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ON THE MOTION OF A BODY IN THERMAL EQUILIBRIUM IMMERSED
IN A PERFECT GAS ∗

Kazuo Aoki1, Guido Cavallaro2, Carlo Marchioro2 and Mario Pulvirenti2

Abstract. We consider a body immersed in a perfect gas and moving under the action of a constant
force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium:
when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a
Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the
approach of the body velocity V (t) to the limiting velocity V∞ and prove that, under suitable small-
ness assumptions, the approach to equilibrium is

|V (t) − V∞| ≈ C

td+1
,

where d is the dimension of the space, and C is a positive constant. This approach is not exponential,
as typical in friction problems, and even slower than for the same problem with elastic collisions.
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1. Introduction

We consider a body moving under the action of a constant force and immersed in a perfect gas, namely we
assume that the one-particle distribution function of the gas evolves according to the free transport equation.
The gas is initially at thermal equilibrium. The boundary conditions on the surface of the body are assumed of
diffusive type: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a
Maxwellian distribution at the same temperature of the gas.

This system represents a microscopic model of friction, for which we want to study the approach to equilibrium
of the velocity of the body V (t). In a friction problem we may expect an exponential approach to the limiting
velocity V∞, but in the present case it is not so: due to the recollisions the approach turns out to obey the
following power law

|V (t) − V∞| ≈ C

td+1
, (1.1)
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even slower than the law appearing in the elastic case (which states the time behavior t−d−2), investigated in
recent papers [3,4]. This result will be proved assuming the initial velocity V0 sufficiently large and close enough
to V∞. This asymptotics, rather surprising, depends on the fact that the time interval between two collisions of
a gas particle with the body may be very large, so that the process has a very long tail memory. We note that
in the present case the number of recollisions is larger compared with the elastic case studied in references [3,4].
This feature is responsible for the different time decay (1.1).

We can ask whether it is likely that a particle of the medium hits twice the body. It depends on the velocity
of the obstacle, which must be comparable with a typical velocity of the medium (of the order of the sound
speed). This can happen either for low temperatures or for particular physical situations.

Finally we remark that the long memory effect of the present model depends on the deterministic motion
of the fluid particles. When we add a small stochasticity in the background, for instance due to the presence
of small impurities, we expect that the power law approach remains valid for a long time, after which the
exponential law holds asymptotically, since the long tail effects of the recollisions should be destroyed by the
stochasticity.

The plan of the paper is the following: in Section 2 we introduce the model and state the results, while the
proofs are given in Section 3.

2. Model and results

The body we consider is a cylinder in R
3, with circular basis of radius R orthogonal to the x-axis and centered

on the same axis, and height equal to L. We take for simplicity the cylinder with unitary mass and constant
density. By the symmetry of the problem we are going to consider, it will be evident that the cylinder cannot
undergo any kind of rotation, if initially absent (as we suppose), and its center of mass can move along the
x-axis only. We denote by X(t) the position of the center of mass at time t.

The body is immersed in a perfect gas in equilibrium at inverse temperature proportional to β and with
constant density ρ. The body interacts with the gas by means of boundary conditions on the one-particle
distribution function which will be established later on. In addition the body is subject to a constant force E
directed along the x-axis.

We are interested in the time asymptotics of the system, in particular we want to establish whether and how
the body reaches a limiting velocity.

We assume the perfect gas in the mean-field approximation. This means that we are considering the con-
tinuum limit for the free gas (see the Appendix in [3]). The presence of the body modifies the equilibrium of
the gas, which starts to evolve according to the free transport equation. Let f(x, v; t), (x, v) ∈ R

