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PENALISATIONS OF MULTIDIMENSIONAL BROWNIAN MOTION, VI

Bernard Roynette1, Pierre Vallois1 and Marc Yor2, 3

Abstract. As in preceding papers in which we studied the limits of penalized 1-dimensional Wiener
measures with certain functionals Γt, we obtain here the existence of the limit, as t → ∞, of
d-dimensional Wiener measures penalized by a function of the maximum up to time t of the Brownian
winding process (for d = 2), or in d ≥ 2 dimensions for Brownian motion prevented to exit a cone before
time t. Various extensions of these multidimensional penalisations are studied, and the limit laws are
described. Throughout this paper, the skew-product decomposition of d-dimensional Brownian motion
plays an important role.
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1. Introduction

a) Let {Ω, (Xt,Ft)t≥0,F∞, Px} denote the canonical d-dimensional Brownian motion with dimension d ≥ 2.
Ω is the space of continuous functions defined on R+, and taking values in Rd, (Xt, t ≥ 0) is the coordinate
process on Ω and (Ft)t≥0 its natural filtration, F∞ =

∨
t≥0 Ft, and Px denotes the Wiener measure on (Ω, F∞)

such that Px(X0 = x) = 1.

b) We consider (Γt, t ≥ 0) an R+-valued, (Ft) adapted process such that: 0 < Ex[Γt] < ∞. Our aim in this
work is to show the existence and some properties of the limit, as t→ ∞, of P (t)

x , which is defined by:

P (t)
x (Λ) :=

Ex[1ΛΓt]
Ex[Γt]

(Λ ∈ F∞), (1.1)

for a certain process (Γt).
In a series of preceding papers ([11–13,16–18]), we have shown that for a large class of processes (Γt, t ≥ 0),

one has:
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i) for every s ≥ 0, and every Λs ∈ Fs,

lim
t→∞P (t)

x (Λs) exists. (1.2)

ii) this limit is of the form
Ex[1Λs M

Γ
s ], (1.3)

where (MΓ
s , s ≥ 0) is a ((Fs)s≥0, Px) R+-valued martingale.

A survey of our main results involving various processes (Γt) is given in [15]; see also [14] for some comple-
ments.

Our main tool used to prove (1.2) and (1.3) is the following

Theorem 1.1. Assume that, for every fixed s ≥ 0:

Ex[Γt|Fs]
Ex[Γt]

→
t→∞ MΓ

s a.s. (1.4)

and
Ex[MΓ

s ] = 1. (1.5)

Then:
(1) ∀ s ≥ 0, ∀Λs ∈ Fs

Ex[1Λs Γt]
Ex[Γt]

→
t→∞ Ex[1Λs M

Γ
s ] (1.6)

(2) (MΓ
s , s ≥ 0) is a ((Fs)s≥0, Px) R+-valued martingale such that MΓ

0 = 1.

The proof of Theorem 1.1 – which is true independently of this Brownian scheme and, in particular, of the
dimension d – is quite elementary. It hinges upon Scheffé’s lemma (see [5], p. 37, T21).
c) We now assume that the hypotheses of Theorem 1.1 are satisfied. Then, the formula:

Qx(Λs) = Ex[1Λs M
Γ
s ], s ≥ 0, Λs ∈ Fs (1.7)

induces a family of probabilities (Qx, x ∈ Rd) on the canonical space (Ω, F∞). In the articles ([11–13,16–18]),
we described precisely the main properties of the canonical process (Xt, t ≥ 0) under Qx. The aim of the
present work is to study several penalisations with respect to (Γt, t ≥ 0) in a multidimensional framework, i.e.:
we assume d ≥ 2.
d) For this purpose, for x �= 0, we shall use the skew-product decomposition of (Xt, t ≥ 0):

Xt = RtΘHt , (1.8)

where
(i) (Θu, u ≥ 0) is a Brownian motion on the unit sphere Sd−1 in Rd. Recall that (Θu, u ≥ 0) is the diffusion

process with the infinitesimal generator
1
2
Δ̃, where Δ̃ denotes the Laplace-Beltrami operator on Sd−1;

(ii) the process (Rt := |Xt|, t ≥ 0) is a Bessel process with dimension d, or index ν = d
2 − 1 which is

independent from (Θu, u ≥ 0);

(iii) Ht =
∫ t

0

ds
R2
s

·
When d = 2, formula (1.8) may be written:

Xt = Rt exp (iβHt) (1.9)
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where, now (βu, u ≥ 0) is a standard real-valued Brownian motion, independent from (Rt, t ≥ 0), a two
dimensional Bessel process. The process

θt := βHt = θ0 + Im
(∫ t

0

dXs

Xs

)
, t ≥ 0,

shall be called the winding process of X around 0. (We may choose θ0 ∈ [0, 2π), with x = |x| exp(iθ0)).
e) Notation: Throughout the paper, we shall use the notation (Xu;u ≥ 0) for the process X indexed by u ∈ R+

or (X(u);u ≥ 0) when the latter notation may be more convenient.
f) The paper is organized as follows: it is devoted to the penalisations of d-dimensional Brownian motion by
the functionals (Γt, t ≥ 0), displayed below in (1.10)–(1.12).

(i) In Section 2 we restrict ourselves to d = 2. We first consider in Theorem 2.1 the case where Γt is a
function of the one-sided maximum of the winding process:

Γt = ϕ(Sθt ) with Sθt = sup
s≤t

θs = sup
s≤t

βHs . (1.10)

We also study in Theorem 2.9 the penalisation with the more general functionals

Γt = ϕ(Sθt ) exp (−λ(Sθt − θt)), (1.11)

for some Borel function ϕ : R+ → R+, and λ ≥ 0 (see also Th. 2.14).
(ii) Section 3 is devoted to the penalisations related to a cone C in Rd with d ≥ 2. More precisely, if C is

a cone with vertex the origin, and basis O (where O is an open set of the unit sphere Sd−1), we study
the penalisation with:

Γt = 1{TC>t} exp
(γ

2
Ht + ρRt

)
(γ ∈ R, ρ ≥ 0) (1.12)

where TC = inf{u ≥ 0 : Xu /∈ C} is the exit time of the cone C.
At the end of Section 3, we study the case when d = 2, and the functional Γt equals f(θt, θt), with

θt = Sθt = sups≤t θs, θt = infs≤t θs.
Thus, Γt is a function of the maximum and minimum of the winding process. In fact, we only study

the particular case: f(s, i) = 1s≤α1, i>α0 , with: α0 < 0 < α1.
g) Another penalisation study for Brownian motion in R2 is discussed in [10]; it involves the penalisation process:

Γt := exp
(
−1

2

∫ t

0

V (Xs)ds
)

(1.13)

where V is a function with compact support from R2 to R+. Note that such penalisations have been studied
in [12], when (Xs, s ≥ 0) is a 1-dimensional Brownian motion, or more generally, a Bessel process with index
μ ∈] − 1, 0[. Thus, our extension in [10] complements the Bessel studies in [12] and corresponds to the case
μ = 0.

2. Penalisation with a function of the one-sided maximum of the continuous
winding of planar Brownian motion

a) We keep the notation from the Introduction. We write the skew-product representation of the canonical
2-dimensional Brownian motion (Xt), starting at x �= 0, as:

Xt = Rt exp (iβHt), t ≥ 0, (2.1)
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where:

• Rt = |Xt| is a 2-dimensional Bessel process starting

at r = |x| i.e.: d = 2, ν = 0 is the corresponding Bessel index; (2.2)

• Ht =
∫ t

0

ds
R2
s

; (2.3)

• (βu, u ≥ 0) is a linear Brownian motion; (2.4)

• the processes (βu, u ≥ 0) and (Rt, t ≥ 0) are independent. (2.5)

In fact,
θt := βHt , t ≥ 0, (2.6)

is the process of continuous windings of (Xt, t ≥ 0) around 0; we denote:

Sθt = sup
s≤t

θs ≡ sup
u≤Ht

(βu) (2.7)

the one-sided maximum process of θ.

b) Let ϕ : R+ → R+ a Borel function such that
∫ ∞

0

ϕ(y)dy = 1, and define

Φ(u) =
∫ u

0

ϕ(y)dy. (2.8)

We now describe the limiting laws obtained by the penalisations of Px with the functionals Γt = ϕ(Sθt ), t ≥ 0.

Theorem 2.1. 1) Suppose that the starting point x is a positive real number; we take β0 = 0. Let ϕ as above.
For every s ≥ 0, and Λs ∈ Fs,

lim
t→∞

Ex[1Λsϕ(Sθt )]
Ex[ϕ(Sθt )]

exists. (2.9)

2) This limit is equal to
Ex[1ΛsM

ϕ
s ] (2.10)

where:
Mϕ
s = ϕ(Sθs )(S

θ
s − θs) + 1 − Φ(Sθs ). (2.11)

Moreover, (Mϕ
s , s ≥ 0) is a ((Fs, s ≥ 0), Px) positive martingale which converges to 0 Px a.s., as s→ ∞.

3) The formula
Qϕx(Λs) = Ex[1ΛsM

ϕ
s ] (2.12)

induces a probability on (Ω,F∞). Under Qϕx (x �= 0), the canonical process (Xt, t ≥ 0) satisfies:
(i) the random variable Sθ∞ is finite a.s. and admits ϕ as its probability density;
(ii) let g̃ = inf{s ≥ 0 : Sθs = Sθ∞} = sup{s ≥ 0 : θs = Sθ∞}, then, Qϕx(0 < g̃ <∞) = 1;
(iii) the process (Xt, t ≥ 0) admits the skew-product representation (2.1), where:

(a) Rt := |Xt|, t ≥ 0, is a 2-dimensional Bessel process, independent from the process (βs, s ≥ 0),
(b) let (Au, u ≥ 0) denote the inverse of (Ht, t ≥ 0), i.e.: Au = inf{t : Ht > u} and define g = Ag̃,

then
i. (βs, s ≤ g) and (βg − βg+s, s ≥ 0) are independent;
ii. (βg − βg+s, s ≥ 0) is a 3-dimensional Bessel process;
iii. Conditionally on Sθ∞ = y, (βs, s ≤ g) is a Brownian motion considered up to the first time

when it reaches y.



