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EXTREME VALUES AND KERNEL ESTIMATES OF POINT PROCESSES
BOUNDARIES ∗

Stéphane Girard1 and Pierre Jacob2

Abstract. We present a method for estimating the edge of a two-dimensional bounded set, given a
finite random set of points drawn from the interior. The estimator is based both on a Parzen-Rosenblatt
kernel and extreme values of point processes. We give conditions for various kinds of convergence and
asymptotic normality. We propose a method of reducing the negative bias and edge effects, illustrated
by some simulations.
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1. Introduction

We address the problem of estimating a bounded set S of R
2 given a finite random set N of points drawn from

the interior. This kind of problem arises in various frameworks such as classification [15], image processing [19]
or econometrics problems [5]. A lot of different solutions were proposed since [7] and [22] depending on the
properties of the observed random set N and of the unknown set S. In this paper, we focus on the special case
where S = {(x, y) ∈ R

2 | 0 ≤ x ≤ 1 ; 0 ≤ y ≤ f(x)}, with f an unknown function. Thus, the estimation of the
subset S reduces to the estimation of the function f . This problem arises for instance in econometrics where
the function f is called the production frontier. This is the case in [14] where data consist of pairs (Xi, Yi),
Xi representing the input (labor, energy or capital) used to produce an output Yi in a given firm i. In such a
framework, the value f(x) can be interpreted as the maximum level of output which is attainable for the level
of input x.

Most papers on support estimation use to consider the random set of point N appearing under the frontier f
as a n-sample. However, in practice, the number as well as the position of the points is random, so we do prefer
for a long time to deal with point processes. Cox processes are known to provide a high level of generality among
the point processes on a plane. However, after conditioning the intensity, the realization of a Cox process is
merely the one of a Poisson point process, so what is really observed is a Poisson point process. Moreover in
most applications such as medical imaging f delimits a frontier between two zones. A contrasting substance is
spread on the whole domain, for instance the brain. The magnetic resonance imaging only displays the bleeding.
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So the healthy part acts as a mask. Inversely, but similarly, when investigating the retina, the patient does not
detect the small luminous spots pointed on a destroyed area. In such cases, there is no way to consider the
remaining observed points as a random sample. In fact, such truncated empirical point processes are no longer
random samples but binomial point processes (see [21]). In fact, even the nature is unable to obtain a random
sample on S in this way! It turns out that binomial point processes are well approximated by Poisson processes.
Moreover, truncated Poisson point processes are still Poisson point processes and the same is true for general
Cox processes. Naturally, as our point of view is not prevailing, we have to preserve the possibility of comparing
our results with those of authors dealing with random samples. So in place of a uniform n-empirical process
on S with the distribution λ/λ(S), we consider a Poisson point process with the intensity nλ/λ(S), where λ
denotes the Lebesgue measure. The intensities of the two processes are obviously equal. Finally, we claim that
we are able to deduce for samples similar results by means of Poisson approximations. But it not so simple to
achieve, and we prefer to defer this work to a further paper.

In the wide range of nonparametric functional estimators [2], piecewise polynomials have been especially
studied [18, 19] and their asymptotic optimality is established under different regularity assumptions on f .
See [13, 16, 20] for other cases. Estimators of f based upon orthogonal series appear in [1, 17]. In the case of
Haar and C1 bases, extreme values estimates are defined and studied in [8–10] and reveal better properties
than those of [17]. In the same spirit, a Faber-Shauder estimate is proposed in [6]. Estimating f can also been
considered as a regression problem Yi = f(Xi) + εi with negative noise εi. In this context, local polynomial
estimates are introduced, see [12], or [11] for a similar approach.

Here a kernel method is proposed in order to obtain smooth estimates f̂n. From the practical point of view,
these estimates enjoy explicit forms and are thus easily implementable. From the theoretical point of view,
we give limit laws with explicit speed of convergence σn for σ−1

n (f̂n − E f̂n) and even for σ−1
n (f̂n − f) after

reducing the bias. The rate of convergence of the L1 norm is proved to be O(n− α
5/4+α ) for a α-Lispchitzian

frontier f , which is slightly suboptimal compared to the minimax rate n− α
1+α . Section 2 is devoted to the

definition of the estimator and basic properties of extreme values. Section 3 deals with ad hoc adaptation of
Bochner approximation results. In Section 4, we give the main results of convergence: mean square uniform
convergence and almost complete uniform convergence. We prove, in Section 5, the asymptotic normality of the
estimator, when centered to its mathematical expectation. Section 6 is devoted to some bias reductions, allowing
in certain cases asymptotic normality for an estimator, when centered to the function f . We also present a
technique for avoiding edge effects. In Section 7 a simulation gives an idea of the improvements carried off by
these modifications. Section 8 is dedicated to comparison of kernel estimates with the other propositions found
in the literature.

2. Definition and basic properties

For all n > 0, let N be a Poisson point process with mean measure ncλ, where λ denotes the Lebesgue
measure on a subset S of R

2 defined as follows:

S = {(x, y) ∈ R
2 | 0 ≤ x ≤ 1 ; 0 ≤ y ≤ f(x)}. (2.1)

The normalization parameter c is defined by c = 1/λ(S) such that E(N(S)) = n. We assume that on [0, 1], f
is a bounded measurable function, strictly positive and α-Lipschitz, 0 < α ≤ 1, with Lipschitz multiplicative
constant Lf and that f vanishes elsewhere. We denote by m (and M) the lower (and the upper) bound of f
on [0, 1]. Given (hn) a sequence of positive real numbers such that hn → 0 when n → ∞, the function f is
approximated by the convolution:

gn(x) =
∫

R

Kn(x − y)f(y)dy, x ∈ [0, 1], (2.2)



152 S. GIRARD AND P. JACOB

where Kn is given by

Kn(t) =
1
hn

K

(
t

hn

)
, t ∈ R,

and K is a bounded positive Parzen-Rosenblatt kernel i.e. verifying:

∀x ∈ R, 0 ≤ K(x) ≤ sup
R

K < +∞,

∫
R

K(t)dt = 1, lim
|x|→∞

xK(x) = 0.

