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Abstract. We present a spectral theory for a class of operators satisfying a weak “Doeblin–Fortet”
condition and apply it to a class of transition operators. This gives the convergence of the seriesP

k≥0 krP kf , r ∈ N, under some regularity assumptions and implies the central limit theorem with

a rate in n−
1
2 for the corresponding Markov chain. An application to a non uniformly hyperbolic

transformation on the interval is also given.
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Introduction

Given a metric compact space E, we consider operators P of the following form:

Pf(x) =
∑
s∈S

us(x) f(sx), (∗)

where {us, s ∈ S} is a family of non negative functions satisfying a condition of regularity and {x→ sx, s ∈ S}
a family of contracting applications of E into itself.

These operators arise in the theory of Markov chains as transition operators and in ergodic theory as transfer
operators associated to Gibbs measures. They are related to dynamical systems of hyperbolic type through the
coding given by Markovian partitions [2, 24] (see [1] for a general reference for transfer operators and decay of
correlations).

In the Markovian case, when the functions us are Hölderian, the spectral theory of quasi-compact operators
is the main tool in the study of the asymptotic behavior of the corresponding Markov chains (cf. [11]). For less
regular functions {us : s ∈ S}, cones methods [15,16] can be applied (see also [19,26]). We follow here a method
introduced in [21] and [6], in which the weights us are not supposed to be strictly positive.

Under weaker regularity assumptions on the functions us, we have established in [6] results on the convergence
of the potential series, with applications to the central limit theorem, the rate of mixing and a Borel–Cantelli
type property for the corresponding Gibbs measures.

In the present paper, we give several improvements of these results. In Section 1 a general spectral theory
for a class of operators satisfying a weak “Doeblin–Fortet” condition is presented. In Section 2 we establish the
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inequalities for a class of transfer operators P of the form (*). In Sections 3 and 4 we apply these results to get
the convergence of the series

∑
k≥0 k

rP kf , r ∈ N, under some regularity assumptions. Using a result of Rio, this
gives in Section 5 the optimal rate in the CLT for the Markov chains associated to these operators, under weak
regularity assumptions. An other application, the Borel–Cantelli property for a class of dynamical systems, is
also considered in Section 6. In the last section we consider an example of a non uniformly hyperbolic system
close to models which have been studied by several authors [12,17,20] and show how our method can be applied.

1. Spectral theory under a weak Doeblin–Fortet condition

In this section, we consider an operator P acting on a normed C-linear space (B, ‖ ‖). We assume that P
is power bounded, i.e. such that:

sup
n≥0,‖f‖≤1

‖Pnf‖ = M <∞.

We denote by K the set of complex numbers of modulus 1 and by ∗ the convolution on the space of sequences
defined on Z with support in Z

+.

1.1. Hypotheses and notations

We suppose that there exists a sequence of semi-norms (| |k)k≥0 on B such that:

H1) the ball {f ∈ B : |f |0 + ‖f‖ ≤ 1} is relatively compact in (B, ‖ ‖);
H2) for every f ∈ B, lim

k→+∞
|f |k = 0;

H3) there exist a real C > 0 and a positive convergent series
∑

k≥0 ak such that

∀f ∈ B,∀n ≥ 1, |Pnf |0 ≤ C|f |n +
n−1∑
j=0

an−1−j ‖P jf‖.

We set ρ =
∑

n≥0 an and, for f ∈ B, N(f) = ‖f‖ +
∑

n≥0 |f |n. The semi-norm | |0 will be simply denoted
by | |.

Remark that H3 is satisfied (with C = 1) if there exists a positive convergent series
∑

k≥0 ak such that

∀f ∈ B,∀k ≥ 0, |Pf |k ≤ |f |k+1 + ak‖f‖,

since this condition implies the inequalities:

|Pnf |k ≤ |f |k+n +
n−1∑
j=0

an−1−j+k ‖P jf‖, ∀n ≥ 1, k ≥ 0.

Remark also that we can suppose that the sequence of semi-norms (| |)n≥0 is decreasing, replacing if necessary
|f |n with sup{|f |p, p ≥ n} for n ≥ 0.

In the following, we denote by W1 the subspace of B generated by the eigenvectors of P corresponding to
eigenvalues of modulus 1 and by W2 the subspace W2 = {f ∈ B : lim

n→+∞ ‖Pnf‖ = 0}.

Theorem 1.1. Under the hypotheses (1.1) we have:
1) the subspace W1 is finite dimensional and B = W1 ⊕W2. If λ is a complex number of modulus 1 and

f ∈ B, the sequence

(
1
n

n−1∑
k=0

λ−kP kf

)
n≥1

converges in norm ‖ ‖ either to zero or to a λ-eigenvector of P ;
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2) for every ε > 0, there exists an integer q = q(ε) ≥ 0 such that, for every f in W2 and every integer n ≥ 0,

|Pnf |+ ε‖Pnf‖ ≤
∑
p≥0

(γ∗pq ∗ βq,f )(n); (1)

where γq and βq,f are the sequences defined by:

γq(n) =
1

2(ρ+ ε M)


an−q−1, if n ≥ q + 2
a0 + ε M, if n = q + 1
0, if n ≤ q

and βq,f (n) =


C |f |n +M

∑n
j=n−q+1 aj−1 ‖f‖, if n ≥ q

C|f |n +M
∑n

j=1 aj−1‖f‖, if 1 ≤ n ≤ q − 1
|f |, if n = 0
0, if n ≤ 0.

If f is in W2, we have limn |Pnf | = 0;
3) for every integer r ≥ 0, there are positive constants Ar and Br,q such that, for every f ∈W2,∑

n≥0

nr (|Pnf |+ ε‖Pnf‖) ≤ Ar

∑
n≥0

nr |f |n +Br,q N(f)
∑
n≥0

nr an.

When there exists a real A > 0 such that ‖f‖ ≤ A |f |, ∀f ∈ W2, we can take ε = 0 in the previous
assertions.

1.2. Remark

Power bounded operators satisfying H1, H2, H3 are not in general quasi-compact and do not satisfy the
“spectral gap property”, but they are close to the following class of quasi-compact operators P which has been
considered by Ionescu–Tulcea and Marinescu (cf. for example [11]).

Let P be a power bounded operator acting on a normed linear space (B, ‖ ‖) and let | | be a norm on B such
that:

i) the unit ball {f ∈ B : |f | ≤ 1} is relatively compact in (B, ‖ ‖);
ii) there exist θ ∈]0, 1[ and c > 0 such that,

|Pf | ≤ θ |f |+ c ‖f‖, ∀f ∈ B). (2)

Let us show how to get for this class of operators the spectral gap from Theorem 1.1. Considering on B the
decreasing sequence of norms defined by |f |n = θn|f |, n ≥ 0, we have, for every f ∈ B and every integer n ≥ 0,

|Pf |n ≤ |f |n+1 + c θn ‖f‖.

In that case, the sequences γq(0) and βq(0),f are bounded respectively by the sequences:

γ(n) =

{ 1− θ

2
θn−q−1, if n ≥ q + 1

0, if n ≤ q
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and βf (n) =
{
Bf θ

n, if n ≥ 0
0, if n < 0,

for some strictly positive real Bf .
For every integers p ≥ 0 and every t > 0 such that θt < 1, we have:

∑
p≥0

∑
n≥0

(γ∗p ∗ β)(n) tn =
∑
p≥0

∑
n≥0

γ(n) tn

p ∑
n≥0

β(n) tn


=

∑
p≥0

Bf

(
1− θ

2

)p

tp(q+1)

(
1

1− θt

)p+1

=
Bf

1− θt− 1−θ
2 tq+1

·

Consider the polynomial R(t) = 1 − θt − (1−θ
2 )tq+1. For q = 0 the root of R is t0 = 2

1+θ . For q ≥ 1 the
polynomial R admits a unique positive real root t0, which is simple and strictly between 1 and 1 + 1

q+1 and the
other roots have a modulus > t0. Therefore there exists a real Cf > 0 such that∑

p≥0

(γ∗p ∗ β)(n) ≤ Cf t
−n
0 , ∀n ∈ N.

We can apply Theorem 1.1: if f is in the corresponding subspace W2, we have that |Pnf | is bounded by Cf t
−n
0 .

Example. Explicit examples of applications are given in Sections 6 and 7. We give here a simple example to
illustrate Theorem 1.1 and the Remark. We consider the transformation defined on T by x → 2x mod 1. The
dual operator (for the Lebesgue measure) is P defined by Pf(x) = 1

2 (f(x
2 ) + f(x+1

2 )), f ∈ L2(T).
Let Φ : R+ → R+ be a strictly increasing continuous function such that Φ(0) = 0. For f ∈ C(T), we set:

mΦ(f) = sup
x 6=y

|f(x)− f(y)|
Φ(d(x, y))

,

‖f‖ = sup
x∈T

|f(x)|, |f |Φ = ‖f‖+mΦ(f).

Let BΦ = {f ∈ C(T) : |f |Φ < +∞}. For Φ(x) = xα, 0 < α ≤ 1, the operator P acting on the triple (BΦ, ‖ ‖, | |Φ)
satisfies (2) with θ = 2−α. On the other hand, if we take Φ(x) = 1

1+| ln x|α , α > 0, then (2) is not satisfied, but
we can apply Theorem 1.1.

1.3. Proof of Theorem 1.1

Proof. The proof is given in several steps.

Step 1a. Let h be a non zero vector in W1. There exist an integer p ≥ 1 and, for 1 ≤ j ≤ p, complex numbers
zj and eigenvectors fj for P corresponding to eigenvalues λj in K such that h =

∑p
j=1 zj fj.

From H3, it results |∑p
j=1 zj λ

n
j fj| ≤ C|h|n + ρM‖h‖, ∀n ≥ 1.

Taking a strictly increasing sequence of integers (ϕ(n))n≥0 for which the sequences
(
λ

ϕ(n)
j

)
n≥0

, 1 ≤ j ≤ p,
converge simultaneously to 1, we get, taking into account the condition H2, |h| ≤ ρM‖h‖.
H1 implies that the set { h

‖h‖ : h ∈ W1, h 6= 0} is relatively compact in (B, ‖ ‖) and therefore the subspace
W1 is finite dimensional.
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Step 1b. Let us show that, for all λ in K and all f in B, the sequence

(
Sn,λf =

1
n

n−1∑
k=0

λ−kP kf

)
n≥1

converges

in (B, ‖ ‖) either to zero or to a λ-eigenvector Πλ(f) of P .
Let f ∈ B. From H3, we deduce |Pnf | ≤ C|f |n + ρM‖f‖, ∀n ≥ 1, and therefore |Sn,λf | ≤ C|f |n + ρM‖f‖.

