
ESAIM: PS ESAIM: Probability and Statistics
September 2004, Vol. 8, p. 200–220

DOI: 10.1051/ps:2004010

THE LARGE DEVIATION PRINCIPLE FOR CERTAIN SERIES

Miguel A. Arcones
1

Abstract. We study the large deviation principle for stochastic processes of the form {∑∞
k=1 xk(t)ξk :

t ∈ T}, where {ξk}∞k=1 is a sequence of i.i.d.r.v.’s with mean zero and xk(t) ∈ R. We present neces-
sary and sufficient conditions for the large deviation principle for these stochastic processes in several
situations. Our approach is based in showing the large deviation principle of the finite dimensional
distributions and an exponential asymptotic equicontinuity condition. In order to get the exponential
asymptotic equicontinuity condition, we derive new concentration inequalities, which are of indepen-
dent interest.
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1. Introduction

We study the large deviation principle for stochastic processes of the form {∑∞
k=1 xk(t)ξk : t ∈ T }, where

{ξk}∞k=1 is a sequence of i.i.d.r.v.’s with mean zero, T is a parameter set and xk(t) ∈ R. Our results apply
when log(P{|ξ1| ≥ t}), t > 0, is either a convex or a concave function. In particular, we obtain necessary and
sufficient conditions for the LDP of {∑∞

k=1 xk(t)ξk : t ∈ T }, where {ξk} is a sequence of symmetric i.i.d.r.v.’s
such that for some p, τ > 0,

lim
u→∞u−p log(P{|ξ1| ≥ u}) = −τ. (1.1)

Stochastic processes like that have been considered by several authors. If {X(t) : t ∈ T } is a mean zero Gaussian
process such that supt∈T |X(t)| < ∞ a.s., then there exists a sequence of i.i.d.r.v.’s {ξk}∞k=1 with a standard
normal distribution and real numbers xk(t), k ≥ 1, t ∈ T , such that for each t ∈ T , X(t) :=

∑∞
k=1 xk(t)ξk (see

for example Prop. 2.6.1 in Kwapień and Woyczyński [10]). Hence, the considered stochastic processes are a
natural generalization of Gaussian processes. Observe that for a standard normal r.v. ξ,

lim
u→∞ u−2 log(P{|ξ| ≥ u}) = −2−1. (1.2)

Talagrand [15, 16] studied the concentration of measure and continuity of processes of the form
{∑∞

k=1 xk(t)ξk : t ∈ T }, where {ξk} is a sequence of i.i.d.r.v.’s with density cpe−|x|p , x ∈ R, where p ≥ 1.
Gluskin and Kwapień [8] gave tail and moment estimates for the r.v.

∑∞
k=1 akξk, where {ξk} is a sequence

of symmetric i.i.d.r.v.’s with logarithmically concave tails. Latala [11] gave tail and moment estimates for

Keywords and phrases. Large deviations, stochastic processes.

1 Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902, USA;
e-mail: arcones@math.binghamton.edu

c© EDP Sciences, SMAI 2004



THE LARGE DEVIATION PRINCIPLE FOR CERTAIN SERIES 201

∑∞
k=1 xkξk, where {ξk} is a sequence of i.i.d.r.v.’s with logarithmically concave tails and {xk} is a sequence of

vectors of a Banach space. Hitczenko, Montgomery-Smith and Oleszkiewick [9] considered moment inequalities
for

∑n
i=1 ξi, where {ξi} is a sequence of symmetric i.i.d.r.v.’s such that − log(P{|ξ1| ≥ t}) is a concave function.

We consider large deviations in the sense of Varadhan [17]. General references in large deviations are Deuschel
and Stroock [7] and Dembo and Zeitouni [6]. We consider stochastic processes as random elements of l∞(T ),
the Banach space consisting of the bounded functions on T with the supremum norm. We use the following
definition of large deviations for stochastic processes.

Definition 1.1. Given a sequence of stochastic processes {Un(t) : t ∈ T }, a sequence of positive numbers
{εn}∞n=1 such that εn → 0, and a function I : l∞(T ) → [0,∞], we say that {Un(t) : t ∈ T } satisfies the LDP
with speed ε−1

n and with rate function I if:

(i) For each 0 ≤ c <∞, {z ∈ l∞(T ) : I(z) ≤ c} is a compact set of l∞(T ).
(ii) For each set A ⊂ l∞(T ),

−I(Ao) ≤ lim inf
n→∞ εn log(P∗{{Un(t) : t ∈ T } ∈ A}) ≤ lim sup

n→∞
εn log(P∗{{Un(t) : t ∈ T } ∈ A}) ≤ −I (Ā) ,

where Ao is the interior of A and Ā is the closure of A.

It is shown in Arcones [1] that this definition is equivalent to the large deviations for the finite dimensional
distributions, plus an asymptotic equicontinuity condition. This result is similar to the classical one for the
weak convergence of empirical processes.

In Section 2, we present some new concentration inequalities for series processes, which are of independent
interest. In Section 3, we study the large deviation principle of series processes.
c will denote a finite constant, which may change from occurrence to occurrence. For p ≥ 1, lp denotes the

Banach space consisting of the sequences (xi)∞i=1 such that
∑∞

i=1 |xi|p <∞ endowed with the norm ‖(xi)∞i=1‖p :=
(
∑∞

i=1 |xi|p)1/p. l∞ denotes the Banach space consisting of the bounded sequences (xi)∞i=1 endowed with the
norm ‖(xi)∞i=1‖∞ := supi≥1 |xi|. We simplify ‖x(t)‖p := ‖(xi(t))∞i=1‖p. We say that a function I : S → [0,∞] is
a good rate, if {x ∈ S : I(x) ≤ c} is a compact set, where S is a topological space.

2. Some concentration inequalities for certain series processes

It is well known that concentration inequalities play a fundamental role in the study of Gaussian processes
(see for example Ledoux and Talagrand [12]). This is also so, for the considered stochastic processes. Let γ∞
be the measure on R

N which is the product of γ, where γ(A) =
∫

A
2−1e−|t| dt.

Theorem 2.1 (Talagrand [15], Th. 1). For each set A ∈ B(RN) with γ∞(A) > 0,

γ∞
(
A+ 6u1/2B2 + 9uB1

)
≥ 1 − (γ∞(A))−1 exp(−u), (2.1)

where Bp := {(ak)∞k=1 :
∑∞

k=1 |ak|p ≤ 1}, for p = 1, 2.
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The previous inequality with the constants above is in Ledoux [13], Theorem 4.16.
In the case of Gaussian processes, concentration inequalities only involve the unit ball with respect to the l2

distance. This is so, because different path properties of Gaussian processes can be characterized using the l2
distance. However, for the considered stochastic processes, two distances are needed in general.

In this section, we present concentration inequalities for the stochastic processes {X(t) : t ∈ T }, where
X(t) :=

∑∞
j=1 xj(t)ξj , {ξj}∞j=1 is a sequence of symmetric i.i.d.r.v.’s, T is a parameter set, and xj(t) ∈ R. By

Theorem 5.1.4 in Chow and Teicher [5], the series
∑∞

k=1 xk(t)ξk converges a.s. if and only if
∑∞

k=1(xk(t))2 <∞.
In the considered situation, we have the following result:

Lemma 2.1. Let {ξj}∞j=1 be a sequence of symmetric i.i.d.r.v.’s such that P[ξ1 = 0] < 1. Let T be a parameter
set. Let X(t) =

∑∞
j=1 xj(t)ξj, t ∈ T . Suppose that supt∈T |X(t)| < ∞ a.s. Then, E[supt∈T |X(t)|] < ∞ and

supt∈T

∑∞
k=1 x

2
k(t) <∞.

