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POSITIVITY OF THE DENSITY FOR THE STOCHASTIC WAVE EQUATION
IN TWO SPATIAL DIMENSIONS ∗, ∗∗

Mireille Chaleyat–Maurel1 and Marta Sanz–Solé1, 2

Abstract. We consider the random vector u(t, x) = (u(t, x1), . . . , u(t, xd)), where t > 0, x1, . . . , xd

are distinct points of R2 and u denotes the stochastic process solution to a stochastic wave equation
driven by a noise white in time and correlated in space. In a recent paper by Millet and Sanz–Solé [10],
sufficient conditions are given ensuring existence and smoothness of density for u(t, x). We study here
the positivity of such density. Using techniques developped in [1] (see also [9]) based on Analysis on
an abstract Wiener space, we characterize the set of points y ∈ R

d where the density is positive and
we prove that, under suitable assumptions, this set is Rd .
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1. Introduction

Consider the stochastic wave equation with two-dimensional spatial variable(
∂2

∂t2
−∆

)
u(t, x) = σ

(
u(t, x)

)
F (dt, dx) + b

(
u(t, x)

)
,

u(0, x) = u0(x), (1.1)
∂u

∂t
(0, x) = v0(x)

(t, x) ∈ [0,∞[×R
2.

The coefficients σ and b are C∞ functions with bounded derivatives of any order i ≥ 1. The noise F (t, x)
is supposed to be a martingale measure (in the sense given by Walsh in [16]) obtained as the extension of a
centered Gaussian field {F (ϕ), ϕ ∈ D(R+ × R

2)} with covariance

E
(
F (ϕ) F (ψ)

)
=
∫

R+

dt
∫

R2
dx
∫

R2
dy ϕ(t, x) f(|x− y|) ψ(t, y). (1.2)
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Assume that f : R+ → R+ is continuous on ]0,∞[. Moreover, we suppose that the measure Γ(dx) = f(x)dx
on R

2 is a nonnegative tempered distribution. The initial conditions u0, v0, are real functions satisfying some
conditions that will be determined later.

We give a meaning to the formal expression (1.2) using its mild formulation, as follows. Let H be the
completion of the inner-product space of measurable functions ϕ : R

2 → R such that
∫

R2 dx
∫

R2 dy |ϕ(x)| f(|x−
y|) |ϕ(y)| < ∞, endowed with the inner product 〈ϕ, ψ〉H :=

∫
R2 dx

∫
R2 dy ϕ(x) f(|x − y|)ψ(y). Denote by

{ej, j ≥ 0} a CONS of functions of H. Then {Wj(t) =
∫ t

0

∫
R2 ej(x) F (ds, dx), j ≥ 0} is a sequence of

independent standard Brownian motions.
Let S(t, x), (t, x) ∈ [0,∞[×R

2, be the fundamental solution of
(

∂2

∂t2 −∆
)
g = 0. That is,

S(t, x) =
1
2π
(
t2 − |x|2

)−1/2 1{|x|<t}.

Set

X0(t, x) =
∫

R2
S(t, x− y) v0(y) dy +

∂

∂t

(∫
R2
S(t, x− y) u0(y) dy

)
.

By a solution of equation (1.2) we mean a stochastic process {u(t, x), (t, x) ∈ R+ × R
2} satisfying

u(t, x) = X0(t, x) +
∑
j≥0

∫ t

0

〈
S(t− s, x− ∗) σ(u(s, ∗)), ej(∗)

〉
H Wj(ds)

+
∫ t

0

∫
R2
S(t− s, x− y) b

(
u(s, y)

)
ds dy.

(1.3)

In [10] we studied the existence and uniqueness of solution of (1.3) (see also [4]). We also addressed the
smoothness of u(t, x), at a fixed point (t, x) ∈ R+ × R

2, in the sense of Malliavin Calculus, and the existence
and smoothness of density for the probability law on R

d of

u(t, x) :=
(
u(t, x1), . . . , u(t, xd)

)
,

with t > 0 and x1, . . . , xd distinct points of R
2.

This last result has been obtained under the following set of assumptions

(i) there exist a1 ≥ a2 > 0 such that 2(1 + a2)(a1 − a2) < a2 ≤ a1 < 2, positive constants C1 and C2 such
that for t ∈ [0, T ],

C1t
a1 ≤

∫ t

0

y f(y) `n
(

1 +
t

y

)
dy ≤ C2t

a2 ;

(ii) u0 : R
2 → R is of class C1, bounded, with a2/2(1 + a2)-Hölder continuous partial derivatives, v0 : R

2 → R

and there exists q0 ∈]4,+∞] such that |v0|+ |∇u0| ∈ Lq0(R2);
(iii) σ and b are C∞ with bounded derivatives of any order i ≥ 1;
(iv) there exists a > 0 such that

∣∣σ(u(t, xj))| ≥ a, for any j = 1, . . . , d, a.s.

These conditions are satisfied for instance by the function f(x) = x−α, 0 < α < 2, with a1 = a2 = 2− α.
In Millet and Morien in [8] there is a slight improvement of the previous result. These authors show that in

the above-quoted set of hypothesis, assumptions (i) and (ii) can be replaced by the weaker ones:

(i’) there exist 0 < a2 ≤ a1 < 2 such that 2(a1 − a2) < a2 ∧ 1, positive constant C1 such that for t ∈ [0, T ],

C1t
a1 ≤

∫ t

0

yf(y) `n
(

1 +
t

y

)
dy (1.4)
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and ∫
0+
y1−a2f(y) dy <∞; (1.5)

(ii’) u0 : R
2 → R is of class C1, bounded, with 1

2 (a2 ∧ 1)-Hölder continuous partial derivatives, ∇u0 ∈ Lq1(R2)
for some q1 > 2; v0 : R

2 → R belongs to Lq0(R2) for some q0 ∈
[
4 ∨ 2

1−(a2∧1) ,∞
]
.

Recently, in [6] a related problem has been studied. The results apply in particular to equations like (1.2) driven
by a centered Gaussian noise with covariance given by

E
(
F (ϕ) F (ψ)

)
=
∫

R+

dt
∫

R2
Γ(dx)

(
ϕ(s, .) ∗ ψ̃(s, .)

)
(x), (1.6)

where Γ is a non-negative, non-negative definite tempered measure, the symbol ∗ means the convolution and
ψ̃(s, x) = ψ(s,−x). Notice that if Γ(dx) = f(|x|)dx then (1.6) reduces to (1.2). It is proved that for d = 1 the
following set of assumptions yield the existence and smoothness of density for the law of u(t, x), with t > 0 and
x ∈ R

2: the preceding condition (iii)
(iv’) there exists C > 0 such that inf{|σ(z)|, z ∈ R} ≥ C;
(v) there exists η ∈ (0, 3

4 ) such that

∫
R2

µ(dξ)
(1 + |ξ|2)η

<∞, (1.7)

where µ is the spectral measure of Γ.
In the particular case Γ(dx) = f(|x|)dx the above condition (1.7) implies property (1.5) of (i’) with a2 =
2(1− η) ∈ (1

2 , 2) (see for instance [5, 15]).
Denote by pt,x(y) the density of u(t, x) at y ∈ R

d. The purpose of this paper is to prove the next statement.

Theorem 1. Assume that the conditions (i’, ii’, iii) and (iv’) hold. Suppose in addition that the functional

J(ϕ, ψ) =
∫

R2
dx
∫

R2
dy ϕ(x) f(|x− y|) ψ(y), ϕ, ψ ∈ D(R2), (1.8)

is positive. Then, for any y ∈ R
d, pt,x(y) is stricly positive.

In the remaining of this section we give a brief description of the method we have used to approach this
problem.

Let T > 0 be fixed. The reproducing kernel Hilbert space of the Gaussian process {(Wj(t))j≥0, t ∈ [0, T ]}
is the set HT of functions h : [0, T ] → R

N such that
∑

j≥0

∫ T

0
|hj(s)|2 ds < ∞. For any h ∈ HT , let

{Φh(t, x), (t, x) ∈ [0, T ]× R
2} be the solution of

Φh(t, x) = X0(t, x) +
∑
j≥0

∫ t

0

〈
S(t− s, x− ∗) σ

(
Φh(s, ∗)

)
, ej(∗)

〉
H hj(s) ds

+
∫ t

0

∫
R2
S(t− s, x− y) b

(
Φh(s, y)

)
ds dy.

(1.9)

This process is called the skeleton of {u(t, x), (t, x) ∈ [0, T ] × R
2}. The function h ∈ HT → Φh(t, x) ∈ R is

Fréchet differentiable (see the Appendix). Set Φh(t, x) = (Φh(t, x1), . . . ,Φh(t, xd)). Denote by γΦh(t,x) the d×d
matrix whose entries are

〈
D̄Φh(t, xi), D̄Φh(t, xj)

〉
HT
, i, j = 1, . . . , d, where D̄ means the Fréchet derivative

operator. It is called the deterministic Malliavin matrix.
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Then we proceed in two steps:

Step 1. Assume (i’, ii’, iii) and (iv). We prove the equivalence between the next two properties on y ∈ R
d: (a)

pt,x(y) > 0 and (b) there exists h ∈ HT such that Φh(t, x) = y and det γΦh(t,x) > 0.

Step 2. Suppose (i’, ii’, iii) and (iv’). Then, if the functional J(ϕ, ψ) defined in (1.8) is positive, any y ∈ R
d

satisfies (b).

For diffusion processes satisfying some non-degeneracy requirements the equivalence between the analogue of
properties (a, b) above has been proved in [3].

A characterization of the points of positive density, analogous to the equivalence between (a) and (b), for
functionals defined in an abstract Wiener space has been developed in [1] and then applied to diffusions.