3 × R
3, be the

mass density in the phase space of the gas particles, then

(∂t + v · ∇x)f(x, v; t) = 0, for x /∈ Ωt. (2.1)
Here Ωt denotes the domain of R

3 occupied by the cylinder at time t.
We define

f±(x, v; t) = lim
ε→0+

f(x ± εv, v; t ± ε), (2.2)

and assume as initial state for the gas distribution the thermal equilibrium, namely

f+(x, v; 0) = ρ

(
β

π

)3/2

e−βv2
, for x /∈ Ω0,

f+(x, v; 0) = 0, for x ∈ Ω0, (2.3)

for β > 0.
On the boundary of the cylinder at time t, i.e. on ∂Ωt, we impose diffusive boundary conditions: a gas

particle is first absorbed, and then re-emitted with the equilibrium distribution. We treat separately the right
basis (∂Ω+

t ), the left basis (∂Ω−
t ), and the lateral surface (∂Ω�

t). Denoting by vx and v⊥ the velocity components
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of the gas particles on the x-axis and on the orthogonal plane respectively, we impose that on ∂Ω+
t the gas

particles are emitted according to the distribution

f+(x, v; t) = αJ(x, t)e−β(vx−V (t))2e−βv2
⊥ , x ∈ ∂Ω+

t , (2.4)

with vx ≥ V (t) (the particles are emitted outside the body). The constant α and the function J(x, t) are
determined imposing that the number of particles absorbed per unit time and per unit surface by ∂Ω+

t is equal
to the number of particles re-emitted per unit time and per unit surface by ∂Ω+

t , due to mass conservation.
Therefore ∫

vx≤V (t)

dv (V (t) − vx)f−(x, v; t) =

αJ(x, t)
∫

dv⊥ e−βv2
⊥

∫
vx≥V (t)

dvx (vx − V (t)) e−β(vx−V (t))2 , (2.5)

so we can identify J(x, t) with the ingoing flux,

J(x, t) =
∫

vx≤V (t)

dv (V (t) − vx)f−(x, v; t), x ∈ ∂Ω+
t , (2.6)

choosing

α =

[(∫ +∞

−∞
e−βx2

dx

)2 ∫ +∞

0

x e−βx2
dx

]−1

.

On the left basis of the cylinder we can repeat the same considerations, the only modification consisting in the
definition of the flux which, for x ∈ ∂Ω−

t , is:

J(x, t) =
∫

vx≥V (t)

dv (vx − V (t)) f−(x, v; t). (2.7)

On the lateral surface we denote by n̂ the outward unit normal, calculated at the absorption (or emission) point
of the gas particle. The flux balance yields:∫

dv χ({v⊥ · n̂ ≤ 0}) |v⊥ · n̂| f−(x, v; t) =

ᾱJ(x, t)
∫

dv χ({v⊥ · n̂ ≥ 0}) |v⊥ · n̂| e−β(vx−V (t))2e−βv2
⊥ , (2.8)

then choosing

ᾱ =
[∫ +∞

−∞
dvx e−β(vx−V (t))2

∫
dv⊥ χ({v⊥ · n̂ ≥ 0}) |v⊥ · n̂| e−βv2

⊥

]−1

,

(notice that it results ᾱ = α) we have, for x ∈ ∂Ω�
t,

J(x, t) =
∫

dv χ({v⊥ · n̂ ≤ 0}) |v⊥ · n̂| f−(x, v; t). (2.9)

Equation (2.1) is complemented by the evolution equation for the body:

Ẋ(t) = V (t), V̇ (t) = E − F (t), (2.10)

X(0) = 0, V (0) = V0,
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where E > 0 is a constant given field and F (t) is the action of the gas on the body:

F (t) =
∫

∂Ω+
t

dx

∫
vx≤V (t)

dv (V (t) − vx)2 f−(x, v; t)

−
∫

∂Ω−
t

dx

∫
vx≥V (t)

dv (V (t) − vx)2 f−(x, v; t)

+
∫

∂Ω+
t

dx

∫
vx≥V (t)

dv (vx − V (t))2 f+(x, v; t)

−
∫

∂Ω−
t

dx

∫
vx≤V (t)

dv (vx − V (t))2 f+(x, v; t)

+
∫

∂Ω�
t

dσ

∫
vx≤V (t)

dv χ−
⊥ |v⊥ · n̂| |V (t) − vx| f−(x, v; t)

−
∫

∂Ω�
t

dσ

∫
vx≥V (t)

dv χ−
⊥ |v⊥ · n̂| |V (t) − vx| f−(x, v; t)

+
∫

∂Ω�
t

dσ

∫
vx≥V (t)

dv χ+
⊥ |v⊥ · n̂| |V (t) − vx| f+(x, v; t)

