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THE LARGE DEVIATION PRINCIPLE FOR CERTAIN SERIES

MIGUEL A. ARCONES!

Abstract. We study the large deviation principle for stochastic processes of the form {>°77 | xx(t)&x ¢
t € T}, where {&x}72, is a sequence of i.i.d.r.v.’s with mean zero and z(¢) € R. We present neces-
sary and sufficient conditions for the large deviation principle for these stochastic processes in several
situations. Our approach is based in showing the large deviation principle of the finite dimensional
distributions and an exponential asymptotic equicontinuity condition. In order to get the exponential
asymptotic equicontinuity condition, we derive new concentration inequalities, which are of indepen-
dent interest.
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1. INTRODUCTION

We study the large deviation principle for stochastic processes of the form {> -, i (t)& : t € T}, where
{&:}52, is a sequence of i.i.d.r.v.’s with mean zero, T is a parameter set and zx(¢t) € R. Our results apply
when log(P{|&1| > t}), t > 0, is either a convex or a concave function. In particular, we obtain necessary and
sufficient conditions for the LDP of {>"77, 4 (t)&, : t € T'}, where {&} is a sequence of symmetric iid.r.v.’s
such that for some p,7 > 0,

ulingo u Plog(P{|&| > u}) = —7. (1.1)

Stochastic processes like that have been considered by several authors. If {X (¢) : t € T'} is a mean zero Gaussian
process such that sup,c, [ X (t)] < oo a.s., then there exists a sequence of i.i.d.r.v.’s {{}72, with a standard
normal distribution and real numbers z(t), k > 1, t € T, such that for each t € T', X (¢) := Y oo | x(t)&k (see
for example Prop. 2.6.1 in Kwapieri and Woyczyniski [10]). Hence, the considered stochastic processes are a
natural generalization of Gaussian processes. Observe that for a standard normal r.v. &,

uh_}IIolO u 2 log(P{|¢] > u}) = —27 1. (1.2)

Talagrand [15, 16] studied the concentration of measure and continuity of processes of the form
> mk(t)é, - t € T}, where {&} is a sequence of i.i.d.r.v.’s with density cpe” " 2 € R, where p > 1.
Gluskin and Kwapien [8] gave tail and moment estimates for the r.v. "2, ars, where {£;} is a sequence
of symmetric ii.d.r.v.’s with logarithmically concave tails. Latala [11] gave tail and moment estimates for
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> e zk€k, where {£;} is a sequence of ii.d.r.v.’s with logarithmically concave tails and {z}} is a sequence of
vectors of a Banach space. Hitczenko, Montgomery-Smith and Oleszkiewick [9] considered moment inequalities
for Y1 | &, where {&;} is a sequence of symmetric i.i.d.r.v.’s such that —log(IP{|¢;| > ¢}) is a concave function.

We consider large deviations in the sense of Varadhan [17]. General references in large deviations are Deuschel
and Stroock [7] and Dembo and Zeitouni [6]. We consider stochastic processes as random elements of [ (T),
the Banach space consisting of the bounded functions on T with the supremum norm. We use the following
definition of large deviations for stochastic processes.

Definition 1.1. Given a sequence of stochastic processes {U,(t) : t € T}, a sequence of positive numbers
{en}5%, such that €, — 0, and a function I : I(T) — [0, 0], we say that {U,(t) : t € T'} satisfies the LDP
with speed €, ! and with rate function [ if:

(i) For each 0 < ¢ < 00, {2 € loo(T) : I(2) < ¢} is a compact set of oo (T).
(ii) For each set A C I (T),

—I(A%) < liminf e, log(P.{{Un(t) : t € T} € A}) < limsup e, log(P*{{Un(t) : t € T} € A}) < I (4),

n—oo
where A° is the interior of A and A is the closure of A.

It is shown in Arcones [1] that this definition is equivalent to the large deviations for the finite dimensional
distributions, plus an asymptotic equicontinuity condition. This result is similar to the classical one for the
weak convergence of empirical processes.

In Section 2, we present some new concentration inequalities for series processes, which are of independent
interest. In Section 3, we study the large deviation principle of series processes.

c will denote a finite constant, which may change from occurrence to occurrence. For p > 1, [,, denotes the
Banach space consisting of the sequences (z;)52; such that > .~ |z;|? < oo endowed with the norm ||(2;)52, ||, :=

>y |:L'i|p)1/p. loo denotes the Banach space consisting of the bounded sequences (z;)$2; endowed with the

norm [|(2;)72 [|oo 1= sup;>1 |2i|. We simplify [|z(t)||, := [|(z:()):2;[],- We say that a function I : S — [0, 0] is
a good rate, if {x € S: I(x) < ¢} is a compact set, where S is a topological space.

2. SOME CONCENTRATION INEQUALITIES FOR CERTAIN SERIES PROCESSES

It is well known that concentration inequalities play a fundamental role in the study of Gaussian processes
(see for example Ledoux and Talagrand [12]). This is also so, for the considered stochastic processes. Let oo
be the measure on RY which is the product of v, where y(A) = fA 2~ le~Ithdt.

Theorem 2.1 (Talagrand [15], Th. 1). For each set A € B(RY) with v (A) > 0,
Yoo (A +6ul/2By + 9u31) > 1 — (a0 (A)) ! exp(—u), (2.1)

where By := {(ar)72; : > opey lan|P < 1}, for p=1,2.
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The previous inequality with the constants above is in Ledoux [13], Theorem 4.16.

In the case of Gaussian processes, concentration inequalities only involve the unit ball with respect to the [,
distance. This is so, because different path properties of Gaussian processes can be characterized using the [,
distance. However, for the considered stochastic processes, two distances are needed in general.

In this section, we present concentration inequalities for the stochastic processes {X(t) : ¢ € T}, where
X(t) = Zj’;l z; ()€, {€51521 is a sequence of symmetric i.i.d.r.v.’s, T' is a parameter set, and z;(t) € R. By
Theorem 5.1.4 in Chow and Teicher [5], the series Y7, xx(t)€; converges a.s. if and only if > p- | (2 (¢))? < oco.
In the considered situation, we have the following result:

Lemma 2.1. Let {{;}32, be a sequence of symmetric i.i.d.r.v.’s such that P[{1 = 0] < 1. Let T' be a parameter
set. Let X(t) = 3372, 2 (t)&;, t € T Suppose that sup,er | X (t)| < 00 a.s. Then, E[sup,er |X(t)]] < 0o and

SUPser ZEL x%(t) < 00.