Note that K2 and K3 are Lebesgue-integrable. In the sequel, we introduce extra hypothesis on K when
necessary. Consider (kn) a sequence of integers increasing to infinity and divide S into kn cells Dn,r with:

Dn,r = {(x, y) ∈ S | x ∈ In,r}, In,r =
[
r − 1
kn

,
r

kn

[
, r = 1, . . . , kn.

The convolution (2.2) is discretized on the {In,r} subdivision of [0, 1]:

fn(x) =
1
kn

kn∑
r=1

Kn(x − xr)f(xr), x ∈ [0, 1],

where xr is the center of In,r. The values f(xr) of the function on the subdivision are estimated through X�
n,r

the supremum of the second coordinate of the points of the truncated process N(. ∩ Dn,r). The considered
estimator can be written as:

f̂n(x) =
1
kn

kn∑
r=1

Kn(x − xr)X�
n,r, x ∈ [0, 1]. (2.3)

Formally, this estimator is very similar to the estimators based on expansion of f on L2 bases [9, 10] although
it is obtained by a different principle. Besides, combining the uniform kernel K(t) = 1[−1/2,1/2](t) with the
bandwidth hn = 1/kn yields Geffroy’s estimate:

f̂G
n (x) =

kn∑
r=1

1In,r(x)X�
n,r , x ∈ [0, 1], (2.4)

which is piecewise constant on the {In,r} subdivision of [0, 1]. At the opposite, here we focus on smooth
estimators obtained by considering smooth kernels in (2.3). More precisely, we examine systematically the
convergence properties of the estimator in two main situations:

(A) K is β-Lipschitz on R, 0 < β ≤ 1, with Lipschitz multiplicative constant LK , x → x2K(x) is integrable,
kn = o (n), hnkα

n → ∞, and h1+β
n kβ

n → ∞ when n → ∞.
(B) K has a compact support, a bounded first derivative and is piecewise C2, kn = o (n) and hnkn → ∞

when n → ∞.

Of course, Geffroy’s estimate does not fulfil these conditions. Some stochastic convergences will require extra
conditions on the (kn) sequence:

(C) kn = o (n/ln n) and n = o
(
k1+α

n

)
.

Throughout this paper, we write:

λ(Dn,r) = λn,r, min
x∈In,r

f(x) = mn,r, max
x∈In,r

f(x) = Mn,r.
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The cumulative distribution function of X�
n,r is easily calculated on [0, mn,r], after noticing that, for every

measurable B ⊂ S, P (N(B) = 0) = exp (−ncλ(B)):

Fn,r(x) = P (X�
n,r ≤ x) = exp

(
nc

kn
(x − knλn,r)

)
, x ∈ [0, mn,r]. (2.5)

Of course, Fn,r(x) = 0 if x < 0 and Fn,r(x) = 1 if x > Mn,r. For x ∈ [mn,r, Mn,r], Fn,r(x) is unknown, but
1−Fn,r(mn,r) can be controlled through regularity conditions made on f . Finally, (2.5) and this control provide
precise expansions for the first moments of X�

n,r. We quote that useful results in the following lemma.

Lemma 1. Assume (C) is verified. Then,

(i) max
r

∣∣∣∣E(X�
n,r) − knλn,r +

kn

nc

∣∣∣∣ = O

(
n

k1+2α
n

)
,

(ii) max
r

∣∣∣∣Var(X�
n,r) −

k2
n

n2c2

∣∣∣∣ = O

(
1

k2α
n

)
,

(iii) max
r

E
(∣∣X�

n,r − E(X�
n,r)
∣∣3) = O

(
k3

n

n3

)
·

We shall also need a lemma on the Parzen-Rosenblatt kernel.

Lemma 2. Let a �= 0. For any probability sequence (Pn), we have

∫
K(u)K

(
u +

a

hn

)
Pn(du) = o (hn) . (2.6)

Proof of all lemmas are postponed to the appendix.

Corollary 1. For all x �= y,

1
hnkn

kn∑
r=1

K

(
x − xr

hn

)
K

(
y − xr

hn

)
= o (1) .

This result is deduced from Lemma 2 with a = y − x and Pn =
1
kn

kn∑
r=1

δ x−xr
hn

.

3. Bias convergence

We first give conditions on the sequences (hn) and (kn) to obtain the local uniform convergence of fn to f ,
that is, the uniform convergence on every compact subset C of ]0, 1[. Of course, since f is not continuous at 0
and 1, we cannot obtain uniform convergence on the whole compact [0, 1]. We note in the sequel:

‖g‖C
∞ = sup

x∈C
|g(x)| ,

for all function g : [0, 1] → R. The triangular inequality

‖f − fn‖C
∞ ≤ ‖fn − gn‖∞ + ‖gn − f‖C

∞,

shows the two contributions to the bias. The first term, studied in Lemma 3, is a consequence of the discretization
of (2.2). The second term is studied in Lemma 4. It appears in various other kernel estimates such as regression
or density estimates.
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Lemma 3.

(i) Under (A), ‖fn − gn‖∞ = O

(
1

hnkα
n

)
+ O

(
1

h1+β
n kβ

n

)
·

(ii) Under (B), ‖fn − gn‖∞ = O

(
1

h2
nk2

n

)
+ O

(
1
kα

n

)
·

The function f is uniformly continuous on [0, 1] as soon as it is continuous on the same compact interval and the
Bochner lemma entails that ‖gn − f‖C

∞ → 0 as n → ∞. The following lemma precises this result by providing
the rates of the convergence of ‖gn − f‖C

∞ in different situations.

