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ABOUT THE LINEAR-QUADRATIC REGULATOR PROBLEM
UNDER A FRACTIONAL BROWNIAN PERTURBATION ∗, ∗∗

M.L. Kleptsyna1, Alain Le Breton2 and M. Viot2

Abstract. In this paper we solve the basic fractional analogue of the classical linear-quadratic Gaussian
regulator problem in continuous time. For a completely observable controlled linear system driven by
a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes a
quadratic performance criterion.
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Introduction

Several contributions in the literature have been already devoted to the extension of the classical theory of
continuous-time stochastic systems driven by Brownian motions to analogues in which the driving processes
are fractional Brownian motions (fBm’s for short). The tractability of the standard problems in prediction,
parameter estimation and filtering is now rather well understood (see, e.g. [4,6-8,11,12] and references therein).
Concerning optimal control problems, as far as we know, it is far from fully demonstrated (nevertheless, see [5]
for an attempt in a general setting and [9] for a study in an elementary archetypal model). Here our aim is to
illustrate the actual solvability of control problems by exhibiting an explicit solution for the case of the simplest
linear-quadratic model.

We deal with the fractional analogue of the so-called linear-quadratic Gaussian regulator problem in one
dimension. The real-valued state process X = (Xt, t ∈ [0, T ]) is governed by the stochastic differential equation

dXt = a(t)Xtdt + b(t)utdt + c(t)dBH
t , t ∈ [0, T ] , X0 = x, (0.1)

which is as usual interpreted as an integral equation. Here x is a fixed initial condition, BH = (BH
t , t ∈ [0, T ])

is a normalized fBm with the Hurst parameter H in [1/2, 1) and the coefficients a = (a(t), t ∈ [0, T ]), b = (b(t),
t ∈ [0, T ]) and c = (c(t), t ∈ [0, T ]) are fixed (deterministic) continuous functions. We suppose that X is
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completely observed and that a closed-loop control of the system is available in the sense that at each time
t ∈ [0, T ] one may choose the input ut in view of the passed observations {Xs, s ≤ t} in order to drive the
corresponding state, Xt = Xu

t say. Then, given a cost function which evaluates the performance of the control
actions, the classical problem of controlling the system dynamics on the time interval [0, T ] so as to minimize
this cost occurs. Here we consider the quadratic payoff J defined for a control policy u = (ut, t ∈ [0, T ]) by

J(u) = E

{
q

T
X2

T
+

∫ T

0

[q(t)X2
t + r(t)u2

t ]dt

}
, (0.2)

where qT is a positive constant and q = (q(t), t ∈ [0, T ]) and r = (r(t), t ∈ [0, T ]) are fixed (deterministic)
positive continuous functions. It is well-known that when H = 1/2 and hence the noise in (0.1) is a Brownian
motion, then (see, e.g. [1,10]), the solution ū to the corresponding problem, called the optimal control, is
provided for all t ∈ [0, T ] by the instantaneous linear feedback

ūt = − b(t)
r(t)

π(t)X̄t; X̄t = X ū
t , (0.3)

where π = (π(t), t ∈ [0, T ]) is the unique nonnegative solution of the backward Riccati differential equation

π̇(t) = −2a(t)π(t)− q(t) +
b2(t)
r(t)

π2(t); π(T ) = qT . (0.4)

Moreover the optimal cost J(ū) is given by

J(ū) = π(0)x2 +
∫ T

0

π(t)c2(t)dt. (0.5)

Our main goal here is to show that actually when the system (0.1) is driven by a fBm with some H ∈ (1/2, 1)
instead of a Brownian motion, an explicit solution to the optimal control problem under the performance
criterion (0.2) is still available.

The paper is organized as follows. At first in Section 1, we fix some notations and preliminaries. Then,
in Section 3, the concerned closed-loop control problem is solved: the optimal control is defined as a linear
but not instantaneous feedback which involves the solution of a Volterra type integral equation; moreover a
representation of the optimal cost is also provided. Globally, the solution of the problem is expressed in terms
of the solutions of a family of two-dimensional backward differential Riccati equations which for H = 1/2
actually all reduce to the standard one-dimensional Riccati equation (0.4).