Proof. Let 0 < n < 271(1 —P[& = 0]). Take M > 0 such that Plsup,c, | X (¢)] > M] < n. By the Lévy
inequality (see for example Prop. 2.3 in Ledoux and Talagrand [12]),

supsup P [|z;(t)&;| > M] <P supsup|x]()£]|>M} < 2P sup|ij )&l > M| < 2n.
teT

teT j>1 teT j>1 J=1

Hence, sup;cr sup;>q |z;(t)| < oo. Thus, by the Hoffmann-Jgrgensen inequality (see for example Prop. 6.8 in
Ledoux and Talagrand [12]), E[sup,c7 |X(t)|]] < co. By the Kintchine’s inequality (see for example Lem. 4.1
in Ledoux and Talagrand [12]), and the contraction principle (see for example Lem. 4.5 in Ledoux and Tala-
grand [12]),

2712E|€, ] sup Z:c < E[|&|]sup B Zekmk(t)
k=1 T k=1
E[GE sup Z exty(t ]
E |sup Zﬁkxk(t) ] < 00,
k=1
where {e;} is a sequence of i.i.d. Rademacher r.v.’s independent of the sequence {&}. O
We present two types of concentration inequalities according with whether the function ®(¢) = — log(P{|¢| >

t}), t > 0, is convex or a concave.
Next, we present a concentration of measure inequality for sequences of r.v.’s satisfying the following
condition:

(B.1) ¢ is a symmetric r.v. such that ®(¢t) = —log(P{|¢| > t}), for ¢ > 0, is a convex increasing function.

Condition (B.1) is satisfied for many r.v.’s. In particular, (B.1) holds if £ has a symmetric distribution and
P{|¢| > |t|} = e~l!I”, for each t > 0, for some ¢ > 0 and some p > 1.
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We will need the following lemma:
Lemma 2.2. Let ® be as in Condition (B.1). Let
Az) = sign(z) sup{y > 0: ®(y) < |z|} for z€R. (2.2)

Then,

(i) For each a,b >0, Aa+b) < A(a) + A(b).
(ii) For each a,b € R, |A(a) — A(b)| < 2A(Ja — b)).

Proof. Since ® is convex, ®' is nondecreasing. So, for each a,b > 0,

<I>(a)+<1>(b):/Oad)’(t)dt—i—/obtb’(t)dtg/Oa+bt1>’(t)dt:(1>(a+b).

So, (i) holds.
If either a < 0 < b, or b < 0 < a, then

|A(a) = A(b)| < 2max(A(lal), A(|b])) < 2A(la —b]).
If either a,b < 0, or 0 < a, b, then, by (i),
|A(a) = A(b)| = [A(al) = A(b])] < A(la — b)) O

Theorem 2.2. Let {{;}32, be a sequence of symmetric i.i.d.r.v.’s satisfying Condition (B.1). Let T be a
parameter set. Let X(t) := Z]Oil zj(t)¢;, t € T. Suppose that sup,cp|X(t)] < oo a.s. Then, for each
0< M < o0,

P{ilelgpf(t” > M+2L<1>(U)} < (]P’ {fg}T)|X(t)| < M}) e ",
where
Lo (u) := sup {Z |zk ()| (Jak] + bk]) Z 2 < 36u,z O(by) <9u,t e T} .

k=1 k=1 k=1

Proof. Let {Y;}52, be a sequence of symmetric i.i.d.r.v.’s with P{|Y;| >t} = e, for each t > 0 and each i > 1.
Let A be as in (2.2). Then, for each z,y > 0, ®(y) < z iff y < A(z). By the continuity of the function ®, we
also have that ®(A(x)) = «, for each > 0. Hence, we have that for each ¢ > 0,

P{AY)| >t} = PIA(Yi)) > t} = P{|Y] > @(1)} = e *® = P{l&| > 1}

Therefore, &; and A(Y;) have the same distribution.
Let A = {(yi)71 : supser [ X2y 2()A(yi)] < M}. By (2.1)

P{(Vi)2) & A+ 6u'/2By + 9uBy | < (P{(Y)E, € A}) "™
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So, it suffices to show that if ()32, € A + 6u'/?By + 9uBy, then

sup
teT

IRID

<M+2Lq>( )

We have that there are (a;)32, € A, (b;)$2, € Bo, and (¢;)$2, € By, such that for each i > 1, y; = a; + 6u'/2b; +
9uc;. By Lemma 2.2,

sup
teT

<sup

le (a + 6u1/2b + 9ucl>
teT

+ QEHZEi | (£)| A (}6u1/2()i + 9uciD

Z z;i(t)A(ai)

<M + QSupZ | ()| A <6u1/2|b |) + QSUpZ |z (1) | A(9ulc;i])

tGT,L 1 teT i=1
<M + 2Lg(u).
Because,
3 D (A (6u'/?|b 2§ 0036 b? < 36u,
3 (0 (3 (o0 0))) < 3 it < 30
and
> (AOulei])) < 9ulei] < 9u. 0
=1 =1

Corollary 2.1. Assume the notation and conditions in the previous theorem. Suppose also that there are
constants T > 0 and p > 1 such that 7®(x) > max(|z|?,|z|), for each x > 0. Then,

(i) If p > 2, then, for each 0 < M < 0o and each u > 0,
) —1
P {sup |X ()| > M + 2sup ||z(t)| 4 (36ur?) wy 2sup ||:E(t)|q(97u)1/p} < (P {sup | X (1) < M}) e .
teT teT teT teT
(ii) If2 > p > 1, then, for each 0 < M < oo and each u > 0,
—1
P {sup |X(t)] > M + 12sup ||z(t)||27u/? + 2sup |x(t)||q(97'u)1/p} < (P {sup | X (t)] < M}) e ",
teT teT teT teT

Proof. By Theorem 2.2, we need to prove that if p > 2,

La(u) < sup ()]l (3672u) " + sup||o(t) |4 (97u)/7; (2.3)
teT teT
and if 1 <p <2,
La(u) < 6sup [|z(t)|Jaru'/? + sup || (t)[|4(97u) /7. (2.4)
teT teT
Suppose that
oo
Z 2 < 36u and Z‘I)bk ) < 9u.

k=1 k=1
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Itp > 2,
) oo l/p o l/p
D lar(®)llax| < llz(@)llq <Z|ak|p> < [lz(®)llq (Z max(|ag|, |ax|")) )
k=1 k=1 k=1
00 1/p /
1
< |lz(t)|| 7P (Z (|lak])) ) < |z (t)]q (367%u) .
k=1
If1<p<2,

0o oo 1/2
D lar®llar] < (@)l <Z Iakl2>
k=1 k=1

oo 1/2
< lx(t)27 <Z( (|ak|))2> < 6|jz(t)]|2rul’2.