Proof. Let 0 < η < 2−1(1 − P[ξ1 = 0]). Take M > 0 such that P[supt∈T |X(t)| ≥ M ] ≤ η. By the Lévy
inequality (see for example Prop. 2.3 in Ledoux and Talagrand [12]),

sup
t∈T

sup
j≥1

P [|xj(t)ξj | ≥M ] ≤ P

[
sup
t∈T

sup
j≥1

|xj(t)ξj | ≥M

]
≤ 2P


sup

t∈T
|

∞∑
j=1

xj(t)ξj | ≥M


 ≤ 2η.

Hence, supt∈T supj≥1 |xj(t)| < ∞. Thus, by the Hoffmann–Jørgensen inequality (see for example Prop. 6.8 in
Ledoux and Talagrand [12]), E[supt∈T |X(t)|] < ∞. By the Kintchine’s inequality (see for example Lem. 4.1
in Ledoux and Talagrand [12]), and the contraction principle (see for example Lem. 4.5 in Ledoux and Tala-
grand [12]),

2−1/2E[|ξ1|] sup
t∈T

( ∞∑
k=1

x2
k(t)

)1/2

≤ E[|ξ1|] sup
t∈T

E

[∣∣∣∣∣
∞∑

k=1

εkxk(t)

∣∣∣∣∣
]

≤ E[|ξ1|]E
[
sup
t∈T

∣∣∣∣∣
∞∑

k=1

εkxk(t)

∣∣∣∣∣
]

≤ E

[
sup
t∈T

∣∣∣∣∣
∞∑

k=1

ξkxk(t)

∣∣∣∣∣
]
<∞,

where {εk} is a sequence of i.i.d. Rademacher r.v.’s independent of the sequence {ξk}. �

We present two types of concentration inequalities according with whether the function Φ(t) = − log(P{|ξ| ≥
t}), t > 0, is convex or a concave.

Next, we present a concentration of measure inequality for sequences of r.v.’s satisfying the following
condition:

(B.1) ξ is a symmetric r.v. such that Φ(t) = − log(P{|ξ| ≥ t}), for t > 0, is a convex increasing function.

Condition (B.1) is satisfied for many r.v.’s. In particular, (B.1) holds if ξ has a symmetric distribution and
P{|ξ| ≥ |t|} = e−c|t|p , for each t ≥ 0, for some c > 0 and some p ≥ 1.
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We will need the following lemma:

Lemma 2.2. Let Φ be as in Condition (B.1). Let

λ(x) = sign(x) sup{y ≥ 0 : Φ(y) ≤ |x|} for x ∈ R. (2.2)

Then,

(i) For each a, b > 0, λ(a+ b) ≤ λ(a) + λ(b).
(ii) For each a, b ∈ R, |λ(a) − λ(b)| ≤ 2λ(|a− b|).

Proof. Since Φ is convex, Φ′ is nondecreasing. So, for each a, b > 0,

Φ(a) + Φ(b) =
∫ a

0

Φ′(t) dt+
∫ b

0

Φ′(t) dt ≤
∫ a+b

0

Φ′(t) dt = Φ(a+ b).

So, (i) holds.
If either a < 0 < b, or b < 0 < a, then

|λ(a) − λ(b)| ≤ 2 max(λ(|a|), λ(|b|)) ≤ 2λ(|a− b|).

If either a, b < 0, or 0 < a, b, then, by (i),

|λ(a) − λ(b)| = |λ(|a|) − λ(|b|)| ≤ λ(|a− b|). �

Theorem 2.2. Let {ξj}∞j=1 be a sequence of symmetric i.i.d.r.v.’s satisfying Condition (B.1). Let T be a
parameter set. Let X(t) :=

∑∞
j=1 xj(t)ξj , t ∈ T . Suppose that supt∈T |X(t)| < ∞ a.s. Then, for each

0 < M <∞,

P

{
sup
t∈T

|X(t)| ≥M + 2LΦ(u)
}

≤
(

P

{
sup
t∈T

|X(t)| < M

})−1

e−u,

where

LΦ(u) := sup

{ ∞∑
k=1

|xk(t)|(|ak| + |bk|) :
∞∑

k=1

(Φ(ak))2 ≤ 36u,
∞∑

k=1

Φ(bk) ≤ 9u, t ∈ T

}
.

Proof. Let {Yi}∞i=1 be a sequence of symmetric i.i.d.r.v.’s with P{|Yi| ≥ t} = e−t, for each t ≥ 0 and each i ≥ 1.
Let λ be as in (2.2). Then, for each x, y ≥ 0, Φ(y) ≤ x iff y ≤ λ(x). By the continuity of the function Φ, we
also have that Φ(λ(x)) = x, for each x ≥ 0. Hence, we have that for each t ≥ 0,

P {|λ(Yi)| ≥ t} = P{λ(|Yi|) ≥ t} = P {|Yi| ≥ Φ(t)} = e−Φ(t) = P {|ξi| ≥ t} .

Therefore, ξi and λ(Yi) have the same distribution.
Let A = {(yi)∞i=1 : supt∈T |∑∞

k=1 xk(t)λ(yi)| < M}. By (2.1)

P

{
(Yi)∞i=1 �∈ A+ 6u1/2B2 + 9uB1

}
≤ (P {(Yi)∞i=1 ∈ A})−1 e−u.
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So, it suffices to show that if (yi)∞i=1 ∈ A+ 6u1/2B2 + 9uB1, then

sup
t∈T

∣∣∣∣∣
∞∑

i=1

xi(t)λ(yi)

∣∣∣∣∣ < M + 2LΦ(u).

We have that there are (ai)∞i=1 ∈ A, (bi)∞i=1 ∈ B2, and (ci)∞i=1 ∈ B1, such that for each i ≥ 1, yi = ai +6u1/2bi +
9uci. By Lemma 2.2,

sup
t∈T

∣∣∣∣∣
∞∑

i=1

xi(t)λ
(
ai + 6u1/2bi + 9uci

)∣∣∣∣∣ ≤ sup
t∈T

∣∣∣∣∣
∞∑

i=1

xi(t)λ(ai)

∣∣∣∣∣+ 2 sup
t∈T

∞∑
i=1

|xi(t)|λ
(∣∣∣6u1/2bi + 9uci

∣∣∣)

≤M + 2 sup
t∈T

∞∑
i=1

|xi(t)|λ
(
6u1/2|bi|

)
+ 2 sup

t∈T

∞∑
i=1

|xi(t)|λ(9u|ci|)

≤M + 2LΦ(u).

Because,
∞∑

i=1

(
Φ
(
λ
(
6u1/2|bi|

)))2

≤
∞∑

i=1

36ub2i ≤ 36u,

and
∞∑

i=1

Φ(λ(9u|ci|)) ≤
∞∑

i=1

9u|ci| ≤ 9u. �

Corollary 2.1. Assume the notation and conditions in the previous theorem. Suppose also that there are
constants τ > 0 and p ≥ 1 such that τΦ(x) ≥ max(|x|p, |x|), for each x > 0. Then,

(i) If p ≥ 2, then, for each 0 < M <∞ and each u > 0,

P

{
sup
t∈T

|X(t)| ≥M + 2 sup
t∈T

‖x(t)‖q

(
36uτ2

)1/p
+ 2 sup

t∈T
‖x(t)‖q(9τu)1/p

}
≤
(

P

{
sup
t∈T

|X(t)| < M

})−1

e−u.