A similar general setting, more close to the ideas of [3], has been presented in [14]. These abstract formulations
allow to analyze many interesting examples in the infinite dimensional case, like solutions of stochastic partial
differential equations (see, for instance [2, 9]).

We achieve the goal quoted in Step 1 proving first a weaker (localized) version of the criterium given in [14].
Step 2 requires to solve an inverse problem and also requires a careful analysis of the matrix γΦh(t,x). The
positivity of the functional J(ϕ, ψ) is used in the study of the first question, the second one is carried out by
exploiting assumption (i’).

The programme of the paper is as follows. In Section 2 we precise the tools used in the above-mentioned
Step 1. For the proof of (b) ⇒ (a) we use Proposition 4.2.2 in [14]. The proof of (a) ⇒ (b) needs the weaker
version of Proposition 4.2.1 in [14] stated as Proposition 2. Section 3 is devoted to complete Step 1. We give an
approximation result on a class of evolution equations which includes (1.3) and (1.9). This ensures the validity
of the hypothesis needed to apply the criterium established in Section 2; but it has its own interest. Finally, we
devote Section 4 to the proof of Step 2.

2. Points of positive density of functionals defined
on an abstract Wiener space

We devote this section to set up the method of the proof of the first step of Theorem 1 in Section 1. We
follow the approach of [14]; however some modifications are needed.

For the sake of understanding we start by giving some basic notions and facts on Malliavin Calculus and
refer the reader to [13, 14] for a complete presentation of this topic.

Let (Ω, H, P ) be an abstract Wiener space. For any h ∈ H we denote be W (h) the Itô–Wiener integral.
Let S be the class of cylindrical Wiener functionals, that is, the set of random vectors of the form

F = f
(
W (h1), . . . ,W (hn)

)
, (2.1)

with f ∈ C∞b (Rn), h1, . . . , hn ∈ H . For F as in (2.1) the Malliavin derivative is the H-valued random variable
defined by

DF =
n∑

i=1

∂f

∂xi

(
W (h1), . . . ,W (hn)

)
hi.

For any integer k ≥ 1 and any real number p ∈ [1,∞) we define D
k,p as the completion of S with respect to the

norm

‖F‖k,p =


E(|F |p)+

k∑
j=1

E
(
‖DjF‖p

H⊗j

)
1/p

.

Suppose that F = (F 1, . . . , F d) is a random vector whose components belong to D
1,2. The Malliavin matrix of

F is the d× d matrix with entries
〈
DF i, DF j

〉
H
, i, j = 1, . . . , d; it is denoted by γF .
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Set D
∞ = ∩k,p D

k,p. A random vector F is nondegenerate if F ∈ D
∞(Rd), that means, all the components

of F belong to D
∞, and moreover det(γF )−1 > 0. It is well-known that the law of a nondegenerate random

vector has a C∞ density with respect to the Lebesgue measure.
Let Φ : H → R

d be Fréchet differentiable. By analogy with the random case we define γΦ(h) as the matrix
with entries

〈
D̄Φi(h), D̄Φj(h)

〉
H
, i, j = 1, . . . , d; it is called (after Bismut) the deterministic Malliavin matrix.

For any y ∈ R
d we consider the following properties:

(A) the density p of the random vector F is strictly positive at y;
(B) there exists h ∈ H with Φ(h) = y and det γΦ(h) > 0.

For elements h1, . . . , hd ∈ H, z ∈ R
d, set h = (h1, . . . , hd) and define

(
Tz W

)
(h) = W (h) +

d∑
j=1

zj

〈
h, hj

〉
H
, h ∈ H.

Moreover, for p ∈ [1,∞), k ≥ 0, set

Rh,k,p F =
∫
{|z|≤1}

∥∥(DkF ) (TzW )
∥∥p

H⊗k dz.

We next quote Proposition 4.2.2 of [14].

Proposition 1. Let F be a nondegenerate random vector, Φ : H → R
d be a Fréchet continuously differentiable

mapping. Fix h ∈ H and assume that there exists a sequence of measurable, absolutely continuous transforma-
tions T h

n : Ω → Ω, n ≥ 0, such that, for every ε > 0, k = 0, 1, 2, 3 and some p > d,

lim
n→∞P

{
|F ◦ T h

n − Φ(h)| > ε
}

= 0, (2.2)

lim
n→∞P

{
‖(DF ) ◦ T h

n − (D̄Φ)(h)‖H > ε
}

= 0, (2.3)

lim
M→∞

sup
n

P
{(
RD̄Φ(h), k,p F

)
◦ T h

n > M
}

= 0. (2.4)

Then (B) implies (A).
In order to set up the conditions ensuring (A) ⇒ (B) we need a localized version of Proposition 4.2.1

in [14]. In fact, the Wiener functional u(t, x) does not satisfy the convergence assumption needed to apply this
proposition. A particular localization on Ω is required. This leads to a convergence in probability on D

∞(Rd).
Let (Hn)n≥1 be an increasing sequence of finite dimensional subspaces of H such that ∪n≥1Hn is dense in

H . Let Wn : Ω → Hn be a sequence of random variables belonging to D
∞. We introduce a localizing sequence,

as follows. Let

Aγ
n =

{
ω : ‖Wn(ω)‖2

H ≤ γ C(n)
}
, n ∈ N, γ ∈ (0,∞),

where {C(n), n ≥ 1} is an increasing sequence such that

lim
n→∞P

((
Aγ0

n

)c) = 0,

for some γ0 > 0.
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Let Ψγ : R+ → [0, 1] be a C∞ function with bounded derivatives of any order, such that

Ψγ(x) =

{
1, if x < γ

0, if x > 2γ.
(2.5)

Set Gγ,n(ω) = Ψγ
(‖W n(ω)‖2H

C(n)

)
. Notice that

l1Aγ
n
≤ Gγ,n ≤ l1A2γ

n
. (2.6)

Assume that Gγ,n ∈ D
∞ uniformly in n. That means, for all integer k ≥ 1 and p ∈ [1,∞),

sup
n≥1

‖Gγ,n‖k,p < +∞. (2.7)

Proposition 2. Let F : Ω → R
d be a nondegenerate random vector, Φ : H → R

d be infinitely Fréchet differen-
tiable such that
(H1) Φ(Wn) ∈ D

∞(Rd), for any n ≥ 1, and

lim
n→∞E

(
‖Dk

(
Φ(Wn)− F

)
‖p

H⊗k
T

l1Aγ
n

)
= 0,

for any k ≥ 1, p ∈ [1,∞), γ ≥ γ0.
Then, for each y ∈ R

d, (A) implies (B).

Proof. The arguments are similar to those of Proposition 4.2.1 [14] (see also [3] and [1]) with an additional
ingredient of localization.

Let f be any continuous positive function with compact support [a0, b0] containing y; then

c := E
(
f(F )

)
> 0.

Fix γ ≥ γ0, ε ∈ ]0, c[; let n0 ∈ N be such that P

(
(Aγ

n)c
)
< ε

‖f‖∞ for any n ≥ n0. Then, 0 < E
(
f(F )

)
≤

E

(
f(F ) l1Aγ

n

)
+ε and consequently, E

(
f(F ) l1Aγ

n

)
> 0, for any n ≥ n0. Therefore (2.6) implies that E

(
f(F ) Gγ,n

)
> 0 for γ > γ0, n ≥ n0.

For every M ≥ 1, let αM ∈ C∞b (R) be such that 0 ≤ αM ≤ 1, αM (x) = 0 if |x| ≤ 1
M and αM (x) =

1 if |x| ≥ 2
M . Since F is nondegenerate we have that limM→+∞ αM (det γF ) = 1, a.s. Consequently,

0 < E

(
f(F )Gγ,n

)
= limM→+∞ E

(
f(F ) Gγ,n αM (det γF )

)
and there exists a positive integer M such that

E

(
f(F ) Gγ,nαM (det γF )) > 0.
We want to prove that for γ ≥ γ0

lim
n→+∞

∣∣∣E((f(F )αM (det γF )− f
(
Φ(Wn)αM (det γΦ(W n))

)
Gγ,n

)∣∣∣ = 0. (2.8)

This will imply the existence of a positive integer n0 such that

E

(
f
(
Φ(Wn)

)
Gγ,nαM (det γΦ(W n))

)
> 0, (2.9)

for any n ≥ n0. Let f̄(x1, . . . , xd) =
∫ x1

a0
1
· · ·
∫ xd

a0
d
f(u1, . . . , ud) du1 . . .dud, a0 = (a0

1, . . . , a
0
d).
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The integration by parts formula of the Malliavin Calculus implies that

Tn := E

[(
f(F )αM (det γF )− f(Φ(Wn))αM (det γΦ(W n))

)
Gγ,n

]
= E

[
f̄(F )H{1,...,d}

(
F,Gγ,nαM (det γF )

)
− f̄

(
Φ(Wn)

)
H{1,...,d}

(
Φ(Wn), Gγ,nαM (det γΦ(W n))

)]
,

where, for any multiindex α = (α1, . . . , αk) ∈ {1, . . . , d}k, Hα are random variables defined recursively as
follows. If U is a nondegenerate functional and V ∈ D

∞ then H{i}(U, V ) =
∑d

j=1 δ
(
V (γ−1

U )ijDU j
)

and

Hα(U, V ) = H{αk}
(
U,H{α1,...,αk−1}(U, V )

)
, where δ is the adjoint operator ofD which is, asD, a local operator.