We have that

D las@Ollox] < llz(®)llg | D (ol
k=1 =1

1/p

< Ja(t)llgr” Z‘P o) | < llz(®)llq(9rw) '/, O

It follows from the previous corollary that for u large enough,

P {sup | X (t)] > u} < 2exp (—cu” sup ||$(t)|q_p) ) (2.5)
teT teT

where ¢ is some positive constant.

In the situation of the previous corollary the asymptotic exponential order of the tail of sup,cp | X (¢)] is the
same as the asymptotic exponential order of £;. In Theorem 3.4, we give an example of r.v.’s for which the
asymptotic exponential order of the tail of sup,c, [ X ()| is bigger than the asymptotic exponential order of &;.

Next, we consider the case when —log(P{|¢| > ¢}), t > 0, is a concave function. We consider the following
condition:

(B.2) ¢ is a symmetric r.v. such that:

(i) ®(t) = —log(P{|¢] > t}), t > 0 is a concave increasing function.
(ii) There exists a constant 7 > 0 such that for each a > 0, 2®(a) < ®(7a).

If for some 1 > 0 and some 1 > p > 0, P{|¢| > ¢} = exp(—nt?), for each t > 0, then (B 2) holds.
Condition (B.2) (iii) imposes a sort of polynomical growth. If P{|¢{| > t} = t+1’ for each ¢ > 0, then
O(t) = —log(P{|Z| > t}) =In(t+1), t > 0, is a concave function. But, (B.2) (ii) does not hold. For each 7 > 0,

infeso q;((m)) =1.
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Theorem 2.3. Let {5] 1 be a sequence of i.i.d.r.v.’s satisfying Condition (B.2). Let T be a parameter set.
Let X(t) := Z;X’l x;(t )EJ, t €T, where Zj 1|z ()]? < oo for each t € T. Then, for each u >0,

]P{ sup | X (6)| > M (4 +6872ul/? 4 1027%)

teT

+ flelg |z (t)||2 ()\ (6u1/2) +127ut? + 12(7 + 1)ut/2N (6u1/2 + 9u>)

+ sup [|2(t)] oo ()\(9u) +187uN (1) + 187u)’ (6u1/2 n 9u>) }
teT

< 2e™%

— )

(2.6)

where M = Elsup,cr | X (1)]].

Proof. We proceed as in Theorem 2.2. Let {Y;}2, be a sequence of symmetric i.i.d.r.v.’s with P{|Y;| > ¢} = e~ ",

for each t > 0 and each ¢ > 1. Then, & has the distribution of A(Y;), where A\. By Condition (B.2), A is a
convex function in [0, 00), with A(0) = 0 and for each a > 0,

N(2a) < 7N (a). (2.7)
Let
A= {(ak),;“il s sup Zxk(t))\(ak) < 4M, supka Max))? < 32M2} .
T =1 T =

We claim that
P{(Yi)ie, € A) > 1/2.

By the Chebyshev inequality,

> (02

sup
teT

o 1/2
{suprk 2> 32M2} <327Y2ME |sup <Z xi(t)(A(Yk))2>

> 4M} < 1/4.

By the Kintchine inequality,

teT

o 2
=32"YV2ME |sup | E. <Zek:ﬂk(t))\(Yk)>

k=1
) oo
<27°M~'E sup F. Zekxk
teT k=1
(oo}
<27?M~'E sup Zekxk = 2*2,
teT |2

where {¢} is a sequence of i.i.d. Rademacher r.v.’s independent of the sequence {{;}. Therefore, oo (A) > 1/2.
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By (2.1), it suffices to show that if (1;)32, € A + 6u'/?By + 9uBy, then

o0
sup i (1) M (yi)
teT |

<M (4 T 6872ul/? + 1027’2u)

1=

+ flelg |z (t)||2 ()\ (6u1/2) +127ut? + 12(7 + D)ut/2N (6u1/2 + 9u>)

sup 2(0) oo (AOw) + 187uX (1) + 1870 (6u'/ +9u) )
teT

We have that there are (a;)32, € A, (b;)2, € Ba, and (¢;)?2, € By, such that for each i > 1, y; = a; + 6u'/?b; +
9uc;. Since X' (t) is an even function an it is nondecreasing in [0, c0), for each a,b € R, with |b| < |a],

|A(a+b) = A(a)| < [b]X (|a] + [b])
and |A(b)] < |b|N(|b]). So, for each a,b € R,
[Ma +b) = Aa) = A(b)| < 2min(lal, [b])X (|a] + [b]). (2.8)
Using (2.7), for each a,b € R,
IN(a+0)] < XN(lal + [b]) < X (2max(|al, [B])) < 7 (max(|al, [b])) < 7(X'(lal) + X'([b]))-
Using the previous inequality and (2.8), we get that for each a,b € R,
A(a+b) — Ala) — AB)| < 27 min(lal, [b))(Y(|al) + X' ([b]). (2.9)

Using (2.8) and (2.9), for each i > 1,

’)\ (ai + 6u/?b; + 9uci) — AMa;) — A (6u1/26i) — M9uc;)

< ’)\ (ai + 6u/?b; + 9uci)

—Aa;) — A <6u1/2bi + 9uci)

+ ‘)\ (6u1/2bi + 9uci) - (6u1/2b¢) — A(9uc;)