1. Preliminaries

In what follows all random variables and processes are defined on a given stochastic basis (Ω,F , P). Moreover
the natural filtration of a process is understood as the P-completion of the filtration generated by this process.
Here, for some fixed T > 0 and H ∈ [1/2, 1), BH = (BH

t , t ∈ [0, T ]) is a normalized fractional Brownian motion
on [0, T ] with Hurst parameter means that BH is a Gaussian process with continuous paths such that BH

0 = 0,
EBH

t = 0 and

EBH
s BH

t =
1
2

[
s2H + t2H − |s− t|2H

]
, 0 ≤ s , t ≤ T . (1.1)

Of course the fBm reduces to the standard Brownian motion when H = 1/2. For H 6= 1/2, the fBm is outside the
world of semimartingales but a theory of stochastic integration w.r. to fBm has been developed (see, e.g. [2,3]).
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Actually the case of deterministic integrands, which is sufficient for the purpose of the present paper, is easy to
handle (see, e.g. [11]).

• Fundamental martingale associated to BH : there are simple integral transformations which change the fBm
to martingales (see [8,11,12]). In particular, defining for 0 < s < t ≤ T

kH(t, s) = κ−1
H s

1
2−H(t− s)

1
2−H ; κH = 2HΓ(3/2−H)Γ(H + 1/2), (1.2)

wH
t = λ−1

H t2−2H ; λH =
2HΓ(3− 2H)Γ(H + 1/2)

Γ(3/2−H)
, (1.3)

MH
t =

∫ t

0

kH(t, s)dBH
s , (1.4)

then the process MH is a Gaussian martingale, called in [11] the fundamental martingale, whose variance
function 〈MH〉 is nothing but the function wH . Actually, the natural filtration of MH coincides with the
natural filtration (FH

t ) of BH . In particular, we have the direct consequence of the results of [8] that, given a
suitably regular deterministic function c = (c(t), t ∈ [0, T ]), the following representation holds:∫ t

0

c(s)dBH
s =

∫ t

0

Kc
H(t, s)dMH

s , (1.5)

where for H ∈ (1/2, 1) the function Kc
H is given by

Kc
H(t, s) = H(2H − 1)

∫ t

s

c(r)rH− 1
2 (r − s)H− 3

2 dr , 0 ≤ s ≤ t, (1.6)

and for H = 1/2 the convention Kc
1/2(t, .) ≡ c for all t is used. Conversely, given a suitably regular deterministic

function f = (f(t), t ∈ [0, T ]), we have also:∫ t

0

f(s)dMH
s =

∫ t

0

kf
H(t, s)dBH

s , (1.7)

where the function kf
H is given by

kf
H(t, s) = −κ−1

H s
1
2−H d

ds

∫ t

s

(r − s)
1
2−Hf(r)dr. (1.8)

• Admissible controls: let UH the class of (FH
t )-adapted processes u = (ut, t ∈ [0, T ]) such that the stochastic

differential equation (0.1) has a unique strong solution Xu which satisfies J(u) < +∞, where J(u) is evaluated
according to (0.2) with X = Xu. Of course then Xu is a (FH

t )-adapted process. Actually, as mentioned in
the Introduction, for control purpose we are interested in closed-loop policies. So, we introduce the class of
admissible controls as the class Uad of those u’s in UH which are (Fu

t )-adapted processes where (Fu
t ) is the

natural filtration of the corresponding state process Xu. For u ∈ Uad, the pair (u, Xu) is called an admissible
pair and if ū ∈ Uad is such that

J(ū) = inf{J(u), u ∈ Uad},

then it is called an optimal control and (ū, X̄), where X̄ = X ū, is called an optimal pair and the quantity J(ū)
is called the optimal cost.
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2. Solution of the optimal control problem