From H1, it follows that the family {Sn,λf : n ≥ 1} is relatively compact in (B, ‖ ‖). It is clear that any non
null cluster value of the sequence

(
Sn,λf

)
n≥1

is a λ-eigenvector for P .
On an other hand, for every integer p ≥ 1 and every λ-eigenvector h of P , writing n = `p + r (Euclidean

division), we get:

Sn,λf − h =
1
n

p `−1∑
j=0

λ−j P j(Sp,λf − h) + rλ−` P `(Sr,λ(f − h))


and therefore

lim sup
n→+∞

‖Sn,λf − h‖ ≤M‖Sp,λf − h‖.

This inequality shows that the sequence
(
Sn,λf

)
n≥1

can have only one cluster value; hence the convergence.
Consider f ∈ B. Since W1 is finite dimensional, there are only finitely many complex numbers λ in K for

which Πλf is non zero. Let {λj : 1 ≤ j ≤ p} be the set of these complex numbers. The vector g = f−∑p
j=1 Πλjf

satisfies then lim
n→+∞Sn,λ g = 0, for all λ in K.

Step 1c. We show now that if g is a vector in B such that lim
n→+∞Sn,λ g = 0, for all λ in K, then g belongs to

W2. This will complete the proof of the first assertion of Theorem 1.1.
Let g be a vector in B satisfying the previous property. Let h0 be a cluster value of the sequence (Png)n≥0.

There exists a strictly increasing sequence of integers (ϕ(n))n≥0 such that
(
Pϕ(n)g

)
n≥0

converges in (B, ‖ ‖) to
h0. Using the diagonal process and taking a subsequence still denoted by (ϕ(n))n≥0, we may assume that, for
all integers k ≥ 0, the sequence

(
Pϕ(n)−kf

)
n≥0

converges in (B, ‖ ‖) to a vector denoted by hk.
The sequence (hk)k≥0 satisfies Phk+1 = hk, ∀k ≥ 0. This relation can be extended to Z by setting, for every

k ≥ 1, h−k = P kh0. It is clear that the family {hk : k ∈ Z} is relatively compact in (B, ‖ ‖). For all λ in K and

all integers p ∈ Z, we have in (B, ‖ ‖) lim
n→+∞

1
n

n−1∑
k=0

λk hp−k = 0.

One shows easily that, for any linear continuous form ψ on (B, ‖ ‖), the sequence u =
(
ψ(h−k)

)
k∈Z

in `∞(Z)
is almost periodic (i.e. the set of sequences {up =

(
ψ(hp−k)

)
k∈Z

: p ∈ N} is relatively compact in `∞(Z)).

Moreover, we have lim
n→+∞

1
n

n−1∑
k=0

λk uk = 0, ∀λ ∈ K. This implies that uk = 0, ∀k ∈ Z.

We deduce from it that zero is the only cluster value of the sequence (Png)n≥0, which therefore converges to
zero.

Step 2. Let ε > 0. H1 implies that the set B2 = {g ∈ W2 : |g|+ ε‖g‖ = 1} is relatively compact in (B, ‖ ‖).
As we have limn ‖Png‖ = 0, ∀g ∈ W2, and P is power bounded, the convergence is uniform on B2. Therefore
there exists an integer q = q(ε) ≥ 0 such that, for every f ∈W2,

‖P qf‖ ≤ |f |+ ε‖f‖
2(ρ+ εM)

·
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For f ∈W2, we have:
- for n ≥ q + 1,

|Pnf |+ ε‖Pnf‖ ≤ C |f |n +M

q−1∑
j=0

an−1−j ‖f‖+
1

2(ρ+ εM)

n−1∑
j=q

bn−1−j (|P j−qf |+ ε‖P j−qf‖),

with b0 = a0 + εM and ∀n ≥ 1, bn = an;
- for 1 ≤ n ≤ q,

|Pnf | ≤ C |f |n +M

n−1∑
j=0

an−1−j ‖f‖.

Let αf be the sequence defined by

αf (n) =
{ |Pnf |, if n ≥ 0,

0, if n < 0.

We have
αf (n) ≤ βq,f (n) + (γq ∗ αf )(n), ∀n ∈ Z,

and therefore, for every integer ` ≥ 1,

αf (n) ≤
`−1∑
p=0

(γ∗pq ∗ βq,f )(n) + (γ∗`q ∗ αf )(n), ∀n ∈ Z.

As we have (γ∗`q ∗ αf )(n) = 0, for ` such that `(q + 1) > n, this implies inequality (1) of Theorem 1.1.

Step 3. For simplicity, we denote respectively by γ and β the sequences γq and βq,f .
We have

∑
n≥0 γ(n) = 1

2 and
∑

n≥0(γ
∗p ∗ β)(n) = 2−p β, where β =

∑
n≥0 β(n), and therefore∑

n≥0

(|Pnf |+ ε‖Pnf‖) ≤ 2 β ≤ 2 max {1, C}
∑
n≥0

|f |n + 2qM‖f‖
∑
n≥0

bn.

Let p be an integer ≥ 1 and let X1, . . . , Xp, Y be independent integer random variables such that:

∀k ∈ N, P[{X1 = k}] = . . . = P[{Xp = k}] = 2γ(k) and P[{Y = k}] = β(k)/β.

For every integer r ≥ 1, we have

β
−1

2p
∑
n≥1

nr(γ∗p ∗ β)(n) = E[(X1 + . . .+Xp + Y )r]

≤ (p+ 1)r−1 (pE[Xr
1 ] + E[Y r])

≤ (p+ 1)r−1

2p
∑
n≥1

nrγ(n) +
1
β

∑
n≥1

nrβ(n)

 .

It follows that∑
n≥1

nr(|Pnf |+ ε‖Pnf‖) ≤
∑
p≥1

p(p+ 1)r−1

2p−1
β
∑
n≥1

nrγ(n) +
∑
p≥0

(p+ 1)r−1

2p

∑
n≥1

nrβ(n).

From this, one deduces easily the last assertion.
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Notation. Under the hypotheses (1.1), we denote by Π1 and Π2 the projectors from B respectively onto W1

and W2, and by Q the operator P ◦Π2.
The following lemma will be useful in Sections 5 and 6.

Lemma 1.2. Under the hypotheses (1.1), let us assume that (B, ‖ ‖) is a normed algebra and that the semi-
norms | |k are decreasing and satisfy the inequalities

|fg|k ≤ ‖f‖|g|k + ‖g‖|f |k, ∀f, g ∈ B, ∀k ≥ 0.

Moreover, let us assume satisfied the following condition (which extends to the family of semi-norms (| |k) the
inequalities H3 satisfied by the semi-norm | |):

there exist C > 0 and a sequence of positive convergent series (
∑

n≥0 a
(k)
n )k≥0 such that

∀f ∈ B,∀n ≥ 1, ∀k ≥ 0, |Pnf |k ≤ C|f |n+k +
n−1∑
j=0

a
(k)
n−1−j ‖P jf‖.

Consider the sequence defined by

∀n ≥ 0, δ(n) =

{
supj≥0 a

(n)
j if ∀f ∈ B, |f |n = |Π2f |n∑

j≥0 a
(n)
j else.

Let ζ = ζf1,... ,fm and ψq be the sequences defined by

ζf1,... ,fm(n) = ‖f1‖
m∑

i=2

(i− 1)

 m∏
j=2
j 6=i

‖fj‖

 N(fi) δ(n) +
m∑

i=1

 m∏
j=1
j 6=i

‖fj‖

 |fi|n,

ψq(n) =


∑n

j=n−q+1 aj−1 if n ≥ q∑n
j=1 aj−1 if 1 ≤ n ≤ q − 1

0 if n = 0.

If
∑

n≥0 δ(n) < +∞, there exists a real E1 > 0 such that, for all integers m ≥ 2, for all m-uples of vectors
f1, . . . , fm in B and all natural integers k2, . . . , km,

|Qnf1Q
k1f2 · · ·Qkmfm|+ ‖Qnf1Q

k2f2 · · ·Qkmfm‖ ≤
∑
p≥0

(γ∗pq(1) ∗ ξ)(n), ∀n ≥ 0,

where ξ = ξf1,... ,fm is the sequence defined by

E−m
1 ξ(n) = ζ(n) +

m∏
j=1

‖fj‖
(
C δ(n) + ψq(n)

)
.
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Proof. There exists a real D > max{M,C} such that, for every integers k ≥ 1 and n ≥ 0 and every functions
f in W2,

|P kf |n ≤ C|f |n+k +
k−1∑
j=0

a
(n)
k−j−1‖P jf‖

≤ C|f |n + δ(n)
∑
j≥0

‖P jf‖

≤ D(|f |n + δ(n) N(f)).

It follows that, for every integers k ≥ 1 and n ≥ 0, every functions f and g in W2,

|fP kg|n = ‖f‖|P kg|n + ‖P kg‖|f |n
≤ D(‖f‖|g|n + ‖g‖|f |n + δ(n)‖f‖N(g))

and therefore there exists E1 > D such that

N(fP kg) ≤ D

1 +
∑
n≥0

δ(n)

 (‖f‖N(g) + ‖g‖N(f)) ≤ E1(‖f‖N(g) + ‖g‖N(f)).

This implies:
ζf1,... ,fm−2,fm−1Qkfm

(n) ≤ E1 ζf1,... ,fm−1,fm(n), ∀k ∈ N.

We have then that |f1Qk2f2| ≤ E1ζf1,f2(n). Suppose that

|f1Qk2f2 . . . Q
kmfm|n ≤ Em−1

1 ζf1,... ,fm(n), (3)

then we have

|f1Qk2f2 . . . Q
kmfmQ

km+1fm+1|n ≤ Em−1
1 ζf1,... ,fm−1,fmQkm+1fm+1

(n)

≤ Em
1 ζf1,... ,fm−1,fm,fm+1(n).

So we have proved recursively (3).
On an other hand, we have:

|Π1f1Q
k2f2 . . .Q

kmfm|n ≤ Mδ(n)‖Π1f1Q
k2f2 . . . Q

kmfm‖
≤ Mmδ(n)‖f1‖ . . . ‖fm‖.

The desired result follows from the second assertion of Theorem 1.1 and the inequality

βq,Π2f1Qk2f2...Qkm fm
≤ Em

1

ζ(n) +
m∏

j=1

‖fj‖
(
C δ(n) + ψq(n)

) .

2. Inequalities for transfer operators

We describe now a class of operators to which the results of Section 1 will be applied.
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2.1. Hypotheses

Let (E, d) be a compact metric space. We consider a finite or countable family S of continuous applications
s : x → sx from E into itself. The following contraction hypothesis will be assumed afterwards (except in the
last section where a case of non uniform contraction will be discussed):

there exists a sequence of positive real numbers (ηn)n≥0 decreasing to 0 such that:

d(x, y) ≤ ηn ⇒ d(sx, sy) ≤ ηn+1, ∀x, y ∈ E, ∀s ∈ S. (4)

Frequently in the examples, the applications x → sx satisfy a uniform condition of contraction: there exists
c < 1 such that d(sx, sy) < cd(x, y), ∀x, y ∈ E, x 6= y. In that case, one can take ηn = cnη0, for n ≥ 1, where
η0 = diam(E) is the diameter of E.