< 27 (6u!/2bi| + 9ulesl ) X (lail) + 27 (6u'/2[bi] + Oulei] ) X (6u/2 + 9u)

1202y N (6u1/2 + 9u) . (2.10)

Since ) is nondecreasing in [0, 00), for each a > 0,

2a 2a
A(2a) = N (t)dt > N(t)dt > a)X(a).
0 a
By Condition (B.1), for each a > 0, A(2a) < 7A(a). So, for each for each a > 0, aX' (a) < 7A(a). Hence, for each
a € R,
N (la]) < N (1) + 7A(|al). (2.11)
By (2.10) and (2.11), for each i > 1,

’)\ (ai + 6u'/%b; + 9uci) — Ma;) — A (6u1/26i) — X9uc;)| < 127X (1)ut/?|bs| + 187N (1)ulc;|

+ 12720 2B M) + 187%ules A (ag]) + 1207 + 1) /2]b; | N (6u1/2 + 9u) +187ulei| N (6u1/2 + 9u) .
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These estimations imply that for (a;)2, € A, (b;)$2, € Ba, and (¢;)2, € By,

i i (t)A (ai + 6u'?b; + 9uci)

< in(t))\(az) + in(t))\ <6u1/26i) sz A(9uc;)

+ 127X (1)ul/? Z i (2)]|b:] + 187N (1 Z EAGIE

i=1

+ 12072y ()]0 A(a]) + 1872uz | (8)]]ei Alai])

=1 i=1

oo
+ 12(7_ + 1)11,1/2)\/ (6u1/2 —+ 9u) Z |xz(t)||b’£|

+ 187uN (6u1/2 - 9u> i |zi(t)]]cil

i=1
oo
< le(t (a;) +Z|‘T1 )|bi
i=1
oo

+127ut2N (1 )Zm( Ibi| + 187uN (1) Y |2i(t)||cif

=1 i=1

+ 127241 /? Z |z ()| A (Jai|) + 187’2uz |z:(t)|A(Jas])
i=1

i=1

A (62| + i a4 (£) i | A(9u)|

=1

12(r + D2\ (6u1/2 + 9u> Z |2 (2)][b]

i=1
+187uN (6u1/2 + 9u) i o
=1

< AM + a(®)l]aA (6u172) + [l2(8) o AOu) + 1276 2N (1) (1)

+ 187uN (1)]|z(t)]| 0o + 6872u/2M + 10272uM

+12(7 + ut/2X (6012 4+ 9u) a(t) 2 + 187uN (6612 + 9u) [ (t)]|oc
= M (44687212 4 1027%)

+ 2@ (A <6u1/2) 1270 2N (1) + 12(7 + Dul/2N <6u1/2 + 9u))

+ ||z(t) ]| oo ()\(Qu) + 187uN (1) + 187u) <6u1/2 + 9u)) ,

where we have used that for each 0 <t < 1 and z > 0, A(tx) < t\(x). This follows from the convexity of A
in [0, 00). This implies the claim of the theorem. O

The term of bigger order, as u — oo, inside the probability in (2.6) is A(9u). So, the previous theorem gives
that there exists a constant ¢ such that for u large enough,

P {sup | X (t)| > csup |x(t)||oo)\(u)} < 2e Y
teT teT
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3. THE LDP FOR CERTAIN SERIES PROCESSES

Our goal is to study the LDP of {>"7 | zx(¢)& : t € T}, where {&}72; is a sequence of i.i.d.r.v.’s with mean
zero, T is a parameter set and zy(t) € R. We present results on the order of generality of the r.v.’s considered.
First, we will study the LDP for {n~'¢}, where ¢ is a r.v. Then, we will study the LDP for {> ;2 zx&},
where {z}} is a sequence of real numbers. Finally, we will consider the LDP for {>";7, zx(t)& : t € T}.

In order to obtain the LDP for {n~1¢}, it is needed to impose that the tail of the r.v. £ is regularly varying.
We refer to regular variation to Bingham, Goldie and Teugels [4]. We consider the following condition:

(A.1) —log(P{|¢| > t}) is regularly varying at infinity with order p > 0 and for some 0 < ¢1, ca < 00,

i (LS —u)

and
log(P{£ > u})

2= log(B{l€] = u})
Since for each u > 0, P{{ < —u} < P{|¢{] > u} and P{¢ > u} < P{|{| > u}, ¢1 > 1 and ¢ > 1. It is easy to
see that min(cy,c2) = 1. Under Condition (A.1), {n~1¢} satisfies the LDP with speed €, ! := —log(P{|¢| > n})
and rate function

Co.

cltlP if t < 0;
P(t) =<0 if t =0; (3.1)
coltP if t > 0.
Under minimal conditions if {n~'¢} satisfies the LDP, Condition (A.1) holds:

Theorem 3.1. Let & be a r.v. and let {e,}52, be a sequence of positive numbers converging to zero. Suppose
that:

(i) {n=1&} satisfies the LDP with speed €' and a good rate function ).
(i) 1 is continuous in R — {0}.
(iii) There exists 0 < tg < 0o such that 0 < K (tg) < oo, where K(t) = inf{y(s) : |s| > t}, for t > 0.

Then, Condition (A.1) holds and 1 is as in (3.1) for some p > 0 and some 0 < ¢1,c2 < 0.
Proof. Let J(t) = inf{¢(s) : s > ¢}, if t > 0 and J(¢) = inf{e(s) : s < t}, if ¢ < 0. Then, for each t > 0,

K (t) = min(J(¢), J(—t)). By Conditions (i) and (ii), j and K are continuous functions on R — {0}. Hence, for
each t > 0,

lim e, log(P{{ > tn}) = —J(t),
n—00
and for each t < 0,
Jim e, log(P{¢ < tn}) = —J(t).
Besides for each t > 0,
Jim_ e, log(P{[¢] > in}) = —K(?).

By the Karamata theorem (see for example Th. 1.10.2 in Bingham, Goldie and Teugels [4]), — log(P{|¢| > t})
is regularly varying at infinity with order p > 0 and there is a 0 < ¢ < oo such that for each ¢ > 0, K(¢t) = ct?.
Since 9 is a good rate, lim|;| . ¥(t) = oo and p > 0.