(ii) If 2 ≥ p ≥ 1, then, for each 0 < M <∞ and each u > 0,

P

{
sup
t∈T

|X(t)| ≥M + 12 sup
t∈T

‖x(t)‖2τu
1/2 + 2 sup

t∈T
‖x(t)‖q(9τu)1/p

}
≤
(

P

{
sup
t∈T

|X(t)| < M

})−1

e−u,

Proof. By Theorem 2.2, we need to prove that if p ≥ 2,

LΦ(u) ≤ sup
t∈T

‖x(t)‖q

(
36τ2u

)1/p
+ sup

t∈T
‖x(t)‖q(9τu)1/p; (2.3)

and if 1 ≤ p < 2,

LΦ(u) ≤ 6 sup
t∈T

‖x(t)‖2τu
1/2 + sup

t∈T
‖x(t)‖q(9τu)1/p. (2.4)

Suppose that
∞∑

k=1

(Φ(ak))2 ≤ 36u and
∞∑

k=1

Φ(bk) ≤ 9u.



THE LARGE DEVIATION PRINCIPLE FOR CERTAIN SERIES 205

If p ≥ 2,

∞∑
k=1

|xk(t)||ak| ≤ ‖x(t)‖q

( ∞∑
k=1

|ak|p
)1/p

≤ ‖x(t)‖q

( ∞∑
k=1

(max(|ak|, |ak|p))2
)1/p

≤ ‖x(t)‖qτ
2/p

( ∞∑
k=1

(Φ(|ak|))2
)1/p

≤ ‖x(t)‖q

(
36τ2u

)1/p
.

If 1 ≤ p < 2,

∞∑
k=1

|xk(t)||ak| ≤ ‖x(t)‖2

( ∞∑
k=1

|ak|2
)1/2

≤ ‖x(t)‖2τ

( ∞∑
k=1

(Φ(|ak|))2
)1/2

≤ 6‖x(t)‖2τu
1/2.

We have that

∞∑
k=1

|xk(t)||bk| ≤ ‖x(t)‖q


 ∞∑

j=1

|bk|p



1/p

≤ ‖x(t)‖qτ
1/p


 ∞∑

j=1

Φ(bk)




1/p

≤ ‖x(t)‖q(9τu)1/p. �

It follows from the previous corollary that for u large enough,

P

{
sup
t∈T

|X(t)| ≥ u

}
≤ 2 exp

(
−cup sup

t∈T
‖x(t)‖−p

q

)
, (2.5)

where c is some positive constant.
In the situation of the previous corollary the asymptotic exponential order of the tail of supt∈T |X(t)| is the

same as the asymptotic exponential order of ξ1. In Theorem 3.4, we give an example of r.v.’s for which the
asymptotic exponential order of the tail of supt∈T |X(t)| is bigger than the asymptotic exponential order of ξ1.

Next, we consider the case when − log(P{|ξ| ≥ t}), t ≥ 0, is a concave function. We consider the following
condition:

(B.2) ξ is a symmetric r.v. such that:

(i) Φ(t) = − log(P{|ξ| ≥ t}), t > 0 is a concave increasing function.
(ii) There exists a constant τ > 0 such that for each a ≥ 0, 2Φ(a) ≤ Φ(τa).

If for some η > 0 and some 1 ≥ p > 0, P{|ξ| ≥ t} = exp(−ηtp), for each t ≥ 0, then (B.2) holds.
Condition (B.2) (iii) imposes a sort of polynomical growth. If P{|ξ| ≥ t} = 1

t+1 , for each t ≥ 0, then
Φ(t) = − log(P{|Z| ≥ t}) = ln(t+1), t > 0, is a concave function. But, (B.2) (ii) does not hold. For each τ > 0,
infa>0

Φ(τa)
Φ(a) = 1.



206 M.A. ARCONES

Theorem 2.3. Let {ξj}∞j=1 be a sequence of i.i.d.r.v.’s satisfying Condition (B.2). Let T be a parameter set.
Let X(t) :=

∑∞
j=1 xj(t)ξj , t ∈ T , where

∑∞
j=1 |xj(t)|2 <∞ for each t ∈ T . Then, for each u > 0,

P

{
sup
t∈T

|X(t)| ≥M
(
4 + 68τ2u1/2 + 102τ2u

)
+ sup

t∈T
‖x(t)‖2

(
λ
(
6u1/2

)
+ 12τu1/2 + 12(τ + 1)u1/2λ′

(
6u1/2 + 9u

))

+ sup
t∈T

‖x(t)‖∞
(
λ(9u) + 18τuλ′(1) + 18τuλ′

(
6u1/2 + 9u

))}
≤ 2e−u, (2.6)

where M = E[supt∈T |X(t)|].
Proof. We proceed as in Theorem 2.2. Let {Yi}∞i=1 be a sequence of symmetric i.i.d.r.v.’s with P{|Yi| ≥ t} = e−t,
for each t ≥ 0 and each i ≥ 1. Then, ξi has the distribution of λ(Yi), where λ. By Condition (B.2), λ is a
convex function in [0,∞), with λ(0) = 0 and for each a ≥ 0,

λ′(2a) ≤ τλ′(a). (2.7)

Let

A =

{
(ak)∞k=1 : sup

t∈T

∣∣∣∣∣
∞∑

k=1

xk(t)λ(ak)

∣∣∣∣∣ < 4M, sup
t∈T

∞∑
k=1

x2
k(t)(λ(ak))2 < 32M2

}
.

We claim that

P{(Yk)∞k=1 ∈ A) ≥ 1/2.

By the Chebyshev inequality,

P

{
sup
t∈T

∣∣∣∣∣
∞∑

k=1

xk(t)λ(Yk)

∣∣∣∣∣ ≥ 4M

}
≤ 1/4.

By the Kintchine inequality,

P

{
sup
t∈T

∞∑
k=1

x2
k(t)(λ(Yk))2 ≥ 32M2

}
≤ 32−1/2M−1E


sup

t∈T

( ∞∑
k=1

x2
k(t)(λ(Yk))2

)1/2



= 32−1/2M−1E


sup

t∈T


Eε


( ∞∑

k=1

εkxk(t)λ(Yk)

)2





1/2



≤ 2−2M−1E

[
sup
t∈T

Eε

[∣∣∣∣∣
∞∑

k=1

εkxk(t)λ(Yk)

∣∣∣∣∣
]]

≤ 2−2M−1E

[
sup
t∈T

∣∣∣∣∣
∞∑

k=1

εkxk(t)λ(Yk)

∣∣∣∣∣
]

= 2−2,

where {εk} is a sequence of i.i.d. Rademacher r.v.’s independent of the sequence {ξk}. Therefore, γ∞(A) ≥ 1/2.
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By (2.1), it suffices to show that if (yi)∞i=1 ∈ A+ 6u1/2B2 + 9uB1, then

sup
t∈T

∣∣∣∣∣
∞∑

i=1

xi(t)λ(yi)

∣∣∣∣∣ < M
(
4 + 68τ2u1/2 + 102τ2u

)

+ sup
t∈T

‖x(t)‖2

(
λ
(
6u1/2

)
+ 12τu1/2 + 12(τ + 1)u1/2λ′

(
6u1/2 + 9u

))
+ sup

t∈T
‖x(t)‖∞

(
λ(9u) + 18τuλ′(1) + 18τuλ′

(
6u1/2 + 9u

))
.