Lemma 4.

(i) If x → x2K(x) is integrable, then ‖gn − f‖C
∞ = O

(
h

2α
α+2
n

)
.

(ii) If K has a compact support then ‖gn − f‖C
∞ = O (hα

n) .

Let us note that in situation (B), 1/kα
n = o(hα

n). Thus, as a simple consequence of Lemmas 3 and 4, we get:

Proposition 1.

(i) Under (A): ‖fn − f‖C
∞ = O

(
1

hnkα
n

)
+ O

(
1

h1+β
n kβ

n

)
+ O

(
h

2α
α+2
n

)
.

(ii) Under (B): ‖fn − f‖C
∞ = O

(
1

h2
nk2

n

)
+ O (hα

n).

In either case, fn converges uniformly locally to f .

Applying Proposition 1 to the function 1[0,1] leads to the following corollary which will reveal useful in the
following.

Corollary 2. Under the conditions of Proposition 1,

lim
n→∞

∥∥∥∥∥ 1
kn

kn∑
r=1

Kn(. − xr) − 1

∥∥∥∥∥
C

∞
= 0.

4. Estimate convergences

This section is devoted to the study of the stochastic convergence of f̂n to f . We establish sufficient conditions
for mean square local uniform convergence and almost complete local uniform convergence.

4.1. Mean square local uniform convergence

In this paragraph, we give sufficient conditions for

sup
x∈C

E
[(

f̂n(x) − f(x)
)2
]
→ 0 as n → ∞,

where C is compact subset of ]0, 1[. The well-known expansion

E
[(

f̂n(x) − f(x)
)2
]

=
[
E
(
f̂n(x)

)
− f(x)

]2
+ Var

(
f̂n(x)

)

allows one to consider the bias term and the variance term separately. The two following lemmas are devoted
to the bias which splits in turn as

∥∥∥E(f̂n

)
− f

∥∥∥C

∞
≤
∥∥∥E(f̂n

)
− fn

∥∥∥C

∞
+ ‖fn − f‖C

∞.
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Lemma 5. Suppose (C) is verified. Under (A) or (B):
∥∥∥E(f̂n) − fn

∥∥∥C

∞
= O (kn/n).

As a consequence of Lemma 5 and Proposition 1, we obtain the behavior of the bias:

Lemma 6. Suppose (C) is verified.
(i) Under (A):

∥∥∥E(f̂n) − f
∥∥∥C

∞
= O

(
kn

n

)
+ O

(
1

hnkα
n

)
+ O

(
1

h1+β
n kβ

n

)
+ O

(
h

2α
α+2
n

)
.

(ii) Under (B): ∥∥∥E(f̂n) − f
∥∥∥C

∞
= O

(
kn

n

)
+ O

(
1

h2
nk2

n

)
+ O (hα

n) . (4.1)

To conclude, it remains to consider the variance term.

Lemma 7. Suppose (C) is verified. Under (A) or (B):

lim
n→∞

∥∥∥∥∥Var(f̂n)
σ2

n

− σ2

∥∥∥∥∥
C

∞
= 0,

where σn = k1/2
n

nh
1/2
n

and σ = ‖K‖2
c ·

In situation (B), σn = o(kn/n), and therefore the variance of the estimator is small with respect to the bias.
In both situations, as a consequence of Lemmas 6 and 7, we get:

Theorem 1. Suppose (C) is verified.
(i) Under (A):

∥∥∥∥E(f̂n − f
)2
∥∥∥∥

C

∞
= O

(
k2

n

n2

)
+ O

(
1

h2
nk2α

n

)
+ O

(
1

h2+2β
n k2β

n

)
+ O

(
h

4α
α+2
n

)
+ O

(
kn

n2hn

)
·

(ii) Under (B): ∥∥∥∥E(f̂n − f
)2
∥∥∥∥

C

∞
= O

(
k2

n

n2

)
+ O

(
1

h4
nk4

n

)
+ O

(
h2α

n

)
.

In either case, the mean square local uniform convergence of f̂n to f follows.

In situation (B), choosing kn = n
α+2
3α+2 and hn = n− 2

3α+2 yields

∥∥∥∥E(f̂n − f
)2
∥∥∥∥

C

∞
= O

(
n− 4α

3α+2

)
,

and thus, we obtain the following bound for the L1 norm:

E
(
‖ f̂n − f ‖1

)
= E

(∫ 1

0

∣∣∣f̂n(x) − f(x)
∣∣∣ dx

)
≤
(∥∥∥E(f̂n − f)2

∥∥∥C

∞

)1/2

= O

(
n
− α

1+ 3
2 α

)
. (4.2)

As a comparison, the minimax rate in the n-sample case is n− α
1+α and is reached by Geffroy’s estimate. A bias

reduction method will be introduced in Section 6 in order to ameliorate the bound (4.2).
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4.2. Almost complete local uniform convergence

We shall give sufficient conditions for the convergence of the series

∀ε > 0,
+∞∑
n=1

P

({∥∥∥f̂n − f
∥∥∥C

∞
> ε

})
< +∞.

Theorem 2. Suppose kn = o(n/ ln n). Under (A) or (B), f̂n is almost completely locally uniformly convergent
to f .

Proof. Let C be a compact subset of ]0, 1[ and ε > 0. From Proposition 1, fn converges uniformly to f on C.