We claim that
tlP if t < 0;
J(t) = el ) ’ (3.2)
colt|P i t >0,
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eJ(—t0) and Cco = ¢J(to) . We have that

where ¢ = ) Klio)

log(B{¢ > ton}) _ J(to)

im
n—oc log(P{[¢] = ton})  K(to)
This limit and the regular variation of — log(P{|¢| > t}), implies that

L log(P{E > u)) _ J(to)
wroe log(B{E] = u))  K(to)

So, for each ¢t > 0,

log(P{¢ > tn})

en log(P{¢ = tn}) = e, log(P{[¢] = tn})m — —cot[P. (3.3)

Similarly, for each ¢ < 0,
e log(P{E < tn}) — —arlf]. (3.4)
So, J is as in (3.2). The limits (3.3) and (3.4) imply that ¢ is as in (3.1). O

Next, we consider the LDP for the series Z;ozl xr€k, where {£;} is a sequence of i.i.d.r.v.’s with mean zero
and finite second moment and {z} is a sequence of real numbers. To determine the rate function of the LDP
of {n=1 377, zk&k}, we will use the following lemma:

Lemma 3.1. Let ¢ be as in (3.1), where p >0, 0 < ¢1,¢c2 < 00 and min(cy, c2) < co. Let {x,}72 | be a sequence
of real numbers such that >"p-, 3 < co. If p > 2, assume also that Y po ; |xx|? < co, where % + % =1. Let

I(z) = inf Zw(uj) : Zuj:cj =z,. (3.5)

If p > 1, then
_ _ -p/a
I(2) = |2[P (01 av ZieA2 |27 + ¢y av ZieAl |mi|q) if 2 <0; (3.6)
B _ _ -p/a :
|2[P <C1 av D ica, 1TilT+ ey av D icA, |mi|q) if 22>0;
where Ay ={i>1:2; <0} and Ay ={i >1:2; > 0}.
If1>p >0, then
_ _ -1
I() = |2[P (max (sup;e 4, €1 ' |i|P, sup;e 4, 5 wilP)) 1 if z2<0; (3.7)
|2|P (max (supse a, 1 ' |2ifP, supiea, ¢ t|wil?))  if 2> 0.
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Proof. Assume that p > 1, ¢1,¢o < 00 and Zj’;l u;x; = z > 0. By he Hélder inequality,

z = g Tiu; + g TiU;

i€EAL i€ Az

() (5 () ()

i€EA; 1€EA, i€ Aq i€AS

1/q 1/p
_ (clq/p Z |$i|q> <C1 Z |ui|p>

i€A; €A
1/q 1/p
+ <C2—q/p Z |xi|q> <02 Z |ui|p>
1€As i€ As
1/q
< <Clq/p Z |xi|q+02ﬂ;z/p Z |xi|q>
i€EA; i€As
1/p
" ( >l +er Y '”i'p>
€A 1€ Ao
/9 / 1/p
- <CIW IR W) <Zw(ui)> |
1€A; i€As i=1
Hence,
oo —p/q
S wlus) > |2 </ > il ey W) :
i=1 i€A, i€Ag
Take
-1
wi == </ > fwlt+ "y mw) er |
i€ AL i€A>
if i € Ay, and

—1
u =2 (Clq/p Z 2|9 + c;q/p Z |$i|q> C;q/P|Ii|q/p

iI€EA; i€ As
if i € Ay. Then, Y ;o x;u; = 2z and

00 —p/q
ST w(u) = 2P <c;q/” ST w7y w) .

i=1 €A, i€ A2
So,
-p/q
1(2) = |2 </ Sl ey w) :
iI€EA; i€ As
The cases when either z < 0 or ¢; = 00 or ¢z = 0o are similar. The case 1 > p > 0 follows similarly. O

Next, we consider the LDP for series over a sequence of i.i.d.r.v.’s satisfying Condition (A.1).



212 M.A. ARCONES

Theorem 3.2. Let {&k} be a sequence of i.i.d.r.v.’s with mean zero satisfying Condition (A.1) for some
p > 1. Let {zx}7°, be a sequence of real numbers such that Y ;o a2 < co. Let X := > 7o xp. Let
€n = (—log(P{|¢] > n}))~ . Suppose that:

(i) For each u > 0,

oo

lim limsupe, Z vy (ue,‘lln_lxj) =0,

— 00
n— o0 J=kt1

where ®(x) = —log({P{|¢| > |z]}), © € R, ¥(x) = sup,ep(zy — ®(y)), © € R, and Vy(t) = t* for |[t| < 1, and
Uy (t) = max(1, U(t)) for |t| > 1.

(ii) If p > 2, assume also that 3272, |2;]|7 < oo, where % + % =1.

Then, {n=1X7} satisfies the LDP with speed €;; and rate function

I(z) = inf Zw(uj) : Zuj:cj =z,
j=1 j=1

where 1 is as in (3.1).

Proof. Let X, = n~? 2?21 z;€; and let X,, = n~* > 521 €. By Theorem 3.2 in Baxter and Jain [3], it
suffices to prove that:
(C.1) For each k > 1, X, 1, as n — oo, satisfies the LPD with speed €, ! and rate function

k

k
I (z) = inf Zw(uj) : ijuj =z
j=1 j=1

(C.2) For each 7 > 0,

oo
lim limsupe,log | P Z ;& > = —00.
—0 n—oco j:k}Jrl

(C.3) For each z € R,
I(x) = ;im liminf inf{I;(y) : |y — x| < d}.