156 B. ROYNETTE, P. VALLOIS AND M. YOR

Remark 2.2. To deal with any x ∈ R2, x �= 0, we should start with ϕ : R →]0,∞[ such that
∫

R

ϕ(y)dy = 1.

The associated function Φ is Φ(u) =
∫ u

−∞
ϕ(y)dy.

Note that when x = ρeiθ0 (0 ≤ θ0 < 2π) is the starting point of (Xt), then we take β0 = θ0. It can be shown
that (2.9) and (2.10) hold with:

Mϕ
s = [ϕ(Sθs )(S

θ
s − θs) + 1 − Φ(Sθs )]

1
1 − Φ (θ0)

· (2.13)

We state in Remark 2.8 below an extension of Theorem 2.1.
To prove Theorem 2.1, we first present two lemmas.

Lemma 2.3. Let (Rt, t ≥ 0)denote a 2-dimensional Bessel process starting from r �= 0, and Ht =
∫ t

0

ds
R2
s

·
Then, for every m > 0, one has:

Er

[(
log t

2
√
Ht

)m]
→
t→∞ E[|N |m] =

(
2m

π

) 1
2

Γ
(
m+ 1

2

)
(2.14)

where N denotes a standard centered Gaussian random variable.

Remark 2.4. Lemma 2.3 is in fact equivalent to the celebrated asymptotic result due to Spitzer ([19], see also
Durrett [2], and e.g. Pap-Yor [6], Pitman-Yor ([7,8]) for many complements):

2θt
log t

(law)→
t→∞ C, (2.15)

where C denotes a standard Cauchy variable.
In fact, due to the skew-product representation of (θt, t ≥ 0), (2.15) is equivalent to:

4Ht

(log t)2
(law)→
t→∞ T1

(law)
=

1
N2

(2.16)

and (2.14) expresses the convergence of negative moments of the LHS of (2.16) to the corresponding ones of the
RHS. (In (2.16), T1 denotes the first hitting time of level 1 by a standard Brownian motion starting from 0.)

Proof of Lemma 2.3. 1) We note:

αt =
(

log t
2

)2

(2.17)

and we use the “elementary identity”:

1
xm/2

=
1

Γ
(
m
2

) ∫ ∞

0

e−uxu
m
2 −1du, x > 0. (2.18)

Thus, we obtain:

Er

[(
log t

2
√
Ht

)m]
= Er

[(
αt
Ht

)m/2]
=

1
Γ
(
m
2

) ∫ ∞

0

Er

[
e−u

Ht
αt

]
u

m
2 −1du

=
1

Γ(m2 )2
m
2 −1

∫ ∞

0

vm−1Er

[
e−

ν2
t
2 Ht

]
dv, (2.19)
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where we have denoted: νt =
v

log
√
t
·

2) Let E(γ)
r be the expectation for a Bessel process with index γ, starting from r. Recall the absolute

continuity formula (see [9], Ex. 1.22, p. 450):

E(μ)
r

[
ξt exp

{
μ2 − ν2

2
Ht

}]
= E(ν)

r

[
ξt

(
r

Rt

)ν−μ]
, (2.20)

where ξt is any non-negative σ(Rs, s ≤ t)-measurable r.v.
Applying (2.20) with μ = 0, ν = νt, and ξt = 1 leads to:

E(0)
r

[
exp
{
−ν

2
t

2
Ht

}]
= E(νt)

r

[(
r

Rt

)νt
]
· (2.21)

Plugging (2.21) in (2.19) we obtain:

Er

[(
log t

2
√
Ht

)m]
=

1
Γ(m2 )2

m
2 −1

∫ ∞

0

vm−1ψ(v, t)dv, (2.22)

where:

ψ(v, t) := E(νt)
r

[(
r

Rt

)νt
]
· (2.23)

Using the scaling property of Bessel processes we get:

ψ(v, t) =
(
r√
t

)νt

E
(νt)

r/
√
t

[(
1
R1

)νt
]
· (2.24)

a) Since the density function of R1 under P (νt)

r/
√
t

is explicitly known (see for instance [9], p. 446), we have:

E
(νt)

r/
√
t

[(
1
Rt

)νt
]

=
∫ ∞

0

y exp

{
−1

2

(
y +

r√
t

)2
}(√

t

r

)νt

Iνt

(
ry√
t

)
dy, (2.25)

with

Iμ(z) =
(z

2

)μ ∞∑
k=0

1
Γ(k + 1)Γ(k + μ+ 1)

(z
2

)2k

· (2.26)

Since
lim
t→∞ νt = 0, (2.27)

it is easy to deduce from (2.26) that

lim
t→∞ y exp

{
−1

2

(
y +

r√
t

)2
}(√

t

r

)νt

Iνt

(
ry√
t

)
= ye−

y2

2 . (2.28)

It is clear that (2.26) implies that:

Iμ(z) ≤
(z

2

)μ
I0(z), (μ > 0, z > 0). (2.29)

Therefore, for any t ≥ 1, we have:
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y exp

{
−1

2

(
y +

r√
t

)2
}(√

t

r

)νt

Iνt

(
ry√
t

)
≤ 2
(y

2

)1+νt

I0(ry) e−
y2

2 . (2.30)

Since v is fixed and I0(z) ∼
z→∞

1√
2πz

e−z (cf. [4], p. 123), we may apply the dominated convergence theorem in

the right-hand side of (2.25):

lim
t→∞E

(νt)

r/
√
t

[(
1
Rt

)νt
]

=
∫ ∞

0

ye−
y2

2 dy = 1. (2.31)

Note that:

lim
t→∞

(
r√
t

)νt

= e−v. (2.32)

As a result:
lim
t→∞ψ(v, t) = e−v. (2.33)

b) Using the definition of νt, it is clear that:(
r√
t

)νt

≤ e−
v
2 , for any t ≥ r4. (2.34)

Note that 1 + νt ≤ 2 as soon as v ≤ log(
√
t), then, using (2.24), (2.25), (2.30) and (2.34), we get:

ψ(v, t) ≤ 2e−
v
2

∫ ∞

0

(1 + y)2I0(ry)e−
y2

2 dy

≤ Ke−
v
2 (v ≤ log(

√
t), t ≥ r4). (2.35)

Consequently, applying the dominated convergence theorem leads to:

lim
t→∞

∫ ∞

0

vm−1ψ(v, t)1{v≤log(
√
t)}dv =

∫ ∞

0

vm−1e−vdv. (2.36)

c) We claim that:

lim
t→∞

∫ ∞

0

vm−1ψ(v, t)1{v>log(
√
t)}dv = 0. (2.37)

We define:

A(t) :=
∫ ∞

0

vm−1ψ(v, t)1{v>log(
√
t)}dv.

Using Γ(k + νt + 1) ≥ Γ(νt + 1) (k ≥ 0) and (2.26) we get:

Iνt

(
ry√
t

)
≤ 1

Γ(νt + 1)

(
r√
t

)νt (y
2

)νt

exp
{
r2y2

2t

}
· (2.38)

Then, it is easy to deduce from (2.24), (2.25), (2.34) and (2.38) that:

A(t) ≤ 2
∫ ∞

0

vm−1

Γ(νt + 1)
e−

v
2 1{v>log(

√
t)}

×
(∫ ∞

0

(y
2

)1+νt

exp
{
−
(

1 − r2

2t

)
y2

2

}
dy
)

dv. (2.39)
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Let t ≥ r2, then 1 − r2

2t
≥ 1

2
and

A(t) ≤ 2
∫ ∞

0

vm−1

Γ(νt + 1)
e−

v
2 1{v>log(

√
t)}

(∫ ∞

0

(y
2

)1+νt

e−
y2

4 dy
)

dv

≤ 2
∫ ∞

0

vm−1 Γ(1 + νt/2)
Γ(νt + 1)

e−
v
2 1{v>log(

√
t)}dv

≤ 2
∫ ∞

0

vm−1e−
v
2 1{v>log(

√
t)}dv.

This shows (2.37).
d) Using (2.36) and (2.37) and passing to the limit in (2.22) as t→ ∞, we obtain:

lim
t→∞Er

[(
log t

2
√
Ht

)m]
=

1
Γ(m2 )2

m
2 −1

∫ ∞

0

vm−1e−v dv =
Γ(m)

Γ(m2 )2
m
2 −1

=
1√
π

2
m
2 Γ
(
m+ 1

2

)
= E(|N |m) (2.40)

from the Legendre duplication formula (see [4], p. 4); (2.40) is precisely the statement of Lemma 2.3. �

The next Lemma is a corollary of Lemma 2.3.