Moreover let be given a family of continuous non-negative functions {us : s ∈ S} defined on E such that

sup
x∈E

∑
s∈S

us(x) < +∞.

We define a positive kernel P on E by

Pf(x) =
∑
s∈S

us(x) f(sx). (5)

This kernel acts on the space of bounded functions on E, on the cone of positive functions and on the cone M+

of positive measures defined on the Borel σ-algebra of E.
When the family {us : s ∈ S} satisfies the condition∑

s∈S

us(x) = 1, ∀x ∈ E, (6)

P is a Markovian operator. We can define a Markov chain with values in E such that, at each step, the transition
are possible from a point y to the points sy, s ∈ S, with probability us(y).

2.2. Notations

Let C(E) be the space of continuous real or complex functions on E. For every integer k ≥ 0 and every
function g ∈ C(E), we define:

v(g, k) = sup
{(x,y)∈E2:d(x,y)≤ηk}

∣∣g(x)− g(y)
∣∣.

We measure the regularity of the family {us, s ∈ S} by the sequence (w(k, 0))k≥0 defined by:

w(k, 0) = sup
{(x,y)∈E2:d(x,y)≤ηk}

∑
s∈S

∣∣us(x) − us(y)
∣∣,

and its “mean regularity” by the following sequences defined for n ≥ 1:

w(k, n) = sup
{(x,y)∈E2:d(x,y)≤ηk}

∑
(s1,...sn)∈Sn

usn(sn−1 · · · s1x) . . . us1(x)
∑
s∈S

∣∣us(sn · · · s1x)− us(sn · · · s1y)
∣∣.
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2.3. Inequalities

1) For all natural integers k, n, we have:

w(k, n) ≤ ‖Pn 1‖∞ w(k + n, 0) ≤ ‖Pn 1‖∞
∑
s∈S

v(us, k + n).

Note that, when P is a power bounded operator on the space of bounded functions on E (i.e. M = supn≥0

‖Pn1‖∞ <∞), we have:
w(k, n) ≤M w(k + n, 0), ∀k ≥ 0.

2) For a, b > 0, we have:
∣∣a− b∣∣ = (1− e−

∣∣ ln a
b

∣∣)
max{a, b} ≤

∣∣∣ ln a
b

∣∣∣(a+ b
)
. When the functions us are strictly

positive, we have therefore, for k, n ∈ N:∑
s∈S

v(us, n) ≤ 2‖P 1‖∞ sup
s∈S

v(ln us, n), (7)

w(k, n) ≤ 2 ‖Pn 1‖∞ ‖P 1‖∞ sup
s∈S

v(ln us, k + n). (8)

3) For any bounded function f on E, any integer n ≥ 1, we have for x, y in E:

Pnf(x)− Pnf(y) =
∑

(s1,... ,sn)∈Sn

usn(sn−1 · · · s1x) . . . us1(x)
(
f(sn · · · s1x)− f(sn · · · s1y)

)
+

n∑
j=2

∑
(s1,... ,sj)∈Sj

usj−1(sj−2 · · · s1x) . . . us1(x)(
usj (sj−1 · · · s1x)− usj (sj−1 · · · s1y)

)
Pn−jf (sj · · · s1y)

+
∑
s1∈S

(
us1(x) − us1(y)

)
Pn−1f (s1y).

From the last equality, we deduce:

Lemma 2.1. If f is a bounded function on E and k, n natural integers, we have:

v(Pnf, k) ≤ ‖Pn1‖∞ v(f, k + n) +
n−1∑
j=0

w(k, n− 1− j) ‖P jf‖∞. (9)

2.4. An example

We give now an example to illustrate the different conditions of regularity (see [6] for details). We consider
the interval E = [0, 1], an integer q ≥ 1 and a real β in ]0, 1[. Let t be the application from [0,+∞[ into [0,+∞[
defined by:

∀x ∈ E, t(x) =
x

1 + q xβ
·

We have, ∀x, y ∈ [0,+∞[, t(x+ y) ≤ t(x) + t(y) and therefore:∣∣t(x)− t(y)
∣∣ ≤ t(|x− y|) ≤ |x− y|. (10)

The application t sends the interval [0, 1] on the interval [0, 1
1+q ].
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Let S be the family of continuous transformations of E into itself defined by:

S =
{
tk : x→ t(x) +

k

1 + q
: 0 ≤ k ≤ q

}
·

From (10), we have:

∀s1, . . . , sn ∈ S,
∣∣s1 · · · sn x− s1 · · · sn y

∣∣ ≤ tn(|x− y]) ≤ tn(1).

For the sequence (ηk)k≥0 on E defined by ηk = tk(1), the contraction hypothesis (4) is then satisfied.
Let {us : s ∈ S} be a family of functions such that

∑
s∈S us(x) = 1, ∀x ∈ E. We assume that there exists a

continuous increasing function Φ from [0, 1] to [0, 1] such that Φ(0) = 0 and∑
s∈S

|us(x) − us(y)| ≤ Φ(|x− y|), ∀ x, y ∈ [0, 1].

We have:
w(n, 0) ≤ Φ

(
ηn

)
, ∀n ∈ N.

The sequence (ηn = tn(1))n≥0 decreases to zero and satisfies ηn = (1 + o(1))(n q β)−
1
β .

For Φ(x) = xα, with 0 < α ≤ 1, the condition
∑

k≥0 w(k, 0) < +∞ is satisfied if α
β > 1. For Φ(x) = 1

1+| ln x|α ,
with α > 0, the condition

∑
k≥0 w(k, 0) < +∞ is not necessarily satisfied.

The convergence of the series
∑

n≥0 w(0, n) can be established under less restrictive conditions:

- for Φ(x) = xα, with 0 < α ≤ 1, we have
∑

n≥0 w(0, n) < +∞;

- for Φ(x) = 1
1+| ln x|α , we have

∑
n≥0 w(0, n) < +∞, for α > 1.

3. Convergence of

∑ ‖P nf‖∞
3.1. Hypothesis

In this section we make the following assumptions:∑
n≥0 w(0, n) < +∞, limk ↓ w(k, 0) = 0. (11)

P is power bounded: M = supn≥1 ‖Pn1‖∞ < +∞. (12)

Remark that, by continuity of the weights us, the second condition in (11) is always satisfied when the family
of applications S is finite. When P is Markovian, equation (12) is clearly satisfied. This is true as well, up to a
multiplicative constant, when the weights us are strictly positive (cf. Lem. 3.4).

We will make use of the following elementary lemma:

Lemma 3.1. If (uk)k≥1 is a sequence of real numbers decreasing to 0, there exists a sequence (ϕk)k≥1 such
that: ∑

k≥0

ϕk = +∞ and
∑
k≥0

ϕk uk < +∞.

Proof. We may take for instance, for some α ∈ [1, 2[,

ϕk = u−α
k (uk − uk+1), k ≥ 1.
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From the inequalities ∀k ∈ N, w(k, n) ≤M w(0, n), it follows that

lim
k→+∞

↓
∑
n≥0

w(k, n) =
∑
n≥0

lim
k→+∞

↓ w(k, n) = 0.

Consider a function ϕ from N to ]0,+∞[ such that (cf. Lem. 3.1):∑
k≥0

ϕ(k) = +∞ and
∑
k≥0

ϕ(k)
∑
n≥0

w(k, n) < +∞.

Notations. For n, ` non negative integers, we set

a(`, n) =
∑
k≥0

ϕ(k) w(k + `, n), (13)

ρ(`) =
∑
n≥0

a(`, n). (14)

We define semi-norms by setting for a function f on E:

|f |ϕ,n =
∑
k≥0

ϕ(k) v(f, k + n), n ≥ 0,

|f |ϕ = |f |ϕ,0 =
∑
k≥0

ϕ(k) v(f, k).

Let Bϕ be the subspace of C(E) defined by Bϕ = {f ∈ C(E) : |f |ϕ <∞}.
By Lemma 2.1, the semi-norms (| |ϕ,n)n≥0 on Bϕ satisfy the following inequalities:

∀n ≥ 1, ∀k ≥ 0, |Pnf |ϕ,k ≤M |f |ϕ,n+k +
n−1∑
j=0

a(k, n− j − 1) ‖P jf‖∞.

The inequalities

∀N ∈ N,

(
N∑

k=0

ϕ(k)

)
v(f,N) ≤

N∑
k=0

ϕ(k)v(f, k) ≤ |f |ϕ

imply that the set of functions {f ∈ C(E) : |f |ϕ + ‖f‖∞ ≤ 1} is equicontinuous. By Ascoli–Arzela theorem,
this set is relatively compact in (C(E), ‖ ‖∞). It is easy to see that this set is closed and therefore is a compact
subset of (C(E), ‖ ‖∞).

It follows that the operator P satisfies the hypotheses of Theorem 1.1 and we have the following theorem,
where W1 is the subspace of C(E) generated by the eigenvectors of P corresponding to eigenvalues of modulus
1 and W2 = {f ∈ C(E) : limn→+∞ ‖Pnf‖∞ = 0}.

Theorem 3.2. If (3.1) is satisfied, W1 is finite dimensional and C(E) = W1 ⊕W2.
Moreover, for r ≥ 0, if the condition

∑
n≥0 n

r w(0, n) < +∞ is satisfied, we have
∑

n≥0 n
r ‖Pnf‖∞ < +∞

for all f ∈W2 such that
∑

n≥0 n
r v(f, n) < +∞.
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Proof. If h ∈ C(E) is an eigenvector of P of modulus 1, then from (9) we have ∀k ≥ 0, v(h, k) ≤∑j≥0 w(k, j)
‖h‖∞ and therefore h belongs to Bϕ for all ϕ : N →]0,+∞[ such that

∑
k≥0

ϕ(k) = +∞ and
∑
k≥0

ϕ(k)
∑
j≥0

w(k, j) <∞. (15)

Let f ∈ C(E). As lim
n→+∞ v(f, n) = 0, we can apply Lemma 3.1, with u(n) = max{∑j≥0 w(n, j), v(f, n)}, and

choose a function ϕ from N to ]0,+∞[ such that f ∈ Bϕ and the conditions (15) are satisfied.
Then the first assertion results from Theorem 1.1.
Let f such that

∑
n≥0 n

r v(f, n) < +∞.
Applying Lemma 3.1 with u(n) = max{∑k≥0 w(n, k),

∑
k≥n k

r v(f, k)}, n ≥ 1, we can choose a function ϕ

from N to ]0,+∞[ such that∑
k≥0

ϕ(k) = +∞;
∑
k≥0

ϕ(k)
∑
j≥0

w(k, j) <∞ and
∑
k≥0

ϕ(k)
∑
j≥k

jr v(f, j) <∞.

From Theorem 1.1, we have then ∑
n≥0

nr
(|Pnf |ϕ + ‖Pnf‖∞

)
< +∞

and the result follows.