δ is also called the Skorohod integral.
Since Gγ,n = 0 on (A2γ

n )c,

H{1,...,d}
(
F,Gγ,nαM (det γF )

)
= l1A2γ

n
H{1,...,d}

(
F,Gγ,nαM (det γF )

)
and

H{1,...,d}
(
Φ(Wn), Gγ,nαM (det γΦ(W n))

)
= l1A2γ

n
H{1,...,d}

(
Φ(Wn), Gγ,nαM (det γΦ(W n))

)
.

Consequently |Tn| ≤ T 1
n + T 2

n with

T 1
n =

∣∣∣E((f̄(F )− f̄(Φ(Wn))
)

l1A2γ
n
H{1,...,d}

(
F,Gγ,nαM (det γF )

))∣∣∣
and

T 2
n =

∣∣∣E(f̄(Φ(Wn))
)

l1A2γ
n

[
H{1,...,d}

(
F,Gγ,nαM (det γF )

)
−H{1,...,d}

(
Φ(Wn), Gγ,nαM (det γΦ(W n))

)]∣∣∣.
Let us first check that limn→+∞ T 1

n = 0. Indeed, T 1
n ≤ T 1,1

n × T 1,2
n where

T 1,1
n =

(
E
(
|f̄(F )− f̄(Φ(Wn))|p l1A2γ

n

))1/p

T 1,2
n =

∥∥∥H{1,...,d}
(
F,Gγ,n αM (det γF )

)∥∥∥
Lq(Ω)

with 1
p + 1

q = 1.
Assumption (H1) implies that

lim
n
T 1,1

n ≤ ‖f‖∞ lim
n→+∞

(
E
(
|F − Φ(Wn)|p l1A2γ

n

))1/p

= 0.

Moreover, supn T 1,2
n < +∞. Indeed, Proposition 3.2.2 in [14] yields:

T 1,2
n ≤ C(q, d)

(
|γ−1

F |ak ‖F‖a′
b,c ‖Gγ,nαM (det γF )‖a′′

b′,c′

)
,

for some positive real numbers k, a, c, a′, c′, a′′ > 1 and positive integers b, b′.



96 M. CHALEYAT–MAUREL AND M. SANZ–SOLÉ

The properties on Gγ,n imply that supn T
1,2
n < +∞. We now prove that limn→+∞ T 2

n = 0. For any p > 1,

T 2
n ≤ ‖f̄‖∞ E

∣∣∣ l1A2γ
n

[
H{1,...,d}

(
F,Gγ,nαM (det γF )

)
−H{1,...,d}

(
Φ(Wn), Gγ,nαM (det γΦ(W n))

)]∣∣∣.
The Lp-inequalities for the Skorohod integral yield

T 2
n ≤ C(d)‖f̄‖∞ E

∣∣∣ l1A2γ
n

(∥∥F − Φ(Wn)
∥∥

e,r
+
∥∥Gγ,n(αM (det γF )

)
− αM (det γΦ(W n))

∥∥
e′,r′

)∣∣∣,
for some r, r′ > 1, e, e′ ∈ N (see [12] for the one dimensional case).

Thus limn→∞ T 2
n = 0. This finishes the proof of (2.8) and therefore that of (2.9).

Next we consider a function βK : R → [0, 1], C∞, such that βK(x) = 1 if |x| ≤ K and βK(x) = 0 if |x| ≤ K+1.
Since ‖Wn‖2

H is finite a.s., it is clear that for any fixed n ≥ 1, βK(‖Wn‖2
H) converges to 1 a.s. as K →∞.

Notice that since the functions f and αM are positive and the random variable Gγ,n is positive and bounded
by 1, the inequality (2.9) implies that for any n ≥ n0,

E

(
f
(
Φ(Wn)

)
αM (det γΦ(W n))

)
> 0. (2.10)

Thus, for any fixed n ≥ n0 there exists K0(n) such that for any K ≥ K0(n),

E

(
f
(
Φ(Wn)

)
αM (det γΦ(W n))βK(‖Wn‖2

H)
)
> 0. (2.11)

This yields, for any K ≥ K0(n) and any ε > 0

P

(∣∣Φ(Wn)− y
∣∣ < ε,

∣∣ det γΦ(W n)

∣∣ ≥ 1
M
, ‖Wn‖2

H ≤ K + 1
)
> 0. (2.12)

Indeed, otherwise, if for some K ≥ K0(n) and some ε > 0

P

(∣∣Φ(Wn)− y
∣∣ < ε,

∣∣ det γΦ(W n)

∣∣ ≥ 1
M
, ‖Wn‖2

H ≤ K + 1
)

= 0, (2.13)

one could find a function f bounded, positive and continuous such that y ∈ supp f and

E

(
f
(
Φ(Wn)

)
αM

(
det γΦ(W n)

)
βK(‖Wn‖2

H)
)

= 0, (2.14)

because l1{|det γΦ(W n)|≥ 1
M } ≥ αM

(
det γΦ(W n)

)
and l1{‖W n‖2H≤K+1} ≥ βK(‖Wn‖2

H). This contradicts (2.11). Let
k̄ = K0(n) + 1. Then from (2.12) we can find a sequence of elements hm ∈ Hn such that for any m ≥ 1,∣∣Φ(hm)− y

∣∣ < 1
m , ‖hm

∥∥2

H
≤ k̄ and | det γΦ(hm)| ≥ 1

M .
The compactness of bounded and closed sets in Hn implies that we can select a subsequence converging to

some element h ∈ H which verifies Φ(h) = y and | det γΦ(h)| > 0. That means (B) holds. �
In this article we shall apply the preceding results to the following particular case. Fix any T > 0. Consider

a sequence {Wj(t), t ∈ [0, T ]}, j ≥ 0, of standard Wiener processes and let (Ω, HT , P ) be the associated Wiener
space. That means Ω = C([0, T ]; R

N), HT is the Hilbert space L2([0, T ]; R
N) and P is the Wiener measure

on Ω. The random vector F will be u(t, x) = (u(t, x1), . . . , u(t, xd)), the solution to the wave equation (1.3)
at different points (t, x1), . . . , (t, xd) of [0, T ]× R

2. The functional Φ : H → R
d will be the skeleton Φh(t, x) =

(Φh(t, x1), . . . ,Φh(t, xd)) defined in (1.9).
Let us precise which are the sequences (T h

n )n≥0 and (Wn)n≥0 in the above Propositions 1 and 2.
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For any fixed n ∈ N we denote by ∆i the interval
[

iT
2n ,

(i+1)T )
2n

)
and write Wj(∆i) for the increment

Wj

( (i+1)T
2n

)
−Wj

(
iT
2n

)
.

Let Wn =
(
Wn

j =
∫ ·
0 Ẇ

n
j (s) ds, j ∈ N

)
be as in [11], that is, Ẇn

j = 0 if j > n and, for 0 ≤ j ≤ n,

Ẇn
j (t) =




2n∑
i=1

2n T−1Wj(∆i−1) 1∆i(t), if t ∈ [2−nT, T ],

0, if t ∈ [0, 2−nT ].

Notice that for each n ∈ N,
(
Ẇn

j , 0 ≤ j ≤ n
)

belongs to the finite dimensional subspace of HT generated by{
2nT−1 1∆i, i = 1, . . . , 2n − 1

}
. We identify

(
Ẇn

j , 0 ≤ j ≤ n
)

with an element of HT by putting Ẇn
j ≡ 0 for

j > n.
For any h ∈ HT define

T h
n (ω) =

(
Wj −Wn

j +
∫ ·

0

hj(s) ds, j ≥ 0
)
. (2.15)

Girsanov’s theorem yields that P ◦
(
T h

n

)−1 � P.
Finally, the localizing sequence Aγ

n, n ≥ 1 of Proposition 2 is defined as follows. Fix γ > 2T `n 2, t ∈ [0, T ];
then

Aγ
n(t) =

{
‖Wnl1[0,t]‖2

HT
≤ γn2 2nT−1

}
· (2.16)

Clearly the sets Aγ
n(t) decrease in t and increase in γ. Moreover,

lim
n→∞ P

(
Aγ

n(T )c
)

= 0. (2.17)

Indeed,

P
(
Aγ

n(T )c
)
≤

n∑
j=1

2n−1∑
i=0

P
(
|Wj(∆i)|2 ≥ γn2−n

)

≤ n2nP
(
|Z| ≥ √

γn
1
2T−

1
2
)
≤ n2nT

1
2

√
γn

1
2

exp
(
−γn

2T

)

≤ γ−
1
2n

1
2 T

1
2 exp

(
−n
( γ

2T
− log 2

))
,

where Z is a standard Gaussian random variable. Thus (2.17) holds true.
A simple computation shows that for any 0 ≤ t < t′ ≤ T , p ∈ [2,∞) and [t, t′] ⊂ ∆i for some i,

E
(
‖Wnl1[t,t′]‖p

HT
≤ n

p
2 . (2.18)
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In fact,

E
(
‖Wn 1[t,t′]‖p

HT

)
= E




 n∑

j=1

22nT−2(Wj(∆i−1))2(t− t′)




p
2



≤ 2npT−p(t− t′)
p
2E


 n∑

j=1

(Wj(∆i−1))2




p
2

≤ n
p
2 .

Let

Gγ,n(ω) = Ψγ

( ‖Wn‖2
HT

n2 2nT−1

)
= Ψγ


n−2

n∑
j=1

2n∑
i=1

Wj(∆i−1)2


 , (2.19)

n ≥ 1, where Ψγ is given by (2.5). This sequence satisfies property (2.7). Indeed, this can be proved by direct
computations, as follows.