−
∫

∂Ω�
t

dσ

∫
vx≤V (t)

dv χ+
⊥ |v⊥ · n̂| |V (t) − vx| f+(x, v; t),

(2.11)

where dσ is the surface element on ∂Ω�
t, and we put χ+

⊥ = χ({v⊥ · n̂ ≥ 0}), χ−
⊥ = χ({v⊥ · n̂ ≤ 0}). The first

and the second lines of (2.11) take into account the momentum transfer from gas particles absorbed by ∂Ω+
t

and ∂Ω−
t respectively, the third and the fourth lines the momentum transfer from particles emitted by ∂Ω+

t

and ∂Ω−
t , the fifth and the sixth lines the momentum transfer from particles absorbed by ∂Ω�

t, and finally the
seventh and the eighth lines, which turn out to cancel each other, the momentum transfer from particles emitted
by ∂Ω�

t. For a heuristic derivation of this formula in the elastic case see [3].

A similar model with elastic collisions between fluid particles and body has been introduced in connection
with the so called piston problem (see [7,8] and references quoted therein). An investigation on the approach
to equilibrium in such a model has been done in [3,4]. A comparison between the results obtained in these
references and the results given in the present paper will be done just after the statement of Theorem 2.1.

A few words to explain the reason why we assume the mean field limit. If we consider the medium as a gas of
light particles with small but finite mass, the collisions between particles and body give rise to a very irregular
motion. However the averaged motion of the body is expected to be regular when the ratio between the mass
of the gas particles and that of the body vanishes. To avoid the difficulties connected with the computation of
averaged quantities we assume the mean field limit, namely the number of particles per unit volume diverges
while their mass vanishes, in such a way that the density stays bounded. This limit is well known for interacting
particle systems (see [1,2,6,9,10]).

Summarizing we define a solution of our problem to be any pair (f, V ) where V = V (t) solves, for almost
all t ∈ R

+, equations (2.10), (2.11) and f satisfies equation (2.12) below

d
dt

f(x + vt, v; t) = 0 a.e. (x, v), (2.12)

together with the previously described conditions on ∂Ωt, and the initial condition (2.3). The existence of
this solution can be proved by compactness (see later on), while the uniqueness has not been investigated.



ON THE MOTION OF A BODY IN THERMAL EQUILIBRIUM IMMERSED IN A PERFECT GAS 267

R
ap

id
e 

N
ot

e

H
ighlight Paper

Indeed while the asymptotic behavior can be outlined by analyzing few recollisions, in order to get uniqueness
we need a complete control of the full collision sequence,which is beyond the techniques of the present paper.

Notice that, assuming the time evolution of the body is given, we could follow back in time the trajectory
of a gas particle with position x and velocity v at time t. For a particle hitting the body at time t, we denote
by τ the recollision time (in the past). If τ does not exist, we say that the particle has no recollisions.

Notice that, for obvious geometrical reasons, particles hitting the body on ∂Ω�
t at time t have no recollisions.

Hence for f−(x, v; t) in (2.9) and (2.11), on ∂Ω�
t, we have to put the initial distribution (2.3).

It is convenient to rewrite the term F (t) in (2.11) in a more compact form, by expressing f+ in terms of f− by
using (2.4), (2.6), (2.7) and (2.9):

F (t) =
∫

∂Ω+
t

dx

∫
vx≤V (t)

dv
[
(V (t) − vx)2 + λ|V (t) − vx|

]
f−(x, v; t)

−
∫

∂Ω−
t

dx

∫
vx≥V (t)

dv
[
(V (t) − vx)2 + λ|V (t) − vx|

]
f−(x, v; t)

+ k

∫ V (t)

−∞
dvx |V (t) − vx| e−βv2

x − k

∫ +∞

V (t)

dvx |V (t) − vx| e−βv2
x ,

(2.13)

where

λ = α

∫
dv⊥e−βv2

⊥

∫ +∞

0

dxx2e−βx2
,

and

k = ρ

(
β

π

) 3
2

∫
∂Ω�

t

dσ

∫
dv⊥ χ−

⊥ |v⊥ · n̂| e−βv2
⊥ .