Lemma 2.5. For every integrable function Ψ : R+ → R+, one has:

lim
t→∞(log t)Ex

[
Ψ(Sθt )

]
=

4
π

∫ ∞

0

Ψ(y)dy. (2.41)

Proof of Lemma 2.5. The identity:

Ex
[
Ψ(Sθt )

]
= Ex

[
Ψ
(√

Ht |N |
)]

(2.42)

holds, since:
Sβu := sup

s≤u
βs (2.43)

is distributed as
√
u|N |, and (Ht, t ≥ 0) is independent from (βu, u ≥ 0). Hence:

(log t)Ex
[
Ψ(Sθt )

]
= (log t)

√
2
π

∫ ∞

0

e−z
2/2Ex

[
Ψ(z
√
Ht)
]
dz

= (log t)

√
2
π
Ex

[∫ ∞

0

1√
Ht

exp
{
− y2

2Ht

}
Ψ(y)dy

]
= 2

√
2
π

∫ ∞

0

Ex

[
Zt exp

{
− y2

2Ht

}]
Ψ(y)dy, (2.44)

where

Zt :=
log t

2
√
Ht

· (2.45)

We have: ∫ ∞

0

Ex

[
Zt exp

{
− y2

2Ht

}]
Ψ(y)dy = Ex [Zt]

∫ ∞

0

Ψ(y)dy + δ(t), (2.46)
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where

δ(t) :=
∫ ∞

0

Ex

[
Zt

(
exp
{
− y2

2Ht

}
− 1
)]

Ψ(y)dy. (2.47)

First, observe that Lemma 2.3 implies that

lim
t→∞Ex[Zt] =

√
2
π
· (2.48)

Next, we claim that:
lim
t→∞ δ(t) = 0. (2.49)

Applying Cauchy Schwarz inequality we obtain:∣∣∣∣∣Ex
[
Zt

(
exp
{
− y2

2Ht

}
− 1

)]∣∣∣∣∣ ≤ (Ex[Z2
t ]
)1/2(

Ex

[(
1 − exp

{
− y2

2Ht

})2
])1/2

·

According to Lemma 2.3, t �→ Ex[Z2
t ] is a bounded function. Since Ht →

t→∞ ∞ a.s., we may conclude that:

lim
t→∞

(
Ex[Z2

t ]
)1/2(

Ex

[(
1 − exp

{
− y2

2Ht

})2
])1/2

= 0.

It is now clear that (2.49) follows from the dominated convergence theorem.
As a result, (2.44), (2.46), (2.48) and (2.49) show (2.41). �

Corollary 2.6. Let ϕ as in Theorem 2.1 and Φ be defined by (2.8). Then:

lim
t→∞(log t)Px(Sθt < c) =

4
π
c (c > 0) (2.50)

and

lim
t→∞(log t)Ex

[
ϕ(a+ Sθt )1{Sθ

t>b−a}
]

=
4
π

(1 − Φ(b)) (b > a). (2.51)

Proof of Corollary 2.6. It is an immediate consequence of Lemma 2.5, which we apply by choosing as functions
Ψ respectively Ψ(u) = 1[0,c](u), and Ψ(u) = ϕ(a+ u)1[b−a,∞[(u). �

Remark 2.7. Note that the rates of decay of t→ Px(Sθt < c) and t→ P0(S
β
t < c) as t→ ∞ are very different

(due to the time-change (Ht)). Indeed, it is classical, and it has been used in [13] that:

lim
t→∞(

√
t)P0(S

β
t < c) = c

√
2
π
· (2.52)

Proof of Theorem 2.1. a) Let us first prove points 1) and 2) of Theorem 2.1.
For x �= 0, for every s ≥ 0,

E
[
ϕ(Sθt )|Fs

]
= A(Xs, θs, S

θ
s , t− s),

with:
A(y, a, b, u) = Ey

[
ϕ
(
b ∨ (a+ Sθu)

)]
.

Thus:
A(y, a, b, u) = ϕ(b)Ey

[
1{Sθ

u<b−a}
]
+ Ey

[
ϕ(a+ Sθu)1{Sθ

u>b−a}
]
.
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Hence, from Corollary 2.6:

E
[
ϕ(Sθt )|Fs

] ∼
t→∞

4
π
ϕ(Sθs )

(
(Sθs − θs) + 1 − Φ(Sθs )

) 1
log(t− s)

(2.53)

E
[
ϕ(Sθt )

] ∼
t→∞

4
π

1
log t

· (2.54)

Consequently (2.53) and (2.54) imply that (1.4) holds with Γt = ϕ(Sθt ) and MΓ
t = Mϕ

t , with Mϕ
t = ϕ(Sθt )(S

θ
t −

θt) + 1 − Φ(Sθt ).
It has been already proved (see Prop. 3.1 in [13]) that (Mϕ

t ) is Px-martingale. Therefore Ex [Mϕ
t ] = 1. This

shows (1.5). Applying Theorem 1.1 gives 1) and 2) of Theorem 2.1.
b) The end of the proof of Theorem 2.1 is then quite similar to that of Theorem 4.6 in [13], modulo the

change of clock (Ht, t ≥ 0). We refer the reader to that proof. �
Remark 2.8. We note that the penalisation with f(Sθt ) where (θt) denotes the winding number of our C-valued
Brownian motion Xt = Ut + iVt, t ≥ 0, is the limiting case of penalisations with respect to f(Sθ

(α)

t ), where:

θ
(α)
t :=

∫ t

0

UsdVs − dVsdUs
Rαs

, t ≥ 0,

for 0 < α < 2, for which the discussion is in fact easier than for α = 2.
We claim that Theorem 2.1 is still valid when Sθ is replaced by Sθ

(α)
.

Indeed, we still have:

θ
(α)
t = γ

(∫ t

0

R2(1−α)
s ds

)
,

where (γu) is a Brownian motion independent of (Rs, s ≥ 0), but now we also have:

Ex

[∫ t

0

R2(1−α)
s ds

]
∼

t→∞ Cα

∫ t

0

s1−αds =
Cα

2 − α
t2−α,

for an universal constant Cα, independent of the starting position x (which now may be taken equal to 0).
Moreover, for some probability density f : R+ → R+, we obtain, with the same kind of arguments as

previously:

Ex

[
f(Sθ

(α)

t )
]

∼
t→∞ C′

α

1
t1−α/2

, (2.55)

where C′
α is a universal multiple (depending on α) of E0

[(∫ 1

0

R2(1−α)
s ds

)−1/2
]
. Due to ([9], Cor. 1.12,

Chap. XI), it is easy to prove that the last expectation is finite.
Note that in the case α = 2, the rate of decay of Ex

[
f(Sθ

(α)

t )
]

is drastically different as (2.41) shows.
To be complete, it would be of some interest to consider also the penalisations with

exp
{
−
∫ t

0

R−α
s ds

}
, or f(Sθ

(α)

t ),

for α > 2. We leave this question to the interested reader.

The end of this section is devoted to two generalisations of Theorem 2.1. We start with the first one.
The notation is the same as previously. Let now ψ : R+ → R+ and λ > 0 such that:∫ ∞

0

(1 + λy)ψ(y)dy = 1. (2.56)
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We shall now study the penalisation with Γt = ψ(Sθt ) exp (−λ(Sθt −θt)) (Th. 2.1 corresponds to the case λ = 0).

Theorem 2.9. Suppose that x is a positive real number. Then, for every s ≥ 0, and Λs ∈ Fs,

Ex
[
1Λsψ(Sθt ) exp

{−λ(Sθt − θt)
}]

Ex
[
ψ(Sθt ) exp

{−λ(Sθt − θt)
}] →

t→∞ Ex[1ΛsM
ϕ
s ), (2.57)

with:

ϕ(y) = ψ(y) + λ

∫ ∞

y

ψ(u)du, y ≥ 0. (2.58)

Remark 2.10. It follows clearly from (2.56) that
∫ ∞

0

ϕ(y)dy = 1; moreover, Φ, the primitive of ϕ such that

Φ(0) = 0, satisfies:

1 − Φ(u) =
∫ ∞

u

ψ(y)(1 + λ(y − u))dy, u ≥ 0. (2.59)

Proof of Theorem 2.9. 1) Let a ∈ R, b ≥ a+(=max(a, 0)) and t ≥ 0. Define:

N(a, b, t) := ψ(b)e−λ(b−a)E
[
eλθt1(Sθ

t ≤b−a)
]

+E
[
ψ(a+ Sθt )e

−λ(Sθ
t −θt)1{Sθ

t>b−a}
]
. (2.60)

Since θt = βHt and (Ht, t ≥ 0) is independent from (βu, u ≥ 0), we obtain from the explicit knowledge ([9],
Ex. 3.14, Chap. III, see also [3]) of the law of the pair (Sβu := sups≤u βs, βu) under P0:

P0(Sβu ∈ dy, βu ∈ dx) =
2(2y − x)√

2π u3
e−

(2y−x)2

2u 1(x<y, y>0) dxdy, (2.61)

N(a, b, t) = E

[√
2
πξ3

{
ψ(b)e−λ(b−a)

∫ b−a

0

dy
∫ y

−∞
eλx (2y − x)e−

(2y−x)2

2ξ dx

+
∫ ∞

b−a
ψ(a+ y)dy

∫ y

−∞
e−λ(y−x) (2y − x)e−

(2y−x)2

2ξ dx
}]

,

with ξ = Ht.
Setting r = 2y − x in the last integral, we obtain:

N(a, b, t) = E

[√
2
πξ3

{
ψ(b)e−λ(b−a)

∫ b−a

0

e2λydy
∫ ∞

y

re−
r2
2ξ −λrdr

+
∫ ∞

b−a
ψ(a+ y)eλy

∫ ∞

y

re−
r2
2ξ −λrdr

}]
. (2.62)

But, from Lemma 2.3 we have:

lim
t→∞(log t)3E

[
1

H
3
2
t

]
= 16

√
2
π
· (2.63)

Using moreover the fact that Ht → ∞ as t→ ∞, we get:

lim
t→∞(log t)3N(a, b, t) := N †(a, b), (2.64)
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with:

N †(a, b) =
32
π

{
ψ(b)e−λ(b−a)

∫ b−a

0

e2λydy
∫ ∞

y

re−λrdr

+
∫ ∞

b−a
ψ(a+ y)eλydy

∫ ∞

y

re−λrdr
}

=
32
πλ2

{(
ψ(b) + λ

∫ ∞

b

ψ(y)dy
)

(b− a)

+
∫ ∞

b

ψ(y) (1 + λ(y − b)) dy
}

=
32
πλ2

((b − a)ϕ(b) + 1 − Φ(b)) (2.65)

(the notation (2.58) and property (2.59) have been used to obtain the last equality).
2) Then, conditioning with respect to Fs, and separating the cases when Sθt is attained before, or after s,
we obtain:

Ex

[
ψ(Sθt ) exp

{−λ(Sθt − θt)
} ∣∣∣Fs] = N(θs, Sθs , t− s).