It remains to consider
∥∥∥f̂n − fn

∥∥∥C

∞
. For x ∈ C, we have:

∣∣∣f̂n(x) − fn(x)
∣∣∣ ≤ 1

kn

kn∑
r=1

Kn(x − xr)max
r

∣∣X�
n,r − f(xr)

∣∣

≤

1 +

∥∥∥∥∥ 1
kn

kn∑
r=1

Kn(. − xr) − 1

∥∥∥∥∥
C

∞


max

r

∣∣X�
n,r − f(xr)

∣∣
≤ (1 + o (1))max

r

∣∣X�
n,r − f(xr)

∣∣ ,
with Corollary 2. Now, since f is continuous on [0, 1], Mn,r − mn,r < ε/2 uniformly in r, for n large enough,
and therefore {

max
r

∣∣X�
n,r − f(xr)

∣∣ > ε
}
⊂
⋃
r

{
f(xr) − X�

n,r > ε
} ⊂

⋃
r

{
X�

n,r < mn,r − ε/2
}

.

As a consequence,

P
({

max
r

∣∣X�
n,r − f(xr)

∣∣ > ε
})

≤
kn∑

r=1

Fn,r(mn,r − ε/2),

where Fn,r is given by (2.5). Then, the inequality

P
({

max
r

∣∣X�
n,r − f(xr)

∣∣ > ε
})

≤ kn exp
(
−ncε

2kn

)

entails the convergence of the series with kn = o(n/ ln n). �

5. Asymptotic distributions

In Theorem 3, we give the limiting distribution of the random variable f̂n(x) for a fixed x ∈ C, a com-
pact subset of ]0, 1[. In Theorem 4, we study the asymptotic distribution of the random vector obtained by
evaluating f̂n in several distinct points of C.

Theorem 3. Suppose (C) is verified. Under (A) or (B), sn(x) = σ−1
n (f̂n(x) − E(f̂n(x))) converges in distri-

bution to a centered Gaussian variable with variance σ2, for all x ∈ C.

Proof. Let x ∈ C be fixed. Introducing the kn independent random variables

Yn,r(x) =
n

k
3/2
n h

1/2
n

K

(
x − xr

hn

)
(X�

n,r − EX�
n,r),
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the quantity sn(x) can be rewritten as

sn(x) =
kn∑

r=1

Yn,r(x).

Our goal is to prove that the Lyapounov condition

lim
n→∞

kn∑
r=1

E
(
|Yn,r(x)|3

)
Var3/2(sn(x))

= 0

holds under condition (A), (C) or (B), (C). Remark first that

Var(sn(x)) = Var(f̂n(x))/σ2
n → σ2,

as n → ∞ with Lemma 7. Second, we have

kn∑
r=1

E
(
|Yn,r(x)|3

)
≤ n3

h
3/2
n k

9/2
n

kn∑
r=1

K3

(
x − xr

hn

)
max

r
E
(∣∣X�

n,r − E(X�
n,r)
∣∣3)

≤
(

1
knhn

kn∑
r=1

K3

(
x − xr

hn

))
O

(
1

k
1/2
n h

1/2
n

)
,

with Lemma 1. Then,

1
hnkn

kn∑
r=1

K3

(
x − xr

hn

)
≤
∫

R

K3(u) du +

∥∥∥∥∥ 1
hnkn

kn∑
r=1

K3

(
. − xr

hn

)
−
∫

R

K3(u) du

∥∥∥∥∥
C

∞

≤
∫

R

K3(u) du + o (1) ,

with Corollary 2 applied to the kernel K3/
∫

K3(u) du. As a conclusion,

kn∑
r=1

E
(
|Yn,r(x)|3

)
Var3/2(sn(x))

= O

(
1

h
1/2
n k

1/2
n

)
,

and the result follows. �
Theorem 4. Let (y1, . . . , yq) be distinct points in C and denote Iq the identity matrix of size q. Under the
conditions of Theorem 3, the random vector (sn(yj), j = 1, . . . , q) converges in distribution to a centered
Gaussian vector of R

q with covariance matrix σ2
Iq.

Proof. Our goal is to prove that, ∀(u1, . . . , uq) ∈ R
q, the random variable

s̃n =
q∑

i=1

uisn(yi)

converges in distribution to a centered Gaussian variable with variance ‖ u ‖2
2σ

2. A straightforward calculation
yields

s̃n =
kn∑

r=1

Ỹn,r,
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where we have defined

Ỹn,r =
n

k
3/2
n h

1/2
n

q∑
i=1

uiK

(
yi − xr

hn

)
(X�

n,r − EX�
n,r).

We use a chain of arguments similar to the ones in Theorem 3 proof. First, the variance of Ỹn,r is evaluated
with Lemma 1(ii):

Var(Ỹn,r) =
n2

hnk3
n

(
q∑

i=1

uiK

(
yi − xr

hn

))2

Var(X�
n,r)

=
1
c2

1
hnkn

(
q∑

i=1

uiK

(
yi − xr

hn

))2(
1 + O

(
n2

k2α+2
n

))

∼ 1
c2

1
hnkn

(
q∑

i=1

uiK

(
yi − xr

hn

))2

·

Then, the variance of s̃n can be expanded as

Var(s̃n) ∼
q∑

i=1

kn∑
r=1

u2
i

c2

1
hnkn

K2

(
yi − xr

hn

)
+
∑
i�=j

uiuj

c2

1
hnkn

kn∑
r=1

K

(
yi − xr

hn

)
K

(
yj − xr

hn

)
·

Corollary 2 provides the limit of the first term and, from Corollary 1, the second term goes to 0 when n goes
to infinity. As a partial conclusion, Var(s̃n) → ‖ u ‖2

2σ
2 when n → ∞. Now, we have

E
(∣∣∣Ỹn,r

∣∣∣3) =
n3

h
3/2
n k

9/2
n

∣∣∣∣∣
q∑

i=1

uiK

(
yi − xr

hn

)∣∣∣∣∣
3

E
(∣∣X�

n,r − E(X�
n,r)
∣∣3) .

