
ESAIM: Probability and Statistics February 2003, Vol. 7, 209–218

DOI: 10.1051/ps:2003005

MODERATE DEVIATIONS FOR I.I.D. RANDOM VARIABLES ∗

Peter Eichelsbacher1 and Matthias Löwe2

Abstract. We derive necessary and sufficient conditions for a sum of i.i.d. random variablesPn
i=1 Xi/bn – where bn

n
↓ 0, but bn√

n
↑ ∞ – to satisfy a moderate deviations principle. Moreover

we show that this equivalence is a typical moderate deviations phenomenon. It is not true in a large
deviations regime.
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1. Introduction

Moderate Deviation Principles (MDPs for short) have become an increasingly popular topic in the recent
probability literature. Formally an MDP for some random variable is just a large deviation principle. Here we
say that a sequence of random variables (Yn) with topological state space X obeys a large deviation principle
with speed an and good rate function I(·) : X → R

+
0 if

• I is lower semi-continuous and has compact level sets NL := {x ∈ X : I(x) ≤ L}, for every L ∈ R
+
0 ;

• for every open set G ⊆ X it holds

lim inf
n→∞

1
an

log P(Yn ∈ G) ≥ − inf
x∈G

I(x); (1.1)

• for every closed set A ⊆ X it holds

lim sup
n→∞

1
an

log P(Yn ∈ A) ≤ − inf
x∈A

I(x). (1.2)

Formally there is no distinction between an MDP and a large deviation principle. Usually a large deviation
principle lives on the scale of a law of large number type ergodic phenomenon, while MDPs describe the
probabilities on a scale between a law of large numbers and some sort of central limit theorem. For both, large
deviation principles and MDPs the three points listed under the bullets above serve as a definition. However,
there are important differences in the behavior of the two principles. Typically, the rate function in a large
deviation principle will depend on the distribution of the underlying random variables, while an MDP inherits
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properties of both the central limit behavior as well as of the large deviation principle. For example, one often
sees the exponential decay of moderate deviation probabilities which is typical of the large deviations. On the
other hand the rate function in an MDP quite often is “non-parametric” in the sense that it only depends on
the limiting density in the central limit theorem for these variables but not on individual characteristics of their
distributions. Often even the rate function of an MDP interpolates between the logarithmic probabilities that
can be expected from the central limit theorem and the large deviations rate function – even if the limit is not
normal (see e.g. [7, 11]); situations where this is not the case are particularly interesting [3].

All of this also holds true in the case we are going to study in this note, the case of sums of R-valued, i.i.d.
random variables X1, X2, . . . Here the large deviation principle for the average has been known since the times
of Cramér [4], also see [5]: if the log of the moment generating function Λ(t) of one of the variables is finite in
a neighborhood of zero, 1

n

∑n
i=1 Xi satisfies a large deviations principle with speed n and rate function Λ∗(·),

the Legendre transform of Λ. MDPs for 1
bn

∑n
i=1(Xi − EXi), where bn

n ↓ 0 but bn√
n
↑ ∞, have been studied by

de Acosta [1]. Here – for all such sequences (bn)n – the rate functions are given by I(t) = 1
2Var X1

t2 and the
speed is an = b2

n/n. In a recent paper [2] Arcones states that assumption (2.3) below is necessary and sufficient
for 1

bn

∑n
i=1(Xi − EXi) to satisfy a moderate deviations principle. As a matter of fact it seems that the search

for such an equivalent condition is almost as old as the investigation of moderate deviations for means of i.i.d.
random variables. Indeed, already Ledoux [9] discusses the connection of our assumption (2.3) below with the
moderate deviations upper bound for a restricted range of normalizations (bn). Unfortunately, Arcones proof
in [2] of this interesting equivalence is spread over several theorems and articles and technically very involved,
since it relies on MDPs for Banach space valued stochastic processes. Moreover it is most unfortunately spoiled
by several flaws and therefore hardly penetrable.