We have that there are (ai)∞i=1 ∈ A, (bi)∞i=1 ∈ B2, and (ci)∞i=1 ∈ B1, such that for each i ≥ 1, yi = ai +6u1/2bi +
9uci. Since λ′(t) is an even function an it is nondecreasing in [0,∞), for each a, b ∈ R, with |b| ≤ |a|,

|λ(a+ b) − λ(a)| ≤ |b|λ′(|a| + |b|)

and |λ(b)| ≤ |b|λ′(|b|). So, for each a, b ∈ R,

|λ(a + b) − λ(a) − λ(b)| ≤ 2 min(|a|, |b|)λ′(|a| + |b|). (2.8)

Using (2.7), for each a, b ∈ R,

|λ′(a+ b)| ≤ λ′(|a| + |b|) ≤ λ′(2 max(|a|, |b|)) ≤ τλ′(max(|a|, |b|)) ≤ τ(λ′(|a|) + λ′(|b|)).

Using the previous inequality and (2.8), we get that for each a, b ∈ R,

|λ(a+ b) − λ(a) − λ(b)| ≤ 2τ min(|a|, |b|)(λ′(|a|) + λ′(|b|)). (2.9)

Using (2.8) and (2.9), for each i ≥ 1,

∣∣∣λ(ai + 6u1/2bi + 9uci
)
− λ(ai) − λ

(
6u1/2bi

)
− λ(9uci)

∣∣∣ ≤ ∣∣∣λ(ai + 6u1/2bi + 9uci
)

−λ(ai) − λ
(
6u1/2bi + 9uci

)∣∣∣+ ∣∣∣λ(6u1/2bi + 9uci
)
− λ

(
6u1/2bi

)
− λ(9uci)

∣∣∣
≤ 2τ

(
6u1/2|bi| + 9u|ci|

)
λ′(|ai|) + 2τ

(
6u1/2|bi| + 9u|ci|

)
λ′
(
6u1/2 + 9u

)
+ 12u1/2|bi|λ′

(
6u1/2 + 9u

)
. (2.10)

Since λ′ is nondecreasing in [0,∞), for each a > 0,

λ(2a) =
∫ 2a

0

λ′(t) dt ≥
∫ 2a

a

λ′(t) dt ≥ aλ′(a).

By Condition (B.1), for each a > 0, λ(2a) ≤ τλ(a). So, for each for each a > 0, aλ′(a) ≤ τλ(a). Hence, for each
a ∈ R,

λ′(|a|) ≤ λ′(1) + τλ(|a|). (2.11)
By (2.10) and (2.11), for each i ≥ 1,

∣∣∣λ(ai + 6u1/2bi + 9uci
)
− λ(ai) − λ

(
6u1/2bi

)
− λ(9uci)

∣∣∣ ≤ 12τλ′(1)u1/2|bi| + 18τλ′(1)u|ci|

+ 12τ2u1/2|bi|λ(|ai|) + 18τ2u|ci|λ(|ai|) + 12(τ + 1)u1/2|bi|λ′
(
6u1/2 + 9u

)
+ 18τu|ci|λ′

(
6u1/2 + 9u

)
.
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These estimations imply that for (ai)∞i=1 ∈ A, (bi)∞i=1 ∈ B2, and (ci)∞i=1 ∈ B1,

∣∣∣∣∣
∞∑

i=1

xi(t)λ
(
ai + 6u1/2bi + 9uci

)∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑

i=1

xi(t)λ(ai)

∣∣∣∣∣+
∣∣∣∣∣
∞∑

i=1

xi(t)λ
(
6u1/2bi

)∣∣∣∣∣+
∣∣∣∣∣
∞∑

i=1

xi(t)λ(9uci)

∣∣∣∣∣
+ 12τλ′(1)u1/2

∞∑
i=1

|xi(t)||bi| + 18τλ′(1)u
∞∑

i=1

|xi(t)||ci|

+ 12τ2u1/2
∞∑

i=1

|xi(t)||bi|λ(|ai|) + 18τ2u

∞∑
i=1

|xi(t)||ci|λ(|ai|)

+ 12(τ + 1)u1/2λ′
(
6u1/2 + 9u

) ∞∑
i=1

|xi(t)||bi|

+ 18τuλ′
(
6u1/2 + 9u

) ∞∑
i=1

|xi(t)||ci|

≤
∣∣∣∣∣
∞∑

i=1

xi(t)λ(ai)

∣∣∣∣∣+
∞∑

i=1

|xi(t)|bi
∣∣∣λ(6u1/2

)∣∣∣+ ∞∑
i=1

|xi(t)|ci|λ(9u)|

+ 12τu1/2λ′(1)
∞∑

i=1

|xi(t)||bi| + 18τuλ′(1)
∞∑

i=1

|xi(t)||ci|

+ 12τ2u1/2
∞∑

i=1

|xi(t)|λ(|ai|) + 18τ2u

∞∑
i=1

|xi(t)|λ(|ai|)

+ 12(τ + 1)u1/2λ′
(
6u1/2 + 9u

) ∞∑
i=1

|xi(t)||bi|

+ 18τuλ′
(
6u1/2 + 9u

) ∞∑
i=1

|xi(t)||ci|

≤ 4M + ‖x(t)‖2λ
(
6u1/2

)
+ ‖x(t)‖∞λ(9u) + 12τu1/2λ′(1)‖x(t)‖2

+ 18τuλ′(1)‖x(t)‖∞ + 68τ2u1/2M + 102τ2uM

+ 12(τ + 1)u1/2λ′
(
6u1/2 + 9u

)
‖x(t)‖2 + 18τuλ′

(
6u1/2 + 9u

)
‖x(t)‖∞

= M
(
4 + 68τ2u1/2 + 102τ2u

)
+ ‖x(t)‖2

(
λ
(
6u1/2

)
+ 12τu1/2λ′(1) + 12(τ + 1)u1/2λ′

(
6u1/2 + 9u

))
+ ‖x(t)‖∞

(
λ(9u) + 18τuλ′(1) + 18τuλ′

(
6u1/2 + 9u

))
,

where we have used that for each 0 ≤ t ≤ 1 and x ≥ 0, λ(tx) ≤ tλ(x). This follows from the convexity of λ
in [0,∞). This implies the claim of the theorem. �

The term of bigger order, as u→ ∞, inside the probability in (2.6) is λ(9u). So, the previous theorem gives
that there exists a constant c such that for u large enough,

P

{
sup
t∈T

|X(t)| ≥ c sup
t∈T

‖x(t)‖∞λ(u)
}

≤ 2e−u.
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3. The LDP for certain series processes

Our goal is to study the LDP of {∑∞
k=1 xk(t)ξk : t ∈ T }, where {ξk}∞k=1 is a sequence of i.i.d.r.v.’s with mean

zero, T is a parameter set and xk(t) ∈ R. We present results on the order of generality of the r.v.’s considered.
First, we will study the LDP for {n−1ξ}, where ξ is a r.v. Then, we will study the LDP for {∑∞

k=1 xkξk},
where {xk} is a sequence of real numbers. Finally, we will consider the LDP for {∑∞

k=1 xk(t)ξk : t ∈ T }.
In order to obtain the LDP for {n−1ξ}, it is needed to impose that the tail of the r.v. ξ is regularly varying.

We refer to regular variation to Bingham, Goldie and Teugels [4]. We consider the following condition:

(A.1) − log(P{|ξ| ≥ t}) is regularly varying at infinity with order p > 0 and for some 0 < c1, c2 ≤ ∞,

lim
u→∞

log(P{ξ ≤ −u})
log(P{|ξ| ≥ u}) = c1

and

lim
λ→∞

log(P{ξ ≥ u})
log(P{|ξ| ≥ u}) = c2.

Since for each u > 0, P{ξ ≤ −u} ≤ P{|ξ| ≥ u} and P{ξ ≥ u} ≤ P{|ξ| ≥ u}, c1 ≥ 1 and c2 ≥ 1. It is easy to
see that min(c1, c2) = 1. Under Condition (A.1), {n−1ξ} satisfies the LDP with speed ε−1

n := − log(P{|ξ| ≥ n})
and rate function

ψ(t) =



c1|t|p if t < 0;
0 if t = 0;
c2|t|p if t > 0.

