c1, c2 > 0 and rN such that rN → 0 as N → +∞. This implies that P [T (ξ1) �= ξ1] → 0 as
N → +∞ if c < 1.

• If a ∈ (0, 1 )\{ 1
2}, we get from the preceding estimations

P[T1(ξ1) �= ξ1
1 ] ≤ e−

N2

2M2 (
1−a−δ2

a +O( M
N ))2(1+εN ) + e−c1M + e−

1
2(1−2a)2

δ2
2 N

M (1+ε′
N )

. (3.2)

The third summand is the dominating term in (3.2). Therefore

P[T (ξ1) �= ξ1] ≤ Ne−
1

2(1−2a)2
δ2

2 N
M (1+r′

N )
,

with r′N such that r′N → 0 as N → +∞. This implies that

P[T (ξ1) �= ξ1] → 0 as N → +∞,

if M = c3N/ logN and c3 < δ2
2

2(1−2a)2 . Taking into account the constraint δ2 < 1 − a + O(M
N ), we can

choose any c3 < (1−a)2

2(1−2a)2 for N large enough. �

4. A useful moderate deviations result

In order to present a unifying framework for both applications in Sections 2 and 3, let us introduce an array
of i.i.d. binary random variables (Aj

i ), i = 1, . . . , n, j = 1, . . . k with

P(Aj
i = 1) = P(Aj

i = −1) =
1
2

for all i, j.
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The quantity of interest is

Ξn :=
n∑

i1=1

n∑
i2=1
i2 �=i1

k∑
j1=1

k∑
j2=1

j2 �=j1

Aj1
i1

Aj1
i2

Aj2
i2

.

Note that
E[Ξn] = 0 for all n.

We analyze the moderate deviations of Ξn on the scale 1
n2 , i.e., we consider

Xn :=
1
n2

Ξn.

Note that the scale for a Law of Large Numbers and hence for a large deviation principle is 1
n2k2 , while a Central

Limit Theorem for Ξn holds on a scale 1
nk (cf. [11]). Hence we are genuinely in a moderate deviations regime

as long as k = o(n). Presumably, the techniques presented here will also be sufficient to analyze the moderate
deviations of Ξn on other scales, but this is not needed for the applications presented above. In fact, we shall
prove the following result.

Theorem 4.1. For Xn defined as above and k ≥ nβ for some 14
15 < β < 1, but k = o(n), and all γ > 0, the

following moderate deviations principle holds true

lim
n→∞

k2

n2
log P[Xn ≥ γ] = −γ2

2
·

In particular, we obtain that for n large enough,

P[Xn ≥ γ] ≤ 2 e−
γ2

2
n2

k2 . (4.1)

Remarks 4.2. • Note that the moderate deviations principle in Theorem 4.1 is the same as for a sum
n2k2 independent random variables scaled by a factor 1/n2. In this respect, the correlation of the
summands in Ξn is relatively weak.

• For k too small the estimate in (4.1) in Theorem 4.1 is certainly wrong. For example, it was shown by
van der Hofstad and Klok [42] that for k = 2 the speed of convergence is O(e−cn) for some constant
c > 0 rather than O(e−cn2

). This could also be expected, since for k = 2, Ξn is close to a U-statistics
and we are in a large deviations regime. Is is well known that for U-statistics the speed of convergence
in the large deviations principle is the number of free variables, hence n rather than n2 (see e.g. [14]).
An interesting open question would therefore be to find an optimal bound on β that guarantees that
the estimates of Theorem 4.1 and Lemma 4.3 below remain true. In the context of this paper we did
not bother much about such an estimate, since in our applications k are always of the order k = κn√

log n

for some κ > 0, and then the estimates of Theorem 4.1 are certainly true.

The proof of Theorem 4.1 relies on the following lemma.