In order to state our main result, starting from the solution π of the Riccati equation (0.4), for any fixed
s ∈ [0, T ], we introduce auxiliary deterministic functions γ(., s) = (γ(t, s), t ∈ [s, T ]) and λ(., s) = (λ(t, s),
t ∈ [s, T ]). They are the solutions of the following backward differential equations in the variable t on [s, T ]:

γ̇(., s) = −a[γ(., s) + Kc
H(., s)π] − qKc

H(., s) +
b2

r
πγ(., s); γ(T, s) = qT Kc

H(T, s), (2.1)

λ̇(., s) = −2aKc
H(., s)γ(., s)− q[Kc

H(., s)]2 +
b2

r
γ2(., s) ; λ(T, s) = q

T
[Kc

H(T, s)]2 . (2.2)

Let us mention that actually the 2× 2 matrix-valued function Γ(., s) = (Γ(t, s), t ∈ [s, T ]) where

Γ(t, s) =
(

π(t) γ(t, s)
γ(t, s) λ(t, s)

)
,

is the unique nonnegative symmetric solution of the backward Riccati equation

Γ̇(., s) = −a
{Kc

H(., s)e′1Γ(., s) + Γ(., s)e1[Kc
H(., s)]′

}
−qKc

H(., s)[Kc
H(., s)]′ +

b2

r
Γ(., s)e1e

′
1Γ(., s) ; Γ(T, s) = q

T
Kc

H(T, s)[Kc
H(T, s)]′ ,

with the vectors e1 and Kc
H(t, s) in R

2 given by

e1 =
(

1
0

)
; Kc

H(t, s) =
(

1
Kc

H(t, s)

)
.

We shall use the following notations:

γ̄(s) = γ(s, s) ; λ̄(s) = λ(s, s) , (2.3)

where γ(., s) and λ(., s) are defined by equations (2.1) and (2.2), respectively. We introduce also the function
k̄(t, s) = kγ̄

H(t, s) by substituting γ̄ for f in the definition (1.8), i.e.:

k̄(t, s) = −κ−1
H s

1
2−H d

ds

∫ t

s

(r − s)
1
2−H γ̄(r)dr. (2.4)

Theorem 2.1. There exists a unique opimal control ū in Uad and the optimal pair (ū, X̄) is governed on [0, T ]
by the system

ūt = − b(t)
r(t)

[π(t)X̄t + v̄t] ; X̄t = X ū
t , (2.5)

v̄t =
∫ t

0

[
−a(s) +

b2(s)
r(s)

π(s)
]

v̄sds +
∫ t

0

[
k̄(t, s)
c(s)

− π(s)
]
{dX̄s − [a(s)X̄s + b(s)ūs]ds}, (2.6)

where π and k̄ are defined by (0.4) and (2.4), respectively. Moreover the optimal cost is given by

J(ū) = π(0)x2 +
∫ T

0

λ̄(t)dwH
t , (2.7)

where λ̄ is defined by (2.3).
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Remark 2.2. (a) Observe that in the case H = 1/2, for all 0 ≤ s ≤ t ≤ T , the entries γ(t, s), λ(t, s) and k̄(t, s)
reduce to π(t)c(s), π(t)c2(s) and π(s)c(s), respectively. Hence, it is readily seen that v̄ ≡ 0, ū = −(b/r)πX̄ and
λ̄(t)dwH

t = π(t)c2(t)dt. So, finally, the statement in Theorem 2.1 reduces to the well-known result recalled in
the Introduction.

