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CONVERGENCE OF A NEUMANN-DIRICHLET ALGORITHM
FOR TWO-BODY CONTACT PROBLEMS

WITH NON LOCAL COULOMB’S FRICTION LAW
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Abstract. In this paper, the convergence of a Neumann-Dirichlet algorithm to approximate
Coulomb’s contact problem between two elastic bodies is proved in a continuous setting. In this
algorithm, the natural interface between the two bodies is retained as a decomposition zone.
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1. Introduction

Domain decomposition methods are usually characterized by an artificial splitting of a given domain where
a partial differential equation has to be solved. Then, suitable iterations are performed in which a sequence
of local problems are considered. Each of these local problems being defined in a subdomain with convenient
boundary conditions. One of the potential interest of this approach is that the computation of solutions for the
local problems required much less time than the solution for the initial problem and can be made simultaneously
by using parallel computers. Moreover various discretizations or various kinds of solvers can be used to deal
with each of the local problems. Several methods have been reviewed in [9,17,19].

At first glance, multibody contact problems in elasticity appear to be a natural domain of application for
domain decomposition methods. Many numerical procedures have been proposed in the mechanical literature.
They are based on standard discretization techniques for partial differential equations in combination with a
special implementation of the non-linear contact conditions (see e.g. [5,6,10–13,20]).

However, so far this kind of approach seems to have been neglected in mathematical literature. One of the
first mathematical proof of the convergence for contact decomposition algorithm is proposed in [1]. However,
the decomposition boundary is artificial and located inside one of bodies.

More recently, a so-called Neumann-Dirichlet algorithm for the solution of frictionless Signorini contact
problem has been proposed and studied in the discretized setting in [14–16]. This new algorithm consists
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to solve in each iteration a linear Neumann problem for one body and a unilateral contact problem for the other
by using essentially the contact interface as the boundary data transfer. The convergence of this algorithm in the
continuous setting has been proved in [4,8]. This last approach has been extended to the contact problem with
Coulomb friction. The corresponding discretized Neumann-Dirichlet algorithm and several numerical results
are given in [14,16].

The aim of the present paper is to prove the convergence of the Neumann-Dirichlet algorithm for contact
problem with Coulomb friction in the continuous setting. The main difficulty in this work is linked with the
boundary conditions at the contact interface. They are highly non-linear both in the normal direction (unilateral
contact conditions) and in the tangential one (non-differential Coulomb law). A fixed point relaxed procedure
is defined for the stresses on the contact surface. For sufficiently small friction coefficient, the convergence of
the Neumann-Dirichlet algorithm is proved for the continuous problem. It is also shown, by some numerical
calculations, that an optimal relaxation parameter exists and its value is nearly independent of the friction
coefficient, the mesh size and of the Young modulus.

The paper is organized as follows:
In Sections 2 and 3, we give a statement of the problem and we propose the natural Neumann-Dirichlet

algorithm in the strong formulation. The precise variational formulation of the algorithm is given in Section 4.
We then prove in Section 5, under some assumptions concerning the data, the convergence of the stresses on
the contact surface, which in turn proves the convergence of the whole algorithm. In the last, we present some
numerical results asserting the efficiency of our algorithm.

2. Stating the problem

Let us consider two elastic bodies, occupying two bounded domains Ωα, α = 1, 2, of the space R
2. The

boundary Γα = ∂Ωα is assumed piecewise continuous, and composed of three complementary non empty
parts Γα

u , Γα
l and Γα

c such that Γ̄α
u ∩ Γ̄α

c = ∅. Each body Ω
α

is fixed on the part Γα
u and subjected to surface

traction forces φα in (L2(Γα
l ))2. The body forces are denoted by fα in (L2(Ωα))2. In the initial configuration,

both bodies have a common contact portion Γc = Γ1
c = Γ2

c . In other words, we consider the case when contact
zone cannot grow during the deformation process. Unilateral contact with non local Coulomb’s friction can
take place along the boundary Γc. The problem consists in finding the displacement field u = (u1,u2) (where
the notation uα stands for u|Ωα) and the stress tensor field σ = (σ(u1), σ(u2)) such that: for α = 1, 2

⎧⎨
⎩

div σ(uα) + fα = 0 in Ωα,
σ(uα)nα = φα on Γα

l ,
uα = 0 on Γα

u ,
(2.1)

where the symbol div denotes the divergence operator of a tensor function and is defined as

div σ =
(
∂σij

∂xj

)
i

·

The summation convention of repeated index is adopted. The elastic constitutive law is given by Hooke’s law
for homogeneous and isotropic solid:

σij(uα) = Aα
ijkhekh(uα), e(uα) =

1
2

(
∇uα + (∇uα)T

)
, (2.2)

where Aα(x) = (aα
ijkh(x))1≤i,j,k,h≤2 ∈ (L∞(Ωα))16 is a fourth-order tensor satisfying the usual symmetry and

ellipticity conditions in elasticity, and e(uα) is the strain tensor.