(3.1)

Under minimal conditions if {n−1ξ} satisfies the LDP, Condition (A.1) holds:

Theorem 3.1. Let ξ be a r.v. and let {εn}∞n=1 be a sequence of positive numbers converging to zero. Suppose
that:

(i) {n−1ξ} satisfies the LDP with speed ε−1
n and a good rate function ψ.

(ii) ψ is continuous in R − {0}.
(iii) There exists 0 < t0 <∞ such that 0 < K(t0) <∞, where K(t) = inf{ψ(s) : |s| ≥ t}, for t > 0.

Then, Condition (A.1) holds and ψ is as in (3.1) for some p > 0 and some 0 < c1, c2 ≤ ∞.

Proof. Let J(t) = inf{ψ(s) : s ≥ t}, if t > 0 and J(t) = inf{ψ(s) : s ≤ t}, if t < 0. Then, for each t > 0,
K(t) = min(J(t), J(−t)). By Conditions (i) and (ii), j and K are continuous functions on R − {0}. Hence, for
each t > 0,

lim
n→∞ εn log(P{ξ ≥ tn}) = −J(t),

and for each t < 0,
lim

n→∞ εn log(P{ξ ≤ tn}) = −J(t).

Besides for each t > 0,
lim

n→∞ εn log(P{|ξ| ≥ tn}) = −K(t).

By the Karamata theorem (see for example Th. 1.10.2 in Bingham, Goldie and Teugels [4]), − log(P{|ξ| ≥ t})
is regularly varying at infinity with order p ≥ 0 and there is a 0 < c <∞ such that for each t > 0, K(t) = ctp.
Since ψ is a good rate, lim|t|→∞ ψ(t) = ∞ and p > 0.

We claim that

J(t) =

{
c1|t|p if t < 0;
c2|t|p if t > 0,

(3.2)
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where c1 = cJ(−t0)
K(t0)

and c2 = cJ(t0)
K(t0)

· We have that

lim
n→∞

log(P{ξ ≥ t0n})
log(P{|ξ| ≥ t0n}) =

J(t0)
K(t0)

·

This limit and the regular variation of − log(P{|ξ| ≥ t}), implies that

lim
u→∞

log(P{ξ ≥ u})
log(P{|ξ| ≥ u}) =

J(t0)
K(t0)

·

So, for each t > 0,

εn log(P{ξ ≥ tn}) = εn log(P{|ξ| ≥ tn}) log(P{ξ ≥ tn})
log(P{|ξ| ≥ tn}) → −c2|t|p. (3.3)

Similarly, for each t < 0,

εn log(P{ξ ≤ tn}) → −c1|t|p. (3.4)

So, J is as in (3.2). The limits (3.3) and (3.4) imply that ψ is as in (3.1). �

Next, we consider the LDP for the series
∑∞

k=1 xkξk, where {ξk} is a sequence of i.i.d.r.v.’s with mean zero
and finite second moment and {xk} is a sequence of real numbers. To determine the rate function of the LDP
of {n−1

∑∞
k=1 xkξk}, we will use the following lemma:

Lemma 3.1. Let ψ be as in (3.1), where p > 0, 0 < c1, c2 ≤ ∞ and min(c1, c2) <∞. Let {xk}∞k=1 be a sequence
of real numbers such that

∑∞
k=1 x

2
k <∞. If p ≥ 2, assume also that

∑∞
k=1 |xk|q <∞, where 1

p + 1
q = 1. Let

I(z) = inf




∞∑
j=1

ψ(uj) :
∞∑

j=1

ujxj = z


 . (3.5)

If p > 1, then

I(z) =



|z|p

(
c
−q/p
1

∑
i∈A2

|xi|q + c
−q/p
2

∑
i∈A1

|xi|q
)−p/q

if z < 0;

|z|p
(
c
−q/p
1

∑
i∈A1

|xi|q + c
−q/p
2

∑
i∈A2

|xi|q
)−p/q

if z ≥ 0;
(3.6)

where A1 = {i ≥ 1 : xi < 0} and A2 = {i ≥ 1 : xi > 0}.
If 1 ≥ p > 0, then

I(z) =

{
|z|p (max

(
supi∈A2

c−1
1 |xi|p, supi∈A1

c−1
2 |xi|p

))−1
if z < 0;

|z|p (max
(
supi∈A1

c−1
1 |xi|p, supi∈A2

c−1
2 |xi|p

))−1
if z ≥ 0.

(3.7)
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Proof. Assume that p > 1, c1, c2 <∞ and
∑∞

j=1 ujxj = z > 0. By he Hölder inequality,

z =
∑
i∈A1

xiui +
∑
i∈A2

xiui

≤
(∑

i∈A1

|xi|q
)1/q (∑

i∈A1

|ui|p
)1/p

+

(∑
i∈A2

|xi|q
)1/q (∑

i∈A2

|ui|p
)1/p

=

(
c
−q/p
1

∑
i∈A1

|xi|q
)1/q (

c1
∑
i∈A1

|ui|p
)1/p

+

(
c
−q/p
2

∑
i∈A2

|xi|q
)1/q (

c2
∑
i∈A2

|ui|p
)1/p

≤
(
c
−q/p
1

∑
i∈A1

|xi|q + c
−q/p
2

∑
i∈A2

|xi|q
)1/q

×
(
c1
∑
i∈A1

|ui|p + c2
∑
i∈A2

|ui|p
)1/p

=

(
c
−q/p
1

∑
i∈A1

|xi|q + c
−q/p
2

∑
i∈A2

|xi|q
)1/q ( ∞∑

i=1

ψ(ui)

)1/p

.

Hence,
∞∑

i=1

ψ(ui) ≥ |z|p
(
c
−q/p
1

∑
i∈A1

|xi|q + c
−q/p
2

∑
i∈A2

|xi|q
)−p/q

.

Take

ui = −z
(
c
−q/p
1

∑
i∈A1

|xi|q + c
−q/p
2

∑
i∈A2

|xi|q
)−1

c
−q/p
1 |xi|q/p

if i ∈ A1, and

ui = z

(
c
−q/p
1

∑
i∈A1

|xi|q + c
−q/p
2

∑
i∈A2

|xi|q
)−1

c
−q/p
2 |xi|q/p

if i ∈ A2. Then,
∑∞

i=1 xiui = z and

∞∑
i=1

ψ(ui) = |z|p
(
c
−q/p
1

∑
i∈A1

|xi|q + c
−q/p
2

∑
i∈A2

|xi|q
)−p/q

.

So,

I(z) = |z|p
(
c
−q/p
1

∑
i∈A1

|xi|q + c
−q/p
2

∑
i∈A2

|xi|q
)−p/q

.

The cases when either z < 0 or c1 = ∞ or c2 = ∞ are similar. The case 1 ≥ p > 0 follows similarly. �

Next, we consider the LDP for series over a sequence of i.i.d.r.v.’s satisfying Condition (A.1).
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Theorem 3.2. Let {ξk} be a sequence of i.i.d.r.v.’s with mean zero satisfying Condition (A.1) for some
p ≥ 1. Let {xk}∞k=1 be a sequence of real numbers such that

∑∞
k=1 x

2
k < ∞. Let X :=

∑∞
k=1 xkξk. Let

εn := (− log(P{|ξ| ≥ n}))−1. Suppose that:
(i) For each u > 0,

lim
k→∞

lim sup
n→∞

εn

∞∑
j=k+1

Ψ2

(
uε−1

n n−1xj

)
= 0,

where Φ(x) = − log({P{|ξ| ≥ |x|}), x ∈ R, Ψ(x) = supy∈R(xy − Φ(y)), x ∈ R, and Ψ2(t) = t2 for |t| ≤ 1, and
Ψ2(t) = max(1,Ψ(t)) for |t| > 1.