—0 k—oo
By Lemma 2.8 in Lynch and Sethuraman [14] and Theorem 3.1, for each k > 1, (n~1¢y,...,n~ &) satisfies
the LDP with speed e, ! and rate function Zle ¥(u;). Hence, by the contraction principle for each k > 1,
{n=t Z?Zl z;&;} satisfies the LDP with speed €, ! and rate function Ix. Hence (C.1) holds.
To check (C.2), we estimate the moment generating function of . We claim that there exists a finite constant ¢
such that for each A € R,

[ og(Elexp(A&1)])| < cs(2)). (3.8)
Take Ag > 0 such that ¥()\g) > 0. Since & has mean zero,
Elexp(A&) —1] =0 (A\?), as A — 0.
This implies that there exists a constant ¢ such that (3.8) holds for each |A| < Ag.
Let G be the df of |¢|. Given 0 < p < 1, let G™!(p) = sup{z > 0 : G(z—) < p}. We have that for each
x>0 and each 0 < p < 1, G(z—) < p if an only if + < G~1(p). We also have that for each 0 < p < 1,
G(G7Y(p)—) <p < G(G7(p)). We claim that each 0 < a < 1,

Elexp(a®(&1))] < (1 —a)™ (3.9)



THE LARGE DEVIATION PRINCIPLE FOR CERTAIN SERIES 213

We have that exp(—®(z)) = 1 — G(z—). So,

Elexp(a®(&1))] = E[(1 - G(|&1]-)) " = E

o0
/ at~* 1 dt
1-G(l&:]-)

:E[/O I(1—G(l&]-) < tyat~*~ dt:/o P(1—t < G(|&|-))at~ " dt.

Ift>1, PAl—-t<G(&]|—-) =1 Ifo<t <1,
P{1—t<G(&|-)}=P{G (1 -H) < |G} =1-GG 1 —t) <1—(1—t) =t
So,

Elexp(a®(£))] < /0 at™*dt + /100 at™* At =(1-a)"?,

and (3.9) follows. (3.9) implies that
Elexp(|Aé1])] < E [exp (27'®(&1) +2710(2)))] < 2exp (277¥(2))) .
Hence, there exists a positive constant ¢ such that for each |A| > [Ag|,
log(Elexp(A&1)]) < log(2) 4+ 271W(2)) < cTy(2)).

Therefore, (3.8) holds.
Given 7,u > 0,

o0 o0
—1
P g zj& >Tn p <e " E |exp ur tn et E z;&;
j=k+1 j=kt1

o0
= e U H Elexp(ur™'n"te,  x;6)]
Jj=k+1

oo
<exp | —ue,t +¢ Z Uy (2u7_1n_16;1$j)
j=k+1

Using a similar inequality for the lower bound, we get that
(o) o0
€nlog [ P Z z;&| > ™ <e€plog2 —u—+eyc Z \Ifg(Zur_ln_le,_llxj) — —u,

j=k+1 j=k+1

as n — oo. Hence, (C.2) holds.
(C.3) follows from Lemma 3.1. O

The following condition is stronger than Condition (A.1):

(A.2) For some p > 0 and some 0 < by, bs < oo with min(by, b)) < oo,

lim uPlog(P{¢ < —u}) = —b;
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and
lim ™ Plog(P{¢ > u}) = —ba.

Under Condition (A.2), lim,_,o u P log(P{|¢| > u}) = —b, where b = min(by,bz2). Under Condition (A.2), if
O(z) = —log(P{[¢] = [z[}), ¥(z) = supyer(zy — ®(y)) and p > 1, then

lim 2~ 9%(z) — (bp)~VPq 1.

xr—00

So, there are 0 < ¢1, ¢ < 0o such that for |z| large enough,
calz|? < U(x) < eolzl|?. (3.10)

Theorem 3.3. Let {{,}72, be a sequence of i.i.d.r.v.’s with mean zero satisfiying Condition (A.2) for some
p>1. Let {x}72, be a sequence of real numbers such that Z;O:l :c% < oo. Let X := Z;O:l €. Then,
(i) If2>p>1, then {n~1X} satisfies the LDP with speed nP.
(i) If p > 2, then {n~'X} satisfies the LDP with speed nP and a good rate function if and only if
> ey ]9 < oo, where %Jr % =1.
Moreover, the rate function is given by (8.1) with ¢; = b1 and co = bs.

Proof. First let us prove (i). Assume that 2 > p > 1. We apply Theorem 3.2. There exists a finite constant ¢
such that for each z € R, Uy(x) < (22 + |2|?). So, Hypothesis (i) in Theorem 3.2 holds. Let u > 0. If p = 1,
for k large Juz;| < 1. So, for k large enough,

oo oo
~1 ~1 2,2
n g Uy (uxj) =n g uxj,
Jj=k+1 j=k+1

and Hypothesis (i) in Theorem 3.2 holds.

Next, we prove (ii). Assume that p > 2. There exists a finite constant ¢ such that for each z € R,
Uy(z) < c|z|?. Hence, using Theorem 3.2, 23011 |z;]9 < oo implies that {n~1X}>2, satisfies the LDP with
speed nP. Reciprocally, if {n~1X}2°, satisfies the LDP with speed n? and a good rate function, then given
7 > 0, there exists a M > 0 such that for n large enough,

P {n_l iIi&

i=1
Let {&/} be an independent copy of {¢;}. By symmetrization and the Lévy inequality, for each N < oo,

P {nl > 2M} < 2P {n1 > QM}

N
Zﬂfi(& =&)
=1
< 4P {nl > M} < 4o,

N
D @& - &)
i=1

> M} <e T,

Z (& — &)
=1

> @ik

i=1
Z 2M}> S -7,

So,

n—oo

limsupn~? log <P {nl
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for each N < oo. By Theorem 3.2, n~! vazl x; (& — &) satisfies the LDP with speed n? and rate function

N

I(z) = inf{Z(w(uz + (i) Zmz u; — ;) = Z} ;

i=1

where ¢ is as in (3.1) with ¢; = b;, for ¢ = 1,2. By Lemma 3.1 this rate function is
/ N —p/q
_ _ -p/q
1(z) = |27 (0,7 + 5,77) (Z w) .
i=1

So,

y N —p/q
—P/a
(2M)? (b;q/” + b;q/") <Z |xi|q> > 7.

i=1

Since this happens for each N > 1, Y22 |z;|? < oc. O

One should expect that if p > 2 and > o, |2;|?/P~1) = oo, then {n~'X} still satisfies a LDP, but with
smaller speed. Next theorem presents a situation where this happens:

Theorem 3.4. Let {£x}72, be a sequence of symmetric i.i.d.r.v.’s such that P{|¢{1| > t} = exp(—ctP), for each
t >0, where p>2 and c > 0. Let 271 < b < (p—1)/p. Then,

thm t=V/ A=Y og [ P Zj_bgj >t = —(1—b)p/ (=11

where a := [;° In Elexp(z~"¢)] da.