Neglecting the recollisions between the gas particles and the body, the friction term is easily computed, putting
in place of f−(x, v; t) the initial distribution (2.3). This friction term is:

F0(V ) = C̄

∫ V (t)

−∞
dvx

[
(V (t) − vx)2 + λ̄|V (t) − vx|

]
e−βv2

x

− C̄

∫ +∞

V (t)

dvx

[
(V (t) − vx)2 + λ̄|V (t) − vx|

]
e−βv2

x ,

(2.14)

where

C̄ = ρ

(
β

π

) 3
2

∫
∂Ω+

t

dx

∫
dv⊥ e−βv2

⊥ , λ̄ = λ + k/C̄.

We remark that, proceeding as in reference [3], it can be easily seen that F0 is a positive, increasing and convex
function in the interval (0, +∞). Therefore there exists a unique solution V∞ of F0(V∞) = E. We assume that
V∞ ≥ V0 > 0.

Let us show that, without recollisions, our problem can be trivially solved. Indeed replacing F by F0 in
equation (2.10) we have:

Ẋ(t) = V (t), V̇ (t) = E − F0(V (t)) = K(t)(V∞ − V (t)), (2.15)

X(0) = 0, V (0) = V0,
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where
K(t) =

F0(V∞) − F0(V (t))
V∞ − V (t)

· (2.16)

The solution to equation (2.15) can be almost explicitly computed. We can see that V is increasing in time and
converging to V∞, moreover a standard comparison argument shows that

γe−C−t ≤ V∞ − V (t) ≤ γe−C+t, (2.17)

where
γ = V∞ − V0 and C+ = F ′

0(V0) ≤ C− = F ′
0(V∞). (2.18)

The full problem, where we include recollisions, is much more difficult. Let us rewrite the full friction term F
as:

F (t) = F0(V (t)) + r+(t) + r−(t) (2.19)
where r+(t) and r−(t) are:

r+(t) =
∫

∂Ω+
t

dx

∫
vx≤V (t)

dv d(vx, V (t))
[
f−(x, v; t) − ρ

(
β

π

)3/2

e−βv2
]
, (2.20)

r−(t) =
∫

∂Ω−
t

dx

∫
vx≥V (t)

dv d(vx, V (t))
[
ρ

(
β

π

)3/2

e−βv2 − f−(x, v; t)
]
, (2.21)

and
d(vx, V (t)) = (V (t) − vx)2 + λ|V (t) − vx|. (2.22)

The quantities ρ, β, R, L, V∞ (or equivalently E), and γ = V∞ − V0 are the data of the problem.
We are now in the position to state the main result of the present paper. We give the result depending on

the dimension d = 1, 2, 3 of the physical space, treating explicitly the case d = 3 (the remaining cases follow
with obvious modifications).

Theorem 2.1. Let (V (t), f(t)) be a solution to problem (2.1)-(2.11). Then there exist γ0 = γ0(ρ, β, R, L, V∞) >
0 sufficiently small and positive constants C0, A+, A− independent of γ, such that, for any γ ∈ (0, γ0) and
V0 > C0, the solution (V (t), f(t)) satisfies the following properties:

(i) For any t ≥ 0:

V∞ − V (t) ≤ γ e−C+t + γ2 A+

(1 + t)d+1
· (2.23)

(ii) There exists a sufficiently large t̄, depending on γ, such that for any t ≥ 0:

V∞ − V (t) ≥ γ e−C−t + γ2 A−
td+1

χ({t ≥ t̄}), (2.24)

where χ({. . .}) is the characteristic function of the set {. . .}.

We now compare this result with the analogous one obtained for elastic boundary conditions in [3], in which
we have the faster decay t−d−2. The physical reason of this different behavior is due to the fact that in presence
of stochastic boundary conditions the light particles are emitted with a Maxwellian distribution centered around
the body velocity. Therefore a large fraction of the emitted particles have a velocity close to that of the body,
and this makes recollisions more likely.