Then, Lemma 1(iii) entails

kn∑
r=1

E
(∣∣∣Ỹn,r

∣∣∣3) = O

(
1

h
3/2
n k

3/2
n

) kn∑
r=1

∣∣∣∣∣
q∑

i=1

uiK

(
yi − xr

hn

)∣∣∣∣∣
3

,

and remarking that ∣∣∣∣∣
q∑

i=1

uiK

(
yi − xr

hn

)∣∣∣∣∣
3

≤ ‖K‖∞‖ u ‖1

(
q∑

i=1

uiK

(
yi − xr

hn

))2

shows finally that
kn∑

r=1

E
(∣∣∣Ỹn,r

∣∣∣3) = O

(
1

h
1/2
n k

1/2
n

)
,

and the conclusion follows. �

6. Bias reduction

It is worth noticing that, in Section 5, the negative bias of f̂n is too large to obtain a limit distribution for
(f̂n − f). We introduce a corrected estimator f̃n sharp enough to obtain a limiting distribution for (f̂n − f)
under conditions (B) and (C).
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It is clear, in view of Lemma 1, that X�
n,r is an estimator of knλn,r with a negative bias asymptotically

equivalent to −kn/(nc). To reduce this bias, we introduce the random variable defined by

Zn =
1

n − kn

kn∑
r=1

X�
n,r.

Lemma 1 implies that, under (C),

E(Zn) =
kn

nc
+ O

(
1

k2α
n

)
· (6.1)

This suggests to consider the estimator

f̃n(x) =
1
kn

kn∑
r=1

Kn(x − xr)
(
X�

n,r + Zn

)
, x ∈ [0, 1].

A more precise version of Theorem 3 can be given in situation (B) at the expense of additional conditions. To
this end, we need a preliminary lemma providing the bias of the new estimator f̃n.

Lemma 8. Under (B), (C): ∥∥∥E(f̃n

)
− f

∥∥∥C

∞
= O

(
1

h2
nk2

n

)
+ O (hα

n) .

The bias of the new estimator f̃n(x) is asymptotically lower than the bias of f̂n(x) since the kn/n term of (4.1)
is cancelled in Lemma 8. Let us also note that the variance of f̃n(x) is bounded above by the variance of f̂n(x):
since

Var f̃n(x) ≤ 2 Var f̂n(x) + 2

(
1
kn

kn∑
r=1

Kn(x − xr)

)2

VarZn, (6.2)

it follows from Lemma 1, Lemma 7 and Corollary 2 that

Var f̃n(x)

Var f̂n(x)
≤ 2 + O

(
VarZn

σ2
n

)
= 2 + O

(
kn Var X�

n,1

n2σ2
n

)
= 2 + O

(
hnk2

n

n2

)
= 2 + o (1) . (6.3)

These remarks allow to give the asymptotic distribution of (f̃n(x) − f(x)).

Theorem 5. If (B) holds, n = o
(
k

1/2
n h

−1/2−α
n

)
, n = o

(
k

5/2
n h

3/2
n

)
and kn = o (n/lnn), then tn(x) =

σ−1
n (f̃n(x) − f(x)) converges in distribution to a centered Gaussian variable with variance σ2, for all x in

a compact subset of ]0, 1[.

Proof. Consider the expansion

tn(x) = σ−1
n

(
f̃n(x) − E

(
f̃n(x)

))
+ σ−1

n

(
E
(
f̃n(x)

)
− f(x)

)

= σ−1
n

(
f̂n(x) − E

(
f̂n(x)

))
+

σ−1
n

kn

kn∑
r=1

Kn(x − xr)(Zn − E(Zn)) + σ−1
n

(
E
(
f̃n(x)

)
− f(x)

)
.

In view of Theorem 3, the first term converges in distribution to a centered Gaussian variable with variance σ2.
The second term is centered and its variance converges to zero from (6.2) and (6.3). Therefore, the second term
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converges to 0 in probability. The third term is controlled with Lemma 8:

σ−1
n

∥∥∥E(f̃n

)
− f

∥∥∥C

∞
= O

(
n

h
3/2
n k

5/2
n

)
+ O

(
nh

1/2+α
n

k
1/2
n

)
→ 0,

and the conclusion follows. �

The uniform mean square distance between f̃n and f is derived from Lemmas 7 and 8:

∥∥∥∥E(f̃n − f
)2
∥∥∥∥

C

∞
= O

(
kn

n2hn

)
+ O

(
1

h4
nk4

n

)
+ O

(
h2α

n

)
. (6.4)

Possible choices are kn = n
4+2α
4+5α and hn = n− 4

4+5α leading to

∥∥∥∥E(f̃n − f
)2
∥∥∥∥

C

∞
= O

(
n− 8α

4+5α

)
,

and thus,

E
(
‖ f̃n − f ‖1

)
= O

(
n
− α

1+ 5
4 α

)
, (6.5)

which is a significant improvement of (4.2). It is well-known that non-parametric estimators based on Parzen-
Rosenblatt kernels suffer from a lack of performance on the boundaries of the estimation interval. To overcome
this limitation, symmetrization techniques have been developed [4]. The application of such a method to f̃n(x)
yields the following estimator:

f̌n(x) =
1
kn

kn∑
r=1

(Kn(x − xr) + Kn(x + xr) + Kn(x + xr − 2))
(
X�

n,r + Zn

)
, x ∈ [0, 1].

The convergence properties of f̂n and f̃n on the compact subsets of ]0, 1[ can be extended to f̌n on the whole
interval [0, 1] without difficulties.