Lemma 4.3. For p = O(n2

k2 ) an even integer and k ≥ nβ for some β > 14
15 , but k = o(n), it holds

E

⎡⎢⎣
⎛⎜⎝ 1

n2

n∑
i1=1

n∑
i2=1
i2 �=i1

k∑
j1=1

k∑
j2=1

j2 �=j1

Aj1
i1

Aj1
i2

Aj2
i2

⎞⎟⎠
p⎤⎥⎦ =

p!
2p/2(p/2)!

kp

np
(1 + εn,p), (4.2)

where limn→∞ εn,p = 0.
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Proof. The sum

Ξn =
n∑

i1=1

n∑
i2=1
i2 �=i1

k∑
j1=1

k∑
j2=1

j2 �=j1

Aj1
i1

Aj1
i2

Aj2
i2

can be written as
Ξn =

∑
a∈A

Ya,

where

A = {a = (i1, i2, j1, j2) ∈ {1, . . . , n} × {1, . . . , n} × {1, . . . , k} × {1, . . . , k}, i1 �= i2, j1 �= j2}

and
Ya = Aj1

i1
Aj1

i2
Aj2

i2

(these Y ′s should, of course, not be confused with those occurring in the introduction).
Then

(Ξn)p =
∑

a1,··· ,ap∈A
Ya1 . . . Yap .

Now suppose that p is even. Then
E[Ya1 · · ·Yap ] = 1,

if and only if all the Aj
i appear in the product with an even exponent, and

E[Ya1 · · ·Yap ] = 0

in all other cases.
We will show that the dominating term of E[(Ξn)p] (in n and k) corresponds to the cases where the indices

a1, . . . , ap are themselves paired. As there are p!
2p/2(p/2)!

many pairings of 1, . . . , p and each of the ai’s can be
taken from A, a set of size (slightly less than) n2k2, we have that the total contribution of terms stemming from
paired indices a1, . . . , ap is (less than)

p!
2p/2(p/2)!

kpnp.

However, also other terms add to this sum, which is to say: the Aj
i can occur in pairs, even though the Ya are

not paired. One simple example for p = 4 is the following collection of a′
is:

a1 = (1, 2, 1, 2), a2 = (1, 2, 1, 3), a3 = (1, 2, 4, 2), a4 = (1, 2, 4, 3).

However, for such cases there are additional constraints on the i and j, and it will turn out that their contribution
is of lower order.

For Ya = Aj1
i1

Aj1
i2

Aj2
i2

and Ya′ = A
j′1
i′1

A
j′1
i′2

A
j′2
i′2

, we distinguish 3 types of partial or total pairings between these
two terms:

(1) i1 = i′1, i2 = i′2, j1 = j′1 and j2 = j′2. This is the case of a total pairing, i.e. Ya and Ya′ coincide.
(2) The second type consists of partial pairings where two variables Aj

i of Ya are paired respectively with
two variables of Ya′ . This can occur under one of the following constraints:

– i1 = i′1, i2 = i′2, j1 = j′1;
– i1 = i′2, i2 = i′1, j1 = j′1;
– i1 = i′2, i2 = i′1, j1 = j′2 and j2 = j′1;
– i2 = i′2, j1 = j′1 and j2 = j′2;
– i2 = i′2, j1 = j′2 and j2 = j′1.
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(3) The third type consists of partial pairings where a single variable Aj
i in the product constituting Ya

is paired with one variable of Ya′ . This can occur only under a constraint of the form: ie = i′f , and
jg = j′h, where e, f, g, h ∈ {1, 2}. More precisely, the nine possible cases which produce such a pairing are:

– i1 = i′1, j1 = j′1;
– i1 = i′2, j1 = j′1;
– i1 = i′2, j1 = j′2;
– i2 = i′1, j1 = j′1;
– i2 = i′2, j1 = j′1;
– i2 = i′2, j1 = j′2;
– i2 = i′1, j2 = j′1;
– i2 = i′2, j2 = j′1;
– i2 = i′2, j2 = j′2.