From (2.64) and (2.65) we deduce:

N(θs, Sθs , t− s)
N(0, 0, t)

∼
t→∞

(
log t

log(t− s)

)3

[(Sθs − θs)ϕ(Sθs ) + 1 − Φ(Sθs )]

→
t→∞ (Sθs − θs)ϕ(Sθs ) + 1 − Φ(Sθs ) = Mϕ

s .

Theorem 2.1 implies that Ex[Mϕ
s ] = 1; thus, Theorem 2.9 follows directly from Theorem 1.1. �

We now prepare some material for our second generalisation of Theorem 2.1. The notation is the same as
previously. Let 0 < r < R two real numbers and define:

θ−,rt =
∫ t

0

1{Rs<r} dθs (2.66)

θ+,Rt =
∫ t

0

1{Rs>R} dθs (2.67)

H−,r
t =

∫ t

0

1{Rs<r}
ds
R2
s

(2.68)

H+,R
t =

∫ t

0

1{Rs>R}
ds
R2
s

· (2.69)

The process (θ−,rt , t ≥ 0) (resp. (θ+,Rt , t ≥ 0)) is the process of small (resp. big) windings.
The following result may be found in Pitman-Yor ([7]):

Theorem 2.11. The 4-dimensional vector:(
4

(log t)2
(H−,r

t , H+,R
t ),

2
log t

(θ−,rt , θ+,Rt )
)

converges in law,

as t→ ∞ to: (∫ T1

0

1{αs≤0}ds,
∫ T1

0

1{αs>0}ds, γ−
(∫ T1

0

1{αs≤0}ds

)
, γ+

(∫ T1

0

1{αs>0}ds

))
(2.70)
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where (α(t), t ≥ 0), (γ−(t), t ≥ 0) and (γ+(t), t ≥ 0) are three independent 1-dimensional Brownian motions
and T1 = T1(α) := inf{s ≥ 0;αs = 1}.

We shall use the following lemma, whose proof is postponed to the end of this subsection.

Lemma 2.12. Let (αs, s ≥ 0) be a real-valued Brownian motion starting from 0, and let T1 := inf{s;αs = 1}.
We denote:

A−
T1

:=
∫ T1

0

1{αs<0} ds, A+
T1

:=
∫ T1

0

1{αs>0} ds.

Then, for a, b ∈ R:
E[(A−

T1
)a(A+

T1
)b] <∞

if and only if: −1
2
< a <

1
2
·

Proposition 2.13. We define:

Sθ
−,r

t := sup
s≤t

θ−,rs , Sθ
+,R

t := sup
s≤t

θ+,Rs . (2.71)

Let ψ : R+×R+ → R+ be a Borel function such that
∫

R
2
+

ψ(u, v)du dv <∞. Let m, n two reals, with 0 < m < 1.

Then:

lim
t→∞

4m+n−1

(log t)2m+2n−2
Ex

[
(H−,r

t )m(H+,R
t )nψ(Sθ

−,r

t , Sθ
+,R

t )
]

=(
2
π

∫
R

2
+

ψ(u, v)du dv

)
E
[
(A−

T1
)m−1/2(A+

T1
)n−1/2

]
. (2.72)

Proof of Proposition 2.13. We may write θ−,rt = γ−
H−,r

t

, θ+,Rt = γ+

H+,R
t

, with γ− and γ+ two independent real

valued Brownian motions independent from (Rs, s ≥ 0). Thus:

Ex

[
(H−,r

t )m(H+,R
t )nψ(Sθ

−,r

t , Sθ
+,R

t )
]

= Ex

[
(H−,r

t )m(H+,R
t )nψ

(√
H−,r
t |N−|,

√
H+,R
t |N+|

)]
(where N− and N+ are two independent Gaussian variables,
independent from (Rs, s ≥ 0))

=
2
π

∫
R

2
+

e−
u2+v2

2 Ex

[
(H−,r

t )m(H+,R
t )nψ(

√
H−,r
t u,

√
H+,R
t v)

]
du dv

=
2
π

∫
R

2
+

ψ(u, v)du dv Ex

×
[
(H−,r

t )m−1/2(H+,R
t )n−1/2 exp

{
− u2

2H−,r
t

− v2

2H+,R
t

}]
,

and so, by Theorem 2.11 and Lemma 2.12 and because H−,r
t and H+,R

t converge a.s. to ∞ as t → ∞,
the quantity:

4m+n−1

(log t)2m+2n−2
Ex

[
(H−,r

t )m(H+,R
t )nψ(Sθ

−,r

t , Sθ
+,R

t )
]
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converges, as t→ ∞, to (
2
π

∫ ∞

0

∫ ∞

0

ψ(x, y)dxdy
)
E
[
(A−

T1
)m−1/2(A+

T1
)n−1/2

]
.

Note that E[(A−
T1

)m−1/2(A+
T1

)n−1/2] <∞ by Lemma 2.12, because 0 < m < 1 and so −1
2
< m− 1

2
<

1
2
· �

We may now state our second generalisation of Theorem 2.1.

Let ψ : R+ × R+ → R+ be integrable and:
∫ ∞

0

∫ ∞

0

ψ(u, v)du dv = 1.

We study penalisation by:
Γm,n,ψt := (H−,r

t )m(H+,R
t )nψ(Sθ

−,r

t , Sθ
+,R

t ), (2.73)
where n is real and 0 < m < 1.

Theorem 2.14. 1) For any s ≥ 0 and Λs ∈ Fs:

Q̃ψx (Λs) = lim
t→∞

Ex[1Λs Γm,n,ψt ]

Ex(Γ
m,n,ψ
t )

exists. (2.74)

2) This limit is equal to:
Q̃ψx (Λs) = Ex[1Λs M̃

ψ
s ] (2.75)

where:

M̃ψ
s = ψ(Sθ

−,r

s , Sθ
+,R

s )(Sθ
−,r

s − θ−,rs )(Sθ
+,R

s − θ+,Rs )

+
∫ ∞

Sθ−,r
s

dx
∫ ∞

Sθ+,R
s

ψ(x, y)dy

+(Sθ
−,r

s − θ−,rs )
∫ ∞

Sθ−,R
s

ψ(Sθ
−,r

s , y)dy

+(Sθ
+,R

s − θ+,Rs )
∫ ∞

Sθ+,r
s

ψ(x, Sθ
+,R

s )dx. (2.76)

3) (M̃ψ
s , s ≥ 0) is a positive martingale.

4) The formula (2.74) induces a probability on (Ω,F∞). Under Q̃ψx , the couple (Sθ
−,r

∞ , Sθ
+,R

∞ ) is finite a.s. and
admits ψ as its probability density.

Note the remarkable feature that the martingale (M̃ψ
s , s ≥ 0) and the probability Q̃ψx do not depend on m, n.

Proof of Theorem 2.14. The proof of Theorem 2.14 is very similar to that of Theorem 2.1 and some details are
left to the reader. However, it hinges mainly on the relation (which follows from a simple application of the
Markov property):

Ex[Γ
m,n,ψ
t |Fs] = e

(
Xs, H

−,r
s , H+,R

s , Sθ
−,r

s , Sθ
+,R

s , θ−,rs , θ+,Rs , t− s
)

where the function e, which depends on eight arguments, is defined as:

e(x, h−, h+, s−, s+, θ−, θ+, u) = Ex

[
(h− +H−,r

u )m(h+ +H+,R
u )n

× ψ(s− ∨ (θ− + Sθ
−,r

u ), s+ ∨ (θ+ + Sθ
+,R

u ))
]
.
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Since:
lim
t→∞H−,r

t = lim
t→∞H+,R

t = ∞,

we deduce from Proposition 2.13 that:

Ex[Γ
m,n,ψ
t |Fs]
Ex[Γt]

−→
t→∞

∫ ∞

0

∫ ∞

0

ψ(Sθ
−,r

s ∨ (θ−,rs + u), Sθ
+,R

s ∨ (θ+,Rs + v))du dv.

It is easy to verify that the limit equals M̃ψ
s . �

Remark 2.15. Of course, it is tempting to use Theorem 2.14 with m = n = 0. Unfortunately, we do not know
whether the conclusion holds in this case, since, from Lemma 2.12 the quantity which then appears in (2.72) is:

E[(A−
T1

)−1/2(A+
T1

)−1/2] = ∞.

However, we conjecture that the conclusion of Theorem 2.14 still holds in this case.