Proof. Let X := 372, §7b;. Let ¢(\) = log E[e*]. By (3.8), ¥(A\) = O(min(A2, |A|?)). This estimation and
the restriction 271 < b < (p — 1)/p imply that for each A > 0,

/ Y(x™° ) de < oo.
So, 0 < a < oo.

It suffices to show that {n=! Z]Oil §7U;) satisfies the LPD with speed n'/(!=" and rate function I(t) =

|t]1/(A=0)(1 — b)pb/ (=1 =b/(t=1) By the Girtner-Ellis theorem (see for example Th. 2.3.2 in Dembo and
Zeitouni [6]), it suffices to prove that for each A € R,

n /A=Y B [exp ()\nl/(l_b)n_lXﬂ — |\[Y*a,
and that

1(t) = sup (At = [A[/%a) = (1 = )pt/ ¢~ Dg= /=Dy 1/ 0=,
AER
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We have that

n /0= E [exp (Anl/(l_b)n_lX)} =n VO E exp Anb/(1=0) Zj_bgj

ot
1/ b’Zw( b/(1-b) fbA)
A —b
72/ s <<jn1/<1b>) A) e
H/ (z7°2) do = [\

by the monotone convergence theorem (using that ¢ is even and increasing in (0,00)). Hence, the claim
follows. U

In the previous theorem, n'/(1=?) <« n? and the tail of | Z;’;l J *b§j| is asymptotically much bigger than the
tail of &;.

Finally, we consider stochastic processes whose underlying r.v.’s satisfy Condition (A.1). We present sufficient
conditions for the LDP of certain stochastic processes.

Theorem 3.5. Let {{1} be a sequence of symmetric i.i.d.r.v.’s with satisfying Condition (A.1) for some p > 1
and Condition (B.1). Let T be a parameter set. Let d be a pseudometric in T. Let X (t) := > 7o, x(t)Ek,
where Y o2, xi(t) < oo. Suppose that:

(i) For each uw > 0 and each t € T,

o0

lim limsupe, Z Wy (Uﬁﬁln_lfj(t)) =0,

k—o0
- n—oo j=k+1

where Wy is as in Theorem 3.2.
(ii) If p > 2, assume also that for each t € T, 3772 |x;(t)|? < co, where % + % =1.
(1t) sup,ep | X ()] < o0 a.s.
(iv) (T, d) is totally bounded.
(v) (T, dy) is totally bounded, where dq(s,t) = ||x(s) — z(t)]|4-
(vi) For each u > 0,
lim limsupn~'Le (ue;l, 77) =0,

1—=0 nooco

where

oo
Lo(u,n) = Sup{ZLfEk — ()| (|ak| + |bx|) Z 2 < 36u, ZCID (br) < 9u,d(s,t) <n}

k=1 k=1

Then, {n='X(t) : t € T} satisfies the LDP in lo(T) with speed €,,' and rate function

I(z):inf{z »(v4) sz foreachtET}
K3

where 1 is as in (3.1).
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Proof. We apply Theorem 3.1 in Arcones [1]. Conditions (i) and (ii) imply the LDP for the finite dimensional
distributions. We need to prove that for each 7 > 0,

lim lim sup €, log (P{ sup |X(s) —X(t)] > nT}) = —o0. (3.11)

—0 n—oo d(s,t)<n

Theorem 2.2 and Conditions (iii) and (vi) imply (3.11).

To prove that the rate function is as claimed, we apply Theorem 4.2 in Arcones [2] with S = {1,2,...}, ¢
as in (3.1) and p equal to the counting measure. To apply this theorem, we need that for each integer k > 1
(T, pr) is totally bounded where

Y

pils ) i=sup § | (5(5) = 25(8)| = D_w) <k

This follows from Condition (v). O

When Condition (A.2) is satisfied, we get necessary and sufficient conditions for the LDP:

Corollary 3.1. Let {{c} be a sequence of symmetric i.i.d.r.v.’s with mean zero satisfying Condition (B.1),
7= inf,soz 1 ®(z) > 0, and that

lim ™" log(P{[§| > u}) = —b

for some p > 1 and some b > 0. Let T be a parameter set. Let X (t) := Y oo | x(t)&k, where Y ooy |2i(t)]* < oo.
Then, the following sets of conditions are equivalent:

(a.1) For eacht € T, (z;(t))2, € l4.
(a.2) (T,dy) is totally bounded, where dy(s,t) = ||x(s) — z(t)|l4-
(a.3) sup,cr | X(t)] < 00 a.s.
(b) {n=1X(t) : t € T} satisfies the LDP in lo(T) with speed n? and a good rate.

Moreover, the rate function is
I(z) = inf {Z (i) : Z:Ei(t)’)’i = z(t) for each t € T} ,
i=1 i=1
where 1 is as in (3.1) with ¢; = ca =b.
Proof. Assume (a). We apply Theorem 3.5 with d(s,t) = |(z(s) — z(t)||q. Hypothesis (i) in Theorem 3.5

follows from an argument in Theorem 3.3. It is easy to see that Conditions (ii)—(v) in Theorem 3.5 hold. As to
Hypothesis (vi) in Theorem 3.5. By (2.3) and (2.4), if p > 2,

n'Le (unP,n) < 77(3672u)1/p + 77(97'u)1/p;

and if 1 <p<2,
n" Lg(un?,n) < 12sup||z(t)||omul/2nP=2/2 4 n(9ru)/P.
teT

Therefore, Hypothesis (vi) in Theorem 3.5 holds.
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Assume (b). Theorem 3.3 (ii) implies (a.1). By Theorem 3.1 in Arcones [1], for each positive integer k,
(T, pr) is totally bounded, where

pi(s,t) = sup{luz — ua| : Is,¢(u1, uz) < k}

= sup Z(Ij(t) —x;(8))74| : Z?ﬂ(%‘) <k
= sup Z(Ij(t) —z;(8))74| : Zb|7j|p <k =|x(t) - a(s)|lgp~ PR,

and I ; is the rate of the LDP of (n™*X(s),n~1X(¢)). This implies (a.2).
Since {z € loo(T") : I(2) < 1} is a compact set, there exists 0 < ¢ < oo such that

{z€l(T) : I(2) <1} C{z € lxc(T) : |2|oo < c}.