Now consider (Ξn)p. As Ξn consists of two sums with indices in {1, . . . , n} and two sums with indices in
{1, . . . , k} the p′th power (Ξn)p consists of 2p sums with indices varying from 1 to n and 2p sums with indices
varying from 1 to k. In order to give a non-zero contribution to the expectation these sums have to be at least
partially overlapping. But, if the variables Ya are partially or totally paired, this reduces the number of such
sums. More precisely, we have

E[(Ξn)p] ≤
∑

p1,p2,p3≥0,

3p1+2p2+p3= 3
2 p

N(p1, p2, p3) n2p−2p1−p2−p3 k2p−2p1−2p2−p3 , (4.3)

where pi is the number of pairings of type i (i = 1, 2, 3) and N(p1, p2, p3) is the number of ways to pair the 3p

variables Aj
i such that there are p1 pairings of the Ya’s of type 1, p2 pairings of the Ya’s of type 2 and p3 pairings

of the Ya’s of type 3. Once p1, p2, p3 are fixed, the number of constraints implying equalities between different
indices il and different indices jl is known. Then, if we have bounds u(p1, p2, p3) and v(p1, p2, p3) for the number
of free sums from 1 to n and the number of free sums from 1 to k respectively, N(p1, p2, p3) nu(p1,p2,p3) kv(p1,p2,p3)

will bound the number of terms of type “(p1, p2, p3)” appearing in E[(Ξn)p].
In fact, we can prove that nu(p1,p2,p3) kv(p1,p2,p3) ≤ n2p−2p1−p2−p3 k2p−2p1−2p2−p3 . Indeed, there are 3p

random variables Aj
i in each summand of (Ξn)p. These variables have to be organized in such a way that each

Aj
i occurs an even number of times. These pairings of the Aj

i can be represented as 3p/2 “edges” in a graph
with vertices (i, j). By definition of the different types,

• for each pairing of type 1, we have 3 edges – we connect (i1, j1) to (i′1, j′1), (i2, j1) to (i′2, j′1), and (i2, j2)
to (i′2, j

′
2);

• for a pairing of type 2, there are 2 edges (for instance, in the first case, (i1, j1) is connected to (i′1, j
′
1)

and (i2, j1) to (i′2, j
′
1));

• for a pairing of type 3, there is one edge.

Since in total there are 3
2p pairings, we obtain

3p1 + 2p2 + p3 = 3/2p.

Moreover, each pairing eliminates one of the sums: for a pairing of type 1, the condition i′1 = i1 eliminates the
summation over i′1 (the index i1 runs from 1 to n, but i′1 then is fixed). Similarly, in the same case, the sums
over i′2, j

′
1 and j′2 can be eliminated.
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For a pairing of type 2, at least three sums can be eliminated:

(a) one sum over an index “i” and two sums over indices “j”;
or

(b) two sums over indices “i” and one sum over an index “j”;
or

(c) two sums over indices “i” and two sums over indices “j”.

Let p2,l for l ∈ {a, b, c} the number of pairings of the three different cases (a), (b), (c), respectively. Trivially
p2 = p2,a + p2,b + p2,c.

For a pairing of type 3, one sum over an index “i” and one sum over an index “j” disappear.
Following these lines, the number of summations over indices “i” (running from 1 to n), which is a priori 2p

in (Ξn)p becomes 2p− 2p1 − p2,a − 2p2,b − 2p2,c − p3. In the same way, the number of summations over indices
“j” (running from 1 to k) is reduced from 2p to 2p− 2p1 − 2p2,a − p2,b − 2p2,c − p3. Since k ≤ n, we have that

n−2p2,bk−p2,b ≤ n−p2,bk−2p2,b

which explains the bound n2p−2p1−p2−p3k2p−2p1−2p2−p3 in (4.3).
Now one checks that the dominating term (in n and k) in (4.3) is obtained by setting p1 = p

2 and p2 = p3 = 0.
One then obtains terms of order O(npkp) (and this is the only way to obtain terms of that size). We can therefore
estimate the expectation of (Ξn)p by

E[(Ξn)p] ≤ p!
2p/2(p/2)!

kpnp(1 + εn,p),

with

εn,p =
∑

p1,p2,p3≥0,p1≤ p
2 −2,

3p1+2p2+p3=3
2 p

2p/2(p/2)!
p!