Proof of Lemma 2.12. 1) It is known (see [7]) that:

A−
T1

= A−
τ( 1

2LT1)
= VLT1

(2.77)

where:
• (Lu, u ≥ 0) denotes the local time process at 0 of the 1-dimensional Brownian motion (αu, u ≥ 0), and

(τ�, � ≥ 0) is its right-inverse:
τ� = inf{u > 0 : Lu > �};

• (Vs, s ≥ 0) is a stable (1/2) subordinator, independent of the pair (LT1 , A
+
T1

); to be precise:

E[exp (−λVs)] = exp (−s
√

2λ)

• LT1 is exponentially distributed, with parameter (1/2).
Therefore,

(A−
T1
, A+

T1
) law=

((
1
2
LT1

)2 1
N2

, A+
T1

)
where N denotes a standard Gaussian variable independent of the pair (LT1 , A

+
T1

); hence, for a, b ∈ R:

E
[
(A−

T1
)a(A+

T1
)b
]

= E

[
1
N2a

]
E

[(
1
2
LT1

)2a

(A+
T1

)b
]
. (2.78)

2) We also recall (cf. [7]) that:

•
(

1
2
LT1 , A

+
T1

)
law= (LT∗

1
, T ∗

1 ) (2.79)

• T ∗
1

law=
(

sup
t≤1

|αt|
)−2

admits positive and negative moments of all orders,

with T ∗
1 = inf{s ≥ 0; |αs| = 1}.

Hence, for any m ∈ R:
E[(A+

T1
)m] <∞. (2.80)
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3) Observe that the density of occupation formula implies that A+
t =

∫ ∞

0

Lxt dx, where (Lxt ) is the local time

process associated with (αt). From Ray-Knight theorem (see [9], Chap. XI, Th. 2.2):(
L1−x
T1

, 0 ≤ x ≤ 1
) law=

(
R2
x, 0 ≤ x ≤ 1

)
, (2.81)

where (R2
s, s ≥ 0) is a squared Bessel process with dimension 2 started at 0.

Consequently:

(LT1 , A
+
T1

) law=
(
R2

1,

∫ 1

0

R2
s ds
)
. (2.82)

Hence, from Lévy’s formula (see [9], Chap. XI, Cor. 3.3):

E

[
exp
{
−v

2

2
A+
T1

}
|LT1 = �

]
= E

[
exp
{
−v

2

2

∫ 1

0

dsR2
s

}
|R2

1 = �

]
=

v

sinh v
exp
{
− �

2
(v coth v − 1)

}
. (2.83)

4) Let us assume b < 0. Replacing in the elementary formula:

rb =
21+b

Γ(−b)
∫ ∞

0

e−
v2
2 rv−2b−1dv

r by A+
T1

, we get:

(A+
T1

)b =
21+b

Γ(−b)
∫ ∞

0

v−2b−1 exp
{
−v

2

2
A+
T1

}
dv.

Since LT1 is exponentially distributed with parameter (1/2), using (2.83) we obtain:

E
[
(LT1)

2a (
A+
T1

)b]
=

1
2

∫ ∞

0

�2aE
[(
A+
T1

)b |LT1 = �
]
e−�/2d�

=
2b

Γ(−b)
∫

R
2
+

�2av−2b−1e−
�
2

×E
[
exp
{
− v2

2 A
+
T1

}
|LT1 = �

]
d� dv

=
2b

Γ(−b)
∫

R
2
+

�2av−2b

sinh v
e−

�
2v coth v d� dv

=
2b+2a+1Γ(2a+ 1)

Γ(−b)
∫ ∞

0

v−2b

sinh v

(
tanh v
v

)1+2a

dv.

Hence:

E
[
(A−

T1
)a(A+

T1
)b
]

= E

[
1
N2a

]
21+bΓ(2a+ 1)

Γ(−b)
∫ ∞

0

v−2b

sinh v

(
tanh v
v

)1+2a

dv. (2.84)

It is now clear that, for b < 0:

E
[
(A−

T1
)a(A+

T1
)b
]
<∞ if and only if − 1

2
< a <

1
2
· (2.85)

In particular, we recover:
E
[
(A+

T1
)b
]
<∞, for any b < 0, (2.86)
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which also follows from (2.79).
5) Now, we assume: b > 0.

If |a| > 1/2 let p > 1 such that |a/p| > 1/2. Denote q the conjugate exponent of p (i.e. 1/p + 1/q = 1),
a′ := a/p and b′ := b/p. Applying Hölder’s inequality leads to:

E
[
(A−

T1
)a

′
(A+

T1
)−b

′
]

= E
[
(A−

T1
)a

′
(A+

T1
)b

′
(A+

T1
)−2b′

]
≤ (

E
[
(A−

T1
)a(A+

T1
)b
])1/p (

E
[
(A+

T1
)−2b′q

])1/q

.

Consequently (2.85) and (2.86) imply that E
[
(A−

T1
)a(A+

T1
)b
]

= ∞.
When |a| < 1/2, choosing p > 1 such that |ap| < 1/2 we obtain:

E
[
(A−

T1
)a(A+

T1
)b
] ≤ (E [(A−

T1
)ap(A+

T1
)−bp
])1/p (

E
[
(A+

T1
)2bq
])1/q

,

with 1/p+ 1/q = 1. It then suffices to apply (2.85) together with (2.86) to conclude that the left-hand side in
the above inequality is finite. �

3. Penalisation related to a cone

1) We keep the notation concerning the d-dimensional canonical Brownian motion, as given in the Introduc-
tion, d); in particular, if X0 = x �= 0, there is the skew-product decomposition:

Xt = RtΘHt , t ≥ 0 (3.1)

where (Rt, t ≥ 0) is a Bessel process with index μ =
d

2
− 1. We suppose here that d ≥ 2.

2) Let O be a connected, regular, open set of Sd−1. Let 0 < λ2
1 ≤ λ2

2 ≤ λ2
3 ≤ . . ., and ϕ1, . . . , ϕn, . . . denote a

spectral decomposition of Δ̃ in O, associated with the Dirichlet problem, i.e.:

i) Δ̃ϕn = −λ2
nϕn;

ii) ϕn : O → R, ϕn = 0 on ∂O, ϕn is C∞ in O;
iii) (ϕn, n ≥ 1) is an orthonormal basis of L2(O); (3.2)

(for the Riemannian measure on O);
iv) ϕ1 > 0 in O.

Note that we denoted by λ2
n (and not by λn) the eigenvalues of Δ̃, for “aesthetical” reasons which will appear

below.
3) We denote by C the cone in Rd with vertex at the origin, and basis O, and we define:

TC = inf{t ≥ 0 : Xt /∈ C}; (3.3)

TΘ
O = inf{u ≥ 0 : Θu /∈ O}. (3.4)

The aim of this paragraph is to study the penalisation by the functional

Γt = 1{TC>t} exp
(γ

2
Ht + ρRt

)
(γ ∈ R, ρ ≥ 0).

Of course, the particular case: γ = ρ = 0 amounts to study Brownian motion (Xt, t ≥ 0) conditioned to stay
in the cone C. We shall prove the following:
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Theorem 3.1. Let x ∈ C (x �= 0), and let TC denote the exit time of C, as defined by (3.3). Let ρ ≥ 0, and
γ ∈ R such that: μ2 ≥ γ − λ2

1, where: μ = d
2 − 1.

Then:
1) For every s ≥ 0, and Λs ∈ Fs, the limit as t→ ∞ of:

Ex
[
1Λs1{TC>t} exp

(
γ
2Ht + ρRt

)]
Ex
[
1{TC>t} exp

(
γ
2Ht + ρRt

)] exists. (3.5)

2) This limit equals:
Ex
[
1Λs1{TC>s}Ms

]
(3.6)

where:

Ms := k exp
(
−ρ

2

2
s+

γ

2
Hs

)
ϕ1(ΘHs)R

−μ
s Iν(ρRs) (3.7)

with:

ν =
√
μ2 + λ2

1 − γ and k =
(
ϕ1

(
x

|x|
)
|x|−μIν(ρ|x|)

)−1

(3.8)

where Iν denotes the modified Bessel function with index ν. (cf. [4], p. 108).
3) Formula (3.6) induces a probability Qx on (Ω,F∞). Under this probability Qx, the process (Xt, t ≥ 0)
satisfies:

i) Qx (TC = ∞) = 1; (3.9)
ii) (Xt, t ≥ 0) admits the skew-product decomposition:

Xt = RtΘHt , (3.10)

where:
a) (Rt, t ≥ 0) is the “Bessel process with drift”, whose generator is given by:

LR : f → LRf(r) =
1
2
f ′′(r) +

(
1 + 2ν

2r
+
ρIν+1(ρr)
Iν(ρr)

)
f ′(r), (3.11)

see [21];
b) (Θu, u ≥ 0) is a diffusion taking values in O, with generator:

LΘ : f → LΘf(θ) =
1
2
Δ̃f(θ) +

∇ϕ1

ϕ1
(θ) · ∇f(θ) (3.12)

where the above scalar product and the gradient are taken in the sense of the Riemannian metric on Sd−1;

c) The processes (Rt, t ≥ 0) and (Θu, u ≥ 0) are independent.
(3.13)

Remark 3.2. i) ρ = 0 is allowed in Theorem 3.1. In this case, the process (Rt, t ≥ 0) is, under Qx, a Bessel
process with index ν (ν depends on γ via formula (3.8)).
i’) ρ = γ = 0 is allowed in Theorem 3.1. In this case, (Rt, t ≥ 0) is, under Qx, a Bessel process with index
ν =
√
μ2 + λ2.

ii) Note that, when γ > 0, with respect to the penalisation with Γt = 1(TC>t) exp
(
γ
2Ht + ρRt

)
, the terms

exp
(
γ
2Ht

)
and exp (ρRt) play conflicting roles: the term exp

(
γ
2Ht

)
favors the trajectories for which R is small,

whereas the term exp (ρRt) favors those for which R is large.
This explains, intuitively, that the process (Rt, t ≥ 0) may have, for ρ = 0, and γ > 0, a smaller “dimension”
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than the process (Rt, t ≥ 0) under Px. Note that this situation never happens when one penalizes with 1(TC>t),
i.e.: when one considers the Brownian motion in Rd, conditioned never to leave the cone C.
iii) We shall show, in the course of the proof, that:

Ex

[
exp
(γ

2
Ht + ρRt

)]
<∞, for all t ≥ 0,

as soon as: μ2 + λ2
1 − γ ≥ 0.

iv) If ρ > 0, and γ = 0, the limit process is “very transient”, since:

ρIν+1(ρr)
Iν(ρr)

∼
r→∞ ρ. (3.14)

Thus, in this case, the process (Rt, t ≥ 0) behaves, as t → ∞, as a 1-dimensional Brownian motion with
drift ρ.
We also remark that, if we take ρ < 0 in Theorem 3.1, the limiting probability Qx is the same as for ρ = 0.