(ii) If p > 2, assume also that
∑∞

j=1 |xj |q <∞, where 1
p + 1

q = 1.
Then, {n−1X} satisfies the LDP with speed ε−1

n and rate function

I(z) = inf




∞∑
j=1

ψ(uj) :
∞∑

j=1

ujxj = z


 ,

where ψ is as in (3.1).

Proof. Let Xn,k = n−1
∑k

j=1 xjξj and let Xn = n−1
∑∞

j=1 xjξj . By Theorem 3.2 in Baxter and Jain [3], it
suffices to prove that:

(C.1) For each k ≥ 1, Xn,k, as n→ ∞, satisfies the LPD with speed ε−1
n and rate function

Ik(z) = inf




k∑
j=1

ψ(uj) :
k∑

j=1

xjuj = z


 .

(C.2) For each τ > 0,

lim
k→∞

lim sup
n→∞

εn log


P



∣∣∣∣∣∣

∞∑
j=k+1

xjξj

∣∣∣∣∣∣ ≥ τn




 = −∞.

(C.3) For each x ∈ R,
I(x) = lim

δ→0
lim inf
k→∞

inf{Ik(y) : |y − x| ≤ δ}.
By Lemma 2.8 in Lynch and Sethuraman [14] and Theorem 3.1, for each k ≥ 1, (n−1ξ1, . . . , n

−1ξk) satisfies
the LDP with speed ε−1

n and rate function
∑k

i=1 ψ(ui). Hence, by the contraction principle for each k ≥ 1,
{n−1

∑k
j=1 xjξj} satisfies the LDP with speed ε−1

n and rate function Ik. Hence (C.1) holds.
To check (C.2), we estimate the moment generating function of ξ. We claim that there exists a finite constant c

such that for each λ ∈ R,
| log(E[exp(λξ1)])| ≤ cΨ2(2λ). (3.8)

Take λ0 > 0 such that Ψ(λ0) > 0. Since ξ1 has mean zero,

E[exp(λξ1) − 1] = O
(
λ2
)
, as λ→ 0.

This implies that there exists a constant c such that (3.8) holds for each |λ| ≤ λ0.
Let G be the df of |ξ|. Given 0 < p < 1, let G−1(p) = sup{x ≥ 0 : G(x−) ≤ p}. We have that for each

x ≥ 0 and each 0 < p < 1, G(x−) ≤ p if an only if x ≤ G−1(p). We also have that for each 0 < p < 1,
G(G−1(p)−) ≤ p ≤ G(G−1(p)). We claim that each 0 < a < 1,

E[exp(aΦ(ξ1))] ≤ (1 − a)−1 (3.9)
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We have that exp(−Φ(x)) = 1 −G(x−). So,

E[exp(aΦ(ξ1))] = E[(1 −G(|ξ1|−))−a] = E

[∫ ∞

1−G(|ξ1|−)

at−a−1 dt

]

= E

[∫ ∞

0

I(1 −G(|ξ1|−) < t)at−a−1 dt =
∫ ∞

0

P (1 − t < G(|ξ1|−))at−a−1 dt.

If t > 1, P (1 − t < G(|ξ1|−)) = 1. If 0 < t < 1,

P{1 − t < G(|ξ1|−)} = P{G−1(1 − t) < |ξ1|} = 1 −G(G−1(1 − t)) ≤ 1 − (1 − t) = t.

So,

E[exp(aΦ(ξ1))] ≤
∫ 1

0

at−a dt+
∫ ∞

1

at−a−1 dt = (1 − a)−1,

and (3.9) follows. (3.9) implies that

E[exp(|λξ1|)] ≤ E
[
exp

(
2−1Φ(ξ1) + 2−1Ψ(2λ)

)] ≤ 2 exp
(
2−1Ψ(2λ)

)
.

Hence, there exists a positive constant c such that for each |λ| ≥ |λ0|,

log(E[exp(λξ1)]) ≤ log(2) + 2−1Ψ(2λ) ≤ cΨ2(2λ).

Therefore, (3.8) holds.
Given τ, u > 0,

P




∞∑
j=k+1

xjξj ≥ τn


 ≤ e−uε−1

n E


exp


uτ−1n−1ε−1

n

∞∑
j=k+1

xjξj






= e−uε−1
n

∞∏
j=k+1

E[exp(uτ−1n−1ε−1
n xjξj)]

≤ exp


−uε−1

n + c
∞∑

j=k+1

Ψ2

(
2uτ−1n−1ε−1

n xj

) .

Using a similar inequality for the lower bound, we get that

εn log


P



∣∣∣∣∣∣

∞∑
j=k+1

xjξj

∣∣∣∣∣∣ ≥ τn




 ≤ εn log 2 − u+ εnc

∞∑
j=k+1

Ψ2(2uτ−1n−1ε−1
n xj) → −u,

as n→ ∞. Hence, (C.2) holds.
(C.3) follows from Lemma 3.1. �

The following condition is stronger than Condition (A.1):

(A.2) For some p > 0 and some 0 < b1, b2 ≤ ∞ with min(b1, b2) <∞,

lim
u→∞u−p log(P{ξ ≤ −u}) = −b1
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and

lim
u→∞u−p log(P{ξ ≥ u}) = −b2.

Under Condition (A.2), limu→∞ u−p log(P{|ξ| ≥ u}) = −b, where b = min(b1, b2). Under Condition (A.2), if
Φ(x) = − log(P{|ξ| ≥ |x|}), Ψ(x) = supy∈R(xy − Φ(y)) and p > 1, then

lim
x→∞x−qΨ(x) → (bp)−q/pq−1.

So, there are 0 < c1, c2 <∞ such that for |x| large enough,

c1|x|q ≤ Ψ(x) ≤ c2|x|q . (3.10)

Theorem 3.3. Let {ξk}∞k=1 be a sequence of i.i.d.r.v.’s with mean zero satisfiying Condition (A.2) for some
p ≥ 1. Let {xk}∞k=1 be a sequence of real numbers such that

∑∞
k=1 x

2
k <∞. Let X :=

∑∞
k=1 xkξk. Then,

(i) If 2 ≥ p ≥ 1, then {n−1X} satisfies the LDP with speed np.
(ii) If p > 2, then {n−1X} satisfies the LDP with speed np and a good rate function if and only if∑∞

j=1 |xj |q <∞, where 1
p + 1

q = 1.

Moreover, the rate function is given by (3.1) with c1 = b1 and c2 = b2.

Proof. First let us prove (i). Assume that 2 ≥ p > 1. We apply Theorem 3.2. There exists a finite constant c
such that for each x ∈ R, Ψ2(x) ≤ c(x2 + |x|q). So, Hypothesis (i) in Theorem 3.2 holds. Let u > 0. If p = 1,
for k large |uxj | ≤ 1. So, for k large enough,

n−1
∞∑

j=k+1

Ψ2(uxj) = n−1
∞∑

j=k+1

u2x2
j ,

and Hypothesis (i) in Theorem 3.2 holds.
Next, we prove (ii). Assume that p > 2. There exists a finite constant c such that for each x ∈ R,

Ψ2(x) ≤ c|x|q. Hence, using Theorem 3.2,
∑∞

j=1 |xj |q < ∞ implies that {n−1X}∞n=1 satisfies the LDP with
speed np. Reciprocally, if {n−1X}∞n=1 satisfies the LDP with speed np and a good rate function, then given
τ > 0, there exists a M > 0 such that for n large enough,

P

{
n−1

∣∣∣∣∣
∞∑

i=1

xiξi

∣∣∣∣∣ ≥M

}
≤ e−τnp

.