3.2. Peripheral spectrum of P

To apply the previous results, we need information on W1 and on the peripheral spectrum of P . In particular
it is important to give conditions which ensure that dim(W1) = 1. We refer to [21] and [6] for a description of
the subspace W1 of C(E) in terms of ergodic classes for a Markov chain associated to P .

The following notion of proximality is useful to give a criterium for dim(W1) = 1 (cf. [5]). The family of
transitions x → sx (allowed if us(x) > 0), defines a “topological Markov chain” on the space E. We denote it
by (S, (us)s∈S).

3.3. Definitions

We say that a compact set F of E is p-invariant (or invariant for p = 1) if, for all x ∈ F and all (s1, . . . , sp)
∈ Sp such that usp(sp−1 · · · s1x) · · · us2(s1x)us1(x) > 0, we have sp · · · s1x ∈ F .

We say that (S, (us)s∈S) is p-proximal if any two p-invariant non-empty compact sets intersect. It is strongly
proximal if it is p-proximal for any integer p ≥ 1.

Theorem 3.3. (cf. [6,21]): if P is Markovian and if (3.1) is satisfied, we have:

i) the eigenvalues of modulus 1 of P are roots of unity. There exists a finite set {E1, . . . , Em} of disjoint
invariant compact sets (ergodic classes) such that{

Px

[{
lim sup
n→+∞

d(Xn, Ej) = 0
}]

; 1 ≤ j ≤ m

}
is a basis of the eigenspace of P corresponding to the eigenvalue 1;

ii) each invariant compact set Ej supports a unique P -invariant probability measure and splits into a finite
number {Cj,1, . . . , Cj,dj} of dj-invariant compact sets (cyclic classes);
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iii) the set of functions
dj−1∑
`=0

ω`
jPx

[{
lim sup
n→+∞

d(Xndj , Cj,`) = 0
}]

; 1 ≤ j ≤ m, ωj is a dj-root of unity


is a basis of W1;

iv) if (S, (us)s∈S) is strongly proximal, there exists a unique ergodic class (without cyclic subclasses) supporting
the unique P -invariant probability measure ν on E and we have, uniformly on E, for all f ∈ C(E):
limn P

nf = ν(f).

3.4. Existence of an invariant function

In the general case, we can reduce P (by “relativisation”) to a Markovian operator if there exists a strictly
positive eigenfunction. The existence of such a function can be shown classically, when the weights us are > 0
(cf. [2, 25]), under a regularity condition which slightly stronger then (11) (in the following lemma P is not
supposed to be power bounded):

Lemma 3.4. If the functions us, s ∈ S, are strictly positive and satisfy the condition∑
k≥0

sup
s∈S

v(ln us, k) < +∞, (16)

the operator P has a strictly positive proper function h satisfying:

v(ln h, k) ≤
∑
n≥k

sup
s∈S

v(ln us, n).

Proof. For every integer k ≥ 0, set εk =
∑

n≥k sups∈S v(ln us, n). Consider the cone C of strictly positive
continuous functions f such that v(ln f, k) < εk. For x0 ∈ E, the section C∩{f : f(x0) = 1} is an equicontinuous
and bounded set of continuous functions. Therefore, the cone C has a compact base.

This cone is left invariant by P , since we have, for every x, y ∈ E satisfying d(x, y) ≤ ηk:

Pf(y) =
∑
s∈S

us(y) f(sy) =
∑
s∈S

us(y)
us(x)

f(sy)
f(sx)

us(x) f(sx)

≤
∑
s∈S

esups∈S v(ln us,k) eεk+1 us(x) f(sx) = eεk Pf(x).

This gives the inequality;

v(lnPf, k) ≤ v(ln f, k + 1) + w(k). (17)

From Schauder–Tychonov theorem, we deduce the existence of a proper function h for P in the cone C.

Assuming (16) and the functions us strictly positive, let h given by the previous lemma such that Ph = λ h.
The conditions (11) and (12) are satisfied by λ−1P (see inequality (8)). The relativised operator is defined by

hPf(x) =
1

λh(x)
P (hf)(x).
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We have strong proximality and, for f ∈ C(E), the sequence ((hP )nf)n≥0 converges uniformly to ν(f) where
ν is the unique hP -invariant probability on E. The sequence (λ−nPnf)n≥0 converges uniformly to ν(h−1 f) h.
The measure ν̃ = (ν( 1

h )h)−1ν is the unique λ−1P -invariant probability.
Some partial results can also be proved when the weights are not supposed to be strictly positive:

Theorem 3.5. If P (power bounded) satisfies∑
n≥0

w(n, 0) < +∞ (18)

and ρ(P ) = limn(‖Pn1‖∞)1/n = 1, there exists a continuous non negative function h which is P -invariant and
not identically 0. If (S, (us)s∈S) is proximal, then h is strictly positive.

Proof. Since P satisfies the hypotheses of Theorem 1.1, we know that the sequence

(
1
n

n−1∑
k=0

P k1

)
n≥1

converges

uniformly on E to a non-negative continuous P -invariant function h.
If h is the null function, then W1 is reduced to zero and lim

n→+∞ ‖Pn1‖∞ = 0. This is impossible if there exists

a P -invariant probability measure ν. Let us show the existence of such a measure under our assumptions.
We consider the following operators:

Pεf(x) =
∑
s∈S

(us(x) + εs) f(sx),

where (εs)s∈S is a family of strictly positive reals such that
∑

s εs < ∞. If (18) holds, then Pε satisfies the
conditions of Lemma 3.4 (we have: v(ln (us + εs), k) ≤ ε−1

s v(us, k)).
Therefore, there exist a strictly positive continuous function hε and a scalar λε such that Pεhε = λεhε.

We have 1 ≤ Cεhε, for some finite constant Cε. Moreover there exists a measure νε such that Pενε = λενε

(since hε > 0, the eigenvalue is the same for the action of P on functions and on measures). The inequalities
Pn1 ≤ Pn

ε 1 ≤ CPn
ε hε = Cελ

n
εhε and the hypothesis ρ(P ) = 1 imply: λε ≥ 1.

Letting the constants εs tend to 0 for each s ∈ S and taking a cluster value of the family {νε, ε > 0}, we get
a probability measure ν0 such that Pν0 = λ0ν0, for a constant λ0 ≥ 1, and therefore λ0 = 1 since P is power
bounded.

4. Convergence of

∑
P nf (weaker hypotheses on f)

In this section, the assumptions are stronger for the weights us, but weaker for the spaces of functions f that
we consider.

4.1. Hypotheses and notations

We assume that the functions us, s ∈ S, are strictly positive and satisfy∑
k≥0

sup
s∈S

v(ln us, k) < +∞. (19)

By Lemma 3.4 there exist λ > 0, a strictly positive continuous function h satisfying Ph = λ h and an unique
λ−1P -invariant probability ν on E such that, for all f ∈ C(E), the sequence of functions (λ−nPnf)n≥0 converges
uniformly to ν(f) h. Without loss of generality, in the following we will suppose that the support of the measure
ν is equal to E. Replacing P with λ−1P , we can also assume λ = 1, so that P is power bounded, ν is P -invariant
and ‖Pf‖1 ≤ ‖f‖1, for f ∈ L1(ν).

We introduce now a condition for the regularity of functions on E which is weaker than that defined in (2.2).
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Notations. For n integer ≥ 0, x ∈ E, f Borel function f on E, we define:

Ṽ(f, x, n) = ‖f(x)− f(·)‖
L∞
(
B(x,ηn),ν

), (20)

ṽ(f, n) =
∫

E

Ṽ(f ;x, n) ν(dx). (21)

We set

V =
{
f ∈ L∞(E, ν) : lim

n→+∞ ṽ(f, n) = 0
}
,

W2 =
{
f ∈ V : lim

n→+∞ ‖Pnf‖∞ = 0
}
·

Choose a function ϕ from N to ]0,+∞[ such that

∑
k≥0

ϕ(k) = +∞ and
∑
k≥0

ϕ(k)

∑
n≥k

sup
s∈S

v(ln us, n)

 < +∞. (22)

We may then define the analogous of the quantities introduced in (2.2):

|f |′ϕ,n =
∑
k≥0

ϕ(k) ṽ(f, k + n), n ≥ 0

|f |′ϕ = |f |′ϕ,0 =
∑
k≥0

ϕ(k) ṽ(f, k).

Let B̃ϕ be the subspace of L1(E, ν) defined by B̃ϕ = {f ∈ L1(E, ν) : |f |′ϕ < +∞}. We will see that(
B̃ϕ, ‖ ‖1, (| |′ϕ,n)n≥0

)
satisfies the hypotheses of Theorem 1.1.

Theorem 4.1. Under the hypotheses (19), we have V = Ch⊕W2.
Let r ∈ N. Suppose that

∑
n≥0 n

r sups∈S v(ln us, n) < +∞. Then, for all f ∈W2 such that
∑

n≥0 n
r ṽ(f, n) <

+∞, we have
∑

n≥0 n
r ‖Pnf‖∞ < +∞.

The proof follows from several lemmas.

Lemma 4.2. There exists a positive real number c such that, for all f ∈ L∞(E, ν),

‖f‖
L∞ ≤ c(ṽ(f, 0) + ‖f‖1) ≤ c

(
(ϕ(0))−1|f |′ϕ + ‖f‖1

)
.

Proof. For x ∈ E and r > 0, we denote by B(x, r) the open ball {y ∈ E : d(x, y) < r}. Let f ∈ L1(E, ν). For
all y ∈ E and for ν-almost all x ∈ E, we have:

1
B(x,η0)(y)|f(x)| ≤ 1

B(x,η0)(y)
(|f(x)| − |f(y)|)+ |f(y)|

≤ ‖f(·)− f(y)‖L∞(E,B(y,η0),ν) + |f(y)|.

After integration we obtain, for ν-almost all x ∈ E,

ν(B(x, η0)) |f(x)| ≤ ṽ(f, η0) + ‖f‖1 ≤ (ϕ(0))−1|f |ϕ + ‖f‖1.
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To conclude we have to show that infx∈E ν(B(x, η0)) > 0. Let (xn)n≥0 be a sequence of elements of E such that
limn→+∞ ν(B(xn, η0)) = infx∈E ν(B(x, η0)). From the compactness of E, we can suppose that the sequence
(xn)n≥0 converges to an element x of E. But then, as the support of ν is equal to E, we have

lim inf
n→+∞ ν(B(xn, η0)) ≥ ν(B(x, η0)) > 0.

Lemma 4.3. The set C1 = {f ∈ L1(E, ν) : |f |′ϕ + ‖f‖1 ≤ 1} is a compact subset of L1(E, ν).

Proof. For k ≥ 0 consider a finite open covering {B(xj,k, ηk

)
, 1 ≤ j ≤ qk} of E extracted from the open covering

{B(x, ηk

)
, x ∈ E}. Let

(
ψj,k

)
1≤j≤pk

be a partition of unity subordinate to this covering (i.e. the functions
ψj,k, k ≥ 0, 1 ≤ j ≤ pk, are non-negative continuous and satisfy

∀x ∈ E,
k∑

j=1

ψj,k(x) = 1 and ∀x /∈ B(xj,k, ηk

)
, ψj,k(x) = 0.