We observe that the results of the present paper, as in the case with elastic collisions, can be extended to two
further cases: V0 > V∞ and/or a body with a generic convex shape (see [5] for the case of reflecting boundary
conditions).
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3. Proof of Theorem 2.1

In the sequel we will denote by C any positive constant, possibly depending on ρ, β, R, L, V∞, but not on γ,
which is our small parameter.

For any γ ∈ (0, γ0) with γ0 sufficiently small, we introduce an a.e. differentiable function with bounded
derivative, t → W (t), such that W (0) = V0, limt→∞ W (t) = V∞, and satisfying the following properties:

(i) W is increasing over the interval [0, t0], with

t0 =
1

2C−
log

C+

γ
· (3.1)

(ii) There exist two positive constants A+, A− such that, for any t ≥ 0, it is:

V∞ − W (t) ≤ γ e−C+t + γ2 A+

(1 + t)4
(3.2)

and, with t̄ = 2t0,

V∞ − W (t) ≥ γ e−C−t + γ2 A−
t4

χ({t ≥ t̄}). (3.3)

The two constants A+ and A−, independent of each other and also of γ and γ0, will be fixed later on.
We collect in the following lemma (proved in [3]) some properties of the function W which we will use in the

sequel. For 0 ≤ s < t, we set

〈W 〉s,t =
1

t − s

∫ t

s

W (τ) dτ (3.4)

and
〈W 〉0,t = 〈W 〉t. (3.5)

Lemma 3.1. Suppose γ0 sufficiently small. Then:
(i) For any t > 0 we have:

W (t) > 〈W 〉t. (3.6)
(ii) t → 〈W 〉t is an increasing function.
(iii) For any s ∈ (0, t),

〈W 〉s,t > 〈W 〉t. (3.7)
(iv) For any t > 0, the following bound holds:

W (t) − 〈W 〉t ≤ C

1 + t
(γ + A+γ2). (3.8)

The idea of the proof of Theorem 2.1 is the following. We assign the velocity W of the body with the
properties just stated. We solve the free Vlasov equation outside a body moving with velocity W and compute
the terms r+

W and r−W defined below. Then we solve equation (2.10) for the body with assigned r+
W and r−W ,

finding a new velocity VW . The solution of our problem is the fixed point of the map W → VW , thus we have
to prove for VW the same properties established above for W .

Let X(t) =
∫ t

0
W (τ)dτ be the position of the center of mass of the body at time t. Consider the modified

problem:
d
dt

(V∞ − VW (t)) = −K(t) (V∞ − VW (t)) + r+
W (t) + r−W (t), (3.9)

where K(t) is the function introduced in (2.16) with W (t) in place of V (t). Moreover

r+
W (t) =

∫
∂Ω+

t

dx

∫
vx≤W (t)

dv d(vx, W (t))
[
f−(x, v; t) − ρ

(
β

π

)3/2

e−βv2
]
, (3.10)
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and

r−W (t) =
∫

∂Ω−
t

dx

∫
vx≥W (t)

dv d(vx, W (t))
[
ρ

(
β

π

)3/2

e−βv2 − f−(x, v; t)
]
. (3.11)

We want to show that VW behaves like W . To this aim we have to estimate r±W .
To have a recollision (from the right or from the left basis of the cylinder) it is necessary that x ∈ ∂Ω±

t , and
it has to exist a time s < t such that

vx(t − s) = X(t) − X(s) =
∫ t

s

W (τ) dτ, (3.12)

that is vx = 〈W 〉s,t for some s ∈ (0, t) and
|v⊥|(t − s) ≤ 2R. (3.13)

Thus by Lemma 3.1 (iii), for a recollision to happen it is necessary that

vx ≥ 〈W 〉t and |v⊥| ≤ 2R

t − s
· (3.14)

Let us start by estimating r+
W (t), proving the following lemma:

Lemma 3.2. For any t ≥ 0, and γ sufficiently small,

C
γ2

(1 + t)4
χ({t ≥ t0}) ≤ r+

W (t) ≤ C
(γ + A+γ2)2

(1 + t)4
· (3.15)