Let {ξ′i} be an independent copy of {ξi}. By symmetrization and the Lévy inequality, for each N <∞,

P

{
n−1

∣∣∣∣∣
N∑

i=1

xi(ξi − ξ′i)

∣∣∣∣∣ ≥ 2M

}
≤ 2P

{
n−1

∣∣∣∣∣
∞∑

i=1

xi(ξi − ξ′i)

∣∣∣∣∣ ≥ 2M

}

≤ 4P

{
n−1

∣∣∣∣∣
∞∑

i=1

xiξi

∣∣∣∣∣ ≥M

}
≤ 4e−τnp

.

So,

lim sup
n→∞

n−p log

(
P

{
n−1

∣∣∣∣∣
N∑

i=1

xi(ξi − ξ′i)

∣∣∣∣∣ ≥ 2M

})
≤ −τ,
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for each N <∞. By Theorem 3.2, n−1
∑N

i=1 xi(ξi − ξ′i) satisfies the LDP with speed np and rate function

I(z) = inf

{
N∑

i=1

(ψ(ui) + ψ(vi)) :
N∑

i=1

xi(ui − vi) = z

}
,

where ψ is as in (3.1) with ci = bi, for i = 1, 2. By Lemma 3.1 this rate function is

I(z) = |z|p
(
b
−q/p
1 + b

−q/p
2

)−p/q
(

N∑
i=1

|xi|q
)−p/q

.

So,

(2M)p
(
b
−q/p
1 + b

−q/p
2

)−p/q
(

N∑
i=1

|xi|q
)−p/q

≥ τ.

Since this happens for each N ≥ 1,
∑∞

i=1 |xi|q <∞. �

One should expect that if p > 2 and
∑∞

i=1 |xi|p/(p−1) = ∞, then {n−1X} still satisfies a LDP, but with
smaller speed. Next theorem presents a situation where this happens:

Theorem 3.4. Let {ξk}∞k=1 be a sequence of symmetric i.i.d.r.v.’s such that P{|ξ1| ≥ t} = exp(−ctp), for each
t > 0, where p > 2 and c > 0. Let 2−1 < b < (p− 1)/p. Then,

lim
t→∞ t−1/(1−b) log


P



∣∣∣∣∣∣
∞∑

j=1

j−bξj

∣∣∣∣∣∣ ≥ t




 = −(1 − b)bb/(b−1)a−b/(b−1),

where a :=
∫∞
0

lnE[exp(x−bξ)] dx.

Proof. Let X :=
∑∞

j=1 j
−bξj . Let ψ(λ) = logE[eλξ]. By (3.8), ψ(λ) = O(min(λ2, |λ|q)). This estimation and

the restriction 2−1 < b < (p− 1)/p imply that for each λ > 0,

∫ ∞

0

ψ(x−bλ) dx <∞.

So, 0 < a <∞.
It suffices to show that {n−1

∑∞
j=1 j

−bξj} satisfies the LPD with speed n1/(1−b) and rate function I(t) =
|t|1/(1−b)(1 − b)bb/(b−1)a−b/(b−1). By the Gärtner-Ellis theorem (see for example Th. 2.3.2 in Dembo and
Zeitouni [6]), it suffices to prove that for each λ ∈ R,

n−1/(1−b) lnE
[
exp

(
λn1/(1−b)n−1X

)]
→ |λ|1/ba,

and that

I(t) = sup
λ∈R

(
λt− |λ|1/ba

)
= (1 − b)bb/(b−1)a−b/(b−1)|t|1/(b−1).
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We have that

n−1/(1−b) lnE
[
exp

(
λn1/(1−b)n−1X

)]
= n−1/(1−b) lnE


exp


λnb/(1−b)

∞∑
j=1

j−bξj






= n−1/(1−b)
∞∑

j=1

ψ
(
nb/(1−b)j−bλ

)

=
∞∑

j=1

∫ jn−1/(1−b)

(j−1)n−1/(1−b)
ψ

((
jn−1/(1−b)

)−b

λ

)
dx

→
∫ ∞

0

ψ
(
x−bλ

)
dx = |λ|1/ba

by the monotone convergence theorem (using that ψ is even and increasing in (0,∞)). Hence, the claim
follows. �

In the previous theorem, n1/(1−b) 	 np and the tail of |∑∞
j=1 j

−bξj | is asymptotically much bigger than the
tail of ξ1.

Finally, we consider stochastic processes whose underlying r.v.’s satisfy Condition (A.1). We present sufficient
conditions for the LDP of certain stochastic processes.

Theorem 3.5. Let {ξk} be a sequence of symmetric i.i.d.r.v.’s with satisfying Condition (A.1) for some p ≥ 1
and Condition (B.1). Let T be a parameter set. Let d be a pseudometric in T . Let X(t) :=

∑∞
k=1 xk(t)ξk,

where
∑∞

k=1 x
2
k(t) <∞. Suppose that:

(i) For each u > 0 and each t ∈ T ,

lim
k→∞

lim sup
n→∞

εn

∞∑
j=k+1

Ψ2

(
uε−1

n n−1xj(t)
)

= 0,

where Ψ2 is as in Theorem 3.2.
(ii) If p > 2, assume also that for each t ∈ T ,

∑∞
j=1 |xj(t)|q <∞, where 1

p + 1
q = 1.

(iii) supt∈T |X(t)| <∞ a.s.
(iv) (T, d) is totally bounded.
(v) (T, dq) is totally bounded, where dq(s, t) = ‖x(s) − x(t)‖q.
(vi) For each u > 0,

lim
η→0

lim sup
n→∞

n−1LΦ

(
uε−1

n , η
)

= 0,

where

LΦ(u, η) =: sup

{ ∞∑
k=1

|xk(s) − xk(t)|(|ak| + |bk|) :
∞∑

k=1

(Φ(ak))2 ≤ 36u,
∞∑

k=1

Φ(bk) ≤ 9u, d(s, t) ≤ η

}
.

Then, {n−1X(t) : t ∈ T } satisfies the LDP in l∞(T ) with speed ε−1
n and rate function

I(z) = inf

{ ∞∑
i=1

ψ(γi) :
∞∑

i=1

xi(t)γi = z(t) for each t ∈ T

}
,

where ψ is as in (3.1).
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Proof. We apply Theorem 3.1 in Arcones [1]. Conditions (i) and (ii) imply the LDP for the finite dimensional
distributions. We need to prove that for each τ > 0,

lim
δ→0

lim sup
n→∞

εn log

(
P

{
sup

d(s,t)≤η

|X(s) −X(t)| ≥ nτ

})
= −∞. (3.11)

Theorem 2.2 and Conditions (iii) and (vi) imply (3.11).
To prove that the rate function is as claimed, we apply Theorem 4.2 in Arcones [2] with S = {1, 2, . . .}, ψ

as in (3.1) and µ equal to the counting measure. To apply this theorem, we need that for each integer k ≥ 1,
(T, ρk) is totally bounded where

ρk(s, t) := sup



∣∣∣∣∣∣
∞∑

j=1

(xj(s) − xj(t))γj

∣∣∣∣∣∣ :
∞∑

j=1

ψ(γj) ≤ k


 .