In this note we aim at giving a self-contained and short proof of Arcones’s result. We briefly describe what
assumption (2.3) means for a distribution by describing the borderline cases where it is not fulfilled or only
fulfilled for some choices of the normalizing sequence (bn). Moreover we show that Theorem 2.2 below is a
typical moderate deviation phenomenon. On the large deviation scale Theorem 2.2 does not hold true.

The techniques used are among others a truncation argument, the Gärtner–Ellis theorem, and Lévy’s in-
equality. These and similar techniques have been employed extensively by Ledoux [9] and Djellout [6]. We will
comment on Ledoux’s result and techniques a bit more extensively in Remark 2.8.

2. The main result

In this section we state and prove the main result of this note. Let X1, X2, . . . be i.i.d. real-valued random
variables and (bn) be an increasing sequence of numbers with

bn√
n
↑ ∞ and

bn

n
↓ 0. (2.1)

The following theorem gives necessary and sufficient conditions for the sum of the Xk normalized by bn to
satisfy an MDP.

Theorem 2.2. The following are equivalent:
1. the random variables (Xi) satisfy EX1 = 0 and

lim sup
n→∞

n

b2
n

log [nP (|X1| > bn)] = −∞; (2.3)

2. the sequence 1
bn

∑n
i=1 Xi satisfies a moderate deviation principle with good rate function I such that I(x)

> 0 for all x 6= 0 and

lim
x→∞ I(x) = lim

x→−∞ I(x) = ∞. (2.4)
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Lemma 2.5. If the random variable X1 satisfies condition (2.3), then EX2
1 < ∞.

Remark 2.6. With Lemma 2.5 it follows from the proof of Theorem 2.2 to be given below that the rate function
in Theorem 2.2 is

I(t) =
1

2EX2
1

t2. (2.7)

Proof of Lemma 2.5. To see, that EX2
1 < ∞ we need to show that

∫ ∞

0

xP (|X1| > x)dx < ∞.

Without loss of generality we choose b0 = 0 and observe that since bn/n ↓ 0 we have that bn+1/bn ≤ (n + 1)/n
and thus bn+1 ≤ 2 bn. We obtain

∫ ∞

0

xP (|X1| > x)dx =
∞∑

n=0

∫ bn+1

bn

xP (|X1| > x)dx ≤
∞∑

n=0

∫ bn+1

bn

bn+1P (|X1| > bn)dx

≤ 2
∞∑

n=0

∫ bn+1

bn

bn

n
nP (|X1| > bn)dx.

From (2.3) we get that there is N0 ∈ N such that for all n ≥ N0 we have nP (|X1| > bn) ≤ e−b2n/n. From here
we get

∫ ∞

0

xP (|X1| > x)dx ≤ 2
N0−1∑
n=0

∫ bn+1

bn

bn

n
nP (|X1| > bn)dx + 2

∞∑
n=N0

∫ bn+1

bn

bn

n
e−

b2n
n dx

= 2
N0−1∑
n=0

∫ bn+1

bn

bn

n
nP (|X1| > bn)dx + 2

∞∑
n=N0

1√
n

(bn+1 − bn)
bn√
n

e−
b2n
n .

Since

2
∞∑

n=N0

1√
n

(bn+1 − bn)
bn√
n

e−
b2n
n ≤ 2

∞∑
n=N0

1√
n

(bn − bn−1)
bn√
n

e−
b2n
n

≤ 2
∫ ∞

0

xe−x2
dx < ∞,

the proof is finished. �

Remark 2.8. Ledoux [9] discusses the case of random variables with values in a real separable Banach space B.
We only comment on the main additional difficulties in this case and skip details. In the case of Banach space
valued random variables one important difference is that (2.3) no more implies the square integrability which
now has to be assumed.