NEUMANN-DIRICHLET ALGORITHM FOR CONTACT 245

We will use the usual notations for the normal and tangential components of the displacement and stress
vector on Γc

uα
N = uα

i nα
i , uα

Ti
= uα

i − uα
Nnα

i

σα
N = σij(uα)nα

i nα
j , σT

α
i = σij(uα)nα

j − σα
Nnα,

in which we have denoted by nα the outward normal unit vector to the boundary.
On the interface Γc, the unilateral contact law is described by

σ1
N = σ2

N = σN , σ1
T = σ2

T = σT , (2.3)

[uN ] ≤ 0, σN ≤ 0, σN [uN ] = 0, (2.4)

where [vN ] = v1.n1 + v2.n2, is the jump across the interface of any function v defined on Ωα.
The Coulomb’s law with non-local friction is given by

⎧⎨
⎩

|σT | ≤ k|S(σN )|
|σT | < k|S(σN )| =⇒ [uT ] = 0
|σT | = k|S(σN )| =⇒ ∃ν ≥ 0 [uT ] = −νσT

(2.5)

where k(x) is the coefficient of friction on the interface Γc: k(x) ∈ L∞(Γc), k(x) ≥ 0 a.e. on Γc; S is a
regularization operator from the dual of H

1
2 (Γc) into L2(Γc).

It’s easy to prove (see for example [7]) that (2.5) is equivalent to:

{ |σT | ≤ k|S(σN )|
k|S(σN )||[uT ]| + σT [uT ] = 0. (2.6)

3. Neumann-Dirichlet algorithm

Let 0 < θ < 1 be a parameter that will be determined in order to ensure the convergence of the algorithm.
Let g2

0 be a given element on Γc. For i ≥ 1, the sequence of functions (u1
i )i≥0 and (u2

i )i≥0 is defined by solving
the following problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I) divσ(u2
i ) = f2 in Ω2

σ(u2
i )n

2 = φ2 on Γ2
l

u2
i = 0 on Γ2

u

σ(u2
i )n

2 = g2
i−1 on Γc

(II) divσ(u1
i ) = f1 in Ω1

σ(u1
i )n

1 = φ1 on Γ1
l

u1
i = 0 on Γ1

u

u1
i .n

1 ≤ −u2
i .n

2, σ1
i N ≤ 0, σ1

iN
[uiN ] = 0 on Γc

|σ1
iT
| ≤ k|S(σ2

iN
)|

σ1
iT

[uiT ] + k|S(σ2
iN

)||[uiT ]| = 0 on Γc

(III) g2
i := θσ1

i n1 + (1 − θ)g2
i−1 on Γc.

(3.1)

The variational form of this algorithm will be given in (4.9). The proof of its convergence towards the solution
of the problem (2.1)–(2.6) will be given in Theorem 5.9.
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4. The variational formulation

In order to study the previous algorithm, let us first define its variational formulation by introducing the
following functional spaces:

For α = 1, 2:
V α =

{
vα ∈ (H1(Ωα))2, vα = 0 on Γα

u

}
, endowed with the norm ‖ · ‖α = ‖ · ‖(H1(Ωα))2 .

V = V 1 × V 2 provided with the norm ‖ · ‖V =

(
2∑

α=1

‖ · ‖2
α

) 1
2

.

K = {v ∈ V, [vN ] ≤ 0 a.e. on Γc}.
H 1

2 (Γc) =
{

ϕ ∈ (L2(Γc))2; ∃v ∈ V α; α = 1, 2; γv|Γc
= ϕ

}
, provided with the norm

‖ϕ‖ 1
2 ,Γc

= inf{‖v‖α; v ∈ V α, γv|Γc
= ϕ},

where γ is the usual trace operator.
As Γα

c ∩ Γα
u = ∅, the space H 1

2 (Γc) does not depend on α.
Let us denote by V α

′
the dual space of V α and by 〈·, ·〉α the duality pairing of the two spaces. The dual

norm on V α
′
is given by:

‖ψ‖V α′ = sup
v∈V α

|〈ψ,v〉α|
‖v‖α

·

Let us introduce for all ϕ in H
1
2 (Γc) the set:

V 1
−(ϕ) = {v1 ∈ V 1, v1.n1 ≤ −ϕ a.e on Γc}.

We will denote by:

aα(u,v) =
∫

Ωα

Aα
ijkleij(u)ekl(v) dx, a(u,v) =

2∑
α=1

aα(u,v),

Lα(v) =
∫

Ωα

fα.v dx+
∫

Γα
l

φα.v dx, L(v) =
2∑

α=1

Lα(v).

The bilinear form aα(., .) is continuous and coercive since mes(Γα
u) > 0, so aα(., .) satisfies:

∃Mα > 0, |aα(u,v)| ≤Mα‖u‖α‖v‖α ∀u,v ∈ V α,

∃mα > 0, aα(v,v) ≥ mα‖v‖2
α ∀v ∈ V α.

(4.1)

Let

M =
2∑

α=1

Mα, m = min
α=1,2

mα, (4.2)

so

|a(u,v)| ≤M‖u‖V ‖v‖V , ∀u,v ∈ V,

a(v,v) ≥ m‖v‖2
V ∀v ∈ V.

(4.3)
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Let us first recall that the variational formulation of the initial problem (2.1)–(2.6) is given by:

(P1)

⎧⎨
⎩

Find u in K such that:

a(u,v − u) +
∫

Γc

k|S(σN )|(| [vT ] | − | [uT ] |) ≥ L(v − u) ∀v ∈ K.
(4.4)

which has at least one solution and this solution is unique for a sufficiently small ‖k‖L∞(Γc)
(see e.g. [7]).

In the following, we will use some lift operators which allow us to build specific functions in Ωα from their
values on Γc.