7. Illustration on simulations

We consider a Poisson process on a set S defined as in (2.1) with

f(x) =

∣∣∣∣∣∣∣∣∣∣∣

1 + exp (−60(x − 1/4)2) if 0 ≤ x ≤ 1/3,

1 + exp (−5/12) if 1/3 < u ≤ 2/3,

−6 exp (−5/12)x + 1 + 5 exp (−5/12) if 2/3 < u ≤ 5/6,

6x − 4 if 5/6 < u ≤ 1,

with n = 300. Note that f is continuous but is not derivable at x = 1/3, x = 2/3 and x = 5/6. We use a
subdivision of [0, 1] into kn = 30 intervals leading to about 10 simulated points in each interval. The following
kernel is chosen

K(t) = cos2(πt/2)1[−1,1](t),
with associated window hn = 2/kn, which corresponds to a smoothing over 4 intervals. The automatic choice
of hn and kn is under investigation. A possible solution would be to use a plug-in procedure. The idea consists
in selecting the sequences minimizing a more precise version of (6.4) including the multiplicative constants.
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Figure 1. Comparison in the best cases. Continuous line: estimate, dashed line: true frontier.

The experiment involves several steps:
– First, m = 100 replications of the Poisson process are simulated.
– For each of the m previous set of points, the three kernel estimators f̂n, f̃n, f̌n and Geffroy’s estimator f̂G

n

are computed.
– For each of four estimators, the m associated L1 distances to f are evaluated on a grid.
– Finally, for each of the four estimators, the best situation (ie the estimation corresponding to the

smallest L1 error) is represented in Figure 1 and the worst situation (ie the estimation corresponding
to the largest L1 error) is represented in Figure 2.

It appears in Figure 1a, that even in the best case, f̂n suffers from a negative bias and boundary problems.
Figure 1b illustrates the efficiency of the bias correction proposed in Section 6. Boundary effects disappear in
Figure 1c with the symmetrization procedure described in Section 6. As a comparison, Geffroy’s estimate is
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Figure 2. Comparison in the worst cases. Continuous line: estimate, dashed line: true frontier.

represented in Figure 1d. The negative bias appears clearly on the [1/3, 2/3] interval. These conclusions also
hold for the worst cases (Fig. 2).

8. Comparison with other estimates

Let us emphasize that such comparisons are only relevant within a same framework, which excludes hypothe-
ses such as the convexity or the monotonicity of f . Thus, the competitive methods to our kernel approach
are essentially local polynomial estimates [11, 12], piecewise polynomial estimates [18, 19] and our projection
estimate [9, 10].

– From the theoretical point of view, piecewise polynomial estimates benefit from the minimax optimality
whereas the estimates proposed in this paper are suboptimal. In the class of continuous functions f having
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a Lipschitzian k-th derivative, the optimal rate of convergence is attained by minimizing, on each cell of a
partition of [0, 1], the measure of a domain with a polynomial edge of degree k. For instance, in the case of a α-
Lipschitzian frontier, the minimax optimal rate for the L1 norm is n− α

1+α and the corresponding rate is n− α
5/4+α

for f̃n (see (6.5)). The difference of speed increases with α, but even if α = 1 (which is the worst situation for
us), one obtains “similar” rates of convergence, that is n−1/2 and n−4/9. In this sense, kernel estimates bring a
significant improvement to projection estimates.

– From the practical point of view, all the previous estimates require the selection of two hyper-parameters.
In case of piecewise polynomial and local polynomial estimators, the construction of the estimate requires to
select the degree of the polynomial function (which corresponds to k in the piecewise polynomial framework)
and a smoothing parameter (the size of the cells in the piecewise polynomial context and the size of the
moving window in the local polynomial context). Of course, the selection of the degree of the polynomial
function is usually easier than the choice of a parameter on a continuous scale such as hn. Nevertheless,
our opinion is that kernel estimates are the most pleasant to use in practice for the following reasons. The
computation of local and piecewise polynomial estimates requires to solve an optimization problem. For instance,
the computation of piecewise polynomial estimates is not straightforward, at least for k > 0. When k = 0,
piecewise polynomial estimates reduce to Geffroy’s estimate, whose unsatisfying behavior on finite sample
situations has been illustrated in Section 7. At the opposite, kernel and projection estimators enjoy explicit
forms and are thus easily implementable. Besides, these methods yield smooth estimates whereas piecewise
polynomial estimates are discontinuous whatever the regularity degree of f is. Finally, only kernel and projection
estimates benefit from an explicit asymptotic distribution. This property allows to build pointwise confident
intervals without costly Monte-Carlo methods. In the local polynomial estimates situation (see [11]), both
the limiting distribution and the normalization sequences are not explicit making difficult the reduction of the
asymptotic bias.

9. Appendix: Proof of lemmas

Proof of Lemma 1. We give here the complete proof of (i) and a sketch of the proofs of (ii) and (iii) since the
methods in use are similar.

(i) The mathematical expectation can be expanded in three terms:

E(X�
n,r − knλn,r) = −knλn,re−ncλn,r +

∫ mn,r

0

(x − knλn,r)F ′
n,r(x)dx +

∫ Mn,r

mn,r

(x − knλn,r)Fn,r(dx).

The first term of the sum is asymptotically negligible:

max
r

knλn,re−ncλn,r = o
(
n−s

)
, (9.1)

for all s > 0, when n → ∞. Using (2.5), the second term can be rewritten as

∫ mn,r

0

(x − knλn,r)F ′
n,r(x)dx =

nc

kn

∫ mn,r

0

(x − knλn,r) exp
[
nc

kn
(x − knλn,r)

]
dx

= −kn

nc

∫ ncλn,r

nc
kn

(knλn,r−mn,r)

u exp (−u)du.