Hence we conjecture that the statement of our result in the case of Banach space valued random variables
should read as follows:

Suppose that Ef(X1) = 0 and Ef2(X1) < ∞ for every f in the dual B′ of B.
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Suppose moreover that the family {f2(X1); f ∈ B′, ‖f‖ ≤ 1} is uniformly integrable (realized for example
when E‖X1‖2 < ∞), then the following are equivalent:

• the sequence (1/bn)
∑n

i=1 Xi converges to 0 in probability and condition (2.3) is fulfilled;
• the sequence (1/bn)

∑n
i=1 Xi satisfies a moderate deviation principle with a good rate function I.

The form of the rate function in this case is described in detail in [9]. Note that it looks much more involved
than in our case. Also note that Ledoux’s proof of the MDP upper bound in [9] – other than ours – is based on
isoperimetric inequalities. For details concerning Banach space valued random variables see [10].

Proof of Theorem 2.2 1 ⇒ 2. From Lemma 2.5 we get EX2
1 < ∞.

To prove the moderate deviation estimates we employ truncation and the Gärtner–Ellis theorem. For τ > 0
and j = 1, 2, . . . define

Xτ
j := Xτ

j (n) := XjI{|Xj |≤τ n
bn
}.

By the Gärtner–Ellis theorem (Th. 2.3.6. in [5]) the sequence 1
bn

∑n
j=1 Xτ

j satisfies an MDP. Indeed for t ∈ R:

n

b2
n

log E exp


t

bn

n

n∑
j=1

Xτ
j


 =

n2

b2
n

log E exp
(

t
bn

n
Xτ

1

)
=

n2

b2
n

log
(

1 +
t2

2
b2
n

n2
E(Xτ

1 )2 +O
(

t3
b3
n

n3
E(Xτ

1 )3
))

,

where we used that EX1 = 0 and that bn

n Xτ
1 ≤ τ . For each positive ε > 0 one has

|t3|bn

n
|E(Xτ

1 )3| = |t3|bn

n

∣∣∣E [(Xτ
1 )3I{|X1|≤ε n

bn
}
]∣∣∣+ |t3|bn

n

∣∣∣E [(Xτ
1 )3I{|X1|>ε n

bn
}
]∣∣∣

≤ |t3|εE(Xτ
1 )2 + |t3|τ3 n2

b2
n

P

(
|X1| > ε

n

bn

)
·

Now since EX2
1 = 2

∫
xP (|X1| > x)dx < ∞ it follows that x2P (|X1| > x) → 0 as x →∞, which readily implies

that

|t3|τ3 n2

b2
n

P

(
|X1| > ε

n

bn

)
=
|t3|τ3

ε2

(
ε2 n2

b2
n

)
P

(
|X1| > ε

n

bn

)
→ 0

as n →∞ for all ε > 0, t, and τ > 0. Hence

lim
n→∞ |t

3|bn

n
E(Xτ

1 )3 ≤ |t3|εE(Xτ
1 )2.

Since this is true for all ε > 0 we obtain limn→∞ |t3| bn

n E(Xτ
1 )3 = 0 and therefore we get for each τ > 0

lim
n→∞

n

b2
n

log E exp


t

bn

n

n∑
j=1

Xτ
j


 = lim

n→∞
n2

b2
n

log
(

1 +
t2

2
b2
n

n2
E(Xτ

1 )2 +O
(
|t3| b

3
n

n3
E(Xτ

1 )3
))

=
t2

2
lim

n→∞E(Xτ
1 )2 + lim

n→∞O
(
|t3|bn

n
E(Xτ

1 )3
)

=
t2

2
E(X1)2.

So by the Gärtner–Ellis theorem each of the sequences
(

1
bn

∑n
i=1 Xτ

i

)
n

satisfies an MDP with speed b2n
n and

rate function

I(t) = sup
x

[
xt− x2

2
E(X1)2

]
=

1
2EX2

1

t2.
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Remark that the rate function does not depend on τ .
Thus it remains to show that the sequences