N(p1, p2, p3) np−2p1−p2−p3 kp−2p1−2p2−p3

≤
p/2−2∑
p1=0

(
p

2p1

)
(2p1)!
2p1p1!

2p/2(p/2)!
p!

∑
p2,p3≥0,

3p1+2p2+p3= 3
2 p

N ′(p2, p3) n−p/2+p1+p2 k−p/2+p1 .

In the latter inequality,
(

p
2p1

)
counts the number of possible choices of 2p1 indices amongst p and we use the

fact that there are (2p1)!
2p1p1!

many pairings of 1, . . . , 2p1. Moreover, we exploit

p3 =
3
2
p − 3p1 − 2p2

to simplify the exponents of n and k. Now, if there are p1 pairings of type 1, the remaining q := p− 2p1 factors
Ya have to be such that all Aj

i composing their product are paired. The factor N ′(p2, p3) is the number of ways
to pair these 3q variables Aj

i with p2 pairings of the Ya’s of type 2 and p3 pairings of type 3. A trivial bound
for N ′(p2, p3) is

N ′(p2, p3) ≤ (3q)3q.

Moreover p2 ≤ q/2, which implies

n−p/2+p1+p2 k−p/2+p1 ≤ k−q/2.
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Putting things together and taking into account that there are at most p3 possible choices for p1, p2, p3, this
means

εn,p ≤ p3 max
p1=0,...,p/2−2

2p/2−p1
(p/2)!

(p − 2p1)!p1!

(
(p − 2p1)3√

k

)p−2p1

·

Estimating
(p/2)!

(p − 2p1)!p1!
≤ (p/2)!

p1!
≤

(p

2

)p/2−p1

,

implies

εn,p ≤ p3 max
p1=0,...,p/2−2

(√
p
(p − 2p1)3√

k

)p−2p1

= p3 max
u=4,6,8...,p

(
u3

√
p

k

)u

.

Now, the function g : u �→ exp(u log(u3
√

p
k )) is strictly decreasing on the interval [4, 1

e (k
p )1/6]. If k ≥ nβ for

some β in (14
15 , 1) and p = O(n2

k2 ), then 1
e (k

p )1/6 > p for n large enough. Therefore,

max
u=4,6,8...,p

(
u3

√
p

k

)u

= g(4) = 412 p2

k2
,

and

εn,p ≤ 412 p5

k2
·

Therefore, εn,p → 0 as n goes to infinity, for p = O(n2

k2 ) and k ≥ nβ for some β in (14
15 , 1). �

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. For the upper bound, we apply a Chebyshev-Markov inequality (with the increasing
function x �→ xp for an even p) together with a technique introduced by Rio [40], p. 44. To this end recall that
p = O(n2

k2 ) and k ≥ nβ for some 14
15 < β < 1, but k = o(n), such that we can apply the previous lemma. The

announced inequality yields for each γ > 0

P[Xn ≥ γ] ≤ γ−2p
E[(Xn)2p]

≤ γ−2p (2p)!
2pp!

(
k

n

)2p

(1 + εn,2p) (4.4)

where the first bound follows from a Chebyshev type inequality, while the second uses Lemma 4.3. Now dividing
the Stirling approximation for (2p)! by the Stirling approximation for p! we see that for large enough p:

(2p)!
2pp!

≈
(

2p
e

)2p √
2p

2p
(

p
e

)p √
p

=
√

2(2p/e)p. (4.5)

Inserting this into (4.4) we obtain

P[Xn ≥ γ] ≤ γ−2p
√

2(2p/e)p

(
k

n

)2p

(1 + εn,2p).
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Putting

s :=
γ2

2
n2

k2
,

and taking logarithms we arrive at

s + log P[Xn ≥ γ] ≤ s − p − p log
(

s

p

)
+ log

√
2 + log(1 + εn,2p).