> c}) < -1.
(o]
P<ntsup
teT |

zi(t)&i| > C} < exp (=27'nP).

i=1

Hence, (a.3) follows. O
Next, we consider the LDP when Condition (A.2) holds for some 0 < p < 1.

So,

o

limsupn " log <P {n_l sup x; ()&
1

n— oo teTl

i=
Hence, for n large enough

Theorem 3.6. Let {{x} be a sequence of symmetric i.i.d.r.v.’s with mean zero satisfying Condition (B.2) and
that

lim_ w7 log(P{J¢] > u}) = —b

U—00

for some 1 >p >0 and some b> 0. Let X = > 1o, xx&k. Then, {n ' X} satisfies the LDP with speed n? and
rate function

I(z) = inf Zw(uj) : Zujxj =z,
j=1 j=1

where ¥ is as in (3.1) with ¢; = c¢; =b.
Proof. We proceed as in the proof of Theorem 3.2, applying Theorem 3.1 in Baxter and Jain [3] with X, ; =
n~1 Z§=1 z;&; and X, =n~1 37 158

By Lemma 2.8 in Lynch and Sethuraman [14], and the contraction principle, for each k > 1, {n~1 Z?Zl z;&;}
satisfies the LDP with speed ¢, ! and rate function

k k
I (z) = inf Zw(uj) Zz]uj =z
j=1 j=1
We need to prove that for each 7 > 0,
lim limsupnPlog | P Z ;€| > T = —00. (3.12)

—00 n—oo

j=k+1
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Theorem 2.3 implies that for n large enough,

oo —-p
P Z (zi —2i)(& — &) > 27 'nT 5 <dexp [ —en? | sup |a;]
i=k+1 JjZk+1
Hence, (3.12) holds. O

Next, we consider the LDP for stochastic processes over a sequence of i.i.d.r.v.’s satisfying the conditions in
the previous theorem.

Theorem 3.7. Let {&x} be a sequence of symmetric i.i.d.r.v.’s with mean zero satisfying Condition (B.2) and
that
lim_u~? log(P{l¢| > u}) = —
U—00
for some 1 >p >0 and some b > 0. Let T be a parameter set. Let X (t) := > 7 xx(t)k, where > oo |z (t)> <
oo for each t € T. Then, the following sets of conditions are equivalent:
(a.1) (T,d) is totally bounded, where d(s,t) = sup;~q |zi(s) — x;(t)].

(a.2) supyeq | D opey Tk(t)&k] < 00 a.s.
(b) {n"1X(t):t € T} satisfies the LDP in lo(T) with speed n'/?

Moreover, the rate function is

o0

= inf Zz/)(’yj Z t)y; = 2(t) for each t €T 5,
j=1

where v is as in (3.1) with ¢; = ca =b.

Proof. Assume (a). We apply Theorem 3.1 in Arcones [1]. Theorem 3.5 implies the LDP for the finite dimen-
sional distributions. Theorem 2.3 implies that for each 7 > 0,

lim limsupn~Plog | P{ sup zi(s) —xi(t))&| > nT = —00.
Jimy lim s R CIORE0)

Assume (b). By Theorem 3.1 in Arcones [1], (T, p) is totally bounded, where
pr(s,t) = sup{Juge — u1| : Iy ¢ (u1,uz2) <k}

and
oo

oo
I o (u, uz) Zéf)’)’g Z ’Y]*ulazxj )V = U2

= =
It is easy to see that pg(s,t) > ck’l/p|:c(s) — z(t)|0o, where ¢ is positive constant. This implies (a.l).
The LDP implies that there are positive constants r, M such that for n large enough,

n~ Plog (P{sup | X (t)] > nr> < —M.
teT

This implies that for some ¢ > 0,
E [exp (csup |X(t)|p>} < 00.
teT
In particular (a.2) holds. i



220

(1]
(2]
(3]

[4]
(5]
[6]
[7]
(8]

[9]

M.A. ARCONES

REFERENCES

M.A. Arcones, The large deviation principle for stochastic processes 1. Theor. Probab. Appl. 47 (2003) 567-583.

M.A. Arcones, The large deviation principle for stochastic processes. II. Theor. Probab. Appl. 48 (2004) 19-44.

J.R. Baxter and C.J. Naresh, An approximation condition for large deviations and some applications, in Convergence in ergodic
theory and probability (Columbus, OH, 1993), de Gruyter, Berlin. Ohio State Univ. Math. Res. Inst. Publ. 5 (1996) 63-90.
N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Cambridge University Press, Cambridge, UK (1987).

Y.S. Chow and H. Teicher, Probability Theory. Independence, Interchangeability, Martingales. Springer-Verlag, New York
(1978).

A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Springer, New York (1998).

J.D. Deuschel and D.W. Stroock, Large Deviations. Academic Press, Inc., Boston, MA (1989).

E.D. Gluskin and S. Kwapieni, Tail and moment estimates for sums of independent random variables with logarithmically
concave tails. Studia Math. 114 (1995) 303-309.

P. Hitczenko, S.J. Montgomery-Smith and K. Oleszkiewicz, Moment inequalities for sums of certain independent symmetric
random variables. Studia Math. 123 (1997) 15-42.

S. Kwapien and W.A. Woyczyriski, Random Series and Stochastic Integrals: Single and Multiple. Birkhauser, Boston (1992).
R. Latala, Tail and moment estimates for sums of independent random vectors with logarithmically concave tails. Studia Math.
118 (1996) 301-304.

M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, New York (1991).

M. Ledoux, The Concentration of Measure Phenomenon. American Mathematical Society, Providence, Rhode Island (2001).
J. Lynch and J. Sethuraman, Large deviations for processes with independent increments. Ann. Probab. 15 (1987) 610-627.
M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon. Geometric aspects of functional
analysis (1989-90), Springer, Berlin. Lect. Notes Math. 1469 (1991) 94-124.

[16] M. Talagrand, The supremum of some canonical processes. Amer. J. Math. 116 (1994) 283-325.
[17] S.R.S. Varadhan, Asymptotic probabilities and differential equations. Comm. Pures App. Math. 19 (1966) 261-286.