(b) It is worth to mention that actually the additional term v̄t which appears in the case H > 1/2 can be
interpreted in terms of the predictors at time t of the noise component B̃τ =

∫ τ

0
c(s)dBH

s , t ≤ τ ≤ T based on
the observed optimal dynamics (X̄s, s ≤ t) up to time t. Precisely, one can rewrite

v̄t =
∫ T

t

φ(τ, t)π(τ)dB̂t
τ , (2.8)

where B̂t
τ = E(B̃τ/F ū

t ) and

φ(τ, t) = exp
{∫ τ

t

[
a(u)− b2(u)

r(u)
π(u)

]
du

}
· (2.9)

This will be made clear in Remark 2.5 after the proof of Theorem 2.1.

Before turning to the proof of Theorem 2.1, at first we derive a sufficient condition for optimality in UH .
Given u ∈ UH and X = Xu, we introduce the following backward stochastic differential equation in the pair of
unknown (FH

t )-adapted processes p = (pt, t ∈ [0, T ]) and β = (βt, t ∈ [0, T ]):

dpt = −a(t)ptdt− q(t)Xtdt + βtdMH
t , t ∈ [0, T ] ; p

T
= q

T
X

T
. (2.10)

Lemma 2.3. Suppose that u ∈ UH is such that u = −(b/r)p where (p, β) is a pair of (FH
t )-adapted processes

which satisfies equation (2.10). Then u minimizes J over UH .

Proof. Given an arbitrary u∗ ∈ UH , for which we use the notation X∗
t = Xu∗

t , we evaluate the difference
J(u∗) − J(u) between the corresponding cost and the cost for the announced candidate u to optimality over
UH . Of course, we can write

J(u∗)− J(u) = E

{
q

T

[
(X∗

T
)2 −X2

T

]
+

∫ T

0

{
q(t)

[
(X∗

t )2 −X2
t

]
+ r(t)

[
(u∗t )

2 − u2
t

]}
dt

}
·

Using the equality (y∗)2 − y2 = (y∗ − y)2 + 2y(y∗ − y) and exploiting the property u = −(b/r)p, it is readily
seen that

J(u∗)− J(u) = ∆1 + 2∆2 ,

where

∆1 = E

{
q

T
[X∗

T
−X

T
]2 +

∫ T

0

{q(t)[X∗
t −Xt]2 + r(t)[u∗t − ut]2}dt

}
,

∆2 = E

{
q

T
X

T
[X∗

T
−X

T
] +

∫ T

0

{q(t)Xt[X∗
t −Xt]− b(t)pt[u∗t − ut]}dt

}
·

But, rewriting the quantity in the last integral as

(X∗
t −Xt)[q(t)Xt + a(t)pt]− pt[a(t)(X∗

t −Xt) + b(t)(u∗t − ut)] ,

and taking into account equations (0.1) and (2.10), we see that this integral can be written as

−
∫ T

0

(X∗
t −Xt)dpt −

∫ T

0

ptd(X∗
t −Xt) +

∫ T

0

(X∗
t −Xt)βtdMH

t .
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Therefore, taking the expectation, since the stochastic integral part gives zero, we get that

∆2 = E

{
q

T
X

T
[X∗

T
−X

T
]−

∫ T

0

(X∗
t −Xt)dpt −

∫ T

0

ptd(X∗
t −Xt)

}
·

Now, integrating by parts, since pT = q
T
X

T
and X∗

0 −X0 = 0, it comes that ∆2 = 0 and finally J(u∗)− J(u)
= ∆1 ≥ 0. This of course means that u minimizes J over UH .

Now we show that the minimum value of J over UH is achieved uniquely and we identify the minimizer:

Lemma 2.4. There exists a unique u ∈ UH such that u can be represented as u = −(b/r)p where (p, β) is a
pair of (FH

t )-adapted processes which satisfies equation (2.10). Moreover for the corresponding pair (p, β), the
following representations hold:

pt = π(t)Xt +
∫ t

0

[γ(t, s)− π(t)Kc
H(t, s)]dMH

s ; βt = γ̄(t) , (2.11)

where π, γ and γ̄ are defined by equations (0.4, 2.1) and (2.3), respectively.