For α = 1, 2, let
Rα

D
: H 1

2 (Γc) −→ V α

ϕ −→ Rα
D

ϕ.
(4.5){

aα(Rα
D

ϕ,v) = 0 ∀v ∈ V α such that γv = 0 on Γc

γ(Rα
D
ϕ) = ϕ on Γc,

whose strong formulation is given by:⎧⎪⎪⎨
⎪⎪⎩

div σα = 0 in Ωα, with Aα e(Rα
D

ϕ) = σα

γ(Rα
D

ϕ) = ϕ on Γc

σαnα = 0 on Γα
l

γ(Rα
D

ϕ) = 0 on Γα
u .

(4.6)

Proposition 4.1.
(i) The three norms ‖ϕ‖ 1

2 ,Γc
and ‖Rα

D
ϕ‖

α
, α = 1, 2 are equivalent on H 1

2 (Γc).
(ii) There exists a constant C > 0 such that

∀v ∈ V α ‖Rβ
D
γv|Γc

‖
β
≤ C‖v‖α α, β = 1, 2 and α �= β.

Proof. (i) Using the definition of Rα
D, we have:

γ (Rα
D(ϕ)) = ϕ,

so from the definition of ‖ · ‖ 1
2 ,Γc

, we gain

‖ϕ‖ 1
2 ,Γc

≤ ‖Rα
D

ϕ‖
1
. (4.7)

Conversely, let us consider the range of H 1
2 (Γc) by Rα

D

Wα = Rα
D

(
H 1

2 (Γc)
)
.

As for any ϕ in H 1
2 (Γc), problem (4.5) has a unique solution, and as the trace restriction on Γc of any function

in Wα is unique, so the application Rα
D

is a bijection from H 1
2 (Γc) in Wα. Let us consider its inverse Rα−1

D . It
is easy to prove that this last bijection is linear, and we can obtain its continuity from (4.7).

Moreover, as Wα is a closed sub-space of V α which is a Banach space, so Wα is also a Banach one.
Using the homeomorphism Banach theorem (see e.g.[18]), we obtain that Rα

D
is continuous from H 1

2 (Γc)
in Wα, i.e.

‖Rα
D

ϕ‖
1
≤ C‖ϕ‖ 1

2 ,Γc
∀ϕ ∈ H 1

2 (Γc). (4.8)

Consequently, the three norms ‖ϕ‖ 1
2 ,Γc

and ‖Rα
D
ϕ‖

α
, α = 1, 2 are equivalent.

(ii) Let v be in V α, using inequality (4.8) and the trace theorem, the result is established. �
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Remark 4.2. For sake of simplicity, we will write in the following Rα
D(γv) instead of Rα

D(γv|Γc
).

The weak formulation of the algorithm (3.1) is given by:
Let g2

0 be a given element in V 2
′
. For i ≥ 1, let us define the sequence of functions (u1

i )i≥0 in V 1 and (u2
i )i≥0

in V 2 by solving the following problems:

(Qi)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I) Find u2
i in V 2 such that:

a2(u2
i ,v) = L2(v) + 〈g2

i−1,v〉2 ∀v ∈ V 2

(II) Find u1
i in V 1(u2

iN
) such that:

a1(u1
i ,w + R1

D
(γu2

i ) − u1
i ) +

∫
Γc

k|S(σiN (u2
i ))| (|wT | − | [uiT ] |)

≥ L1(w + R1
D

(γu2
i ) − u1

i ) ∀w ∈ V 1
−(0)

(III) 〈g2
i ,v〉2 :=

θ
(−a1(u1

i ,R
1
D
γv) + L1(R1

D
γv)
)

+ (1 − θ)〈g2
i−1,v〉2 ∀v ∈ V 2.

(4.9)

Remark 4.3. Using inequality (ii) of Proposition 4.1, the expression 〈g2
i ,v〉2 in (4.9)(III) has sense, i.e. g2

i

belongs to V 2
′
.

5. Convergence

The convergence of the algorithm towards the solution of (P1) and then of (2.1)–(2.6) is given by a two-step
procedure. We prove first, in Proposition 5.1, that the convergence of (g2

i )i in V 2′
induces the strong convergence

of (uα
i )i. Then, in Proposition 5.6, the contraction of an auxiliary operator Tθ defined by (5.7) is proved. This

yields the convergence of the sequence (g2
i )i by way of Theorem 5.9.

Proposition 5.1. Let us suppose that there exists 0 < θmin < 1 such that for any θ, θ ≥ θmin, the se-
quence (g2

i )i≥0 converges in V 2
′
. Then the sequence (u1

i ,u
2
i ) (strongly) converges in V to the solution (u1,u2)

of (P1).

Proof. Let (u1
i ,u

2
i ) and (u1

j ,u
2
j) be solutions of the problems (Qi) and (Qj) respectively, so from (4.9)(III)

we have:

a1(u1
i − u1

j ,R
1
D
γv) = −〈g2

i−1 − g2
j−1,v〉2 −

〈
g2

i − g2
i−1

θ
− g2

j − g2
j−1

θ
,v

〉
2

∀v ∈ V 2.

Choosing v = R2
D
γ(u1

i −u1
j) in the previous inequality and using the fact that R1

D
γ(R2

D
γ(u1

i −u1
j )) = u1

i −u1
j ,

we get:

‖u1
i − u1

j‖2

1
≤ 1
θminm

(
‖g2

i−1 − g2
j−1‖V 2′ + ‖g2

i − g2
i−1‖V 2′ + ‖g2

j − g2
j−1‖V 2′

)
‖R2

D
γ(u1

i − u1
j)‖2

.