(
1
bn

∑n
i=1 Xτ

i

)
n

and
(

1
bn

∑n
i=1 Xi

)
n

are exponentially equivalent

(see [5], Sect. 4.2.2). Now for each τ > 0, δ > 0

lim
n→∞

n

b2
n

log P

(
1
bn

∣∣∣∣∣
n∑

i=1

Xi −Xτ
i

∣∣∣∣∣ > 2δ

)

≤ lim
n→∞

n

b2
n

log max

[
P

(
1
bn

∣∣∣∣∣
n∑

i=1

Xi − Yi

∣∣∣∣∣ > δ

)
, P

(
1
bn

∣∣∣∣∣
n∑

i=1

Yi −Xτ
i

∣∣∣∣∣ > δ

)]
, (2.9)

where Yi := Yi(n) := XiI{|Xi| ≤ bn}. By Assumption (2.3)

lim
n→∞

n

b2
n

log P

(
1
bn

∣∣∣∣∣
n∑

i=1

Xi − Yi

∣∣∣∣∣ > δ

)
≤ lim

n→∞
n

b2
n

log P (∃i : |Xi| > bn)

≤ lim
n→∞

n

b2
n

log [nP (|X1| > bn)] = −∞. (2.10)

On the other hand by the exponential Chebyshev inequality we obtain for each t > 0, δ > 0, τ > 0, M > 0 and
Z1 := Y1 −Xτ

1 :

n

b2
n

log P

(
1
bn

∣∣∣∣∣
n∑

i=1

Yi −Xτ
i

∣∣∣∣∣ > δ

)
≤ −tδ +

n

b2
n

log E

(
exp

(
t
bn

n

n∑
i=1

|Zi|
))

= −tδ +
n2

b2
n

log E

(
exp

(
t
bn

n
|Z1|

))

≤ −tδ +
n2

b2
n

(
E

(
exp

(
t
bn

n
|Z1|

))
− 1
)

(2.11)

≤ −tδ +
n2

b2
n

(eM − 1)P
(
|X1| ≥ τ

n

bn

)
+

n2

b2
n

∫ eb2n

eM

P
(
et bn

n |X1| ≥ s
)
ds.

In the last step we used that |Z1| ≤ |X1|. By Chebyshev’s inequality

n2

b2
n

(eM − 1)P
(
|X1| ≥ τ

n

bn

)
≤ (eM − 1)E(X2

1 )/τ2 (2.12)

which converges to zero as τ →∞.
On the other hand by a change of variable

n2

b2
n

∫ eb2n

eM

P

(
et bn

n |X1| ≥ s
)

ds =
n2

b2
n

∫ b2n

M

P

(
|X1| ≥ sn

tbn

)
esds

and since n
bn
→∞ there is a subsequence mn = m(n, s, t) such that for s ≥ 1

bmn ≤
sn

tbn
≤ bmn+1

and mn = m(n, s, t) →∞ as n →∞ for every fixed choice of s, t with s ≥ 1. Hence we can compute

n2

b2
n

P

(
|X1| ≥ sn

tbn

)
es ≤ t2

s2

b2
mn+1

mn
mnP (|X1| ≥ bmn) es ≤ t2

b2
mn+1

mn
e−K0

b2mn
mn

+s (2.13)
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for all constants K0 > 0 and all mn large enough (depending on K0). The last inequality follows directly from
the assumption that s ≥ 1 and assumption (2.3). Observe that since bmn/mn → 0 we have that bmn+1/bmn ≤
mn+1/mn on the one hand. On the other hand the definition of mn implies that mn = O(n) (since b2

n/n →∞)
hence that there is a constant K1 > 0 such that mn+1

mn
≤ K1 and bnmn

bmn n ≤ K1. Moreover

s ≤ tbmn+1bn

n
≤ K1

tbmnbn

n
≤ K2

1

tb2
mn

mn
(2.14)

hence

b2
mn

mn
≥ s

tK2
1

(2.15)

and

s ≤ b2
mn

mn
tK2

1 . (2.16)