Proof. At first, we prove the uniqueness. Suppose that u1 and u2 in UH both satisfy the required property, i.e.,
for i = 1, 2, we have ui = −(b/r)pi, where (pi, βi) is a pair satisfying equation (2.10) with X i = Xui

. Let us
use the notations

δX = X1 −X2 ; δp = p1 − p2 ; δβ = β1 − β2 .

From equations (0.1) and (2.10), we have

dδXt = a(t)δXtdt− b2(t)
r(t)

δptdt , t ∈ [0, T ] ; δX0 = 0 ,

dδpt = −a(t)δptdt− q(t)δXtdt + δβtdMH
t , t ∈ [0, T ] , δp

T
= q

T
δX

T
.

(2.12)

Applying the Itô formula to the product δptδXt, we obtain immediately that

q
T
[δX

T
]2 = −

∫ T

0

{
q(t)[δXt]2 +

b2(t)
r(t)

[δpt]2
}

dt +
∫ T

0

δXtδβtdMH
t .

Thus, taking expectation, we get

EqT

{
[δXT ]2 +

∫ T

0

{
q(t)[δXt]2 +

b2(t)
r(t)

[δpt]2
}

dt

}
= 0 .

Consequently δXt ≡ 0, δpt ≡ 0 and hence also δβt ≡ 0. This means in particular that u1 ≡ u2.
Now we turn to prove the existence. We take

ut = − b(t)
r(t)

pt ; pt = π(t)X̃t + Vt , (2.13)

where

dX̃t = a(t)
[
X̃t + B̃t

]
dt− b2(t)

r(t)

[
π(t)X̃t + Vt

]
dt ; X̃0 = x, (2.14)
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with

B̃t =
∫ t

0

c(s)dBH
s ; Vt =

∫ t

0

γ(t, s)dMH
s . (2.15)

Observe that actually, from (2.13–2.15), it appears that the process X = X̃ + B̃ is nothing but the state
process Xu which corresponds to u by equation (0.1). Moreover, due to the representation (1.5), it is readily
seen that we can rewrite p in terms of X in the form given in (2.11).

Now we check that p satisfies the final condition which is required in equation (2.10). Due to the representa-
tion (1.5) for t = T and the final condition γ(T, s) = q

T
Kc

H(T, s) in equation (2.1), from definitions (2.15) we
see that V

T
= q

T
B̃

T
. Consequently, due the final condition π(T ) = q

T
in equation (0.4), from definition (2.13)

for t = T , it is clear that p
T

= q
T
X

T
.

Finally, we show that the process p is a semimartingale and we identify its decomposition. Since γ(., s) is
differentiable, we see that V is a semimartingale and, due to the definition (2.3) of γ̄, its stochastic differential is

dVt =
[∫ t

0

γ̇(t, s)dMH
s

]
dt + γ̄(t)dMH

t .

Taking the expression of γ̇(., s) from the right-hand side of (2.1), this can be rewritten as

dVt =
[∫ t

0

{
−a(t)[γ(t, s) + Kc

H(t, s)π(t)] − q(t)Kc
H(t, s) +

b2(t)
r(t)

π(t)γ(t, s)
}

dMH
s

]
dt + γ̄(t)dMH

t .

Hence, due to the definition (2.15) of V and B̃ and taking into account the representation (1.5) of B̃, we get

dVt =
{
−a(t)[Vt + π(t)B̃t]− q(t)B̃t +

b2(t)
r(t)

π(t)Vt

}
dt + γ̄(t)dMH

t . (2.16)

Now, from the definition (2.13) of p, we have

dpt = π̇(t)X̃tdt + π(t)dX̃t + dVt,

and, inserting (2.14) and (2.16), we can compute this stochastic differential. Using the equation (0.4) for π, it
is easy to check that actually

dpt = −a(t)ptdt− q(t)[X̃t + B̃t]dt + γ̄(t)dMH
t .