Using Proposition 4.1(i), and the strong convergence of (g2
i )i≥0 in V 2

′
, one obtains the convergence of (u1

i )i.
The strong convergence of (u2

i )i can be obtained from the one of (g2
i )i≥0, by using the coerciveness of a2(·, ·)

in (4.9)(I).
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Finally, we pass to the limit in equations (II) and (III) of problem (Qi). The limit of (uα
i )i, α = 1, 2 appears

to be a solution of the two following problems:

(P2)
{

Find u2 in V 2 such that:
a2(u2,v2) = L2(v2) − a1(u1,R1

D(γv2)) + L1(R1
D(γv2)) ∀v2 ∈ V 2.

(5.1)

(P
′
3)

⎧⎪⎪⎨
⎪⎪⎩

Find u1 in V 1
−(u2

N ) such that:

a1(u1,w + R1
D(γu2) − u1) +

∫
Γc

k|S(σN )| (|wT | − | [uT ] |)
≥ L1

(
w + R1

D(γu2) − u1
) ∀w ∈ V 1

−(0).

(5.2)

The following Lemma 5.2 proves that problems (P2) and (P
′
3) imply (P1) so allowing us to finish the proof of

Proposition 5.1. �

Lemma 5.2. Assuming that a solution exists for problems (P2) and (P
′
3), then there exists also a solution for

problem (P1) (4.4).

Proof. Let us make the following shift for the test function w in (P
′
3): v1 = w + R1

D
(γu2). We obtain the

following problem (P3) which is equivalent to problem (P
′
3):

(P3)

⎧⎪⎪⎨
⎪⎪⎩

Find u1 in V 1
−(u2

N ) such that:

a1(u1,v1 − u1) +
∫

Γc

k|S(σN )| (|v1
T − u2

T | − | [uT ] |) ≥ L1(v1 − u1)

∀v1 ∈ V 1
−(u2

N ).

(5.3)

Let v = (v1,v2) in K, as v1.n1+(v2−u2).n2 = [vN ]−u2
N ≤ −u2

N on Γc, so w = v1−R1
Dγ(v2−u2) ∈ V 1

−(u2
N ).

Choosing now w (resp. v2 − u2) as test function in (P3) (resp. in (P2)), (P1) is obtained by addition. �

In order to prove the convergence of (g2
n)n, let us introduce the operator T defined by:

T : V 2
′ −→ V 2

′

ψ �−→ Tψ (5.4)

such that:
〈Tψ,v〉2 = −a1(w1,R1

D
γv) + L1(R1

D
γv) ∀v ∈ V 2,

where w1 is the solution of the following obstacle problem:⎧⎪⎪⎨
⎪⎪⎩

Find w1 in V 1
−(w2

N
) such that:

a1(w1,v − w1) +
∫

Γc

k|S(σN (w2))| (|vT − w2
T | − |w1

T − w2
T |
) ≥

L1(v − w1) ∀v ∈ V 1
−(w2

N
)

(5.5)

and w2 is the solution of the Neumann problem:{
Find w2 in V 2 such that:
a2(w2,v) = L2(v) + 〈ψ,v〉2 ∀v ∈ V 2.

(5.6)

We also define the operator Tθ by:

Tθ : V 2
′ −→ V 2

′

ψ �−→ Tθ(ψ) = θT (ψ) + (1 − θ)ψ.
(5.7)
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We shall denote by:
CR: the maximum of the constants of continuity for R1

D and R2
D.

Cs: the maximum with respect of α = 1, 2 of the constant of continuity of the application S(σα
N (·)) which to

each wα in V α associates S(σα
N (wα)), the regularization of σα

N (wα) in L2(Γc).
Ctr: the maximum with respect of α = 1, 2 of the constants of continuity of both following trace applications:

Trα : V α −→ H 1
2 (Γc), v �−→ vT , (5.8)

where vT is the tangential component of v.
CK = ‖k‖L∞(Γc)

CsCtr, where k is the friction coefficient introduced in (2.6).

Lemma 5.3. For w2 and w̃2 in V 2, let w1 and w̃1 be solutions of the problems:
⎧⎪⎪⎨
⎪⎪⎩

Find w1 in V 1−(w2
N

) such that:

a1(w1,v − w1) +
∫

Γc

k|S(σN (w2))| (|vT − w2
T | − |[wT ]|) ≥

L1(v − w1) ∀v ∈ V 1
−(w2

N
).

(5.9)

⎧⎪⎪⎨
⎪⎪⎩

Find w̃1 in V 1
−(w̃2

N
) such that:

a1(w̃1,v − w̃1) +
∫

Γc

k|S(σN (w̃2))| (|vT − w̃2
T | − |[w̃T ]|) ≥

L1(v − w̃1) ∀v ∈ V 1
−(w̃2

N
),

(5.10)

then the following estimate holds:

‖w1 − w̃1‖1 ≤
(

(MCR + CK)
m

+

√
CK

m

)
‖w2 − w̃2‖2. (5.11)

Proof. We choose v = w̃1 −R1
D(w̃2)+R1

D(w2) in (5.9) and v = w1 −R1
D(w2)+R1

D(w̃2) in (5.10). By adding
both inequalities, we obtain

a1
(
w1 − w̃1,w1 − w̃1

) ≤ a1
(
w1 − w̃1,R1

D(w2) − R1
D(w̃2)

)
−
∫

Γc

k
(|S(σN (w2))| − |S(σN (w̃2))|) (| [wT ] | − | [w̃T ] |) . (5.12)

The continuity of the applications S(σN (·)) and Trα defined in (5.8) induces

−
∫

Γc

k
(|S(σN (w2))| − |S(σN (w̃2))|) (| [wT ] | − | [w̃T ] |) ≤ CK

(
‖w1 − w̃1‖1‖w2 − w̃2‖2 + ‖w2 − w̃2‖2

2

)
.