Now set m := mn, then (2.13–2.15) and (2.16) together yield

n2

b2
n

P

(
|X1| ≥ sn

tbn

)
es ≤ K2

1 t2
b2
m

m
e

1
2

�
−K0

b2m
m +K2

1
tb2m
m

�
e

s
2

�
1− K0

tK2
1

�

for all m large enough and all K0 > 0. Thus

lim sup
n→∞

n2

b2
n

∫ b2n

M

P

(
|X1| ≥ sn

tbn

)
esds ≤ lim sup

n→∞
K2

1t2
b2
m

m
e

1
2

�
−K0

b2m
m +K2

1
tb2m
m

� ∫ b2n

M

e
s
2

�
1− K0

tK2
1

�
ds. (2.17)

Since K0 > 0 was arbitrary, the first term on the right and side of (2.17) converges to zero as n → ∞ – and
therefore also as m →∞ – and the integral is bounded. Thus

lim sup
n→∞

n2

b2
n

∫ b2n

M

P

(
|X1| ≥ sn

tbn

)
esds → 0 (2.18)

as n →∞.
Putting this together we obtain from (2.9) with the help of (2.10) on the one hand and (2.11) on the other
(using (2.12) and (2.18)) that

lim
τ→∞ lim

n→∞
n

b2
n

log P

(
1
bn

∣∣∣∣∣
n∑

i=1

Xi −Xτ
i

∣∣∣∣∣ > δ

)

≤ lim
τ→∞ lim

n→∞
n

b2
n

log max

[
P

(
1
bn

∣∣∣∣∣
n∑

i=1

Xi − Yi

∣∣∣∣∣ > δ

)
, P

(
1
bn

∣∣∣∣∣
n∑

i=1

Yi −Xτ
i

∣∣∣∣∣ > δ

)]

= −tδ + lim
τ→∞ lim

n→∞
n2

b2
n

(eM − 1)P
(
|X1| ≥ τ

n

bn

)
+ lim

τ→∞ lim
n→∞

n2

b2
n

∫ eb2n

eM

P(et bn
n |X1| ≥ s)ds

= −tδ.

Since this is true for all t > 0 and δ > 0 we arrive at

lim
τ→∞ lim

n→∞
n

b2
n

log P

(
1
bn

∣∣∣∣∣
n∑

i=1

Xi −Xτ
i

∣∣∣∣∣ > δ

)
= −∞. (2.19)
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So by the considerations at the beginning of the proof, the exponential equivalence shown in (2.19) proves the
assertion.

2 ⇒ 1: The main difficulty is to pass from the moderate deviations for sums of random variables to assertions
over the large deviations for a single random variable. Here Lemma 2.6 in [10] is of use. It allows to relate
the large deviations for sums of independent random variables to assertions over the large deviations of their
maximum. It states that for a sequence (Zi) of independent, positive random variables, every N ∈ N, and every
t > 0 such that P(maxi≤N Zi > t) ≤ 1

2 the following inequality holds true:

N∑
i=1

P(Zi > t) ≤ 2P

(
max
i≤N

Zi > t

)
. (2.20)

To pass from the maximum to a single random variable Lévy’s inequality (Prop. 2.3 in [10]) is useful. Even
though Lévy’s inequality has been shown to hold for non-symmetric random variables in [8] as well, we apply
the version of symmetric random variables to obtain (2.21) below. This is: if (Xi) is a sequence of real-valued,
symmetric random variables and for k ∈ N let Sk :=

∑k
i=1 Xi, then for every integer N and every t > 0

P

(
max
i≤N

|Xi| > t

)
≤ 2 P

(|SN | > t
)
. (2.21)