Proof. Let τ(x, v, t) ∈ (0, t) be the first backward recollision time for a particle with velocity v, which is hitting
the body at x ∈ ∂Ω+

t at time t. Omitting the dependence of τ on x, v, t, for notational simplicity, from (2.3)
and (2.4) we have, for x ∈ ∂Ω+

t ,

f−(x, v; t) = αJ(ξ, τ)e−β(vx−W (τ))2e−βv2
⊥ χ({〈W 〉t ≤ vx ≤ W (t)})

+ ρ

(
β

π

)3/2

e−βv2
χ({−∞ < vx < 〈W 〉t}), (3.16)

where ξ ∈ ∂Ω+
τ is the collision point at time τ . In fact for 〈W 〉t ≤ vx ≤ W (t) the gas particle had a collision

with the body at some time instant τ < t, and so it was emitted by the body according to the distribution (2.4),
while for −∞ ≤ vx ≤ 〈W 〉t the gas particle had no collisions with the body in the past, hence we have to use
for it the initial distribution (2.3). Moreover from (2.6) and (3.16) we obtain

J(x, t) = α

∫
dv (W (t) − vx)J(ξ, τ)e−β(vx−W (τ))2e−βv2

⊥

×χ({〈W 〉t ≤ vx ≤ W (t)})

+
∫

dv (W (t) − vx) ρ

(
β

π

)3/2

e−βv2

×χ({−∞ < vx < 〈W 〉t}). (3.17)

By Lemma 3.1 (iv), we have
J(x, t) ≤ C γ2 sup

ξ∈R3
sup
τ≥0

J(ξ, τ) + C, (3.18)

hence
sup
ξ∈R3

sup
τ≥0

J(ξ, τ) ≤ C

1 − Cγ2
< C, (3.19)



ON THE MOTION OF A BODY IN THERMAL EQUILIBRIUM IMMERSED IN A PERFECT GAS 271

R
ap

id
e 

N
ot

e

H
ighlight Paper

for γ sufficiently small.
Let us establish first the upper bound for r+

W (t). From (3.10), (3.14), (3.16) and (3.19) it follows:

r+
W (t) ≤ C

∫
dv⊥ e−βv2

⊥χ

({
|v⊥| ≤ 2R

t − τ

}) ∫ W (t)

〈W 〉t

dvx d(vx, W (t)). (3.20)

For vx such that τ < t/2, we have:∫
dv⊥ e−βv2

⊥χ

({
|v⊥| ≤ 2R

t − τ

})
≤ C

(1 + t)2
, (3.21)

and we have a first contribution to the upper bound of r+
W (t) which is

C

(1 + t)2

∫ W (t)

〈W 〉t

dvx d(vx, W (t)) ≤ C

(1 + t)2
(W (t) − 〈W 〉t)2. (3.22)

If τ ≥ t/2, from (3.12) and (3.2) it follows:

vx = W (t) − 1
t − τ

∫ t

τ

ds (W (t) − W (s))

≥ W (t) − 1
t − τ

∫ t

τ

ds (V∞ − W (s))

≥ W (t) − 1
t − τ

∫ t

τ

ds
[
γe−C+s +

A+γ2

(1 + s)4
]

≥ W (t) −
[
γ

e−C+τ − e−C+t

C+(t − τ)
+ C

A+γ2

(1 + t)4

]
. (3.23)

Since
1 − e−C+(t−τ)

C+(t − τ)
< C,

it follows that

vx ≥ W (t) − C

[
γe−C+

t
2 +

A+γ2

(1 + t)4

]
≥ W (t) − C

(γ + A+γ2)
(1 + t)4

· (3.24)

Hence the second contribution to the upper bound of r+
W (t) is

C

∫
dvx d(vx, W (t))χ({W (t) − C

(γ + A+γ2)
(1 + t)4

≤ vx ≤ W (t)})

≤ C

(
(γ + A+γ2)

(1 + t)4

)2

· (3.25)

Collecting (3.22), (3.25) and using Lemma 3.1 (iv), we achieve the upper bound in (3.15).
We give now the lower bound of r+

W (t). By (3.10), (3.14) and (3.16), we have

r+
W (t) =

∫
∂Ω+

t

dx

∫
dv χ({〈W 〉t ≤ vx ≤ W (t)}) d(vx, W (t))

×
[
αJ(ξ, τ)e−β(vx−W (τ))2e−βv2

⊥ − ρ

(
β

π

) 3
2

e−βv2

]
.