Let (fn)n≥0 be a sequence of functions of C1. By Lemma 4.2, these functions are bounded by c
(
(ϕ(0))−1 + 1

)
.

Since the sequence
(
ṽ(fp, n)

)
n≥0

is decreasing, we have:

(
n∑

k=0

ϕ(k)

)
ṽ(fp, n) ≤

n∑
k=0

ϕ(k) ṽ(fp, k) ≤ |fp|′ϕ ≤ 1

and we get, for all integers k, n and p,

‖fn+p − fn‖1 =
pk∑

j=1

∫
E

ψj,k |fn+p − fn| dν

≤
pk∑

j=1

(∫
E

ψj,k |fn+p − fn+p(xj,k)| dν

+
∫

E

ψj,k |fn − fn(xj,k)| dν +
∫

E

ψj,k dν |fn+p(xj,k)− fn(xj,k)|
)

≤
pk∑

j=1

(∫
E

ψj,k Ṽ(fn+p, ·, k) dν +
∫

E

ψj,k Ṽ(fn, ·, k) dν +
∫

E

ψj,k dν |fn+p(xj,k)− fn(xj,k)|
)

≤ ṽ(fn+p, k) + ṽ(fn, k) +
pk∑

j=1

∫
E

ψj,k dν |fn+p(xj,k)− fn(xj,k)|

≤ 2

 k∑
j=0

ϕ(j)

−1

+
pk∑

j=1

∫
E

ψj,k dν |fn+p(xj,k)− fn(xj,k)|.

If
(
σ(n)

)
n≥0

is a strictly increasing sequence of integers such that the real sequences
(
fσ(n)(xj,k)

)
n≥0

converge,
for every k ≥ 0 and j ∈ [1, pk], then the sequence (fσ(n))n≥0 is a Cauchy sequence in L1(E, ν).

This shows that the set C1 is relatively compact in L1(E, ν). It remains to show that C1 is closed.
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Let (fn)n≥0 be a sequence of functions of C1 which converges in L1(E, ν) to a function f . Taking if necessary
a subsequence, we can assume that the sequence (fn)n≥0 converges ν-a.e. to f . From Egorov’s theorem, there
exists an increasing sequence (Ep)p≥0 of Borel sets in E such that

lim
p→+∞ ν(Ep) = 1 and ∀p ≥ 0, lim

n→+∞ ‖fn − f‖
L∞
(
Ep,ν

) = 0.

For every integer p ≥ 0 and every integer N ≥ 1, we have then:

N∑
k=0

ϕ(k)
∫

Ep

‖f(x)− f(·)‖
L∞
(

B
(
x,ηk

)
∩Ep,ν

) ν(dx)
= lim

n→+∞

N∑
k=0

ϕ(k)
∫

Ep

‖fn(x)− fn(·)‖
L∞
(

B
(
x,ηk

)
∩Ep,ν

) ν(dx)
≤ sup

n≥0
|fn|′ϕ ≤ 1.

Letting p, then N , tend to +∞, we get: |f |′ϕ ≤ 1. This implies the result.

Lemma 4.4. If f is a function on E and k an integer ≥ 0, we have:

ṽ(Pf, k) ≤ ez(k) ṽ(f, k + 1) + z(k) ‖f‖1,

where z(k) = sup
s∈S

ev(ln us,k) v(ln us, k).

Proof. Let n be ∈ N and (x, y) ∈ E2 such that d(x, y) ≤ ηk. We have:∣∣∣1− us(y)
us(x)

∣∣∣ ≤ e| ln
us(x)
us(y) |

∣∣∣ ln us(x)
us(y)

∣∣∣ ≤ ev(ln us,k) v(ln us, k) ≤ z(k).

It follows that

|Pf(x)− Pf(y)| ≤
∑
s∈S

|us(x) f(sx)− us(y) f(sy)|

≤
∑
s∈S

us(y) |f(sx)− f(sy)|+
∑
s∈S

|us(x)− us(y)| |f(sx)|

≤ (
1 + z(k)

) ∑
s∈S

us(x) |f(sx)− f(sy)|+ z(k) P |f |(x)

≤ ez(k)
∑
s∈S

us(x) V(f, sx, k + 1) + z(k) P |f |(x).

We obtain the result by integrating with respect to ν and using the invariance of ν by P .
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Corollary 4.5. There exists a positive real C such that, for every f ∈ B̃ϕ:

∀n ≥ 1, ∀k ≥ 0, |Pnf |′ϕ,k ≤ C

|f |′ϕ,n+k +
n−1∑
j=0

an+k−j−1‖P jf‖1

 , (23)

where an =
∑
j≥0

ϕ(j) sup
s∈S

v(ln us, j + n).

Proof. From Lemma 4.4 we obtain

∀k ≥ 0, |Pf |′ϕ,k ≤ ez(k) |f |′ϕ,k+1 + bk ‖f‖1,

with bk =
∑

j≥0 ϕ(j) z(k + j) ≤ esups∈Sv(ln us,0) ak. From this inequality applied to the functions Pn−1f ,
Pn−2f, . . . , f , we get, for all k ≥ 0 and n ≥ 1,

|Pnf |′ϕ,k ≤ ez(k)+...+z(k+n−1) |f |′ϕ,k+n +
n−1∑
j=0

ez(k)+...+z(k+n−j−2) bk+n−j−1 ‖P jf‖1.

Setting C = e
P

j≥0 z(j) max{1, esups∈Sv(ln us,0)}, we get (23).

4.2. Proof of Theorem 4.2

Proof. We know that, for f ∈ C(E), the sequence of functions (Pnf)n≥0 converges uniformly to ν(f) h and
therefore, for f ∈ L1(E, ν), the sequence (Pnf)n≥0 converges in L1(E, ν) to ν(f) h.

Let f ∈ V . As lim
n→+∞ ṽ(f, n) = 0, we can choose a function ϕ from N to ]0,+∞[ such that f ∈ B̃ϕ and the

conditions (22) are satisfied.

We can substract ν(f)h from f to have ν(f) = 0 (if ν(f) 6= 0, lim
n

1
n

n−1∑
k=0

P kf is proportional to h and h is in

the space V ).
From Lemmas 4.3 and 23,

(
B̃ϕ, P, ‖ ‖1, (| |n)n≥0

)
verifies the hypotheses of Theorem 1.1. It follows that f is

in Wϕ
2 , where Wϕ

2 = {f ∈ V : limn→+∞
(|Pnf |′ϕ + ‖Pnf‖1

)
= 0}. From Lemma 4.2, we deduce that f belongs

to W2 = {g ∈ V : limn→+∞ ‖Png‖∞ = 0}. Therefore we have: V = Ch⊕W2.
Let f such that

∑
n≥0 n

r ṽ(f, n) < +∞. There exists a function ϕ from N into ]0,+∞[ such that (22) and

∑
n≥0

ϕ(n)
∑
k≥n

kr ṽ(f, k) <∞.

From Theorem 1.1, we have then ∑
n≥0

nr
(|Pnf |′ϕ + ‖Pnf‖1

)
<∞,

which implies by Lemma 4.2: ∑
n≥0

nr ‖Pnf‖∞ <∞.
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5. Application to the CLT for some Markov chains

5.1.

We consider a Markovian operator P of the form (5). Theorem 3.2 gives sufficient conditions for a function
f to be of the form

f = g − Pg. (24)

This will be applied to obtain the central limit theorem.
Let

(
Ω = EN,B(Ω), (Xn)n≥0, (Px)x∈E

)
be the canonical Markov chain with transition probability P . Let x

be an element of E and f a function defined on E. One says that the process (f(Xn))n≥0 satisfies the central
limit theorem (CLT) under Px if, for a constant σ > 0, the sequence of real random variables

(
1√
n
(f(X0)+ · · ·+

f(Xn−1))
)
n≥1

, defined on (Ω,B(Ω),Px), converges in law to the normal law N (0, σ2).
Using the representation (24) we can apply the method introduced by Gordin [7], Gordin and Lifvsic [8], to

reduce the process (f(Xn)) to a martingale difference (cf. [3,10]) to prove the CLT. Strengthening the conditions
on P and f , we can apply a result of Rio [22] for weakly dependant sequences (cf. also [13]) and get the optimal
rate of convergence in the CLT.

In the following theorem we use the notations of Section 3 and Theorem 3.3iv).

Theorem 5.1. Let us assume hypotheses (3.1) and the family {us : s ∈ S} strongly proximal. Let ν be the
unique P -invariant probability on E and f be a continuous function on E such that ν(f) = 0 and ν(|f |) > 0.

i) If
∑

k≥0 v(f, k) < ∞, then for all x ∈ E the sequence (f(Xn))n≥0 satisfies, under the probability Px, the
central limit theorem and the functional central limit theorem.

ii) If
∑

k≥0 k w(k, 0) < +∞ and
∑

k≥0 k v(f, k) < +∞, then for all x ∈ E the sequence (f(Xn))n≥0 satisfies,
under the probability Px, the central limit theorem at a rate in O( 1√

n
).

Proof. i) Theorem 3.2 and condition
∑

k≥0 v(f, k) <∞ imply
∑

n≥0 ‖Pnf‖∞ < +∞.
Setting g =

∑
n≥0 P

nf , we obtain a continuous function such that f = g−Pg. The sums f(X0)+· · ·+f(Xn−1)

can be written: Sn + g(X0)− g(Xn) with Sn =
n−1∑
k=0

[g(Xk+1)− Pg(Xk)].

As g(X0) − g(Xn) remains bounded, we can replace the sums f(X0) + · · · + f(Xn−1) with Sn. Denote
Yn = g(Xn)− Pg(Xn−1), n ≥ 1. Let x be an element of E.

For the probability Px the sequence (Yn)n≥1 is a sequence of martingale increments with respect to the
natural filtration (Fn)n≥0 associated to the process (Xn)n≥0. According to Brown [3], the first assertion of

Theorem 5.1 follows from the two conditions:

1) ∀ε > 0, lim
n→+∞

1
σ2

n

n∑
k=1

Ex[Y 2
k 1{|Yk|>εσn} ] = 0,

2) σ−2
n Vn

Px−→ 1,

where

σ2
n =

n∑
k=1

Ex[Y 2
k ] and Vn =

n∑
k=1

Ex[Y 2
k |Fk−1].

The first condition is satisfied because g is a bounded function. On the other hand we have:

σ2
n =

n∑
k=1

Ex[g2(Xk)− (Pg)2(Xk−1)] =
n∑

k=1

P k−1
(
Pg2(x)− (Pg)2

)
(x).
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We know that, for each continuous function h, the sequence of continuous functions (Pnh)n≥0 converges uni-
formly on E to ν(h). It follows that the sequence ( 1

nσ
2
n)n≥1 converges to σ2 =

∫
E(P (g2)− (Pg)2) dν.