Proof of Theorem 3.1. 1) We begin with the

Lemma 3.3. Let TΘ
O = inf{u ≥ 0 : Θu /∈ O}, and a ∈ O. Then:

Pa
(
TΘ
O > t

)
=

∑
n≥1

exp
(
−λ

2
nt

2

)
ϕn(a)

∫
O
ϕn(b)db (3.15)

∼
t→∞ exp

(
−λ

2
1t

2

)
ϕ1(a)k′, (3.16)

with: k′ =
∫
O
ϕ1(b)db > 0. �

Proof of Lemma 3.3. This lemma is classical. Note p̃u(a, b) the density, with respect to the Riemannian measure
(db), of the semi-group of the process (Θ̃u, u ≥ 0), i.e.: the process (Θu, u ≥ 0) killed as it exits from O. Then
(see [1]):

p̃u(a, b) =
∞∑
n=1

exp
(
−λ

2
nu

2

)
ϕn(a)ϕn(b), (3.17)

hence, for every a ∈ O:

Pa
(
TΘ
O > t

)
= Ea

[
1O(Θ̃t)

]
=
∑
n≥1

exp
(
−λ

2
nt

2

)
ϕn(a)

∫
O
ϕn(b)db. �

2) For every x ∈ Rd, x �= 0, we denote by (r, θ) its polar coordinates, with:

x = (r, θ) , r = |x| , θ ∈ Sd−1. (3.18)

Lemma 3.4. For every x = (r, θ) in O, we have:

Er,θ

[
1{TC>t} exp

(γ
2
Ht + ρRt

)]
∼

t→∞

(
k′ϕ1(θ)

√
2πρ1+μr−μIν(ρr)

)
tμ+ 1

2 e
ρ2

2 t

with μ =
d

2
− 1, ν2 = μ2 − γ + λ2

1, and k′ =
∫
O
ϕ1(b)db.
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Proof of Lemma 3.4. Conditioning with respect to Rt = σ{Rs, s ≤ t}, we get:

Er,θ

[
1{TC>t} exp

(γ
2
Ht + ρRt

)]
= Er,θ

[
exp
(γ

2
Ht + ρRt

)
Er,θ
[
1{TC>t}|Rt

]]
.

It is clear that (3.1) implies:
HTC = TΘ

O . (3.19)

Consequently, applying Lemma 3.3, we obtain:

Er,θ
[
1{TC>t}|Rt

]
= Er,θ

[
1{HTC>Ht}|Rt

]
∼

t→∞ k′ϕ1(θ) exp
(
−λ

2
1

2
Ht

)
.

As a result:

Er,θ

[
1{TC>t} exp

(γ
2
Ht + ρRt

)]
∼

t→∞ k′ϕ1(θ)E(μ)
r

[
exp
(
ρRt +

γ

2
Ht − λ2

1

2
Ht

)]
.

Choosing ν2 = μ2 − γ + λ2
1 and ξt = exp (ρRt) in (2.20), we have:

E(μ)
r

[
exp
(
ρRt +

γ

2
Ht − λ2

1

2
Ht

)]
= E(ν)

r

[(
r

Rt

)ν−μ
exp (ρRt)

]
, (3.20)

with ν2 = μ2 − γ + λ2
1.

Hence:

Er,θ

[
1{TC>t} exp

(γ
2
Ht + ρRt

)]
∼

t→∞ k′ϕ1(θ)E(ν)
r

[(
r

Rt

)ν−μ
exp (ρRt)

]
. (3.21)

But, the second term in (3.21) may be computed explicitly:

E(ν)
r

[(
r

Rt

)ν−μ
exp ρRt

]
= rν−μ

∫ ∞

0

eρy

yν−μ
1
t

(y
r

)ν
yIν

(ry
t

)
exp−

(
r2 + y2

2t

)
dy

=
e−

r2
2t

trμ

∫ ∞

0

yμ+1Iν

(ry
t

)
e(ρy− y2

2t )dy

=
e( ρ2

2 t− r2
2t )

trμ

∫ ∞

0

yμ+1Iν

(ry
t

)
e−

1
2t (y−ρt)2dy

=
e( ρ2

2 t− r2
2t )

√
trμ

∫ ∞

−ρ√t
(z
√
t+ ρt)μ+1Iν

(r
t
(z
√
t+ ρt)

)
e−

z2
2 dz

∼
t→∞

(√
2πρ1+μr−μIν(ρr)

)
tμ+ 1

2 e
ρ2

2 t. �

3) We now prove points 1) and 2) of Theorem 3.1. Conditioning with respect to Fs, we get:

Er,θ[1Λs1{TC>t} exp(γ2Ht + ρRt)]
Er,θ[1{TC>t} exp(γ2Ht + ρRt)]

=
Er,θ

[
1Λs1{TC>s}e

γ
2HsEr′,θ′ [1{TC>t−s}e

γ
2Ht−s+ρRt−s ]

]
Er,θ[1{TC>t} exp(γ2Ht + ρRt)]

with r′ = |Xs| = Rs and θ′ = ΘHs .
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Hence, from Lemma 3.4:

Er,θ
[
1Λs1{TC>t} exp

(
γ
2Ht + ρRt

)]
Er,θ
[
1{TC>t} exp

(
γ
2Ht + ρRt

)] ∼
t→∞

Er,θ

[
1Λs1{TC>s}(t− s)μ+ 1

2 e
γ
2Hsϕ1(ΘHs)R−μ

s Iν(ρRs)e
ρ2

2 (t−s)
]

ϕ1(θ)r−μIν(ρr)e
ρ2t
2 tμ+ 1

2

→
t→∞ k Er,θ

[
1Λs1{TC>s}ϕ1(ΘHs)R

−μ
s Iν(ρRs)e−

ρ2
2 s+

γ
2Hs

]
,

with k := (ϕ1(θ)r−μIν(ρr))
−1.

4) We prove that Ms1{TC>s} is a positive martingale.
Since (Θu, u ≥ 0) is the diffusion associated with 1

2Δ̃, and (3.2) holds, we get:

dϕ1(ΘHt) = dM (1)
t +

1
2
Δ̃ϕ1(ΘHt)dHt

= dM (1)
t − λ2

1

2
ϕ1(ΘHt)

dt
R2
t

(3.22)

where (M (1)
t , t ≥ 0) is a local martingale.

On the other hand, denoting by L(μ) the infinitesimal generator of the Bessel semigroup, with index μ:

L(μ)f(r) =
1
2
f ′′(r) +

1 + 2μ
2r

f ′(r) (3.23)

an elementary computation, which follows from the classical identity (see [4], p. 110)

I ′′ν (r) +
1
r
I ′ν(r) =

(
1 +

ν2

r2

)
Iν(r)

shows that, with:
Ψ(r) := r−μIν(ρr) (r ≥ 0) (3.24)

we get:

L(μ)Ψ(r) = Ψ(r)
[
ρ2

2
+
ν2 − μ2

2r2

]
· (3.25)

Thus:

d(R−μ
t Iν(ρRt)) = dM (2)

t +
(
ρ2

2
+
ν2 − μ2

2R2
t

)
R−μ
t Iν(ρRt)dt (3.26)

where (M (2)
t , t ≥ 0) is a local martingale. We then apply Itô’s formula (Notation: given our aim in this

point 4), we now prefer to use s for the time variable, instead of t):

d
1
k
Ms = d

(
e−

ρ2

2 s+
γ
2Hsϕ1(ΘHs)R

−μ
s Iν(ρRs)

)
=
(
−ρ

2

2
+
γ

2
1
R2
s

)
Ms

k
ds

+ e−
ρ2

2 s+
γ
2HsR−μ

s Iν(ρRs)
(

dM (1)
s − λ2

1

2
ϕ1(ΘHs)

ds
R2
s

)
+ e−

ρ2

2 s+
γ
2Hsϕ1(ΘHs)

[
dM (2)

s +
{(

ρ2

2
+
ν2 − μ2

2R2
s

)
R−μ
s Iν(ρRs)

}
ds
]

= e−
ρ2
2 s+

γ
2Hs

[
R−μ
s Iν(ρRs)dM (1)

s + ϕ1(ΘHs)dM
(2)
s

]
(3.27)
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since ν2 = μ2 + λ2
1 − γ.

Recall that ϕ1(x) = 0 when x ∈ ∂O; hence MTC = 0. This proves that (Ms1{TC>s}, s ≥ 0) is a local
martingale. Since it is positive, it is a supermartingale. Hence, to prove that (Ms1{TC>s}, s ≥ 0) is a martingale,
it suffices to prove that Er,θ

[
Ms1{TC>s}

]
= 1.