Hence, following the ideas already indicated in [10] and [2], we symmetrize the Xi: introduce an i.i.d. sequence
(X ′

i)i∈N which is also independent of (Xi)i∈N and such that L(X1) = L(X ′
1). Then the sequences 1

b n

∑n
i=1 Xi and

1
b n

∑n
i=1−X ′

i obey a moderate deviations principle with speed b2
n/n and rate function

I(t) = I ′(t). Hence also 1
b n

∑n
i=1(Xi − X ′

i) obeys a moderate deviations principle with speed b2
n/n and rate

function J(z) = inf(x,y):x−y=z I(x) + I ′(y). (Note that, if we knew Cond. 2.3 already, the rate function I could
only be I(t) = 1

2EX2
1
t2 and thus we would obtain J(z) = 1

4EX2
1
z2. However, Cond. 2.3 is just what we want to

show here.) Note that J(·) inherits property (2.4) from the rate function I. Indeed it holds:

lim
x→∞J(x) = lim

x→−∞ J(x) = ∞. (2.22)

Now for all M > 0:

P(|X1| ≥ 2Mbn)P(|X ′
1| < Mbn) ≤ P(|X1 −X ′

1| ≥ Mbn) (2.23)

on the one hand. On the other hand by the large deviations upper bound for 1
b n

∑n
i=1(Xi −X ′

i)

P

(∣∣∣∣∣1b n

n∑
i=1

(Xi −X ′
i)

∣∣∣∣∣ ≥ M

)
≤ 2 exp

(
−b2

n

n

1
2
J(M)

)
. (2.24)

Since the (Xi −X ′
i) are symmetric, equation (2.21) together with (2.24) yields

P

(
max

i=1,... ,n

∣∣∣∣1b n
(Xi −X ′

i)
∣∣∣∣ ≥ M

)
≤ 4 exp

(
−b2

n

n

1
2
J(M)

)
. (2.25)

By Lemma 2.6 in [10], i.e. by (2.20), if n is so large that 4 exp
(
− b2n

n
1
2J(M)

)
≤ 1/2 we obtain from (2.25)

nP

(∣∣∣∣1b n
(Xi −X ′

i)
∣∣∣∣ ≥ M

)
≤ 2P

(
max

i=1,... ,n

∣∣∣∣1b n
(Xi −X ′

i)
∣∣∣∣ ≥ M

)

≤ 8 exp
(
−b2

n

n

1
8
J(M)

)
. (2.26)
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Equations (2.26) and (2.23) together yield for each M > 0

lim sup
n→∞

n

b2
n

log (n P(|X1| ≥ 2Mbn)) = lim sup
n→∞

n

b2
n

log (n P(|X1| ≥ 2Mbn)P(|X ′
1| < Mbn))

≤ lim sup
n→∞

n

b2
n

log (n P(|X1 −X ′
1| ≥ Mbn)) ≤ −1

2
J(M). (2.27)

This at first glance looks rather unfortunate since simply substituting M = 1/2 does not yield the desired
result. The point will be to exploit the quadratic character of the rate function as follows: for M > 1 we choose
m = m(n, M) such that

2Mbm ≤ bn < 2Mbm+1. (2.28)

Observe that since bn � n we know that lim infn→∞ n
m ≥ 2M and since bn � √

n we also know that
lim supn→∞

n
m ≤ 4M2. This implies for all M > 1

lim sup
n→∞

n

b2
n

log (n P(|X1| ≥ bn)) ≤ lim sup
n→∞

n

b2
n

log (n P(|X1| ≥ 2Mbm)) (2.29)

≤ lim sup
n→∞

m

b2
m

n b2
m

m b2
n

log
(
4M2m P(|X1| ≥ 2Mbm)

)
≤ lim sup

m→∞
m

b2
m

log
(
4M2m P(|X1| ≥ 2Mbm)

)
≤ −1

2
J(M), (2.30)

using (2.27) for the last inequality. Since this is true for all M > 1 we obtain from (2.22) the desired (2.3):

lim sup
n→∞

n

b2
n

log (n P(|X1| ≥ bn)) = −∞.