If σ = 0 then, for ν-almost all x ∈ E, we have: P k(g − Pg(x))2(x) = 0, ∀k ≥ 0, and therefore g is constant
on the trajectories sn · · · s1x of x. The proximality implies that f = 0, ν-a.e.

We have Vn =
n∑

k=1

(
Pg2 − (Pg)2

)
(Xk−1). By the law of large numbers for martingale increments, we know

that, for each continuous function h on E, the sequence
(

1
n

∑n
k=1

(
h(Xk) − Ph(Xk−1)

))
converges Px-a.e.

to zero. As C(E) is separable and P is a contraction of (C(E), ‖ ‖∞), for Px-a.e. ω ∈ Ω, the sequence(
1
n

∑n
k=1

(
h(Xk(ω)) − Ph(Xk−1(ω))

)
converges to zero, for all h ∈ C(E). If λω is a limit point for the weak

convergence of the sequence of probabilities
(

1
n

∑n
k=1 P

k−1(x, ·))
n≥1

, we have, for Px-almost all ω ∈ Ω, λω(h−
Ph) = 0, for all h ∈ C(E). The measure λω is P -invariant and therefore λω = ν.

This proves that, for Px-almost all ω ∈ Ω, for all h ∈ C(E), the sequence
(

1
n

∑n
k=1 h(Xk(ω))

)
n≥1

converges
to ν(h); therefore the sequence (Vn

n )n≥1 converges Px-a.e. to σ2 and the condition 2) is satisfied.

ii) To prove the second assertion of the theorem, we apply a theorem of Rio [22] (see [13] for a formulation of
this theorem adapted to our frame). It is sufficient to prove that, for all non negative integers p1, p2 and p3

such that p1 + p2 + p3 ≤ 3,
∑

n≥0 n ψ(n) < +∞ , where ψ = ψp1,p2,p3 is the sequence defined by

ψ(n) = sup
α2,α3∈N

∥∥Pn
(
fp1(Pα2fp2(Pα3fp3))

)− ν
(
fp1Pα2fp2(Pα3fp3))

)∥∥
∞.

We have

ψ(n) ≤ sup
α2,α3∈N

(∥∥Qn
(
fp1(Qα2fp2(Qα3fp3))

)∥∥
∞

+
∥∥f‖p3∞

∥∥Qn
(
fp1(Qα2fp2)

)∥∥
∞
)

+
∥∥f‖p2+p3∞

∥∥Qnfp1
∥∥
∞.

Let f ∈ C(E) such that
∑

k≥0 k v(f, k) < +∞. Choose a function ϕ from N to ]0,+∞[ such that

∑
n≥0 ϕ(n) = +∞,

∑
n≥0 ϕ(n)

(∑
k≥n k w(k, 0)

)
< +∞

and
∑

n≥0 ϕ(n)
(∑

k≥n k v(f, k)
)
< +∞.

The space Bϕ equipped with the norm ‖ ‖∞ and the sequence of semi-norms (| |)n≥0 satisfies the hypotheses
of Lemma 1.2 with δ(n) =

∑
k≥0 ϕ(k) w(n+ k, 0). The condition

∑
n≥0 n ψ(n) < +∞ is then a consequence of

the following conditions (with the notations of Lems. 1.2 and 13):∑
n≥0

n |f |ϕ,n < +∞,
∑
n≥0

n δ(n) < +∞ and
∑
n≥0

n a(0, n) <∞.

These conditions are equivalent respectively to:∑
k≥0 ϕ(k)

∑
n≥k n v(f, n) < +∞,

∑
k≥0 ϕ(k)

∑
n≥k n w(n, 0) < +∞,∑

k≥0 ϕ(k)
∑

n≥k n w(0, n) < +∞.

The result follows.
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We assume now the hypotheses (19). Let us remark that
(
B̃ϕ, P, ‖ ‖1, (| |n)n≥0

)
satisfies the hypotheses of

Lemma 1.2 except that (B̃ϕ, ‖ ‖1) is not an normed algebra. But B̃ϕ is contained in L∞(E, ν) and we have
‖fg‖1 ≤ ‖fg‖∞ ≤ ‖f‖∞‖g‖∞. Then it is easy to see that we can apply Lemma 1.2. Therefore, we have:

Theorem 5.2. Let us assume (19). Let f be a (non null) function in L∞(E, ν) such that ν(f) = 0.

i) If we have
∑

k≥0 ṽ(f, k) < ∞, then for ν-almost all x ∈ E the sequence (f(Xn))n≥0 satisfies, under the
probability Px, the central limit theorem and the functional central limit theorem.

ii) If
∑

k≥0 k sups∈S v(ln us, k) < +∞ and
∑

k≥0 k ṽ(f, k) < +∞, then for ν-almost all x ∈ E the sequence
(f(Xn))n≥0 satisfies, under the probability Px, the central limit theorem at the rate O( 1√

n
).

6. Application to dynamical systems: CLT, Borel–Cantelli property

6.1. Hypotheses and notations

In this section, we suppose that P is Markovian. We assume that there exists a surjective application τ from
E onto E leaving invariant a P -invariant probability measure ν and such that the operator P is the dual of the
operator T of composition by τ :∫

E

Pf g dν =
∫

E

f g ◦ τ dν, ∀f, g ∈ L2(E, ν).

We consider the dynamical system (E, E , ν, τ).

• Central limit theorem

As in the case of Markov chains, following the method introduced by Gordin [7], using the representation (24)
of f we can apply martingale methods to the stationary sequence (T nf) (with respect to the measure ν).

Recall that two functions f and g are “homologous” for the dynamical system (E, E , ν, τ), if there exists a
mesurable ψ such that f = g + Tψ − ψ. A function f is a coboundary if it is homologous to 0.

Theorem 6.1. Let us assume (3.1) and the family {us : s ∈ S} strongly proximal. Let f be a continuous
function on E such that ν(f) = 0 and f is not a coboundary.

i) If the condition
∑

k≥0 v(f, k) <∞ holds, the function f is homologous in the dynamical system (E, E , ν, τ)
to a function generating a sequence of reverse martingale increments. The sequence (T nf)n≥0 satisfies
the central limit theorem and the functional limit theorem.

ii) If
∑

k≥0 k w(k, 0) < +∞ and
∑

k≥0 k v(f, k) < +∞, then the sequence (T nf) satisfies the central limit
theorem at the rate O( 1√

n
).

We have the same conclusions if we replace the hypotheses (3.1) with the hypotheses (19) and v(k, f) by ṽ(f, k).

Proof. From Theorem 3.2, there exists g ∈ C(E) such that f = g − Pg.

We can write then f = g1 + h − Th, with g1 = g − TPg and h = −Pg. The function f is homologous
to g1. The relation Pg1 = 0 shows that the sequence (T ng1) is a sequence of reverse martingale increments
with respect to the decreasing filtration (τ−nB(E))n≥0. This stationary ergodic sequence satisfies therefore the
central limit theorem.

The proof of ii) and of the last assertion is similar to the proof of Theorem 5.1 and Theorem 5.2.



CONVERGENCE OF ITERATES OF A TRANSFER OPERATOR 137

6.2. A Borel–Cantelli property

A Borel–Cantelli property in dynamical systems has been shown by Philipp [18] for systems related to number
theory, by Kleinbock and Margulis [14] for flows on homogeneous spaces and by Chernov and Kleinbock for
Gibbs measures [4].

In [6], we have also given a Borel–Cantelli property for a class of positive random variables under the action
of τ . As a consequence of Theorem 1.1, we can extend here the corresponding statement (Th. 8.2 of [6] to which
we refer for examples and details).

Theorem 6.2. Let us assume (19). Let ν be the unique P -invariant probability and (fn)n≥0 be a sequence of
Borel positive functions satisfying∑

n≥0

ν(fn) = +∞ and sup
n≥0

‖fn‖∞ < +∞.

If
∑
n≥0

sup
p≥0

ṽ(fp, n) < +∞, then the sequence (Fn)n≥0 defined by

Fn =
∑n

k=0 fk ◦ τk∑n
k=0 ν(fk)

, n ≥ 0

converges ν-a.e. to 1.

Proof. We show that there exists a positive real C1 such that∫
E

(Fn − 1)2 dν ≤ C1∑n
k=0 ν(fk)

·

The theorem will then follow from a classical lemma (cf. [6] for a proof).
Assume

∑
n≥0

sup
k≥0

ṽ(fk, n) < +∞. Choose a function ϕ from N to ]0,+∞[ such that

∑
n≥0

ϕ(n) = +∞ and
∑
n≥0

(
sup
k≥0

|fk|ϕ,n

)
≤
∑
j≥0

ϕ(j)
∑
n≥j

sup
p≥0

ṽ(fp, n) < +∞.

Setting gk = fk − ν(fk), ∀k ≥ 0, we have:(
n∑

k=0

ν(fk)

)2 ∫
E

(Fn − 1)2 dν ≤ 2
∑

0≤k≤`≤n

∫
E

gk ◦ τk g` ◦ τ ` dν

≤ 2
∑

0≤k≤`≤n

∫
E

g` P
`−kgk dν

≤ 4
∑

0≤k≤`≤n

‖P `−kgk‖∞ ν(f`).

By Lemma 4.2, there is A > 0 such that:

∀` ≥ k ≥ 0, ‖P `−kgk‖∞ ≤ A (|P `−kgk|ϕ + ‖P `−kgk‖1).



138 J.-P. CONZE AND A. RAUGI

From Theorem 1.1 applied to the triplet
(
B̃ϕ, ‖ ‖1, (| |n)n≥0

)
, we know that, for all n, k ≥ 0,

|Pngk|ϕ + ‖Pngk‖1 ≤
∑
p≥0

(γ∗p ∗ β)(n),

with

β(n) =


C sup`≥0 |g`|ϕ,n + C

∑n
j=n−q+1 a(j − 1) sup`≥0 ‖g`‖1, n ≥ q + 1,

C sup`≥0 |g`|ϕ,n + C
∑n

j=1 a(j − 1) sup`≥0 ‖g`‖1, 0 ≤ n ≤ q,

0, n < 0.

This implies that there exists B > 0 such that∑
n≥0

sup
k≥0

‖Pngk‖∞ ≤ A
∑
n≥0

sup
k≥0

(|Pngk|ϕ + ‖Pngk‖1

)

≤ A B

∑
n≥0

sup
k≥0

|gk|ϕ,n + sup
k≥0

‖gk‖1

 < +∞.

Clearly the result follows.

6.3. Gibbs measures

A class of examples is given by subshifts of finite type with a Gibbs measure ν associated to a regular function.
We recall briefly this situation for the full shift. Let E be the product space E = IN, where I = (a0, · · · , aq−1)
is a finite alphabet with q ≥ 2, on which operates the shift τ : x = (x0, x1, · · · ) → τx = (x1, x2, · · · ).