Now choose p = int(s + 1
2 ), where int(x) is the integer part of x. Note that this choice implies that indeed

p = O(n2

k2 ) and that

s ∈
[
p − 1

2
, p +

1
2

]
.

Let

fp(s) := s − p − p log
(

s

p

)
·

One easily sees that fp is convex, f ′′
p is decreasing on [p − 1

2 , p + 1
2 ] and therefore

fp(s) ≤ fp(p − 1
2
) = −1

2
+ p log(

2p

2p − 1
) ≤ −1

2
+ log 2,

the latter since x �→ x log 2x
2x−1 is decreasing on [1, +∞).

Hence, we obtain

s + log P[Xn ≥ γ] ≤ 3 log 2 − 1
2

+ log(1 + εn,2p),

which implies

P[Xn ≥ γ] ≤ 2 e−s (4.6)

for n large enough. By the definition of s, this is exactly what we claimed for the upper bound.
The proof of the lower bound is based on the construction of a transformed measure, similarly as in the proof

of Lemma 2.3 in [22], by König and Mörters. We define for any positive integer p the measure

dP̂2p(x) :=
x2p

Z2p
dP

Xn(x),

where Z2p =
∫

x2pdP
Xn . Moreover, define the random variable Wn = log(|Xn|/γ). We first prove that for

p = int(γ2

2
n2

k2 ) and all ε > 0,
lim

n→+∞ P̂2p[|Wn| ≤ ε] = 1.

To prove this, we consider an arbitrary ε > 0 and some small real α > 0 such that pα is an integer. Then, by
the Markov inequality, we get

P̂2p[Wn ≥ ε] = P̂2p[(Xn)2pα ≥ γ2pαe2pαε] ≤ γ−2pαe−2pαε
Ê2p((Xn)2pα).

By definition of P̂2p, we have

Ê2p((Xn)2pα) =
Z2p(1+α)

Z2p
·

Using our Lemma 4.3 and Stirling’s formula, we see that

Ê2p((Xn)2pα) =
(

2p

e

)αp

(1 + α)(1+α)p

(
k

n

)2αp

(1 + rn),
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where rn → 0 as n → +∞. We deduce that

P̂2p[Wn ≥ ε] ≤ exp
(

αp

(
−1 − 2ε +

1 + α

α
log(1 + α) + log

(
2pk2

γ2n2

)))
(1 + rn).

Choosing p = int(γ2

2
n2

k2 ), we get for n large enough

P̂2p[Wn ≥ ε] ≤ C exp
(

αp

(
−1 − 2ε +

1 + α

α
log (1 + α)

))
,

for some constant C > 0. For a given ε > 0, we can choose α > 0 (depending on p) small enough, such that the
term inside the exponential is strictly negative and αp is an integer going to infinity as n goes to infinity. For
instance, we choose α = int(

√
p)/p for p large enough. This implies that limn→∞ P̂2p[Wn ≥ ε] = 0.

Similarly, one shows that
lim

n→∞ P̂2p[Wn ≤ −ε] = 0.

Now, we can finish the proof of the lower bound. Let ε > 0 arbitrarily fixed. We have then

P[Xn ≥ γe−ε] =
1
2

P[|Xn| ≥ γe−ε]

≥ 1
2

P[|Wn| ≤ ε]

=
1
2

Z2p Ê2p((Xn)−2p1{|Wn|≤ε})

≥ 1
2

Z2p e−2pε γ−2p
P̂2p[|Wn| ≤ ε].

Choosing p = int(γ2

2
n2

k2 ) and using our Lemma 4.3 and Stirling’s formula to estimate Z2p, we get

P[Xn ≥ γe−ε] ≥
√

2
2

e−
γ2

2
n2

k2 (1+2ε)
P̂2p[|Wn| ≤ ε] (1 + rn),

from which we deduce

lim inf
n→∞

k2

n2
log P[Xn ≥ γe−ε] ≥ −γ2

2
(1 + ε).

Since we can take ε > 0 arbitrarily small, we get the lower bound. �
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