Due to (3.17) and (3.2) iii) we have:

Er,θ

[
1{TΘ

O>t}ϕ1(Θt)
]

= Eθ

[
ϕ1(Θ̃t)

]
=
∑
n≥1

e−
λ2

n
2 tϕn(θ)

∫
O
ϕn(b)ϕ1(b)db

= e−
λ2
1
2 tϕ1(θ). (3.28)

We proceed as in the proof of Lemma 3.4, taking the conditional expectation with respect to Rt and using the
previous result we get:

Er,θ
[
Ms1{TC>s}

]
= k Er,θ

[
1{TC>s} ϕ1(ΘHs)e

γ
2Hs− ρ2

2 sR−μ
s Iν(ρRs)

]

= k Er,θ

[
e

γ
2Hs− ρ2

2 sR−μ
s Iν(ρRs) e−

λ2
1
2 Hsϕ1(θ)

]

= kϕ1(θ)E(μ)
r

[
R−μ
s Iν(ρRs) exp

{
(γ − λ2

1)
Hs

2
− ρ2

2
s

}]
.

According to the absolute continuity formula (2.20), with ν2 = μ2 − γ + λ2
1, we have:

Er,θ
[
Ms1{TC>s}

]
= kϕ1(θ)e−

ρ2

2 s E(ν)
r

[
R−μ
s Iν(ρRs)

(
r

Rs

)ν−μ]

= kϕ1(θ)rν−μe−
ρ2

2 sE(ν)
r

[
R−ν
s Iν(ρRs)

]
.

But L(ν)(Ψ̃)(r) = ρ2

2 Ψ̃(r), with Ψ̃(r) = r−νIν(ρr), then:(
R−ν
s Iν(ρRs)e−

ρ2

2 s, s ≥ 0
)

is a martingale under P (ν)
r . (3.29)

Therefore (3.8) implies
Er,θ
[
Ms1{TC>s}

]
= kϕ1(θ)rν−μr−νIν(ρr) = 1,

from the definition of k, at the end of point 3) above.
5) Description of the process (Rt, t ≥ 0) under Qx.

For every positive functional F , and every x ∈ C, x �= 0, we write:

EQx(F (Rs, s ≤ t)) = kEr,θ

[
F (Rs, s ≤ t)ϕ1(ΘHt)1{TC>t} e−

ρ2

2 t+
γ
2HtR−μ

t Iν(ρRt)
]
. (3.30)

Then, conditioning with respect to Rt = σ{Rs, s ≤ t} and using (3.28) we get:

EQx [F (Rs, s ≤ t)] = kE(μ)
r

[
F (Rs, s ≤ t)R−μ

t Iν(ρRt)e−
ρ2
2 t−(

λ2
1
2 − γ

2 )Ht

]
. (3.31)
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Relation (3.25) implies that:

L(μ)Ψ(r)
Ψ(r)

=
ρ2

2
+
ν2 − μ2

2r2
=
ρ2

2
+
λ2

1 − γ

2r2
, (3.32)

the function Ψ being defined by (3.24).
Consequently, (

R−μ
t Iν(ρRt)e−

ρ2

2 t−(
λ2
1
2 −γ

2 )Ht , t ≥ 0
)

is a martingale under P (μ)
r , (3.33)

since it is of the form:

Ψ(Rt) exp
(
−
∫ t

0

L(μ)Ψ
Ψ

(Rs)ds
)
.

Thus, the function h̃(t, a, r) = exp
(
−ρ

2t

2
−
(
λ2

1

2
− γ

2

)
a

)
Ψ(r) is a harmonic function for the Markov process

((t,Ht, Rt), t ≥ 0). The formula (3.31) then indicates that the process (Rt, t ≥ 0) is under Qx the h̃-Doob
transform of the process (Rt, t ≥ 0) under P (μ)

r . Thus, it is a Markov process, with infinitesimal generator LR:

LRf(r) =
1
h̃
L̃μ(fh̃)

where L̃μ is the infinitesimal generator of the process ((t,Ht, Rt), t ≥ 0).
Hence:

LRf =
1
2
f ′′(r) +

(
∂

∂r
(log h̃) +

1 + 2μ
2r

)
f ′(r)

=
1
2
f ′′(r) +

(
1
2r

+
ρI ′ν(ρr)
Iν(ρr)

)
f ′(r)

=
1
2
f ′′(r) +

(
1 + 2ν

2r
+
ρIν+1(ρr)
Iν(ρr)

)
f ′(r) (3.34)

since from ([4], p. 110):

d
dz
(
z−νIν(z)

)
= z−νIν+1(z). (3.35)

Note that, since:

Iν(z) ∼
z→0

1
Γ(ν + 1)

(z
2

)ν
, (3.36)

then:

ρIν+1(ρr)
Iν(ρr)

∼
r→0

ρ2

2ν
r, (3.37)

the process (Rt, t ≥ 0) under Qx behaves, near 0, as a Bessel process with index ν =
√
μ2 + λ2

1 − γ. In
particular, when ρ = 0, this process is then a Bessel process whose index equals

√
μ2 + λ2

1 − γ. Thus, the
dimension of this Bessel process may be smaller than the original dimension d; this happens if λ2

1 < γ.
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6) Description of the process (Θu, u ≥ 0) under Qx.
i) Let f : O → R be regular. Since, under P (μ)

x , (Θu, u ≥ 0) is a spherical Brownian motion associated with
1
2
Δ̃, then:

Mf
t := f

(
Θt∧TΘ

O

)
− 1

2

∫ t∧TΘ
O

0

Δ̃f(Θs)ds (3.38)

= f(θ) +
∫ t∧TΘ

O

0

∇f(Θs) · dΘs (3.39)

is a Px-martingale whose bracket equals
∫ t∧TΘ

O

0

|∇f |2(Θs)ds (the gradient and its norm being taken in the sense

of the Riemannian structure on Sd−1). Hence, since R and Θ are independent, under Px:

M̃f
t := f

(
ΘHt∧TC

)
− 1

2

∫ t∧TC

0

Δ̃f(ΘHs)dHs (3.40)

= f(θ) +
∫ t∧TC

0

∇f(ΘHs) · dΘHs (3.41)

is a Px-martingale whose bracket is equal to
∫ t∧TC

0

|∇f |2(ΘHs)dHs.

In the same way:

M
(1)
t = ϕ1(θ) +

∫ t

0

∇ϕ1(ΘHs) · dΘHs , (3.42)

where M (1)
t has been introduced in (3.22).

ii) (Mt∧TC , t ≥ 0) is a Px positive martingale and, from Girsanov’s theorem

M̃f
t −
∫ t∧TC

0

1
Ms

d〈M̃f ,M〉s is a Qx local martingale. (3.43)

iii) We now determine the bracket 〈M̃f ,M〉. Since the bracket of M̃f and of M (2)(which was introduced in
(3.26)) is equal to 0, as R and Θ are independent, we deduce from (3.27), (3.41) and (3.42):

d〈M̃f ,M〉t = ke−
ρ2

2 t+
γ
2HtR−μ

t Iν(ρRt) (∇f · ∇ϕ1) (ΘHt) dHt

= Mt

(
∇f · ∇ϕ1

ϕ1

)
(ΘHt) dHt,

for any t ≤ TC .
Relations (3.40) and (3.43) imply:

f(ΘHt)1{TC>t} −
1
2

∫ t∧TC

0

Δ̃f(ΘHs)dHs −
∫ t∧TC

0

(
∇f · ∇ϕ1

ϕ1

)
(ΘHs)dHs (3.44)

is a Qx-martingale.
Performing the time change Ht = u in (3.44), we deduce:

f(Θu)1{TΘ
O>u} −

1
2

∫ u∧TΘ
O

0

Δ̃f(Θs)ds−
∫ u∧TΘ

O

0

(∇f.∇ϕ1

ϕ1

)
(Θs)ds

is a martingale.
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Thus, from Stroock and Varadhan [20], (Θu, u ≥ 0) is a diffusion process, with infinitesimal generator:
1
2
Δ̃ +

∇ϕ1

ϕ1
.∇.

7) We prove that, under Qx, TC = ∞., a.s.
This follows from the fact that the normal derivative of ϕ1 on the boundary of O does not vanish. Thus:

∇ϕ1

ϕ1
(θ) ∼

θ→∂O

−→n
d(θ, ∂O)

where d(θ, ∂O) denotes the distance of θ to the boundary of O, and where −→n is the inward normal vector. This
implies that the process (Θu, u ≥ 0) under Qx has, in the neighborhood of the boundary of O, “a radial part
which behaves like a BES (3) process”, hence which does not reach the boundary.
8) We prove the independence, under Qx, of (Rt, t ≥ 0) and (Θu, u ≥ 0).

For the sake of simplicity, we shall only give the proof for dimension d = 2. Under Px, we write the
complex-valued Brownian motion:

Xt := xt + iyt = |Xt| exp
(
iβ

(1)
Ht

)
,

where

β
(1)
Ht

= Im
(∫ t

0

dXs

Xs

)
=
∫ t

0

xs dys − ys dxs
|Xs|2 · (3.45)

(|Xt|, t ≥ 0) decomposes as a semi-martingale:

• under Px : |Xt| = β
(2)
t +

1
2

∫ t

0

ds
|Xs| ;

• under Qx : |Xt| = β̃
(2)
t +

∫ t

0

h(|Xs|) ds,
(3.46)

for a certain h, where β(2), resp.: β̃(2), is a Px, resp.: Qx Brownian motion.
Moreover:

dβ(2)
t =

xt dxt + yt dyt
|Xt| ,

which implies:

d〈β(2), β
(1)
H.〉t = 0;

hence, from Knight’s representation theorem of continuous orthogonal martingales, (β(2)
t ) and (β(1)

u ) are two
independent real-valued Brownian motions. After applying Girsanov’s theorem to go from Px to Qx, we obtain
likewise that (β̃(2)

t , t ≥ 0) and (β̃(1)
u , u ≥ 0), which are respectively the martingale parts of (β(2)

u ) and (β(1)
u )

under Qx are two independent Qx Brownian motions.
Moreover, from (3.46), (|Xt|, t ≥ 0) is the solution, under Qx, of an SDE with driving Brownian motion

(β̃(2)
t ); likewise, from point 6) of the proof, or even more directly in dimension 2, (β(1)

u )u≥0 solves an SDE
directed by (β̃(1)

u ).
Consequently, (|Xt|, t ≥ 0) and (β(1)

u , u ≥ 0) are independent under Qx.
For dimensions d > 2, we leave the variant of this proof to the reader.
We shall now end this Section 3 by giving, for d = 2, a slightly different form of Theorem 3.1, where we make

ρ = γ = 0, to simplify matters. This time, we shall use the skew-product decomposition given by (2.1),. . .,(2.5):

Xt = Rt exp(iβHt) (3.47)
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where (Rt, t ≥ 0) denotes a Bessel process with dimension 2 (or index 0). We denote, for θt = βHt :

θt = sup
s≤t

θs = SβHt
= sup

u≤Ht

βu (3.48)

and
θt = inf

s≤t
θs = IβHt

= inf
u≤Ht

βu. (3.49)

On the other hand, θ− and θ+ denote two reals such that:

θ− < 0 < θ+ (3.50)

and we now propose to study the penalisations with Γt := 1{θt<θ+, θt>θ−}. When θ− > −π and θ+ < π, this
study is a particular case of Theorem 3.1, with ρ = γ = 0.