A distance on E is defined by d(x, y) = 1, if x0 6= y0, and d(x, y) = q−(N+1), where N = sup{k ∈ N : xi =
yi, 0 ≤ i ≤ k}, otherwise. For the sequence (ηn) of (2.1), we take ηn = q−n, for n ≥ 0.

The family of transformations S is here in bijection with the alphabet I: the transformation x → sx is
defined by x = (x0x1...) → sx = (sx0x1...).

Let u be a continuous function on E, with strictly positive values, satisfying the condition∑
n≥0

∑
k≥n

v(ln u, k) ≤ +∞,

and Pu be the operator defined by
Puf(x) =

∑
s∈S

u(sx)f(sx).

Let ρ be the biggest proper value of Pu and h the corresponding proper function (cf. Lem. 3.4). We set

w = ρ−1 h

h ◦ τ u.

This fonction w satisfies the regularity condition:
∑

n≥0 v(ln w, n) ≤ +∞.
Let P be the relativised Markovian operator defined by:

Pf(x) =
∑
s∈S

w(sx)f(sx).

The unique P -invariant probability measure ν on the Borel sets of E (Gibbs measure associated to the function u)
is τ -invariant and we have: ∫

E

Pf g dν =
∫

E

f g ◦ τ dν, ∀f, g ∈ L2(E, ν).
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The previous results can be applied to the corresponding dynamical system and a Φ-mixing property can be
shown as a consequence of Theorem 1.1.

One can ask if Theorem 1.1 can be applied to non uniformly expanding examples. In the last section, we
give an example to show how to adapt the arguments in the case of a non uniformly expanding transformation.

7. Non uniformly hyperbolic maps: An example

We consider the interval E = [0, 1[, equipped with the Borel σ-algebra B(E) and the Lebesgue measure m.
For a real x, we denote by [x] and {x} respectively the integral part and fractional part of x.

Let α ∈ [0, 1[. We consider the transformation τ of E defined by:

τ(x) =
{

x

(1− xα)1/α

}
·

The application τ has 0 as fixed “indifferent” point and is locally expanding at each other point where it is
continuous. For examples of the same type with indifferent fixed point, see [12, 17, 20] (see also two recent
papers [23] and [9] for polynomial estimates for the decay of correlations).

We denote by P the dual operator of the operator T of composition by τ :

∀f, g ∈ L
2(m),

∫ 1

0

f g ◦ τdm =
∫ 1

0

Pf gdm.

The measure m is P -invariant. Setting, for x ∈ E,

u(x) = (1− xα)1+
1
α , t(x) =

x

(1 + xα)1/α
and ∀k ∈ N, sk(x) = t(x + k),

we have:
∀f ∈ L

2(m), ∀x ∈ E, Pf(x) =
∑
k∈N

u(sk(x)) f(sk(x)).

For j ∈ N∗, we have tj(1) = 1
(1+j)1/α and the j-th-iterate of t is tj(x) = x

(1+jxα)1/α . For x ∈ E and k ∈ N we
set:

ηk(x) =
1

(2 + j ∨ k)1+ 1
α

, if x ∈ [tj(1), tj−1(1)[, j ≥ 1.

Lemma 7.1. For k ∈ N and (x, y) ∈ E2 such that |x − y| ≤ ηk(x), we have, for all ` ∈ N, |s`(x) − s`(y)| ≤
ηk+1(s`(x)).

Proof. Let x ∈ [ 1
(j+1)1/α ,

1
j1/α [ and y ∈ E such that |x− y| ≤ ηk(x).

− For ` ≥ 1, we have s`(x) ∈ [1/2
1
α , 1[ and ηk+1(s`(x)) = 1

(k+3)1+1/α .

|s`(x)− s`(y)| ≤ ηk(x)(
1 + (`+ x− ηk(x))α

)1+ 1
α

≤
[

1
(j ∨ k + 2)

(
1 + (`+ 1

(j+1)1/α − 1
(j∨k+2)1+1/α

)α)
]1+1/α

≤
[

1
2(j ∨ k + 2)

]1+1/α

≤ 1
(k + 3)1+1/α

·
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− For ` = 0, we have:

|t(x) − t(y)| ≤
[

1
(j ∨ k + 2)

(
1 + ( 1

(j+1)1/α − 1
(j∨k+2)1+1/α

)α)
]1+1/α

.

Since

(j ∨ k + 2)
(

1
(j + 1)1/α

− 1
(j ∨ k + 2)1+1/α

)α

≥ (j ∨ k + 2)
j + 1

(
1− 1

j ∨ k + 2

)α

≥ 1;

this implies |t(x)− t(y)| ≤ [ 1
j∨k+3

]1+1/α = ηk+1(t(x)).

Let f be a Borel function on E, x ∈ E and n ∈ N. We set:

Ṽ(f, x, n) = ‖f(x)− f(·)‖
L∞
(
B(x,ηn(x)),m

),
ṽ(f, n) =

∫ 1

0

Ṽ(f, x, n) dx.

We denote by V the subspace V = {f ∈ L1(E,m) : limn→+∞ ṽ(f, n) = 0}.

Theorem 7.2. The sequence (Pn1)n≥0 converges uniformly on compacts of ]0, 1] to a strictly positive, contin-
uous, P -invariant function h.

If f is in V , the sequence (Pnf)n≥0converges in L1(m)-norm to m(f) h.

Theorem 7.2 will result from the following lemmas.
We set

w(k) = sup
x∈E

sup
y∈B(x,ηk(x))

sup
n≥0

∣∣ lnu(sn(x)) − lnu(sn(y))
∣∣,

z(k) = ew(k) w(k).

Lemma 7.3. ∀k ∈ N, w(k) ≤ (α+ 1) k−2.

Proof. We set ψ = ln(u ◦ t). For all x ∈ E, we have:

ψ(x) = −
(

1 +
1
α

)
ln(1 + xα) and ψ′(x) = −(1 + α)

1
x+ x1−α

·

Hence, for k ∈ N and x, y ∈ E such that |x− y| ≤ ηk(x), we have

|ψ(x + n)− ψ(y + n)| ≤ (1 + α)
|x− y|

(x ∧ y)1−α
≤ (1 + α)

ηk(x)
(x − ηk(x))1−α

·

The lemma follows then from the inequality:

sup
x∈E

ηk(x)
(x− ηk(x))1−α

≤ 1
k2
·
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By the same proof as in Lemma 4.4, we have:

Lemma 7.4. If f is a function on E, we have:

ṽ(Pf, k) ≤ ez(k) ṽ(f, k + 1) + z(k) ‖f‖1, ∀k ≥ 0.

Lemma 7.5. For all k ∈ N, j ∈ N
∗ and f ∈ L∞([tj(1), 1[,m), we have

‖f‖
L∞([tj (1),1[,m)

≤ 2−1 (2 + j ∨ k)1+ 1
α (ṽ(f, k) + ‖f‖1).

Proof. Let y ∈ [tj(1), 1[, we have ηk(y) ≥ ηk(tj(1)); so that for m-almost all x ∈ [tj(1), 1[, we have:

1
B(x,ηk(tj (1)))

(y) |f(x)| ≤ 1
B(x,ηk(tj (1)))

(y)
(|f(x)| − |f(y)|)+ |f(y)|

≤ ‖f(·)− f(y)‖L∞(E,B(y,ηk(tj(1))),m) + |f(y)|
≤ Ṽ(f, y, k) + |f(y)|.

We obtain the result after integration.

Notation. For f ∈ V and k ∈ N, we set

δ(f, k) =
∫ tk+1(1)

0

|f(x)| dx+ c e
P

`≥0 z(`)
k∑

j=0

tk−j(1) e−
P

`≥j z(`) ṽ(f, j), (25)

where c = 3
2 (1 + 1/α)31/α.

Lemma 7.6.

δ(Pf, k) ≤ δ(f, k + 1) + c e
P

`≥0 z(`)

tk+1(1) +
k∑

j=0

tk−j(1) z(j)

 ‖f‖1.

Proof. We can assume f ≥ 0. The following inequalities hold:

∫ tk+1(1)

0

Pf(x) dx ≤
∑
n≥0

∫ tk+1(1)

0

u(t(x+ n))f(t(x + n)) dx

=
∫ tk+2(1)

0

f(x) dx+
∑
n≥1

∫ t(tk+1(1)+n)

t(n)

f(y) dy

≤
∫ tk+2(1)

0

f(x) dx+ ‖f‖L∞([t(1),1[,m)

∑
n≥1

(t(tk+1(1) + n)− t(n))

≤
∫ tk+2(1)

0

f(x) dx+ ‖f‖L∞([t(1),1[,m)t
k+1(1)

∑
n≥1

1
n1+α

≤
∫ tk+2(1)

0

f(x) dx+ c tk+1(1) (ṽ(f, 0) + ‖f‖1);
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k∑
j=0

tk−j(1) e−
P

`≥j z(`) ṽ(Pf, j) ≤
k∑

j=0

tk−j(1) e−
P

`≥j z(`)
(
ez(j)ṽ(f, j + 1) + z(j)‖f‖1

)
≤

k+1∑
j=1

tk+1−j(1) e−
P

`≥j z(`) ṽ(f, j) +
k∑

j=0

tk−j(1) z(j)‖f‖1.

The result follows.

Let g ∈ V . We choose a decreasing function ϕ from N to ]0,+∞[ such that

∑
k≥0

ϕ(k) = +∞ and
∑
k≥0

ϕ(k)

(
ṽ(g, k) +

∫ tk(1)

0

|g(x)| dx

)
< +∞.

We can replace ϕ(n) with ϕ(n) ∧ n−1, and assume that ϕ(n) ≤ n−1, so that the following series converges:

∑
k≥0

ϕ(k)
∑
j≥k

w(j) and
∑
k≥0

ϕ(k)δ(g, k).

We introduce the notations:

∀n ∈ N, |f |ϕ,n =
∑
k≥0

ϕ(k)
(
ṽ(f, k + n) + δ(f, k + n)

)
,

|f |ϕ = |f |ϕ,0 =
∑
k≥0

ϕ(k)
(
ṽ(f, k) + δ(f, k)

)
.

Let B̃ϕ be the subspace of L1(E, ν) defined by B̃ϕ = {f ∈ L1(E, ν) : |f |ϕ < +∞}. The following three lemmas
show that

(
P, B̃ϕ, ‖ ‖1, (| |ϕ,n)n≥0

)
satisfies the hypotheses of Theorem 1.1.

Lemma 7.7. The unit ball B1 = {f ∈ B̃ϕ : |f |ϕ + ‖f‖1 ≤ 1} is compact in (B̃ϕ, ‖ ‖1).

Proof. We adapt the proof of Lemma 4.4 to the non uniformly hyperbolic example.
For each integer k ≥ 1, consider a finite open covering of the compact set Kk = [tk(1), 1]

Kk =
⋃

1≤j≤pk

B
(
xj,k, ηk(xj,k)

)
.