Moreover, if EX1 6= 0 by the weak law of large numbers 1
bn

∑n
i=1(Xi − EXi) converges to 0 weakly. Hence for

any neighborhood G of EX1 with G 63 0

P

(
1
bn

n∑
i=1

Xi ∈ G

)
≥ 1

2
(2.31)

for n large enough in contradiction to the moderate deviations upper bound. �
Theorem 2.2 gives a precise characterization of those distributions permitting a MDP for 1

bn

∑n
i=1 Xi in

terms of their probabilities and the sequence (bn). However, one might wonder which distributions satisfy
condition (2.3). This is discussed in the following remark.

Remark 2.32. If the random variable X1 has a local exponential moment, i.e. if

Eet|X1| < ∞ for some t > 0 (2.33)

then (2.3) is satisfied for every increasing sequence of numbers (bn) with

bn√
n
↑ ∞ and

bn

n
↓ 0. (2.34)
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Indeed applying the exponential Chebyshev inequality yields with t chosen as in (2.33)

lim
n→∞

n

b2
n

log [nP (|X1| > bn)] ≤ lim
n→∞

(
n log n

b2
n

− t
n

bn
+ log

n

b2
n

Eet|X1|
)

= lim
n→∞

n

bn

(
log n

n
− t

)
= lim

n→∞−t
n

bn
= −∞.

Here we used that (2.33) implies that limn→∞ log n
b2n

Eet|X1| = 0 and that moreover 0 ≤ limn→∞ log n
bn

≤ limn→∞
√

n
bn

= 0.

As a matter of fact in a certain sense the borderline case seems to be a class of distributions occurring in
extreme value statistics, the so-called Weibull distributions. If X1 is Weibull distributed, then X1 > 0 with
probability one and

P(|X1| > x) = P(X1 > x) = e−cxα

for some c > 0 and α > 0. Without loss of generality we choose c = 1. If the so-called shape parameter α ≥ 1,
X1 has a local exponential moment and we are back in the case discussed above.

If α < 1, then

lim
n→∞

n

b2
n

log [nP (|X1| > bn)] = lim
n→∞

n

bn

(
log n

bn
− 1

b1−α
n

)

from which one can determine the (α-dependent) scale from which on (2.3) breaks down. Note that – not
surprisingly – this breakdown invades from the large deviations scale into the direction of the CLT.

Let us next state that the result of Theorem 2.2 is a typical moderate deviations result. The generalization
to the regime of large deviations does not hold true. This is made precise in the following remark:

Remark 2.35. If bn = n, i.e. in the regime of large deviations Theorem 2.2 does not hold true. Indeed, in this
case there are i.i.d. random variables such that their average obeys a large deviations principle but (2.3) is not
fulfilled.

For example, take a sequence Y1, Y2, . . . of i.i.d. standard Gaussians in R, i.e. Y1 ∼ N (0, 1). Put Xi = Y 2
i

for i = 1, 2 . . . Then – since Λ(t) = log EetX1 is finite for t < 1
2 – Theorem 2.2.3 in [5] applies and we see that

the sequence ( 1
n

∑n
i=1 Xi)n satisfies a large deviations principle with speed n and good rate function

Λ∗(t) = sup
λ∈R

[λt− Λ(t)] . (2.36)

On the other hand the sequence (Xi) does not satisfy assumption (2.3). Indeed,

lim sup
n→∞

1
n

log [nP (|X1| > n)] = lim sup
n→∞

1
n

log [P (|X1| > n)]

= lim sup
n→∞

1
n

log
[
2P
(|Y1| >

√
n
)]

(2.37)

= lim sup
n→∞

1
n

log
[

1√
2π

∫ ∞

√
n

e−x2/2dx

]

= lim sup
n→∞

1
n

log e−n/2

= −1/2

where we have applied standard estimates for Gaussian random variables.
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