(5.13)
In (5.12), we use for the left-hand side, the coerciveness of a1(., .), and for the right-hand side, the continuity
of the extension Rα

D and inequality (5.13) to obtain:

m‖w1 − w̃1‖2

1 ≤ (MCR + CK)‖w1 − w̃1‖1‖w2 − w̃2‖2 + CK‖w2 − w̃2‖2

2, (5.14)

hence

m

(
‖w1 − w̃1‖1 −

MCR + CK

2m
‖w2 − w̃2‖2

)2

≤
(

(MCR + CK)2

4m
+ CK

)
‖w2 − w̃2‖2

2. (5.15)

Then the required result is obtained. �
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Proposition 5.4. The operator T is Lipschitz continuous:
∀ψ, ψ̃ in V 2′ ‖Tψ − T ψ̃‖V 2′ ≤ CT ‖ψ − ψ̃‖V 2′ ,

with

CT =
MCR

m2

(
MCR + CK +

√
CKm

)
. (5.16)

Proof. Let ψ and ψ̃ in V 2
′
, w1 (resp. w̃1) and w2 (resp. w̃2) be the solutions of (5.5) and (5.6), so

〈Tψ − T ψ̃,v〉2 = −a1(w1 − w̃1,R1
D(γv)) ∀v ∈ V 2. (5.17)

From the continuity of a1(·, ·) and Proposition 4.1(i), we get:

‖Tψ − T ψ̃‖V 2′ ≤ MCR‖w1 − w̃1‖1. (5.18)

According to (5.6), one has
a2(w2 − w̃2,v) = 〈ψ − ψ̃,v〉2 ∀v ∈ V 2.

The coerciveness of a2(·, ·) implies

‖w2 − w̃2‖2 ≤ 1
m
‖ψ − ψ̃‖

V 2′ . (5.19)

From (5.18), (5.11) and (5.19), we get the existence of a constant CT such that:

‖T (ψ) − T (ψ̃)‖
V 2′ ≤ CT ‖ψ − ψ̃‖

V 2′ . �

Let us define the following operator R2:

R2 : V 2
′ −→ V 2

ψ �−→ R2ψ

where R2ψ is the unique solution in V 2, of the problem:

a2(R2(ψ),v) = 〈ψ,v〉2 ∀v ∈ V 2. (5.20)

Let us consider the following norm in V 2
′
:

|||ψ||| =
(
a2(R2ψ,R2ψ)

) 1
2 . (5.21)

Proposition 5.5. |||.||| and ‖.‖V 2′ are equivalent norms on the space V 2
′
.

Proof. By using v = R2(ψ) as test function in (5.20), the proof is the direct consequence of (5.21) and of the
continuity and the coerciveness of a2(·, ·), so that we get:

|||ψ||| ≤ 1√
m
‖ψ‖V 2′ , (5.22)

M√
m
|||ψ||| ≥ ‖ψ‖V 2′ . (5.23)

�
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Proposition 5.6. There exist constants Ci, i = 0, ..., 5, such that Tθ is a contraction for any θ in

]C0, C1[ if ‖k‖L∞(Γc)
∈ [0, C2[.

]0, C0[ if ‖k‖L∞(Γc)
∈ [0, C3[.

]0, C0[ if ‖k‖L∞(Γc)
∈ ]C3, C4[.

]C6, C0[ if ‖k‖L∞(Γc)
∈ ]C4, C5[.

Proof. Let ψ and ψ̃ in V 2
′
, w1 (resp. w̃1) and w2 (resp. w̃2) be the solutions of (5.5) and (5.6). From the

definition of Tθ we have:

|||Tθ(ψ)−Tθ(ψ̃)|||2 = θ2|||T (ψ)−T (ψ̃)|||2 +(1−θ)2|||ψ− ψ̃|||2 +2θ(1−θ)a2
(
R2(T (ψ) − T (ψ̃)),R2(ψ − ψ̃)

)
. (5.24)

To prove that the operator Tθ is a contraction, we give, in the first step, an estimate for the term
a2
(
R2(T (ψ) − T (ψ̃)),R2(ψ − ψ̃)

)
in terms of |||T (ψ) − T (ψ̃)||| and |||ψ − ψ̃|||. We use the definitions of op-

erators T and R2 and the equivalence between ||| · ||| and ‖ · ‖
V 2′ .

First step. From the uniqueness of the solution of (5.20), we get R2(ψ − ψ̃) = w2 − w̃2 so

a2
(
R2(T (ψ) − T (ψ̃)),R2(ψ − ψ̃)

)
= a2

(
R2(T (ψ) − T (ψ̃)),w2 − w̃2

)
, (5.25)

using the definition (5.20) of R2, we have:

a2
(
R2(T (ψ) − T (ψ̃)),w2 − w̃2

)
=
〈
Tψ − T ψ̃,w2 − w̃2

〉
2
. (5.26)

The definition (5.4) of T gives〈
Tψ − T ψ̃,w2 − w̃2

〉
2

= −a1
(
w1 − w̃1,R1

D
γ(w2 − w̃2)

)
. (5.27)

From inequality (5.12), we obtain:

−a1
(
w1 − w̃1,R1

Dγ(w2 − w̃2)
) ≤ −a1

(
w1 − w̃1,w1 − w̃1

)
−
∫

Γc

k
(|S(σN (w2))| − |S(σN (w̃2))|) (| [wT ] | − | [w̃T ] |) . (5.28)

In the right-hand side, the first term will be estimated by using the coerciveness of a1(., .), inequalities (5.18)
and (5.22):

− a1
(
w1 − w̃1,w1 − w̃1

) ≤ − m2

M2C2
R

|||T (ψ) − T (ψ̃)|||2, (5.29)

for the second term, using inequalities (5.11) (see Lem. 5.3) and (5.19) in (5.13) and using (5.23), we obtain:

−
∫

Γc

k
(|S(σN (w2))| − |S(σN (w̃2))|) (| [wT ] | − | [w̃T ] |) ≤ CK

m2

(
MCR + CK +

√
CKm+ 1

)M2

m
|||ψ − ψ̃|||2.

(5.30)
Taking inequalities (5.26)–(5.30) into account in (5.25), we obtain:

a2
(
R2(T (ψ) − T (ψ̃)),R2(ψ − ψ̃)

)
≤ − m2

M2C2
R

|||T (ψ) − T (ψ̃)|||2

+
CK

m2

(
MCR + CK +

√
CKm+ 1

)M2

m
|||ψ − ψ̃|||2. (5.31)
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Using (5.31) and (5.24), we obtain:

|||Tθ(ψ) − Tθ(ψ̃)|||2 ≤
(
θ2 − m22θ(1 − θ)

M2C2
R

)
|||T (ψ) − T (ψ̃)|||2

+
(

(1 − θ)2 + 2θ(1 − θ)
CK

m2

(
MCR + CK +

√
CKm+ 1

)M2

m

)
|||ψ − ψ̃|||2. (5.32)

Using (5.16), we get:

|||Tθ(ψ) − Tθ(ψ̃)|||2 ≤
(
θ2 − m22θ(1 − θ)

M2C2
R

)
|||T (ψ) − T (ψ̃)|||2

+
(

(1 − θ)2 + 2θ(1 − θ)
M2

m

(
CKCT

MCR
+
CK

m2

))
|||ψ − ψ̃|||2. (5.33)

Second step. Later on, it is convenient to introduce:

m̃ = min{m, 1}, M̃ = M. (5.34)

We immediately have from (5.16)

CT ≤ C̃T =
M̃CR

m̃2
(M̃CR + CK +

√
CKm̃). (5.35)

Inequality (5.33) becomes:

|||Tθ(ψ) − Tθ(ψ̃)|||2 ≤
(
θ2 − m̃22θ(1 − θ)

M̃2C2
R

)
|||T (ψ) − T (ψ̃)|||2

+

(
(1 − θ)2 + 2θ(1 − θ)

M̃2

m̃

(
CKC̃T

M̃CR

+
CK

m̃2

))
|||ψ − ψ̃|||2. (5.36)

According to the sign of the coefficient of |||T (ψ)−T (ψ̃)|||2, we distinguish two cases: in the first one, the Lipschitz
continuity of the operator T is used, and in the second one, we only have to cancel this term:

Case 5.7.

For any θ ≥ C0 with C0 =
2m̃2

M̃2C2
R + 2m̃2

, (5.37)

we have θ2 − m̃22θ(1 − θ)
M̃2C2

R

≥ 0, so that Proposition 5.4 implies

(
θ2 − m̃22θ(1 − θ)

M̃2C2
R

)
|||T (ψ) − T (ψ̃)|||2 ≤

(
θ2 − m̃22θ(1 − θ)

M̃2C2
R

)
C2

T

M̃2

m̃2
|||ψ − ψ̃|||2. (5.38)

Hence, inequality (5.36) becomes

|||Tθ(ψ) − Tθ(ψ̃)|||2 ≤ h1(θ)|||ψ − ψ̃|||2, (5.39)
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with

h1(θ) =

(
θ2 − m̃22θ(1 − θ)

M̃2C2
R

)
C2

T

M̃2

m̃2
+ (1 − θ)2 + 2θ(1 − θ)

M̃2

m̃

(
CKC̃T

M̃CR

+
CK

m̃2

)

= aθ2 + bθ + c,

in which

a = C̃T
2 M̃2

m̃2
+

2C̃T
2

C2
R

− 2

(
CKC̃T

M̃CR

+
CK

m̃2

)
M̃2

m̃
+ 1

b = −2C̃T
2

C2
R

+ 2

(
CK C̃T

M̃CR

+
CK

m̃2

)
M̃2

m̃
− 2

c = 1.

In the following, we will prove first that a > 0 and b < 0, so that h1(θ) will be less than 1 for any θ in ]0,− b
a [.

As θ belongs to [C0, 1[ (cf. (5.37)), we will prove under some conditions for the friction coefficient that
]0,− b

a [∩ [C0, 1[ is not empty. This will allow us to obtain an interval of θ in which Tθ is a contraction.
• From the definition (5.35) of C̃T , we have (as CK ≥ 0)

C̃T ≥ M̃CRCK

m̃2
+
M̃CR

√
CKm̃

m̃2

and

C̃T ≥ M̃CR

√
CKm̃

m̃2
,

so

C̃2
T ≥ M̃CRCK C̃T

m̃2
+
M̃2C2

RCK

m̃3
·

As m̃ ≤ 1 (cf. (5.34)), we get:

C̃2
T

C2
R

≥ M̃CK C̃T

m̃CR
+
M̃2CK

m̃3
·

From the above expression of a, we get that a > 0 and b < 0, more precisely a ≥ 1 and b ≤ −2.
• Let

C1 = − b

a
· (5.40)

As mentioned above, the contraction of Tθ is proved as soon as θ ∈ ]0, C1[∩ [C0, 1[ if C0 < C1.