Let us note φ(u) = (u + 1) exp (−u) a primitive of −u exp (−u). We have φ(u) = 1 + O
(
u2
)

when
u → 0 and φ(u) = o (u−s), ∀s > 0 when u → ∞. Consequently, remarking that the upper bound goes
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to infinity, and that the lower bound goes to 0 under the assumption n = o
(
k1+α

n

)
yields

max
r

∣∣∣∣
∫ mn,r

0

(x − knλn,r)F ′
n,r(x)dx +

kn

nc

∣∣∣∣ = O

(
n

k1+2α
n

)
· (9.2)

The third term is bounded above by∫ Mn,r

mn,r

(x − knλn,r)Fn,r(dx) ≤ (Mn,r − mn,r)
[
1 − exp

(
nc

kn
(mn,r − knλn,r)

)]

and thus

max
r

∣∣∣∣∣
∫ Mn,r

mn,r

(x − knλn,r)Fn,r(dx)

∣∣∣∣∣ = O

(
n

k1+2α
n

)
· (9.3)

Collecting (9.1), (9.2) and (9.3) proves the result.
(ii) It is convenient to write the variance as

Var(X�
n,r) = Var(X�

n,r − knλn,r) = E
[
(X�

n,r − knλn,r)2
]− E2(X�

n,r − knλn,r).

With a method very similar to the one used to prove (i), we obtain uniformly in r,

E
[
(X�

n,r − knλn,r)2
]

=
2k2

n

n2c2
+ O

(
1

k2α
n

)
·

Besides, (i) entails

E2(X�
n,r − knλn,r) =

k2
n

n2c2
+ O

(
1

k2α
n

)
,

uniformly in r, and the conclusion follows.
(iii) The proof is similar. It requires the calculation of E(

∣∣X�
n,r − knλn,r

∣∣3) and the use of (i) and (ii). �

Proof of Lemma 2. Let ε > 0 and split (2.6) into∫
K(u)K

(
u +

a

hn

)
Pn(du) =

∫
|u|> |a|

2hn

K(u)K
(

u +
a

hn

)
Pn(du) +

∫
|u|≤ |a|

2hn

K(u)K
(

u +
a

hn

)
Pn(du),

and consider the two terms separately.
• The first term is bounded above by∫

|u|> |a|
2hn

K(u)K
(

u +
a

hn

)
Pn(du) ≤ ‖K‖∞

∫
|u|> |a|

2hn

K(u)Pn(du)

= ‖K‖∞
∫
|u|> |a|

2hn

|u|K(u)
1
|u|Pn(du). (9.4)

Since uK(u) → 0 when |u| → ∞, for n large enough |uK(u)| < ε entailing∫
|u|> |a|

2hn

K(u)K
(

u +
a

hn

)
Pn(du) ≤ ‖K‖∞ε

∫
|u|> |a|

2hn

1
|u|Pn(du) ≤ 2εhn‖K‖∞

|a| ·

We have proved that ∀ε > 0, for n large enough

1
hn

∫
|u|> |a|

2hn

K(u)K
(

u +
a

hn

)
Pn(du) ≤ 2ε‖K‖∞

|a| ,
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or equivalently, ∫
|u|> |a|

2hn

K(u)K
(

u +
a

hn

)
Pn(du) = o (hn) .

• The second term is bounded above by∫
|u|≤ |a|

2hn

K(u)K
(

u +
a

hn

)
Pn(du) ≤ ‖K‖∞

∫
|u|≤ |a|

2hn

K

(
u +

a

hn

)
Pn(du)

= ‖K‖∞
∫
|v|> |a|

2hn

K(v)Pn(dv),

with v = u + a/hn, and the end of the proof is the same as for (9.4). �
Proof of Lemma 3. Taking into account that f vanishes out of [0, 1], we have

fn(x) − gn(x) =
1
kn

kn∑
r=1

Kn(x − xr)f(xr) −
∫ 1

0

Kn(x − y)f(y)dy.

Let us define φn,x(y) = Kn(x − y)f(y) for (x, y) ∈ R
2. With this notation,

fn(x) − gn(x) =
kn∑

r=1

∫
In,r

[φn,x(xr) − φn,x(y)] dy =
1
kn

kn∑
r=1

∫ 1/2

−1/2

[
φn,x(xr) − φn,x

(
xr +

u

kn

)]
du (9.5)

and we have the following expansion:

φn,x(xr) − φn,x

(
xr +

u

kn

)
= Kn

(
x − xr − u

kn

)(
f(xr) − f

(
xr +

u

kn

))
(9.6)

+f(xr)
(

Kn(x − xr) − Kn

(
x − xr − u

kn

))
· (9.7)

Now, since f is α-Lispchitz, (9.6) is uniformly bounded above by ‖K‖∞Lf/(hnkα
n). The rest of the proof

depends on the assumptions made on K:
(i) Under (A), K is β-Lipschitzian and thus (9.7) is uniformly bounded above by ‖f‖∞LK/(h1+β

n kβ
n), and

the conclusion follows.
(ii) Under (B), since K has a compact support, the number of nonzero terms in (9.5) is O (knhn). Thus,

the contribution of (9.6) is O (1/kα
n). Two situations have to be considered for the term (9.7). If r is

such that K has only a bounded first derivative at x − xr, then (9.7) is uniformly bounded above by
‖f‖∞‖K ′‖∞/(h2

nkn). Remarking there are only a finite number of such terms in (9.5) shows that the
contribution of (9.7) is O