This means exactly that dpt is given by the right-hand side of equation (2.10) with Xt = X̃t + B̃t and βt =
γ̄(t). Summarizing, we have checked that the pair (p, β) of (FH

t )-adapted processes defined in (2.11) satisfies
equation (2.10) with the state process X corresponding to u = −(b/r)p.

Now we may turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Here we use the same notations as in the proof of Lemma 2.4. At first we show that
the optimal u in UH which has just been identified is actually the closed-loop control defined in (2.5, 2.6) which
then turns to be also optimal in Uad. We write pt = π(t)Xt + vt where

vt = Vt − π(t)B̃t . (2.17)

Using the Riccati equation (0.4) for π and the equation (2.16) for V to compute the stochastic differential

dvt = dVt − π̇(t)B̃tdt− π(t)c(t)dBH
t ,
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it is readily seen that

vt =
∫ t

0

[
−a(s) +

b2(s)
r(s)

π(s)
]

vsds +
∫ t

0

γ̄(s)dMH
s −

∫ t

0

π(s)c(s)dBH
s .

But, due to the representation (1.7) of a stochastic integral with respect to MH as an integral with respect
to BH , in terms of the function k̄ defined by (2.4), we can rewrite this as

vt =
∫ t

0

[
−a(s) +

b2(s)
r(s)

π(s)
]

vsds +
∫ t

0

[
k̄(t, s)
c(s)

− π(s)
]

c(s)dBH
s .

Consequently, since due to (0.1) we have c(s)dBH
s = dXs − [a(s)Xs + b(s)us]ds, it means that the optimal

pair (u, X) is governed by the system (2.5, 2.6).
Finally we analyze the optimal cost. Let us recall the decomposition X = X̃ + B̃ of the optimal state process

and the representation p = πX̃ + V of the corresponding solution of equation (2.10). Using (2.10) and (2.14)
and applying the formula of integration by parts to the product ptX̃t, we can evaluate

p
T
X̃

T
= p0X̃0 +

∫ T

0

ptdX̃t +
∫ T

0

X̃tdpt

= π(0)x2 +
∫ T

0

B̃t{[a(t)π(t) + q(t)]X̃t + a(t)Vt + q(t)B̃t}dt

+
∫ T

0

γ̄(t)X̃tdMH
t −

∫ T

0

[
q(t)X2

t +
b2(t)
r(t)

p2
t

]
dt.

Of course when one takes the expectation in both sides the equality remains valid and actually the stochastic
integral part in the right-hand side gives zero. Then, observing that

q
T
X2

T
= q

T
X

T
X̃

T
+ q

T
X

T
B̃

T

= p
T
X̃

T
+ q

T
[X̃

T
B̃

T
+ B̃2

T
] ,

and that for the optimal control u one has

b2(t)
r(t)

p2
t = r(t)u2

t ,

from the definition (0.2) of the cost function J , we get

J(u) = π(0)x2 + q
T
[EX̃

T
B̃

T
+ EB̃2

T
] + E

∫ T

0

B̃t{[a(t)π(t) + q(t)]X̃t + a(t)Vt + q(t)B̃t}dt. (2.18)

Recall that B̃t =
∫ t

0
Kc

H(t, s)dMH
s and Vt =

∫ t

0
γ(t, s)dMH

s . Moreover, due to the equation (2.14), we can also
write

X̃t = EX̃t +
∫ t

0

f(t, s)dMH
s ,

where for s ∈ [0, T ], the function f(., s) = (f(t, s) , s ≤ t ≤ T ) is the solution of the following differential
equation in the variable t on [s, T ]:

ḟ(., s) =
(

a− b2

r
π

)
f(., s)− b2

r
γ(., s) + aKc

H(., s); f(s, s) = 0 . (2.19)
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Hence, from (2.18), we obtain that

J(u) = π(0)x2 + qT

∫ T

0

{
f(T, s)Kc

H(T, s) + [Kc
H(T, s)]2

}
dwH

s

+
∫ T

0

[a(t)π(t) + q(t)]
{∫ t

0

Kc
H(t, s)f(t, s)dwH

s

}
dt

+
∫ T

0

{
a(t)

∫ t

0

Kc
H(t, s)γ(t, s)dwH

s + q(t)
∫ t

0

[Kc
H(t, s)]2dwH

s

}
dt.