NEUMANN-DIRICHLET ALGORITHM FOR CONTACT 255

Using the fact that a = C̃T
2 M̃2

m̃2 − b− 1, we have

C0 − C1 =
2m̃2

M̃2C2
R + 2m̃2

+
b

C̃T
2 M̃2

m̃2 − b− 1

=
2C̃T

2
M̃2 + bM̃2C2

R − 2m̃2

(M̃2C2
R + 2m̃2)a

=
−2m̃2 + 2

(
CKC̃T

M̃CR
+ CK

m̃2

)
M̃4C2

R

m̃ − 2M̃2C2
R

(M̃2C2
R + 2m̃2)a

=
−2m̃2 − 2M̃2C2

R + 2M̃4C2
R

m̃3

(
C2

K +
√
m̃C

3
2
K + (M̃CR + 1)CK

)
(M̃2C2

R + 2m̃2)a
· (5.41)

Let
G(x) = M̃2

(
x2 +

√
m̃x

3
2 + (M̃CR + 1)x

)
∀x ≥ 0, (5.42)

so from (5.41), we have:

C0 < C1 ⇔ −2m̃2 − 2M̃2C2
R +

2M̃2C2
R

m̃3
G(CK) < 0. (5.43)

Using the fact that G is a strictly increasing function from [0,+∞[, the previous inequality (5.43) is equivalent to:

CK ∈
[
0,G−1

(
m̃5

M̃2C2
R

+ m̃3

)[
,

which is equivalent to:

‖k‖L∞(Γc) ∈ [0, C2[, with C2 =
G−1( m̃5

M̃2C2
R

+ m̃3)

CsCtr
·

The first result of Proposition 5.6 is then proved.

Case 5.8. If θ < C0, inequality (5.33) becomes:

|||Tθ(ψ) − Tθ(ψ̃)|||2 ≤ h2(θ)|||ψ − ψ̃|||2, (5.44)

in which:

h2(θ) = (1 − θ)2 + 2θ(1 − θ)
M̃2

m̃

(
CKC̃T

M̃CR

+
CK

m̃2

)
(5.45)

= a
′
θ2 + b

′
θ + 1,

with

a
′
= 1 − 2

M̃2

m̃

(
CK C̃T

M̃CR

+
CK

m̃2

)

b
′

= −2 + 2
M̃2

m̃

(
CKC̃T

M̃CR

+
CK

m̃2

)
·
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0 1 1 a’

1

x

2
h(x)

Figure 1. Case: a
′
> 0.

0 1a’1

1

1+1/a’

x

h(x)
2

Figure 2. Case: −1 < a
′
< 0.

As a
′
= −b′ − 1, we have

h2(θ) = a
′
(θ − 1)

(
θ − 1

a′

)
·

Case 2-1: a
′
> 0.

In this case, we have from the expression of a
′
, a

′
< 1, so

1
a′ > 1.

Following the representation of h2 in Figure 1, we have 0 < h2(θ) < 1 for any θ in ]0, 1[∩ [0, C0[ = ]0, C0[.
Let us characterize the positive sign of a

′
by a condition for the friction coefficient. Using the notation (5.42),

we have:
a

′
= 1 − 2

m̃3
G(CK). (5.46)

By simple calculations, we see by using (5.42) that:

a
′
> 0 ⇐⇒ 0 ≤ CK < G−1

(
m̃3

2

)
·

By taking C3 =
G−1( m̃3

2 )
CsCtr

, the second wording of Proposition 5.6 is obtained.

As h2(1 + 1
a′ ) = 1, we have in the case: a

′
< 0 two possibilities following the sign of 1 + 1

a′ .

Case 2-2: −1 < a
′
< 0.

In this case, the representation of h2 is given in Figure 2 and 0 < h2(θ) < 1, for any θ in ]0, 1[∩ [0, C0[ = ]0, C0[.
By using (5.46), the condition −1 < a

′
< 0 is equivalent to G−1( m̃3

2 ) < CK < G−1(m̃3). The third wording
of Proposition 5.6 is obtained by taking

C4 =
G−1(m̃3)
CsCtr

·
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1a’1

1

1+1/a’0
x

2
h(x)

Figure 3. Case: a
′
< −1.

Case 2-3: a
′
< −1.

From the representation of h2 in Figure 3, we have 0 < h2(θ) < 1 for any θ in ]1+ 1
a′ , 1[∩ [0, C0[ = ]1+ 1

a′ , C0[
if 1 + 1

a′ < C0.

The two conditions: a
′
< −1 and 1 + 1

a′ < C0 are equivalent to: G−1(m̃3) < CK < G−1
(

2−C0
1−C0

m̃3

2

)
.

The last result of Proposition 5.6 is proved by taking

C5 =
G−1

(
2−C0
1−C0

m̃3

2

)
CsCtr

C6 = 1 +
1
a′ · �

Theorem 5.9. Assuming that the relaxation parameter θ and the coefficient of friction k satisfy Proposition 5.6,
then the sequence (g2

i )i≥0 converges in V 2′
towards g2 defined by:

〈g2,v〉2 = −a1(u1,R1
D(γv)) + L1(R1

D(γv)) ∀v ∈ V 2,

where (u1,u2) is the solution of the problem (P1).
Moreover, if θ ≥ θmin, the solution uα

i , α = 1, 2 of the algorithm (4.9) converges to the solution u = (u1,u2)
of the problem (P1) defined in (4.4) as i tends to infinity.