This follows from Condition (v). �

When Condition (A.2) is satisfied, we get necessary and sufficient conditions for the LDP:

Corollary 3.1. Let {ξk} be a sequence of symmetric i.i.d.r.v.’s with mean zero satisfying Condition (B.1),
τ := infx>0 x

−1Φ(x) > 0, and that

lim
u→∞u−p log(P{|ξ| ≥ u}) = −b

for some p ≥ 1 and some b > 0. Let T be a parameter set. Let X(t) :=
∑∞

k=1 xk(t)ξk, where
∑∞

i=1 |xi(t)|2 <∞.
Then, the following sets of conditions are equivalent:

(a.1) For each t ∈ T , (xi(t))∞i=1 ∈ lq.
(a.2) (T, dq) is totally bounded, where dq(s, t) = ‖x(s) − x(t)‖q.
(a.3) supt∈T |X(t)| <∞ a.s.

(b) {n−1X(t) : t ∈ T } satisfies the LDP in l∞(T ) with speed np and a good rate.

Moreover, the rate function is

I(z) = inf

{ ∞∑
i=1

ψ(γi) :
∞∑

i=1

xi(t)γi = z(t) for each t ∈ T

}
,

where ψ is as in (3.1) with c1 = c2 = b.

Proof. Assume (a). We apply Theorem 3.5 with d(s, t) = ‖(x(s) − x(t)‖q. Hypothesis (i) in Theorem 3.5
follows from an argument in Theorem 3.3. It is easy to see that Conditions (ii)–(v) in Theorem 3.5 hold. As to
Hypothesis (vi) in Theorem 3.5. By (2.3) and (2.4), if p ≥ 2,

n−1LΦ (unp, η) ≤ η(36τ2u)1/p + η(9τu)1/p;

and if 1 ≤ p < 2,

n−1LΦ(unp, η) ≤ 12 sup
t∈T

‖x(t)‖2τu
1/2n(p−2)/2 + η(9τu)1/p.

Therefore, Hypothesis (vi) in Theorem 3.5 holds.
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Assume (b). Theorem 3.3 (ii) implies (a.1). By Theorem 3.1 in Arcones [1], for each positive integer k,
(T, ρk) is totally bounded, where

ρk(s, t) = sup{|u2 − u1| : Is,t(u1, u2) ≤ k}

= sup



∣∣∣∣∣∣
∞∑

j=1

(xj(t) − xj(s))γj

∣∣∣∣∣∣ :
∞∑

j=1

ψ(γj) ≤ k




= sup



∣∣∣∣∣∣
∞∑

j=1

(xj(t) − xj(s))γj

∣∣∣∣∣∣ :
∞∑

j=1

b|γj|p ≤ k


 = ‖x(t) − x(s)‖qp

−1/pk1/p,

and Is,t is the rate of the LDP of (n−1X(s), n−1X(t)). This implies (a.2).
Since {z ∈ l∞(T ) : I(z) ≤ 1} is a compact set, there exists 0 < c <∞ such that

{z ∈ l∞(T ) : I(z) ≤ 1} ⊂ {z ∈ l∞(T ) : |z|∞ ≤ c}.
So,

lim sup
n→∞

n−p log

(
P

{
n−1 sup

t∈T

∣∣∣∣∣
∞∑

i=1

xi(t)ξi

∣∣∣∣∣ ≥ c

})
≤ −1.

Hence, for n large enough

P

{
n−1 sup

t∈T

∣∣∣∣∣
∞∑

i=1

xi(t)ξi

∣∣∣∣∣ ≥ c

}
≤ exp

(−2−1np
)
.

Hence, (a.3) follows. �
Next, we consider the LDP when Condition (A.2) holds for some 0 < p ≤ 1.

Theorem 3.6. Let {ξk} be a sequence of symmetric i.i.d.r.v.’s with mean zero satisfying Condition (B.2) and
that

lim
u→∞u−p log(P{|ξ| ≥ u}) = −b

for some 1 ≥ p > 0 and some b > 0. Let X =
∑∞

k=1 xkξk. Then, {n−1X} satisfies the LDP with speed np and
rate function

I(z) = inf




∞∑
j=1

ψ(uj) :
∞∑

j=1

ujxj = z


 ,

where ψ is as in (3.1) with c1 = c1 = b.

Proof. We proceed as in the proof of Theorem 3.2, applying Theorem 3.1 in Baxter and Jain [3] with Xn,k =
n−1

∑k
j=1 xjξj and Xn = n−1

∑∞
j=1 xjξj .

By Lemma 2.8 in Lynch and Sethuraman [14], and the contraction principle, for each k ≥ 1, {n−1
∑k

j=1 xjξj}
satisfies the LDP with speed ε−1

n and rate function

Ik(z) = inf




k∑
j=1

ψ(uj) :
k∑

j=1

xjuj = z


 .

We need to prove that for each τ > 0,

lim
k→∞

lim sup
n→∞

n−p log


P



∣∣∣∣∣∣

∞∑
j=k+1

xjξj

∣∣∣∣∣∣ ≥ τn




 = −∞. (3.12)
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Theorem 2.3 implies that for n large enough,

P

{∣∣∣∣∣
∞∑

i=k+1

(xi − xi)(ξi − ξ′i)

∣∣∣∣∣ ≥ 2−1nτ

}
≤ 4 exp


−cnp

(
sup

j≥k+1
|xj |

)−p

 .

Hence, (3.12) holds. �
Next, we consider the LDP for stochastic processes over a sequence of i.i.d.r.v.’s satisfying the conditions in

the previous theorem.

Theorem 3.7. Let {ξk} be a sequence of symmetric i.i.d.r.v.’s with mean zero satisfying Condition (B.2) and
that

lim
u→∞u−p log(P{|ξ| ≥ u}) = −b

for some 1 ≥ p > 0 and some b > 0. Let T be a parameter set. Let X(t) :=
∑∞

k=1 xk(t)ξk, where
∑∞

i=1 |xi(t)|2 <
∞ for each t ∈ T . Then, the following sets of conditions are equivalent:

(a.1) (T, d) is totally bounded, where d(s, t) = supi≥1 |xi(s) − xi(t)|.
(a.2) supt∈T |∑∞

k=1 xk(t)ξk| <∞ a.s.
(b) {n−1X(t) : t ∈ T } satisfies the LDP in l∞(T ) with speed n1/p.

Moreover, the rate function is

I(z) = inf




∞∑
j=1

ψ(γj) :
∞∑

j=1

xj(t)γj = z(t) for each t ∈ T


 ,

where ψ is as in (3.1) with c1 = c2 = b.

Proof. Assume (a). We apply Theorem 3.1 in Arcones [1]. Theorem 3.5 implies the LDP for the finite dimen-
sional distributions. Theorem 2.3 implies that for each τ > 0,

lim
δ→0

lim sup
n→∞

n−p log

(
P

{
sup

d(s,t)≤η

∣∣∣∣∣
∞∑

i=1

(xi(s) − xi(t))ξi

∣∣∣∣∣ ≥ nτ

})
= −∞.

Assume (b). By Theorem 3.1 in Arcones [1], (T, ρ) is totally bounded, where

ρk(s, t) = sup{|u2 − u1| : Is,t(u1, u2) ≤ k}

and

Is,t(u1, u2) =




∞∑
j=1

φ(γj) :
∞∑

j=1

xj(s)γj = u1,

∞∑
j=1

xj(t)γj = u2


 .

It is easy to see that ρk(s, t) ≥ ck−1/p|x(s) − x(t)|∞, where c is positive constant. This implies (a.1).
The LDP implies that there are positive constants r,M such that for n large enough,

n−p log
(

P{sup
t∈T

|X(t)| ≥ nr

)
≤ −M.

This implies that for some c > 0,

E

[
exp

(
c sup

t∈T
|X(t)|p

)]
<∞.

In particular (a.2) holds. �
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[10] S. Kwapień and W.A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992).
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