Changing the order of integration in the double integrals of the right-hand side, we can rewrite

J(u) = π(0)x2 +
∫ T

0

{
q

T
f(T, s)Kc

H(T, s) +
∫ T

s

g1(t, s)dt

}
dwH

s

+
∫ T

0

{
q

T
[Kc

H(T, s)]2 +
∫ T

s

g2(t, s)dt

}
dwH

s ,

(2.20)

where

g1(t, s) = [a(t)π(t) + q(t)]Kc
H(t, s)f(t, s) ; g2(t, s) = a(t)Kc

H(t, s)γ(t, s) + q(t)[Kc
H(t, s)]2 .

But, using equations (2.1) and (2.19), it is easy to check that

q
T
f(T, s)Kc

H(T, s) +
∫ T

s

g1(t, s)dt =
∫ T

s

[
a(t)Kc

H(t, s)γ(t, s)− b2(t)
r(t)

γ2(t, s)
]

dt.

Inserting this into (2.20) and taking into account the expression (2.2) for the function λ̇(., s), we get

J(u) = π(0)x2 +
∫ T

0

{
qT [Kc

H(T, s)]2 −
∫ T

s

λ̇(t, s)dt

}
dwH

s .

Therefore, since the final condition in (2.2) is λ(T, s) = qT [Kc
H(T, s)]2, we see that the following representation

of the optimal cost holds:

J(u) = π(0)x2 +
∫ T

0

λ(s, s)dwH
s .

Finally, due to the notation λ̄(s) = λ(s, s) introduced in (2.3), this means that (2.7) holds.

Remark 2.5. Let us justify the observation which is formulated in Remark 2.2. Actually, we can rewrite the
component vt defined by (2.17) in the previous proof as

vt =
∫ t

0

µ(t, s)dMH
s ,

where
µ(t, s) = γ(t, s)− π(t)Kc

H(t, s) , s ≤ t.

It is readily seen that µ satisfies the following equation:

∂µ

∂t
(t, s) = −

[
a(t)− b2(t)

r(t)
π(t)

]
µ(t, s)− π(t)

∂Kc
H

∂t
(t, s) ; µ(T, s) = 0 .



170 M.L. KLEPTSYNA, A. LE BRETON AND M. VIOT

Consequently, in terms of the function φ defined in (2.9), we have

µ(t, s) =
∫ T

t

φ(τ, t)π(τ)
∂Kc

H

∂τ
(τ, s)dτ,

and

vt =
∫ T

t

φ(τ, t)π(τ)
{∫ t

0

∂Kc
H

∂τ
(τ, s)dMH

s

}
dτ .

But, due to the representation (1.5) of B̃, it is clear that for every τ ∈ [t, T ], the predictor B̂t
τ = E(B̃τ/Xs, s ≤ t)

of B̃τ based on the observation of X on [0, t] is given by

B̂t
τ =

∫ t

0

Kc
H(τ, s)dMH

s ;
dB̂t

τ

dτ
=

∫ t

0

∂Kc
H

∂τ
(τ, s)dMH

s .

So, finally, we can represent vt in the form

vt =
∫ T

t

φ(τ, t)π(τ)dB̂t
τ .

This means exactly that the equality (2.8) claimed in Remark 2.2 is valid.

Concluding comments. Here we have solved the basic fractional type linear-quadratic Gaussian regulator
problem when a complete observation is available. Actually, for a partially observable system where the ob-
servation is governed by a linear channel with an independent fractional Brownian noise, we can show that a
separation principle holds, i.e., the optimal control separates into two stages based on optimal filtering of the
unobservable state and optimal control of the filtered state. This will be reported in a forthcoming paper.
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