Let k ∈ N and fix a set Bk = {αi = (ri, ji) ∈ R+ × N, i = 1, . . . k}. Let α = (α1, . . . , αk) and denote by Pm

the set of partitions of Bk consisting of m disjoint subsets p1, . . . , pm, m = 1, . . . , k; set |pi| = card pi. Let Y be
any random variable in D

k,2, k ≥ 1, g be a real Ck function with bounded derivatives up to order k. Leibniz’s
rule for Malliavin’s derivatives yields

Dk
α

(
g(Y )

)
=

k∑
m=1

∑
Pm

cm g(m) (Y )
m∏

i=1

D|pi|
pi

Y, (2.20)

with some positive coefficients cm, m = 1, . . . , k, c1 = 1. We want to apply this formula to g = Ψγ and
Y = n−2

∑n
j=1

∑2n

i=1Wj(∆i−1)2, n ≥ 1. Notice that these random variables have null components on the n-th
Wiener chaos for n ≥ 3. Hence, it suffices to prove (2.7) for k = 0, 1, 2 and p ∈ [1,∞). For these values of k,
the order of the derivatives in the right hand-side of (2.20) are clearly less or equal to 2.

For k = 0, the result is obvious, since Ψγ is bounded by 1. Set

Fn = n−2
n∑

j=1

2n∑
i=1

Wj(∆i−1)2,

then, Dr,jFn = 0, if j > n and for j ≤ n

Dr,jFn = n−2
2n∑
i=1

2Wj(∆i−1) l1∆i−1(r).

Furthermore, D2
(r1,j1)(r2,j2)Fn = 0, if j1 > n or j1 ≤ n but j1 6= j2 and, for j1 = j2 ≤ n,

D2
(r1,j1)(r2,j2)Fn = n−2

2n∑
i=1

2 l1∆i−1(r1) l1∆i−1(r2).
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Applying Hölder’s inequality it is easy to check that

E


∑

j∈N

∫ T

0

dr|Dr,jFn|2



p
2

≤ Cn−
3
2 p2p(−n

2 +1).

Moreover, a direct computation shows that

E


 ∑

j1,j2∈N

∫ T

0

dr1
∫ T

0

dr2|D2
(r1,j1)(r2,j2)Fn|2




p
2

≤ Cn−
3
2p2p(−n

2 +1).

Thus, for any p ∈ [1,∞) and k = 0, 1, 2, we have that supn ‖Fn‖k,p <∞. Then, by means of (2.20) we complete
the proof of (2.7) for the sequence of random variables defined in (2.19).

3. Approximation in probability in D
∞.

Characterization of points of positive density

In this section we present an approximation result for a class of evolution equations which include as particular
cases (1.3) and (1.9). This general setting allows to check the validity of the assumptions of Propositions 1
and 2 for the Wiener functional F = u(t, x).

Let A,B,G, b : R → R, h ∈ HT . Consider the evolution equations

Xn(t, x) = X0(t, x) +
∑
j≥0

∫ t

0

{
〈S(t− s, x− ∗)A

(
Xn(s, ∗)

)
, ej(∗)〉H Wj(ds)

+〈S(t− s, x− ∗)B
(
Xn(s, ∗)

)
, ej(∗)〉HẆn

j (s)ds

+〈S(t− s, x− ∗)G
(
Xn(s, ∗)

)
, ej(∗)〉Hhj(s)ds

}
+
∫ t

0

∫
R2
S(t− s, x− y) b

(
Xn(s, y)

)
ds dy, (3.1)

X(t, x) = X0(t, x) +
∑
j≥0

∫ t

0

{
〈S(t− s, x− ∗) (A+B)

(
X(s, ∗)

)
, ej(∗)〉H Wj(ds)

+〈S(t− s, x− ∗)G
(
X(s, ∗)

)
, ej(∗)〉H hj(s)ds

}
+
∫ t

0

∫
R2
S(t− s, x− y) b

(
X(s, y)

)
ds dy. (3.2)

The existence and uniqueness of solution for equations (3.1) and (3.2) have been addressed in [11]. Notice that
the processes Xn and X depend on h ∈ HT .

We introduce the following set of assumptions (see (1.5) and (ii’) in Sect. 1).
There exists β0 ∈]0, 2 [ such that

(C1)
∫
0+ r1−β0 f(r) dr < +∞;

(C2) u0 : R
2 → R is of class C1, bounded, with 1

2 (β0 ∧ 1)-Hölder continuous partial derivatives, ∇u0 ∈ Lq1(R2)
for some q1 > 2; v0 : R

2 → R belongs to Lq0(R2) for some q0 ∈ ]4 ∨ 2
1−(β0∧1) ,∞];

(C3) the coefficients A,B,G, b of equation (3.1) (and (3.2)) are C∞ functions with bounded derivatives of any
order k ≥ 1.
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Conditions (C1–C3) ensure that the trajectories of the solution of (1.3) are β-Hölder continuous in (t, x) for
β < 1

2 (β0 ∧ 1) (see Th. 2.2 in [8] and Prop. 1.4 in [10]).
For any separable Hilbert space E we denote by HT (E) the Hilbert space of functions g : [0, T ] → E

N such
that

∑
j≥0

∫ T

0 ‖gj(s)‖2
E

ds <∞. Notice that HT (R) = HT . In this section we will deal with E = R
d and E = H,

where H has been defined in the introduction.
We now state the main technical result of this section. We shall see later in Theorem 3 that by a particular

choice of the coefficients A, B, G of equations (3.1) and (3.2), the next Theorem 2 allows to complete the first
step of our programme.

Theorem 2. Assume (C1–C3). Then, for any p ∈ (1,∞), k ∈ Z+, γ > 2T `n 2 and every compact set K ⊂ R
2,

lim
n→∞ sup

0≤t≤T
sup

x∈Kd

E
(
‖Dk

(
Xn(t, x)−X(t, x)

)
‖p

HT (Rd)⊗k 1Aγ
n(t)

)
= 0, (3.3)

where, for k = 0, D0 = Id and ‖ · ‖HT (Rd)⊗0 is the Euclidean norm in R
d. Moreover, the convergence in (3.3)

is uniform in h on bounded sets of HT .

This theorem provides an extension of Proposition 2.3 in [11], where the convergence stated in (3.3) has
been proved in the Lp norm. Actually, in this proposition the localizing sequence is given by Āγ

n(t) ={
sup0≤j≤n sup0≤i≤([2ntT−1]−1)+ |Wj(∆i)| ≤

√
γ2−n/2 n1/2

}
, which is included in Aγ

n(t) and also satisfies

limn→∞ P
(
(Āγ

n(T ))c
)

= 0 (see Lem. 2.1 in [11]). However looking carefully at the proof we realize that only two
facts concerning the localization are needed: (a) E

(
‖Wn‖p

HT
l1Āγ

n(t)

)
≤ Cnp2

np
2 and (b) E

(
‖Wnl1[tn,t]‖p

HT
l1Āγ

n(t)

)
≤

Cnp. Here we have used the following notation: for any n ≥ 1, t ∈ [0, T ], we set tn = max {k2−nT ; k =
1, . . . , 2n − 1 : k2−nT ≤ t}, tn = (tn − 2−nT ) ∨ 0. Property (a) is clearly true with Aγ

n(t) instead of Āγ
n(t), by

the very definition of Aγ
n(t). Property (b) is a trivial consequence of (2.18).

The proof in the D
∞ convergence consists in a quite long and tricky exercise with almost no new ideas. For

this reason we do not give a detailed proof. Instead, we draw an outline and also state the technical lemmas
which are needed. With these ingredients we provide the readers interested in a complete proof with the main
guidelines to check by themselves this extension.

Let us introduce some additional notation.

X−
n (t, x) = X0(t, x) +

∑
j≥0

∫ tn

0

{
〈S(t− s, x− ∗)A

(
Xn(s, ∗)

)
, ej(∗)〉HWj(ds)

+ 〈S(t− s, x− ∗)B
(
Xn(s, ∗)

)
, ej(∗)〉H Ẇn

j (s)ds

+ 〈S(t− s, x− ∗)G
(
Xn(s, ∗)

)
, ej(∗)〉H hj(s)ds

}
+
∫ tn

0

∫
R2
S(t− s, x− y) b

(
Xn(s, y)

)
ds dy,

(3.4)

X−(t, x) = X0(t, x) +
∑
j≥0

∫ tn

0

{
〈S(t− s, x− ∗)(A+B)

(
X(s, ∗)

)
, ej(∗)〉HWj(ds)

+ 〈S(t− s, x− ∗)G
(
X(s, ∗)

)
, ej(∗)〉H hj(s)ds

}
+
∫ tn

0

∫
R2
S(t− s, x− y) b

(
X(s, y)

)
ds dy.