Let
(
ψj,k

)
1≤j≤pk

be a partition of unity subordinate to this covering (i.e. the functions ψj,k, k ≥ 0, 1 ≤ j ≤ pk,
are non-negative continuous and satisfy

∀x ∈ Kk,
k∑

j=1

ψj,k(x) = 1 and ∀x /∈ B(xj,k, ηk(xj,k)
)
, ψj,k(x) = 0.
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Let (fn)n≥0 be a sequence of functions in B1. By Lemma 7.5, we may assume that these functions are bounded
on Kk by 2−1(1 + k)1+

1
α

(
(ϕ(0))−1 + 1

)
. For all integers k, n and p, we have:

‖fn+p − fn‖L1(Kk,m) =
pk∑

j=1

∫
Kk

ψj,k |fn+p − fn| dm

≤
pk∑

j=1

(∫
Kk

ψj,k |fn+p − fn+p(xj,k)| dm+
∫

Kk

ψj,k |fn − fn(xj,k)| dm

+
∫

Kk

ψj,k dm |fn+p(xj,k)− fn(xj,k)|
)

≤
pk∑

j=1

(∫
Kk

ψj,k Ṽ(fn+p, ·, k) dm+
∫

Kk

ψj,k Ṽ(fn, ·, k) dm

+
∫

Kk

ψj,k dm |fn+p(xj,k)− fn(xj,k)|
)

≤ ṽ(fn+p, k) + ṽ(fn, k) +
pk∑

j=1

∫
Kk

ψj,k dm |fn+p(xj,k)− fn(xj,k)|

≤ 2

 k∑
j=0

ϕ(j)

−1

+
pk∑

j=1

∫
Kk

ψj,k dm |fn+p(xj,k)− fn(xj,k)|.

As

‖fn+p − fn‖L1(Kc
k,m) ≤

∫ tk(1)

0

|fn+p| dm+
∫ tk(1)

0

|fn| dm ≤ 2

 k∑
j=0

ϕ(j)

−1

,

we have

‖fn+p − fn‖1 ≤ 4

 k∑
j=0

ϕ(j)

−1

+
pk∑

j=1

∫
Kk

ψj,k dm |fn+p(xj,k)− fn(xj,k)|.

If
(
σ(n)

)
n≥0

is a strictly increasing sequence of integers such that the real sequences
(
fσ(n)(xj,k)

)
n≥0

converge,
for every k ≥ 0 and j ∈ [1, pk], then the sequence of functions (fσ(n))n≥0 is a Cauchy sequence in L1(E,m).

This shows that the set B1 is relatively compact in L1(E,m). It remains to show that B1 is closed.
Let (fn)n≥0 be a sequence of functions in B1 which converges in L1(E,m) to a function f . Taking if necessary

a subsequence, we can assume that the sequence (fn)n≥0 converges m-a.e. to f . From Egorov’s theorem, there
exists an increasing sequence (Ep)p≥0 of the Borel sets of E such that

lim
p→+∞m(Ep) = 1 and ∀p ≥ 0, lim

n→+∞ ‖fn − f‖
L∞
(
Ep,m

) = 0.

For all integers k, p ≥ 0, we have then:∫
Ep

‖f(x)− f(·)‖
L∞
(

B
(
x,ηk(x)

)
∩Ep,m

) dx = lim
n→+∞

∫
Ep

‖fn(x)− fn(·)‖
L∞
(

B
(
x,ηk(x)

)
∩Ep,m

) dx

≤ lim sup
n→+∞

∫
Ep

‖fn(x)− fn(·)‖
L∞
(

B
(
x,ηk(x)

)
,m

) dx.

From this, we easily deduce that |f |ϕ ≤ supn≥0 |fn|ϕ ≤ 1.
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From Lemmas 7.4 and 7.6, it follows:

Lemma 7.8. We have |Pf |ϕ,k ≤ ez(k)|f |ϕ,k+1 + ak‖f‖1 , where

ak =
∑
j≥0

ϕ(j)
(
z(k + j) + C e

P
`≥0 z(`)(tk+j(1) +

k+j∑
`=0

tk+j−`(1) z(`)
)
.

Lemma 7.9. For all f ∈ B̃ϕ, lim
n→+∞ |f |ϕ,n = 0.

Proof. From the definition (25), we have for some constantC: δ(f, k) ≤ ∫ tk+1(1)

0
|f(x)| dx+C ∑k

j=0 t
k−j(1) ṽ(f, j),

so that it is enough to show that limn→+∞
∑

k≥0 ϕ(k)u(n+ k) = 0, where u(n) =
∑n

j=0(n− j + 1)−1/αṽ(f, j).
We have:

u(k + n) ≤
[ n+k

2 ]∑
j=0

ṽ(f, j)
([

n+ k

2

]
+ 1
)−1/α

+ ṽ

(
f,

[
n+ k

2

])∑
k≥1

k−1/α

≤ sup
p≥[ n

2 ]

p−1

p∑
j=0

ṽ(f, j)

 ([
n+ k

2

]
+ 1
)1−(1/α)

+ ṽ

(
f,

[
n+ k

2

]
+ 1
)∑

k≥1

k−1/α.

The result follows then from the inequality:

∑
k≥0

ϕ(k) ṽ
(
f,

[
n+ k

2

])
=

∑
k≥0

ϕ(2k) ṽ
(
f,
[n
2

]
+ k
)

+
∑
k≥0

ϕ(2k + 1) ṽ
(
f,

[
n+ 1

2

]
+ k

)
≤ 2

∑
k≥0

ϕ(k) ṽ
(
f,
[n
2

]
+ k
)

and from the analogous inequality for
∑

k≥0 ϕ(k) ([n+k
2 ] + 1)1−(1/α).

Now we know that
(
P, B̃ϕ, ‖ ‖1, (| |ϕ,n)n≥0

)
satisfies the hypotheses of Theorem 1.1. From this theorem, it

follows that:
1) the subspace W1 of B̃ϕ generated by the eigenvectors of P corresponding to eigenvalues of modulus 1 is

finite dimensional;
2) we have B = W1 ⊕W2, where W2 = {f ∈ B : lim

n→+∞ ‖Pnf‖1 = 0};
3) if λ is a complex number of modulus 1 and f is in B, the sequence(

f + λ−1Pf + ·+ λ−(n−1)Pn−1f

n

)
n≥1

converges in L1(m)-norm either to zero or to a λ-eigenvector of P .

Lemma 7.10. The sequence of continuous functions (Pn1)n≥0 converges uniformly on compact sets of ]0, 1] to
a continuous, strictly positive and P -invariant function h.

Proof. We know that the sequence
(

1+P1+·+P n−11
n

)
n≥1

converges in L1(m)-norm to a non negative P -invariant
function.
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We know also (cf. (17), proof of Lem. 3.4), that if f is a non negative function and k ∈ N, we have:
v(lnPf, k) ≤ v(ln f, k + 1) + w(k). It follows that, for n ∈ N, v(lnPn1, k) ≤ ∑

j≥k w(j) and the family of
functions {Pn1 : n ≥ 0} is equicontinous. From Lemma 7.5, this family is also bounded on the compact subsets
of ]0, 1]. By Ascoli’s theorem {Pn1 : n ≥ 0} is therefore relatively compact for the uniform convergence on
compact sets of ]0, 1].

These properties imply that the sequence of continuous functions (Pn1)n≥0 converges uniformly on compact
sets of ]0, 1] to a continuous, non negative, P -invariant function h satisfying

∫ 1

0 h(x)dx = 1.
If h(x0) = 0 for some x0 ∈]0, 1] then h(sj1 · · · sjp(x0)) = 0 for all p ≥ 1 and all (j1, . . . , jp) ∈ Np. From the

density of the subset {sj1 · · · sjp(x0) : p ≥ 1, (j1, . . . , jp) ∈ Np} in ]0, 1], it follows that h is the nullfunction on
]0, 1] contradicting the fact that

∫ 1

0
h(x)dx = 1.

To conclude the proof of Theorem 7.2, we have to show that the dimension of W1 is one.

Lemma 7.11. W1 = Ch

Proof. 1) Let g ∈ B̃ϕ be a real P -invariant function. Due to the P -invariance of the measure m, the functions
g+ and g− are also P -invariant so that we can assume that g is non negative.

For all positive reals a, the function g ∧ ah is also P -invariant and ga = g∧ah
h is hP -invariant, where hP is

the relativised operator defined by hP = 1
hP (hf). We have, for r ∈ N∗,

∫ 1

0

∫ 1

0

(
ga(x)− ga(u)

)2hP r(u, dx)h(u) du =
∫

E

(
hP r(g2

a) + g2
a − 2ga

hP rga

)
hdm

=
∫

E

(
hP r(g2

a)− g2
a

)
h dm = 0.

It follows that, for all r ≥ 1 and all (j1, . . . , jr) ∈ Np, ga(sj1 · · · sjr (u)) = ga(u), for m-almost all u ∈ E.
As g belongs to B̃ϕ, the function C(x) =

∑
k≥0 ϕ(k)‖g(x) − g‖L∞(B(x,ηk(x)) is m-integrable and therefore

m-almost everywhere finite. For all n ≥ 0 and x ∈]0, 1] such that C(x) < +∞, we have:

‖g(x)− g‖L∞(B(x,ηn(x)) ≤ C(x)∑n
k=0 ϕ(k)

−→
n→+∞ 0.

Let x ∈ {C < +∞}. Choose a sequence of natural integers (jk)k≥1 such that, for every u ∈]0, 1], sj1 · · · sjn(u) →
x. For m-almost all u ∈]0, 1], we have g(sj1 · · · sjn(u)) → g(x) and therefore ga(sj1 · · · sjn(u)) = ga(u) → ga(x),
so that ga is m-a.e. constant.

For every a > 0, g ∧ ah belongs to Ch and therefore g belongs to Ch.

2) Let g ∈ B̃ϕ such that Pg = λg, for an eigenvalue λ of modulus 1. The function |g| is P -invariant. From 1) it
follows that g takes its values in C∗ and the function f = g

|g| is a hP -eigenfunction corresponding the eigenvalue
λ. As before we have, for r ≥ 1,∫ 1

0

∫ 1

0

∣∣f(x) − λr f(u)
∣∣2 hP r(u, dx) h(u) du = 0

and for m-almost all u ∈ E, f(sj1 · · · sjr (u)) = λr f(u), for all r ≥ 1 and all (j1, . . . , jr) ∈ Np. The same
argument as before shows that f is m-a.e. constant.
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Remark. Let f be ∈ W2 such that ṽ(f, n) +
∫ tn(1)

0 |f(x)| dx = O(n−a), for some a > 0. Using an inequality
similar to the inequality (1) of Theorem 1.1 and the fact that, for all a > 0, there exists C > 0 such that:

n∑
j=0

(j + 1)−a (n+ 1− j)−1/α ≤ C (n+ 1)−(a∧(1/α)),

we get, for every ε > 0:
‖Pnf‖1 = o

(
n−(a∧2∧ 1

α )+ε
)
.
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