In what follows, x is a point of R
2 whose first coordinate is strictly positive, while the second one is 0, and

we shall write x for (x, 0).

Theorem 3.5. Let x be as just assumed.
1) For every s ≥ 0, and every Λs ∈ Fs, the limit:

Qx(Λs) := lim
t→∞

Ex

[
1Λs1{θt<θ+, θt>θ−}

]
Ex

[
1{θt<θ+, θt>θ−}

] exists. (3.51)

This limit equals
Qx(Λs) = Ex(1Λs Ms) (3.52)

with
Ms := k′Rλs sin (λ(θ+ − θs)) 1{θs<θ+, θs>θ−} (3.53)

and
λ =

π

θ+ − θ−
, k′ =

1
xλ

1
sin(λθ+)

· (3.54)

Moreover, (Ms, s ≥ 0) is a positive martingale such that M0 = 1. 2) Formula (3.52) induces a probability on
(Ω, F∞), and under Qx, the process (Xt, t ≥ 0) writes:

Xt = Rt eiβHt (3.55)

where:
a) (Rt, t ≥ 0) and (βu, u ≥ 0) are independent
b) (Rt, t ≥ 0) is a Bessel process with dimension 2(1 + λ), and

Ht =
∫ t

0

ds
R2
s

· (3.56)

c) (βu, u ≥ 0) is distributed as the solution of the SDE:

Zu = β̂u − λ

∫ u

0

cotg (λ(θ+ − Zs)) ds (3.57)

where (β̂u, u ≥ 0) is a Brownian motion.
In particular, the process (βt, t ≥ 0) never reaches the levels θ− and θ+, although:

sup
s≤t

βs →
t→∞ θ+ a.s., inf

s≤t
βs →

t→∞ θ− a.s. .
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Proof of Theorem 3.5. It is essentially the same as that of Theorem 3.1. We briefly indicate the main lines.
1) When written in our present context, formula (3.17) yields the density of the process (βt, t ≥ 0) killed when
it exits the interval [θ−, θ+]:

P (Sβu 〈θ+, Iβu 〉θ−, βu ∈ dx) =
∑
k≥1

{
cos
(

kπx

θ+ − θ−

)

− cos
(
kπ(2θ+ − x)
θ+ − θ−

)}
e
− k2π2u

2(θ+−θ−)2 × 1
θ+ − θ−

1{θ−<x<θ+} dx. (3.58)

Consequently:

P (Sβu 〈θ+, Iβu 〉θ−) = P (u < Tθ+ ∧ Tθ−) ∼
u→∞ Ce−

λ2u
2 , (3.59)

where:

C =
1

θ+ − θ−

∫ θ+

θ−
(cos (λx) − cos (λ(2θ+ − x))) dx.

We have:

C =
2 sin (λθ+)
θ+ − θ−

∫ θ+

θ−
sin (λ(θ+ − x)) dx =

4 sin (λθ+)
π

· (3.60)

From formulae (3.48), (3.49), (3.59), and the independence of Ht from (βu), we deduce, for every starting point
(r, 0):

Pr(θt〈θ+, θt〉θ−) ∼
t→∞ C Er

[
e−

λ2Ht
2

]
· (3.61)

Applying (2.20) with ξt = 1, μ = 0 and ν = λ, we get:

Er

[
e−

λ2Ht
2

]
= E(λ)

r

[(
r

Rt

)λ]
· (3.62)

Reasoning as in the proof of Lemma 2.3, we obtain:

E(λ)
r

[(
r

Rt

)λ]
∼

t→∞

(
r√
t

)λ 1
2λ/2

Γ(1 + λ/2)
Γ(1 + λ)

· (3.63)

Finally, we get:

Pr(θt < θ+, θt > θ−) ∼
t→∞

4 sin (λθ+)
π2λ/2

Γ(1 + λ/2)
Γ(1 + λ)

(
r√
t

)λ
. (3.64)

Observe that the Markov property implies:

Ex

[
1{θt<θ+, θt>θ−}

∣∣Fs] = 1{θs<θ+, θs>θ−}g(Rs, θ+ − θs, θ− − θs, t− s)

with
g(r, θ+, θ−, u) = Pr

(
θu < θ+, θu > θ−

)
.

Consequently (3.64) implies:

lim
t→∞

Ex

[
1{θt<θ+, θt>θ−}

∣∣Fs]
Px
(
θt < θ+, θt > θ−

) = 1{θs<θ+, θs>θ−}
sin (λ(θ+ − θs))

sin (λθ+)

(
Rs
x

)λ
·
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This proves the first part of Theorem 3.5, if we admit for a while that Ex[Mt] = 1. This equality is actually a
direct consequence of the next step 2).
2) We now verify that

(
Rλs sin (λ(θ+ − θs)) , s ≥ 0

)
is a martingale under Px and M0 = 1.

Indeed,
(
Rλs sin (λ(θ+ − θs)) , s ≥ 0

)
is the imaginary part of the conformal martingale

(
Rλs exp (iλ(θ+ − θs)) , s ≥ 0

)
.

Moreover, we have, by Itô’s formula:

Rλt sin (λ(θ+ − θt)) = xλ sin (λθ+) + λ

∫ t

0

Rλ−1
s sin (λ(θ+ − θs)) dBs

+
λ2

2

∫ t

0

Rλ−2
s sin (λ(θ+ − θs)) ds− λ

∫ t

0

Rλs cos (λ(θ+ − θs)) dθs

−λ
2

2

∫ t

0

Rλs sin (λ(θ+ − θs))
ds
R2
s

= xλ sin (λθ+) + λ

∫ t

0

Rλ−1
s sin (λ(θ+ − θs)) dBs

−λ
∫ t

0

Rλs cos (λ(θ+ − θs)) dθs (3.65)

where (Bs, s ≥ 0) is the driving Brownian motion of (Rs, s ≥ 0). �
3) We now compute the law of (Rt, t ≥ 0) under Qx.

We have, for every functional F ≥ 0:

EQx [F (Rs, s ≤ t)] = k′Ex
[
F (Rs, s ≤ t)Rλt sin (λ(θ+ − θt)) 1{θt<θ+,θt>θ−}

]
= k′Ex

[
F (Rs, s ≤ t)Rλt χ(Ht)

]
(3.66)

where
χ(u) = E

[
sin (λ(θ+ − βu)) 1{Sβ

u<θ+, I
β
u>θ−}

]
(3.67)

= sin (λθ+)e−
λ2u
2 (3.68)

by an easy martingale argument.
Plugging (3.68) in (3.66), we get:

EQx [F (Rs, s ≤ t)] = k′ sin (λθ+)Ex

[
F (Rs, s ≤ t)Rλt e

−λ2Ht
2

]
.

Using (2.20) with μ = 0, ξt = Rλt and ν = λ and the definition of k′ in (3.54), we obtain:

EQx [F (Rs, s ≤ t)] = E(λ)
x [F (Rs, s ≤ t)] .

This proves that, under Qx, (Rs, s ≥ 0) is a Bessel process with index λ, i.e. with dimension 2(1 + λ).
In particular, this process is transient.
4) Computation of the law of β under Qx.

Relation (3.65) implies that:

Mt = 1 + λk′
∫ t

0

Rλ−1
s sin (λ(θ+ − θs)) dBs − λk′

∫ t

0

Rλs cos (λ(θ+ − θs)) dβHs . (3.69)

(Bs, s ≥ 0) being the driving Brownian motion of (Rs, s ≥ 0) is independent from (βu, u ≥ 0). Since (Mt) is a
positive Px-martingale then Girsanov’s theorem provides us with:

βHt = γ̂t − λ

∫ t

0

Rλs cos (λ(θ+ − θs))
Rλs sin (λ(θ+ − θs))

d〈βH , βH〉s = γ̂t − λ

∫ t

0

cotg (λ(θ+ − βHs)) dHs.
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Performing the time change u = Ht, yields:

βu = β̂u − λ

∫ u

0

cotg (λ(θ+ − βs)) ds

where (β̂u, u ≥ 0) is a Qx-Brownian motion.
5) The last point 2) c) of Theorem 3.5 is now classical: in order to prove that the hitting time of the interval
[θ−, θ+] by the process β is a.s. infinite, it suffices to apply Feller’s test. We also note that, under Qx:

H∞ =
∫ ∞

0

ds
R2
s

= ∞ a.s.
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