(3.26)
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Moreover, by (3.17),

J(ξ, τ) ≥ C

∫
dv (W (τ) − vx) ρ

(
β

π

) 3
2

e−βv2
χ({−∞ < vx < 〈W 〉τ})

≥ C. (3.27)

Therefore

r+
W (t) ≥ C

∫
dv⊥ e−βv2

⊥ χ({|v⊥| ≤ 2R

t − τ
})

∫ W (t)

〈W 〉t

dvx d(vx, W (t))

×
[
Ce−β(vx−W (τ))2 − ρ

(
β

π

) 3
2

e−βv2
x

]

≥ C

(1 + t)2
(W (t) − 〈W 〉t)2, (3.28)

since, by the properties of W , there exists a positive constant C0 (independent of γ) such that, for V0 > C0

and vx ∈ [〈W 〉t, W (t)], the term in square brackets in (3.28) is bounded from below by a positive constant.
Furthermore, by (3.2) and (3.3),

W (t) − 〈W 〉t =
1
t

∫ t

0

ds
[
(V∞ − W (s)) − (V∞ − W (t))

]
≥ γ

t

∫ t

0

ds
[
e−C−s − e−C+t

] − γ2 A+

(1 + t)4

= γ

[
1 − e−C−t

C−t
− e−C+t

]
− γ2 A+

(1 + t)4
, (3.29)

hence, for γ sufficiently small and consequently t0 sufficiently large, from (3.28) and (3.29) we obtain the lower
bound in (3.15). �

For r−W (t) we have an upper bound expressed by the following lemma:

Lemma 3.3. For any t ≥ 0, and γ sufficiently small,

|r−W (t)| ≤ C χ({t ≥ t0})
(

γ + A+γ2

(1 + t)4

)2

· (3.30)

Proof. We notice first that r−W (t) = 0 as far as W is increasing, and this justifies the characteristic function in
equation (3.30). By (3.12) and (3.3) we have

vx = 〈W 〉s,t ≤ V∞ − 1
t − s

∫ t

s

[
γe−C−τ + γ2 A−

τ4
χ({τ ≥ t̄})

]
dτ

≤ V∞. (3.31)

Thus from (3.11) and by the form of f−(x, v; t) (which follows from the analogous of (3.16) and (3.19), written
for x ∈ ∂Ω−

t ) we obtain:

|r−W (t)| ≤ C

∫ V∞

W (t)

dvx d(vx, W (t)) ≤ C(V∞ − W (t))2. (3.32)
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By (3.2) we have

r−W (t) ≤ C

(
γ e−C+t + γ2 A+

(1 + t)4

)2

, (3.33)

hence (3.30) follows by noticing that e−C+t ≤ C/(1 + t)4. �

We remark that, from (3.15) and (3.30), it follows

r+
W (t) + r−W (t) ≥ 0 (3.34)

∀ t ≥ 0, by choosing t0 sufficiently large, that is γ sufficiently small.

Now we prove that the function VW (t) satisfying equation (3.9) enjoys, for γ suitably small, the same
properties as the function W , with the same constants A+, A−. After this the proof of Theorem 2.1 will follow
easily.

From now on we proceed as in [3], and we repeat here the argument for the sake of completeness.

Proposition 3.1. Suppose γ sufficiently small. Then:
(i) t → VW (t) is an a.e. differentiable function with bounded derivative, increasing over the interval [0, t0]

with
t0 =

1
2C−

log
C+

γ
· (3.35)

(ii) For any t ≥ 0:

V∞ − VW (t) < γ e−C+t + γ2 A+

(1 + t)4
· (3.36)

(iii) For any t > 0, with t̄ = 2t0:

V∞ − VW (t) > γ e−C−t + γ2 A−
t4

χ({t ≥ t̄}). (3.37)

Proof. From equation (3.9) and the Duhamel formula we have:

V∞ − VW (t) = γe−
∫

t
0 K(τ)dτ +

∫ t

0

ds e−
∫

t
s

K(τ)dτ (r+
W (s) + r−W (s)), (3.38)

and since r+
W (t) and r−W (t) are bounded, by (3.38) and (3.9) VW is a.e. differentiable with bounded derivative.