(3.5)

Notice that, although it is not explicit in the notation, X− depends on n.
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In Section 2 of [10] we have proved that, if G = 0, X(t, x) ∈ D
∞, for any t ∈ [0, T ], x ∈ R

2. A slight
modification of the proof allows to establish the same result for G satisfying the assumptions of Theorem 2 as
well as for Xn(t, x), X−

n (t, x) and X−(t, x), respectively. Moreover, for any k ∈ Z+ and p ∈ [1,∞),

sup
(t,x)∈[0,T ]×R2

‖DkX(t, x)‖Lp(Ω;H⊗k
T ) <∞. (3.6)

We also need the explicit form of the evolution equations satisfied by the Malliavin derivatives of these processes.
To this end we consider the chain rule given in (2.20). Let ∆α(g, Y ) = Dk

α

(
g(Y )

)
− g′(Y )Dk

αY and ∆(g, Y )
be the stochastic process with components ∆α(g, Y ). For any r1, · · · , rk ∈ R we define

∨
i ri = max(r1, · · · , rk)

and for αi = (ri, ji) ∈ R+ × N, α̂i = (α1, . . . , αi−1, αi+1, . . . , αk).
Then, following the proof of Theorem 2.2 in [10], we obtain

Dk
αXn(t, x) =

k∑
i=1

〈S(t− ri, x− ∗) Dk−1
α̂i

(
A(Xn(ri, ∗))

)
, eji(∗)〉H

+
∑
j≥0

∫ t

W

i

ri

〈S(t− s, x− ∗)∆α

(
A,Xn(s, ∗)

)
, ej(∗)〉HWj(ds)

+
k∑

i=1

∫ t

W

i

ri

〈S(t− s, x− ∗)Dk−1
α̂i

(
B(Xn(s, ∗))

)
, eji(∗)〉H

×
2n∑
i=1

2n T−1 × 1∆i−1(ri)× 1∆i(s) ds

+
n∑

j=0

∫ t

W

i

ri

〈S(t− s, x− ∗)∆α

(
B,Xn(s, ∗)

)
, ej(∗)〉H Ẇn

j (s) ds

+
∑
j≥0

∫ t

W

i
ri

〈S(t− s, x− ∗)∆α

(
G,Xn(s, ∗)

)
, ej(∗)〉H hj(s) ds

+
∫ t

W

i

ri

∫
R2
S(t− s, x− y)∆α

(
b,Xn(s, y)

)
ds dy

+
∑
j≥0

∫ t

W

i

ri

〈S(t− s, x− ∗)A′
(
Xn(s, ∗)

)
Dk

αXn(s, ∗), ej(∗)〉HWj(ds)

+
n∑

j=0

∫ t

W

i

ri

〈S(t− s, x− ∗)B′
(
Xn(s, ∗)

)
Dk

αXn(s, ∗), ej(∗)〉H Ẇn
j (s) ds

+
∑
j≥0

∫ t

W

i

ri

〈S(t− s, x− ∗)G′
(
Xn(s, ∗)

)
Dk

αXn(s, ∗), ej(∗)〉H hj(s) ds

+
∫ t

W

i

ri

∫
R2
S(t− s, x− y) b′

(
Xn(s, y)

)
Dk

αXn(s, y) ds dy (3.7)
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and similarly,

Dk
αX(t, x) =

k∑
i=1

〈S(t− ri, x− ∗)Dk−1
α̂i

(
(A+B)(X(ri, ∗))

)
, eji(∗)〉H

+
∑
j≥0

∫ t

W

i

ri

〈S(t− s, x− ∗)∆α

(
A+B, X(s, ∗)

)
, ej(∗)〉HWj(ds)

+
∑
j≥0

∫ t

W

i

ri

〈S(t− s, x− ∗)∆α

(
G, X(s, ∗)

)
, ej(∗)〉H hj(s) ds

+
∫ t

W

i

ri

∫
R2
S(t− s, x− y)∆α

(
b,X(s, y)

)
ds dy

+
∑
j≥0

∫ t

W

i

ri

〈S(t− s, x− ∗)(A+B)′
(
X(s, ∗)

)
Dk

αX(s, ∗), ej(∗)〉HWj(ds)

+
∑
j≥0

∫ t

W

i

ri

〈S(t− s, x− ∗)G′
(
X(s, ∗)

)
Dk

αX(s, ∗), ej(∗)〉H hj(s) ds

+
∫ t

W

i

ri

∫
R2
S(t− s, x− y) b′

(
X(s, y)

)
Dk

αX(s, y) ds dy, (3.8)

in the case where
∨
i

ri ≤ t. Otherwise, Dk
αXn(t, x) = Dk

αX(t, x) = 0.

The equations satisfied by Dk
αX

−
n (t, x) (resp. Dk

αX
−(t, x)) are obtained substituting in (3.7) (resp. in (3.8))

the upper bound in the integral by tn and multiplying the first term of the right hand-side of (3.7) (resp.
of (3.8)) by 1[0,tn](ri).

Outline of the proof of Theorem 2. We shall apply induction on k and assume that d = 1. The proof for d > 1
is analogous. For k = 0, the convergence (3.3) has been proved in Proposition 2.3 of [11].

Set

Dk
α

(
Xn(t, x)−X(t, x)

)
=

8∑
i=1

V n
i,α(t, x),

where

V n
1,α(t, x) =

k∑
i=1

〈
S(t− ri, x− ∗)

[
Dk−1

α̂i
(A(Xn(ri, ∗)))−Dk−1

α̂i
(A(X(ri, ∗)))

]
,

eji(∗)
〉
H

V n
2,α(t, x) =

k∑
i=1

∫ t

0

〈
S(t− s, x− ∗)Dk−1

α̂i
(B(Xn(s, ∗))), eji(∗)

〉
H

×
2n∑
`=1

2n T−1 1∆`−1(ri) 1∆`
(s) ds−

〈
S(t− ri, x− ∗)Dk−1

α̂i
(B(X(ri, ∗))),

eji(∗)
〉
H,
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V n
3,α(t, x) =

∑
j≥0

∫ t

W
ri

〈
S(t− s, x− ∗)[∆α(G,Xn(s, ∗))−∆α(G,X(s, ∗))], ej(∗)

〉
H

× hj(s) ds,

V n
4,α(t, x) =

∫ t

W
ri

∫
R2
S(t− s, x− y)

(
∆α(b,Xn(s, y))−∆α(b,X(s, y))

)
× ds dy,

V n
5,α(t, x) =

∑
j≥0

∫ t

W
ri

〈
S(t− s, x− ∗)[G′(Xn(s, ∗))Dk

αXn(s, ∗)−G′(X(s, x))

×Dk
αX(s, ∗)], ej(∗)

〉
H hj(s) ds,

V n
6,α(t, x) =

∫ t

W
ri

∫
R2
S(t− s, x− y)

[
b′(Xn(s, y))Dk

αXn(s, y)− b′(X(s, y))Dk
αX(s, y)

]
× ds dy,

V n
7,α(t, x) =

∑
j≥0

∫ t

W
ri

〈
S(t− s, x− ∗)∆α(A,Xn(s, ∗)), ej(∗)

〉
HWj(ds)

+
n∑

j=0

∫ t

W
ri

〈
S(t− s, x− ∗)∆α(B,Xn(s, ∗)), ej(∗)

〉
H Ẇ

n
j (s) ds

−
n∑

j≥0

∫ t

W
ri

〈
S(t− s, x− ∗)∆α(A+B,X(s, ∗)), ej(∗)

〉
HWj(ds),

V n
8,α(t, x) =

∑
j≥0

∫ t

W
ri

〈
S(t− s, x− ∗)A′(Xn(s, ∗))Dk

αXn(s, ∗), ej(∗)
〉
HWj(ds)

+
n∑

j=0

∫ t

W
ri

〈
S(t− s, x− ∗)B′(Xn(s, ∗))Dk

αXn(s, ∗), ej(∗)
〉
H Ẇ

n
j (s) ds

−
n∑

j≥0

∫ t

W
ri

〈
S(t− s, x− ∗)(A+B)′(X(s, ∗))Dk

αX(s, ∗), ej(∗)
〉
HWj(ds).

Let Un
i (t, x) = E

(
‖V n

i (t, x)‖p

H⊗k
T

1Aγ
n(t)

)
, i = 1, . . . , 8.

We have to prove that

lim
n→∞ sup

(t,x)∈KT
m

Un
ρ (t, x) = 0, (3.9)

for any ρ = 1, 2, 3, 4, 7, and

Un
ρ (t, x) ≤ C

∫ t

W
ri

sup
(u,x)∈Ks

m+T

E
(∥∥Dk(Xn(u, x)−X(u, x))

∥∥p

H⊗k
T

1Aγ
n(u)

)
ds, (3.10)

for ρ = 5, 6, 8, where Kt
m = [0, t]× {x ∈ R

2 : ‖x‖ ≤ m}, t ∈ [0, T ] and m ∈ N, and we are assuming that (3.3)
holds up to the order of derivation k − 1. This can be done using the same ideas as in the proof of the above
mentioned Proposition 2.3 in [11] taking into account the results given in the next Lemmas 1 to 3. Basically, the
proof of (3.9) for ρ = 1, 2, 3, 4 follows easily from the induction hypothesis, the proof for ρ = 2 uses Lemma 3
and induction; the proof of (3.10) for ρ = 5, 6 uses the boundedness and Lipschitz properties of the coefficients.
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Notice that the structure of Un
ρ (t, x) for ρ = 7, 8 is similar. These terms are the most difficult to study. However

the ideas used in Proposition 2.3 in [11] can be adapted using the additional ingredient of induction for the term
corresponding to ρ = 7. Once (3.9) and (3.10) have been established, the proof of the theorem is completed by
means of a Gronwall-type argument.

The next statements correspond to the appropriate extensions of Lemmas 2.2–2.4 in [11], they are proved by
induction on the derivative order k. The third one is related with the result stated in Proposition 2.2 in [11], we
give a complete proof of it; as a by-product of this lemma we obtain Hölder continuity in time of the Malliavin
derivative process DkX(t, x), t ≥ 0.

Lemma 1. We assume the hypothesis of Theorem 2. Then, for any c ≥ 0, k ∈ Z+, p ∈ [1,∞), every integer
n ≥ 1 and 0 < β < β0 ∧ 1,

sup
‖h‖HT

≤c

sup
(t,x)∈[0,T ]×R2

‖Dk
(
X(t, x)−X−(t, x)

)
‖Lp(Ω;H⊗k

T ) ≤ C 2−n β+1
2 .