(
1/(h2

nk2
n)
)
. If r is such that K is C2 at x − xr, then a second order Taylor

expansion yields

Kn(x − xr) − Kn

(
x − xr − u

kn

)
=

u

kn
K ′

n(x − xr) − u2

2k2
n

K ′′
n

(
x − xr + θn(u)

u

kn

)
,

with θn(u) ∈]0, 1[. Replacing in (9.5), the first order term vanishes, and thus the contribution of (9.7)
is bounded above by ‖f‖∞‖K ′′

n‖∞hn/(24k2
n). Since ‖K ′′

n‖∞ = O
(
1/h3

n

)
the result follows. �

Proof of Lemma 4. For any compact subset C ⊂]0, 1[, there exist 0 < a < b < 1 such that C ⊂ [a, b]. Let
x ∈ [a, b] and consider

gn(x) − f(x) =
∫

R

Kn(u)(f(x − u) − f(x))du. (9.8)
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Let (δn) be a positive sequence tending to 0. Then, (9.8) is bounded above by

|gn(x) − f(x)| ≤ sup
|u|≤δn

|f(x − u) − f(x)| +
∫
|u|≥δn

Kn(u) |f(x − u) − f(x)| du

≤ sup
|u|≤δn

|f(x − u) − f(x)| + 2‖f‖∞
∫
|u|≥δn

Kn(u)du.

For n large enough, δn < min(a, 1 − b) and then |u| ≤ δn entails (x − u) ∈ [0, 1]. Now, since f is α-Lipschitzian
on [0, 1], it yields

|gn(x) − f(x)| ≤ Lfδα
n + 2‖f‖∞

∫
|u|≥δn

Kn(u)du. (9.9)

Two cases arise:
(i) If u → u2K(u) is integrable then

|gn(x) − f(x)| ≤ Lfδα
n + 2‖f‖∞

∫
R

u2K(u)du

(
hn

δn

)2

·

Considering δn = h
2

α+2
n in this inequality (which can also be found page 61 in [3] under different

hypotheses) gives the result.
(ii) If K has a compact support, let A > 0 such that supp (K) ⊂ [−A, A]. Then, considering δn = Ahn,

the second term in (9.9) vanishes and the result is proved. �

Proof of Lemma 5. Consider x ∈ C. As a consequence of the definitions

∣∣∣E(f̂n(x)) − fn(x)
∣∣∣ ≤ 1

kn

kn∑
r=1

Kn(x − xr)max
r

∣∣E(X�
n,r) − f(xr)

∣∣

≤

1 +

∥∥∥∥∥ 1
kn

kn∑
r=1

Kn(. − xr) − 1

∥∥∥∥∥
C

∞


max

r

∣∣E(X�
n,r) − f(xr)

∣∣
≤ (1 + o (1))max

r

∣∣E(X�
n,r) − f(xr)

∣∣ ,
with Corollary 2. Besides, we have

∣∣E(X�
n,r) − f(xr)

∣∣ ≤ kn

nc
+
∣∣∣∣E(X�

n,r) − knλn,r +
kn

nc

∣∣∣∣+ |knλn,r − f(xr)| ,

and Lemma 1 yields

∥∥∥E(f̂n) − fn

∥∥∥C

∞
= O

(
kn

n

)
+ O

(
n

k1+2α
n

)
+ O

(
1
kα

n

)
= O

(
kn

n

)
,

under (C). �
Proof of Lemma 7. Let x ∈ C. In view of the independence of the X�

n,r, r = 1, . . . , kn,

Var
(
f̂n(x)

)
=

1
k2

n

kn∑
r=1

K2
n(x − xr)Var(X�

n,r).
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Introducing

∆Vn =
n2

k2
n

max
r

∣∣∣∣Var(X�
n,r) −

k2
n

n2c2

∣∣∣∣ and ∆Kn =

∥∥∥∥∥ 1
hnkn

kn∑
r=1

K2

(
. − xr

hn

)
− ‖ K ‖2

2

∥∥∥∥∥
C

∞
,

we have ∥∥∥∥∥Var(f̂n)
σ2

n

− σ2

∥∥∥∥∥
C

∞
≤ ∆Kn

(
∆Vn + 1/c2

)
+ ∆Vn‖ K ‖2

2.

Lemma 1 shows that ∆Vn → 0, Corollary 2 applied to the kernel K2/‖ K ‖2
2 shows that ∆Kn → 0 as n → ∞,

and the conclusion follows. �
Proof of Lemma 8. The bias expands as

∥∥∥E(f̃n

)
− f

∥∥∥C

∞
≤ ‖fn − f‖C

∞ +
∥∥∥E(f̃n

)
− fn

∥∥∥C

∞
,

which first term is controlled by Proposition 1. Consider the second term:

∣∣∣E(f̃n(x)
)
− fn(x)

∣∣∣ ≤
(

1
kn

kn∑
r=1

Kn(x − xr)

)
max

r

∣∣E(X�
n,r) + E(Zn) − f(xr)

∣∣

≤

1 +

∥∥∥∥∥ 1
kn

kn∑
r=1

Kn(. − xr) − 1

∥∥∥∥∥
C

∞


max

r

∣∣E(X�
n,r) + E(Zn) − f(xr)

∣∣ . (9.10)

Corollary 2 shows that it is sufficient to consider

∣∣E(X�
n,r) + E(Zn) − f(xr)

∣∣ ≤ ∣∣∣∣E(X�
n,r) − knλn,r +

kn

nc

∣∣∣∣+
∣∣∣∣E(Zn) − kn

nc

∣∣∣∣+ |knλn,r − f(xr)| .

Lemma 1 and (6.1) yield

∥∥∥E(f̃n

)
− fn

∥∥∥C

∞
= O

(
n

k1+2α
n

)
+ O

(
1

k2α
n

)
+ O

(
1
kα

n

)
= O

(
1
kα

n

)

under (C), and the conclusion follows.
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