By the properties of W we have that, for γ sufficiently small, V0 < W (t) < V∞ for any t > 0. Consequently
for the function K(t) introduced in (2.16) (here defined with W in place of V ) we have C+ < K(t) < C− for
t > 0. Hence by the non-negativity of (r+

W (t) + r−W (t)), from (3.38) we get, for t > 0,

V∞ − VW (t) > γ e−C−t. (3.39)

By (3.9), (3.39), (3.15) and (3.30) we have

d
dt

(V∞ − VW (t)) ≤ −C+γ e−C−t + C
(γ + A+γ2)2

(1 + t)4
, (3.40)

and this implies
d
dt

(V∞ − VW (t)) < 0 (3.41)

for t ∈ [0, t0] and γ sufficiently small, so that (i) is proved.
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From (3.38), (3.15) and (3.30) it follows:

V∞ − VW (t) ≤ γ e−C+t +
∫ t

0

ds e−C+(t−s)(r+
W (s) + r−W (s))

≤ γ e−C+t + C(γ + A+γ2)2
∫ t

0

ds
e−C+(t−s)

(1 + s)4
· (3.42)

Let us evaluate the integral: ∫ t

0

ds
eC+s

(1 + s)4
=

∫ t
2

0

(·) ds +
∫ t

t
2

(·) ds

≤ eC+
t
2 − 1

C+
+

24

(2 + t)4
eC+t − eC+

t
2

C+
·

Thus
∫ t

0

ds
e−C+(t−s)

(1 + s)4
≤ e−C+

t
2 − e−C+t

C+
+

24

(2 + t)4
1 − e−C+

t
2

C+

≤ 1
C+

(
e−C+

t
2 +

24

(2 + t)4

)
≤ C

(1 + t)4
· (3.43)

To conclude, there exists a constant C̄ such that:

V∞ − VW (t) ≤ γ e−C+t + C̄(γ + A+γ2)2
1

(1 + t)4
· (3.44)

Therefore to obtain (ii) it is sufficient that

C̄(γ + A+γ2)2 < A+γ2. (3.45)

This inequality is satisfied, for instance, by choosing A+ = 2C̄ (this fixes A+) and γ consequently small.
It remains to prove (iii). From (3.38), (3.15) and (3.30) we have, for t ≥ t̄ and t0 sufficiently large (that is γ

sufficiently small):

V∞ − VW (t) > γ e−C−t +
∫ t

0

ds e−C−(t−s)(r+
W (s) + r−W (s))

> γ e−C−t + C

∫ t

t0

ds e−C−(t−s) γ2

s4
· (3.46)

Now we have ∫ t

t0

ds
e−C−(t−s)

s4
≥ 1 − e−C−(t−t0)

C−t4
≥ 1 − e−C−t0

C−t4
≥ 1

2C−t4
, (3.47)

by (3.1), for γ sufficiently small, since t ≥ t̄ = 2t0. Hence:

V∞ − VW (t) > γ e−C−t + C
γ2

t4
· (3.48)

Last inequality enables us to choose A−, in such a way that (3.37) is satisfied. This can be done in a consistent
manner, since the constant C appearing in (3.48) does not depend of A−. Actually it depends of A+, nevertheless
A− can be chosen independently of A+ for γ sufficiently small. �
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Any solution to this problem satisfies bounds (2.23) and (2.24). Consider in fact a solution (V, f) of the
problem. By continuity of V there exists a time interval in which inequalities (2.23)-(2.24) hold strictly. Let T
be the first time for which our strict inequalities are violated. The same arguments used in Proposition 3.1
(replacing W by V ) show that (2.23)-(2.24) hold strictly in the time interval (0, T ], since in this interval V
enjoys the same properties as W . Then T must be infinite. This concludes the proof of Theorem 2.1.

By using the results of Section 3 it is easy to prove the existence of the pair (V, f), by studying the fixed
point of the map W → VW by means of Schauder’s theorem (see [4] for details).
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