Lemma 2. We suppose that the assumptions of Theorem 2 are satisfied. For any k ∈ Z+, p ∈ [1,∞), γ >
2T `n 2, c ≥ 0, every integer n ≥ 1 and 0 < β < β0 ∧ 1,

sup
‖h‖HT

≤c

sup
(t,x)∈[0,T ]×R2

∥∥Dk(Xn(t, x)−X−
n (t, x)) 1Aγ

n(t)

∥∥
Lp(Ω;H⊗k

T )

≤ C n 2−n 1+β
2

(
1 + sup

(t,x)∈[0,T ]×R2

∥∥Dk
(
Xn(t, x)

)
1Aγ

n(t)

∥∥
Lp(Ω;H⊗k

T )

)
,

sup
‖h‖HT

≤c

sup
n≥1

sup
(t,x)∈[0,T ]×R2

∥∥Dk
(
Xn(t, x) +X−

n (t, x)
)

1Aγ
n(t)

∥∥
Lp(Ω;H⊗k

T )
<∞. (3.11)

Consequently,

sup
‖h‖HT

≤c

sup
(t,x)∈[0,T ]×R2

∥∥Dk
(
Xn(t, x) −X−

n (t, x)
)

1Aγ
n(t)

∥∥
Lp(Ω;H⊗k

T )
≤ C n 2−n 1+β

2 .

Lemma 3. We assume the hypothesis of Theorem 2. Then, for any c ≥ 0, p ∈ [1,∞), 0 ≤ t ≤ t′ ≤ T ,
k ∈ Z+, α ∈ (0, 1

2 (β0 ∧ 1)), we have

sup
‖h‖HT

≤c

∥∥Dk(X(t, x)−X(t′, x))
∥∥

Lp(Ω;H⊗k
T )

≤ C |t− t′|α. (3.12)

Proof. Fix 0 ≤ t ≤ t′ ≤ T, x ∈ R
2; set γ(t, t′, x; s, y) = S(t − s, x − y) − S(t′ − s, x − y), (s, y) ∈ [0, T ]× R

2.
Notice that (s, y, z) 7−→ γ(t, t′, x; s, y)f(|y − z|)γ(t, t′, x; s, z) defines a density on [0, T ]× R

2 × R
2.

We first prove (3.12) for k = 0. For any fixed p ∈ [1,∞) we set

E
(
|X(t, x)−X(t′, x)|p

)
≤ C

4∑
i=1

Ri(t, t′;x),
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with

R1(t, t′;x) =
∣∣X0(t, x) −X0(t′, x)

∣∣p,
R2(t, t′;x) = E

( ∣∣∣∣∣∣
∑
j≥0

∫ T

0

〈
γ(t, t′, x; s, ∗)(A+B)(X(s, ∗)), ej(∗)

〉
HWj(ds)

∣∣∣∣∣∣
p)

,

R3(t, t′;x) = E

( ∣∣∣∣∣∣
∑
j≥0

∫ T

0

〈
γ(t, t′, x; s, ∗)G(X(s, ∗)), ej(∗)

〉
H hj(s) ds

∣∣∣∣∣∣
p)

,

R4(t, t′;x) = E

( ∣∣∣∣∣
∫ T

0

γ(t, t′, x; s, y) b(X(s, y) ds dy

∣∣∣∣∣
p)

.

In the proof of Proposition 1.4 in [10] we have established that

R1(t, t′;x) ≤ C
{
‖ v0 ‖p

q0
| t− t′ |p( 1

q− 1
2 ) + | t− t′ |

p
2 (β0∧1)

}
,

where 1
q + 1

q0
= 1 and we have used (C2). The restriction on q0 yields, for α ∈ (0, 1

2 (β0 ∧ 1)),

R1(t, t′;x) ≤ C | t− t′ |αp. (3.13)

Burkholder’s inequality, then Fubini’s theorem and finally Hölder’s inequality with respect to the measure whose
density has been described at the begining of the proof, yield

R2(t, t′;x) ≤ C
∥∥γ(t− t′, x; ·, ∗)

∥∥p

L2([0,T ];H)
sup

(s,x)∈[0,T ]×R2
E
(
|(A+B)(X(s, x))|p

)
.

In [11], Lemma 2.5 (see the proof of (2.42) with x = x̄), it is proved that

∥∥γ(t, t′, x, ·, ∗)∥∥2

L2([0,T ];H)
≤ µt,t′−t + µ̃t,t′−t + 2(µt,t′−t µ̃t,t′−t)1/2,

with µt,h, µ̃t,h are defined in (A.2, A.3), respectively. The bound (A.5) yields

R2(t, t′;x) ≤ C
(
| t− t′ |αp

)
, (3.14)

with α ∈ (0, 1
2 (β0 ∧ 1)).

The same bound is obtained for the remaining terms Ri(t, t′;x), i = 3, 4, following similar ideas.
The proof for any integer k ≥ 1 is completed using induction on k. �
We continue by setting the additional ingredients needed in the application of Proposition 1 in our example.

Lemma 4. Let z = (z1, . . . , zd). For any integer k ≥ 0 and any h ∈ HT set

ρk,h,z
n (t, x)(ω) = Dku(t, x)


W −Wn +

.∫
0

(
h+

d∑
i=1

zi D̄ Φh(t, xi)

)
(s)ds


 ,

where D̄ denotes the Fréchet derivative operator. Then, for any p ≥ 1,

lim
M→∞

sup
n

P

{∫
|z|≤1

‖ρk,h,z
n (t, x)‖p

H⊗k
T

dz > M

}
= 0.
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Proof. Fix ε > 0. By property (2.17) there exists n0 ∈ N such that for any n ≥ n0 and γ > 2T `n 2, P
(
Aγ

n(t)c
)

< ε. Then, Chebychev’s inequality yields, for any n ≥ n0,

P

{∫
|z|≤1

‖ρk,h,z
n (t, x)‖p

H⊗k dz > M

}
≤ ε+

1
M

sup
|z|≤1

E
(
‖ρk,h,z

n (t, x)‖p

H⊗k
T

1Aγ
n(t)

)
.

Thus, it suffices to check that

sup
n

sup
|z|≤1

E
(
‖ρk,h,z

n (t, x)‖p

H⊗k
T

1Aγ
n(t)

)
≤ C <∞. (3.15)

The equation satisfied by Dku(t, x), (t, x) ∈ [0, T ]×R
2, is obtained from equation (3.8) with A = G = 0, B = σ.

Set W̃n,h,z = W −Wn +
.∫

0

(
h+

∑d
i=1 zi D̄ Φh(t, xi)

)
(s)ds; then, each component of the d-dimensional random

vector ρk,h,z
n (t, x) satisfies the following equation, where for simplicity we have omitted the index of the variable x:

ρk,h,z
n,α (t, x) =

k∑
i=1

〈Dk−1
α̂i

(
σ(u(ri, ∗))

)
(W̃n,h,z) S(t− ri, x− ∗), eji(∗)〉H

+
∑
j≥0

∫ t

W
i ri

〈S(t− s, x− ∗)∆α(σ, u(s, ∗)) (W̃n,h,z), ej(∗)〉HWj(ds)

+
∑
j≥0

∫ t

W
i ri

〈S(t− s, x− ∗)∆α(σ, u(s, ∗)) (W̃n,h,z), ej(∗)〉H
(
hj(s)

−Ẇn
j (s) +

d∑
i=1

zi D̄s,j Φh(t, xi)
)
ds

+
∫ t

W
i ri

∫
R2
S(t− s, x− y) ∆α(b, u(s, y)) (W̃n,h,z) ds dy

+
∑
j≥0

∫ t

W
i ri

〈S(t− s, x− ∗)σ′(ρ0,h,z
n (s, ∗)) ρk,h,z

n,α (s, ∗), ej(∗)〉HWj(ds)

+
∑
j≥0

∫ t

W
i ri

〈S(t− s, x− ∗)σ′(ρ0,h,z
n (s, ∗)) ρk,h,z

n,α (s, ∗), ej(∗)〉H
(
hj(s)

−Ẇn
j (s) +

d∑
i=1

zi D̄s,j Φh(t, xi)
)
ds

+
∫ t

W
i ri

∫
R2
S(t− s, x− y) b′(ρ0,h,z

n (s, y)) ρk,h,z
n,α (s, y) ds dy. (3.16)

Notice that, by the chain rule (2.20)

Dk−1
α̂i

(
σ (u(s, x))

)
(W̃n,h,z) =

k−1∑
m=1

∑
Pm

cm σ(m) (ρ0,h,z
n (s, x))

m∏
j=1

ρ|pi|,h,z
n,pi

(s, x),

where if α = (α1, . . . , αk), Pm is the set of partitions of the set {(α1, . . . , αi−1, αi+1 . . . αk) ∈ (R+ × N)k−1}
consisting of m disjoint subsets p1, . . . , pm, m = 1, . . . , k − 1. Moreover, for g = σ, b,

∆α

(
g, u(s, x)

)
(W̃n,h,z) = Dk

α

(
g (u(s, x))

)
(W̃n,h,z)− g′

(
ρ0,h,z

n (s, x)
)
ρk,h,z

n,α (s, x).
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Therefore equation (3.16) has the same structure than equation (3.7) with hj replaced by hj +
∑d

i=1 zi D̄.,j
Φh(t, xi). We point out in the Appendix that, for any a ≥ 0, (t, x) ∈ [0, T ]× R

2, sup‖h‖HT
≤a ‖D̄ Φh(t, x)‖HT

≤ C <∞. Thus, Lemma 2 (see (3.11)) shows (3.15) and completes this proof. �

Remark 1. Consider the transformation defined in (2.15), T h
n (ω) = (Wj−Wn

j +
.∫

0

hj(s) ds)j≥0, h ∈ HT . Using

the notation introduced in Lemma 4 we have that u(t, x) (T h
n ) = ρ

0,h,0
n (t, x) and Du(t, x) (T h

n ) = ρ
1,h,0
n (t, x).

Hence (3.16) yields

ρ1,h,0
n,α (t, x) = 〈S(t− r, x− ∗)σ

(
ρ0,h,0

n (r, ∗)
)
, ej(∗)〉H

+
∑
k≥0

∫ t

r

〈S(t− s, x− ∗)σ′
(
ρ0,h,0

n (r, ∗)
)
, ρ1,h,0

n,α (s, ∗) ek(∗)〉H

×{Wk(ds)− Ẇn
k (s) ds+ hk(s) ds}

+
∫ t

r

∫
R2
S(t− s, x− y) b′

(
ρ0,h,0

n (s, y)
)
ρ1,h,0

n,α (s, y) ds dy,

with α = (r, j) ∈ [0, T ]× N.

Then, Theorem 2 with k = 1 and the coefficients A = −B = G = σ yields

lim
n→∞ sup

0≤t≤T
sup

x∈Kd

E
(
‖(Du(t, x)) ◦ T h

n − D̄Φh(t, x)‖p
HT (Rd)

1Aγ
n(t)

)
= 0. (3.17)

We conclude this section by completing Step 1 of our programme, as has been described in Section 1. Recall
that pt,x(y) denotes the density of the random vector (u(t, x1), . . . , u(t, xd)) at y ∈ R

d.

Theorem 3. We assume

(i’) there exist 0 < a2 ≤ a1 < 2 such that 2(a1 − a2) < a2 ∧ 1, and a positive constant C1 such that for
t ∈ [0, T ], C1 t

a1 ≤
∫ t

0
y f(y) `n

(
1 + t

y

)
dy and

∫
0+ y1−a2 f(y) dy <∞;

(ii’) u0 : R
2 → R is of class C1, bounded, with 1

2 (a2 ∧ 1)-Hölder continuous partial derivatives, ∇u0 ∈ Lq1(R2)

for some q1 > 2; v0 : R
2 → R belongs to Lq0(R2) for some q0 ∈

]
4 ∨ 2

1−(a2∧1) ,∞
]
;

(iii) the coefficients σ and b are C∞ functions with bounded derivatives of any order i ≥ 1;
(iv) there exists a > 0 such that |σ

(
u(t, xj)

)
| ≥ a, for any j = 1, . . . , d, a.s.

Then the next two statements on y ∈ R
d are equivalent: (a) pt,x (y) > 0 and (b) there exists h ∈ HT such that

Φh(t, x) = y and det γΦh(t,x) > 0.

Proof. First we establish (b) ⇒ (a). With this purpose, we apply Proposition 1 to F =
(
u(t, x1), . . . , u(t, xd)

)
.

Let vn = u ◦ T h
n with T h

n defined by (2.15). The process {vn(t, x), (t, x) ∈ [0, T ]× R
2} satisfies the equation

vn(t, x) = X0(t, x) +
∑
j≥0

∫ t

0

〈S(t− s, x− ∗)σ
(
vn(s, ∗)

)
, ej(∗)〉H {Wj (ds)

− Ẇn
j (s) ds+ hj(s) ds}+

∫ t

0

∫
R2
S(t− s, x− y) b

(
vn(s, y)

)
ds dy,
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which is a particular case of equation (3.1) with A = −B = G = σ. For this choice of coefficients, equation (3.2)
coincides with that satisfied by the skeleton Φh(t, x) (see (1.9)). Then, Theorem 2 yields

lim
n→∞ sup

0≤t≤T
sup

x∈Kd

E
(
‖(u ◦ T h

n )(t, x)− Φh(t, x)‖p 1Aγ
n(t)

)
= 0,

for any p ∈ (1,∞), γ > 2T `n 2 and every compact set K ⊂ R
2. By (2.17) this ensures condition (2.2).

The validity of (2.3) follows from (3.17) and (2.17). Finally (2.4) has been proved in Lemma 4.
Let us now check (a) ⇒ (b). Consider the process defined by the evolution equation

un(t, x) = X0(t, x) +
∑
j≥0

∫ t

0

〈S(t− s, x− ∗) σ
(
un(s, ∗)

)
, ej(∗)〉HẆn

j (s) ds

+
∫ t

0

∫
R2
S(t− s, x− y) b

(
un(s, y)

)
ds dy.

This is a particular case of equation (3.1) with A = G = 0, B = σ. Moreover, the process {un(t, x), (t, x)
∈ [0, T ] × R

2} coincides with the skeleton {ΦẆ n

(t, x), (t, x) ∈ [0, T ] × R
2}; with this choice of coefficients,

equation (3.2) coincides with (1.3). Theorem 2 shows that the assumptions of Proposition 2 are satisfied with
Φ(h) = Φh(t, x), F = u(t, x) and the localizing sequence (Aγ

n(t))n∈N defined in (2.16). This completes de proof
of the theorem. �

4. Positivity of the density

The purpose of this section is to analize under which conditions property (b) of Theorem 3 is satisfied for
any y ∈ R

d, that is, the density pt,x(y) is strictly positive everywhere.

Theorem 4. Suppose that the assumptions (i’, ii’, iii) of Theorem 3 are satisfied. Moreover, we assume
(iv’) {inf |σ(z)|, z ∈ R} > C, for some constant C > 0;
(v) the covariance functional J defined in (1.8) is positive.

Then, for any y ∈ R
d there exists h ∈ HT such that Φh(t, x) = y and det γΦh(t,x) > 0.

Proof. The nondegeneracy of the matrix γΦh(t,x) has been established in Proposition 3 of the Appendix. Hence
it only remains to prove that each y ∈ R

d can be reached, with an appropriate choice of h ∈ HT , through the
skeleton.

Set y = (y1, . . . , yd) and let λ1, . . . , λd ∈ R satisfying the linear system

y` −X0(t, x`) =
d∑

i=1

λi γ
i,`
S , ` = 1, . . . , d,

where γi,`
S = 〈S(t− ·, xi − ∗), S(t− ·, x` − ∗)〉L2([0,T ];H).

Let k(s, z) =
∑d

i=1 λi S(t− s, xi − z), K(s, y) =
∫

R2 f(|y − z|) k(s, z) dz, s ∈ [0, T ], z, y ∈ R
2. Notice that

k ∈ L2([0, T ];H) and by Schwarz’s inequality

∫ T

0

ds
∫

R2
dy |K(s, y)| S(t− s, x− y) <∞. (4.1)

For any τ ∈ [0, T ], x ∈ R
2, set

ϕ(τ, x) = X0(τ, x) +
∫ τ

0

ds
∫

R2
dy K(s, y) S(τ − s, x− y). (4.2)
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By construction, ϕ(t, x`) = y`, ` = 1, . . . , d.
Let Y be the linear space consisting of functions H : [0, T ]×R

2 −→ R such that
∫ T

0
ds
∫

R2 dy |H(s, y)| S(t−
s, x− y) <∞. Consider the linear operator

T = L2([0, T ];H) −→ Y

h 7−→
∫

R2
f(|y − z|) h(s, z) dz.

Hypothesis (v) ensures that T admits an inverse operator T −1. Indeed, 0 is not an eigenvalue of T .
Set

H0(s, y) = −
[
b
(
ϕ(s, y)

)
−K(s, y)

]
σ
(
ϕ(s, y)

)−1

, (s, y) ∈ [0, T ]× R
2. (4.3)

It is not difficult to check that H0 ∈ Y. Therefore

H0(s, y) =
∫

R2
f(|y − z|) h0(s, z) dz,

for some h0 ∈ L2([0, T ];H). Let hj
0(s) = 〈h0(s, ∗), ej(∗)〉H, j ≥ 0. Then (hj

0, j ≥ 0) ∈ HT .
Substituting the functionK = H0 given by (4.3) in (4.2) we conclude that Φh0 ≡ ϕ, by uniqueness of solution,

and consequently Φh0(t, x`) = y`, ` = 1, . . . , d, as we wanted to prove. �

5. Appendix

Let S(t, x), (t, x) ∈ [0,∞[× R2 be the fundamental solution of the stochastic wave equation. We start this
section by quoting some notations and results concerning S that have been proved in [10] and [8] and used along
the proofs.

For any t ∈ [0, T ], h ≥ 0, set

J(t) =
∫
|y|<|x|<t

1√
t2 − |x|2

f(|x− y|) 1√
t2 − |y|2

dxdy, (A.1)

µ(t) =
∫ t

0

ds
∫

R2
dx
∫

R2
dy S(s, x)f(|x − y|)S(s, y) =

1
2π2

∫ t

0

J(s) ds,

ν(t) =
1
2π

∫ t

0

ds
∫
|x|<s

dx√
s2 − |x|2

=
t2

2
,

µt,h =
∫ t

0

ds
∫
|y|<s

dy
∫
|z|<s

dz
[
S(s, y)− S(s+ h, y)

]
f(|y − z|) (A.2)

×
[
S(s, z)− S(s+ h, z)

]
,

µ̃t,h =
∫ t

0

ds
∫

s≤|y|<s+h

dy
∫

s≤|z|<s+h

dz S(s+ h, y)f(|y − z|)S(s+ h, z). (A.3)
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Assume that f satisfies the assumption (C1) of Section 3; then Lemma A.1 in [10] implies

J(t) ≤ C tβ, µ(t) ≤ C tβ+1, t ∈ [0, T ], β < β0. (A.4)

Moreover, for h small enough and 0 < δ < β0 ∧ 1,

µt,h + µ̃t,h ≤ C hδ (A.5)

(see Lem. A.5 in [10] and [8], Rem. A.6).
For fixed distinct points x1, . . . , xd ∈ R

2, set

γS =
(
〈S(t− ·, xi − ∗), S(t− ·, xj − ∗)〉L2([0,T ];H)

)
1≤i, j≤d

.

The next lemma provides one of the ingredients in the proofs of Section 4.

Lemma 5. Assume that there exist constants C1 > 0 and a1 ∈ (0, 2) such that for t ∈ [0, T ],

C1 t
a1 ≤

∫ t

0

y f(y) `n
(
1 +

t

y

)
dy.

Then, det γS > 0.

Proof. It suffices to prove that for any v = (v1, . . . , vd) ∈ R
d, |v| = 1,

Γ(s, v) := vt γS v =
∫ t

0

dr
∥∥∥ d∑

i=1

vi S(t− r, xi − ∗)
∥∥∥2

H
> 0.

Let ε ∈ (0, t) to be determined later. Then Γ(s, v) ≥ I1 − |I2| with

I1 =
d∑

i=1

∫ t

t−ε

v2
i ‖S(t− r, xi − ∗)‖2

H dr = µ(ε),

I2 =
d∑

i, j = 1
i 6= j

∫ t

t−ε

vi vj 〈S(t− r, xi − ∗), S(t− r, xj − ∗)〉H dr.

Lemma A.1 [10] together with the assumption of the lemma yield I1 ≥ C εa1+1.
Let m = inf{|xi− xj |, i 6= j}, M = sup{|xi−xj |, i 6= j}. Then, if 4ε < m, for any y ∈ R

2, |y−xi| ≤ ε, z ∈
R

2, |z − xj | ≤ ε, we have m
2 ≤ |y − z| ≤ 2ε +M . Therefore sup{f(|y − z|), |y − xi| ≤ ε, |z − xj | ≤ ε} ≤ C.

Then ∫ t

t−ε

〈S(t− r, xi − ∗), S(t− r, xj − ∗)〉H dr

=
∫ t

t−ε

dr
∫
|xi−y|≤t−r

dy
∫
|xj−z|≤t−r

dt S(t− r, xi − y) f(|y − z|) S(t− r, xj − z)

≤ C

∫ t

t−ε

dr
( ∫

|x−y|≤t−r

S(t− r, x− y)dy
)2

≤ C ε3.

Since a1 + 1 < 3, taking ε small enough we obtain I1 − |I2| > 0. �



STOCHASTIC WAVE EQUATION 111

Fix (t, x) ∈ [0, T ]×R
2 and assume (1.5) and the hypotheses (ii’, iii) of Theorem 3. Then the map h ∈ HT →

Φh(t, x) is infinitely Fréchet differentiable. For any integer k ≥ 1, the k-th order Fréchet derivative D̄kΦh(t, x)
satifies a differentiable equation like (3.8) with A = −B = G = σ. In particular, for k = 1.

D̄r,jΦh(t, x) =
〈
S(t− r, x− ∗)σ(Φh(r, ∗)), ej(∗)

〉
H

+
∑
k≥0

∫ t

0

ds
〈
S(t− s, x− ∗)σ′(Φh(s, ∗))Dr,jΦh(s, ∗), ek(∗)

〉
H hk(s)

+
∫ t

0

∫
R2
S(t− s, x− y) b′(Φh(s, y))Dr,j Φh(s, y) ds dy,

if r ≤ t and D̄r,jΦh(t, x) = 0, if t < r.
It is easy to check that for any (t, x) ∈ [0, T ]× R

2,

sup
‖h‖HT

≤a

∥∥D̄Φh(t, x)
∥∥

HT
≤ C <∞.

We now prove the nondegeneracy of the deterministic Malliavin matrix

γΦh(t,x) =
(
〈D̄Φh(t, xi), D̄Φh(t, xj)〉HT

)
1≤i,j≤d

.

Proposition 3. Assume (i’, ii’, iii) and (iv’). Then det γΦh(t,x) is strictly positive.

Proof. Set D̄r,j Φh(t, x) = ϕr,j(t, x) + ψr,j(t, x), with ϕr,j(t, x) = 〈S(t − r, x − ∗) σ
(
Φh(r, ∗)

)
, ej(∗)〉H. Let

v ∈ R
d, |v| = 1.

The triangle inequality yields

v∗γΦh(t,x)v =
∞∑

k=0

∫ t

0

dr
∣∣∣ d∑

i=1

vi D̄r,k Φh(t, xi)
∣∣∣2 ≥ 1

2
J1 − J2,

with

J1 =
∞∑

k=0

∫ t

t−γ

dr
∣∣∣ d∑

i=1

vi ϕr,k(t, xi)
∣∣∣2,

J2 =
∞∑

k=0

∫ t

t−γ

dr
∣∣∣ d∑

i=1

vi ψr,k(t, xi)
∣∣∣2,

γ ∈ (0, t) to be determined later.

Lower bound for J1: We write J1 ≥ 1
2 J11 − J12, where

J11 =
∞∑

k=0

∫ t

t−γ

dr
∣∣∣ d∑

i=1

vi σ
(
Φh(r, xi)

)
〈S(t− r, xi − ∗), ek(∗)〉H

∣∣∣2,
J12 =

∞∑
k=0

∫ t

t−γ

dr
∣∣∣ d∑

i=1

vi 〈S(t− r, xi − ∗)
[
σ
(
Φh(r, ∗)

)
− σ

(
Φh(r, xi)

)]
, ek(∗)〉H

∣∣∣2.
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Furthermore, J11 ≥ J111 − |J112|, with

J111 =
∞∑

k=0

∫ t

t−γ

dr
d∑

i=1

v2
i σ

2
(
Φh(r, xi)

)
〈S(t− r, xi − ∗), ek(∗)〉2H,

J112 =
∞∑

k=0

∫ t

t−γ

dr
d∑

i, j = 1
i 6= j

vi vj σ
(
Φh(r, xi)

)
σ
(
Φh(r, xj)

)

× 〈S(t− r, xi − ∗), ek(∗)〉H 〈S(t− r, xj − ∗), ek(∗)〉H.

The lower bound assumption in (i’) and (iv’) yield

J111 ≥ C γ1+a1 . (A.6)

Parseval’s identity and the growth condition on σ yield

|J112| ≤ C sup
(s,x)∈[0,T ]×R2

(
1 + |Φh(s, x)|

)2
∫ t

t−γ

〈S(t− r, xi − ∗), S(t− r, xj − ∗)〉H dr,

with i 6= j. Notice that sup(s,x)∈[0,T ]×R2 |Φh(t, x)| ≤ C,
Therefore, as has been checked in the proof of Lemma 5,

|J112| ≤ C γ3. (A.7)

Then (A.6) and (A.7) yield

|J11| ≥ C (γ1+a1 − γ3). (A.8)

Following the same ideas as in the proof of Theorem 2.2 in [8] one can prove that supt∈[0,T ]

sup|y−z|≤ξ

(
|Φh(t, y)− Φh(t, z)|

)
≤ C ξα, with α ∈

(
0, 1

2 (a2 ∧ 1)
)
. Hence

J12 ≤ Cγ2α sup
{∫ t

t−γ

〈S(t− r, xi − ∗), S(t− r, xj − ∗)〉H dr; i, j = 1, . . . , d
}

≤ C γ2α+1+a2 .

(A.9)

Consequently (A.8) and (A.9) imply

J1 ≥ C(γ1+a1 − γ3 − γ2α+1+a2). (A.10)
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Upper bound for J2: By the definition of ψr,k(t, x) and J2, we clearly have J2 ≤ C(J21 + J22) with

J21 =
∞∑

k=0

∫ t

t−γ

dr
d∑

i=1

v2
i


 ∞∑

j=0

∫ t

r

〈
S(t− s, xi − ∗) σ′

(
Φh(s, ∗)

)
Dr,k Φh(s, ∗),

ej(∗)
〉
H
hj(s) ds

)2

,

J22 =
∞∑

k=0

∫ t

t−γ

dr
d∑

i=1

v2
i

(∫ t

r

ds
∫

R2
dy S(t− s, xi − y) b′

(
Φh(s, y)

)
Dr,k Φh(s, y)

)2

.

Schwarz’s inequality and Parseval’s identity ensure

J21 ≤ C

∞∑
k=0

∫ t

t−γ

dr
d∑

i=1

v2
i

∫ t

r

∥∥∥S(t− s, xi − ∗) σ′
(
Φh(s, ∗)

)
Dr,k Φh(s, ∗)

∥∥∥2

H
ds.

Then, applying Fubini’s theorem and Schwarz’s inequality this term is bounded by

C

(
sup

(s,y)∈[t−γ,t]×R2

∞∑
k=1

∫ t

t−γ

‖Dr,k Φh(s, y)‖2
Hdr

)
µ(γ).

Following the proof of Theorem 2.2 in [10] we obtain J21 ≤ C µ(γ)2. Then, by (A.4),

J2,1 ≤ C γ2(a2+1) (A.11)

Jensen’s inequality, Fubini’s theorem and similar arguments as those used to obtain (A.11) yield

J22 ≤ C µ(γ) ν(γ) ≤ C γ3+a2 . (A.12)

Therefore, by (A.11, A.12)

J2 ≤ C
(
γ2(a2+1) + γ3+a2

)
. (A.13)

Finally (A.10) and (A.13) yield

v∗γΦh(t,x)v ≥ C
(
γ1+a1 − γ3 − γ2α+1+a2 − γ2(a2+1) − γ3+a2

)
. (A.14)

Set γ = εδ, δ > 0, such that

δ(1 + a1) < 1, 3δ > 1, δ(2α+ 1 + a2) > 1, 2δ(a2 + 1) > 1, δ(3 + a2) > 1,

where α ∈ (0, 1
2 (a2 ∧ 1)) and a1, a2 satisfy the restrictions stated in (i’). It is easy to check that such a choice

is possible. Then, the right hand-side of (A.14) is strictly positive. This finishes the proof of the proposition.�
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