Proof. From algorithm (Qi), it is easy to prove that
〈
Tg2

i−1,v
〉
2

= −a1(u1
i ,R

1
D(γv)) + L1(R1

D(γv))
∀v ∈ V 2, so Tθ(g2

i−1) = g2
i .

On the other hand, one deduces from problems (P2) and (P3) that Tθ(g2) = g2. Hence from Proposition 5.6
we have:

|||g2
i − g2||| = |||Tθ(g2

i−1) − Tθ(g2)||| ≤ K(θ)||g2
i−1 − g2|||. (5.47)

The convergence of g2
i is obtained by a recursive application of (5.47).

Proposition 5.1 concludes the proof. �
Remark 5.10. Assumptions of Theorem 5.9 are fulfilled for the Signorini problem (k = 0) in which, only the
unilateral contact is taken into account.

6. Numerical results

As mentioned in the introduction, a Neumann-Dirichlet algorithm for contact problem with Coulomb friction
has already been used in [14,16] in a variety of situations. The aim of this section is to illustrate and validate the
previous theoretical approach for a large contact device, especially with respect of the choice of the relaxation
parameter.

The implementation is established using the finite element code PLAST2 developed in Laboratoire de Mécanique
des Contact et des Solides LaMCoS of the National Institute of Applied Sciences in Lyon.
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2
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Figure 4. The physical problem.

Based on the Lagrange multiplier concept [3], PLAST2 is generally used for solving contact problems by global
method with nonmatching grids at the contact zone (see [2]). The Neumann-Dirichlet algorithm described in
the previous section was implemented in PLAST2. In each step of our algorithm, we solve two local problems:
a linear Neumann problem on the first body and a contact problem with given friction on the second body.

After describing the physical data, we compare the interface coordinates and the contact stresses calculated
by the Neumann-Dirichlet method to the results given by the global method using the PLAST2 code. Then,
several results concerning the influence of the coefficient friction, the Young modulus, the mesh-size on the
convergence rate are given and the existence of an optimal relaxation parameter is shown.

6.1. Description of the model

For all experiments described below, a two dimensional linear elasticity problem of two elastic bodies Ωα,
α = 1, 2 initially in contact is considered (see Fig. 4). The elastic behavior law is given by Hooke’s law for
homogeneous isotropic elastic materials:

σα
ij(u) =

Eανα

(1 − 2να)(1 + να)
δijεkk(u) +

Eα

1 + να
εij(u), α = 1, 2,

where Eα and να denote Young modulus and Poisson’s ratio respectively for the body Ωα, α = 1, 2, and the
notation δij stands for Kronecher’s symbol.

The lower body Ω1 (the slave) is fixed on its lower side. The upper body Ω2 (the master) is submitted to a
vertical displacement of −0.015 mm on Γ2

u (see Fig. 4). Dimensions of Ω1 and Ω2 are respectively 2 mm× 0.3 mm
and 1.2 mm × 0.3 mm.

6.2. Preliminary results

In the first sequence of computations, we use the following data: for both solids, the Poisson’s ratio is
ν1 = ν2 = 0.3. The Young modulus E1 = 7 × 104 MPa for the lower body and E2 = 2 × 104 MPa for the upper
body are assumed. We use k = 0.2 as friction coefficient and a mesh-size of 190 nodes (see Fig. 7).

Figure 5 depicts the coordinates of the points of the contact interface (after deformation) and the values
of the normal and tangential constraints obtained by the Neumann-Dirichlet methods. The horizontal axis in
Figure 5(a) is the classical x coordinates with x = 0 at the left side of the contact interface.
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(a)

(b)

Figure 5. Interface coordinates and contact stresses by the Neumann-Dirichlet method.

In Figure 5(b), the horizontal axis is the curvilinear abscissa for the deformed slave contact interface measured
from the same origin as the x coordinate. These figures evidence that the contact zone is represented by three
parts; a sliding one located for 0 < x ≤ 0.6, the slippery one located for 0.6 < x < 1, while the non contact area
is located for x > 1.

To be mentioned that we find exactly the same results by using the classical method (without decomposition).

6.3. About the optimum relaxation parameter

In the following, we present numerical results which shown the influence of the friction coefficient, the Young
modulus and the mesh-size on the number of iterations in the Neumann-Dirichlet algorithm. The stopping
criteria is defined by: ‖g2

n − g2
n−1‖2

/‖g2
n‖2 < 10−9 or ‖g2

n − g2
n−1‖2

< 10−9.
We present in Figure 10, the number of iterations as a function of the parameter θ for 4 mesh-size with k,

E1, E2, and ν fixed (k = 0.2, E1 = 0.7 × 105, E2 = 0.2 × 105, ν = 0.3). The mesh size varies according the
number of nodes from 60 nodes to 2482 nodes (see Figs. 6–9).

It clearly appears from (Fig. 10) that the number of iterations is not strongly dependent to the mesh-size.
Especially there exists an optimum value of relaxation parameters (θopt = 0.6) which is nearly independent of
the choice of the mesh-size. The result is important as this will be sufficient to find the optimal parameter by
solving small dimension problems first.

Varying the value of k, k = 0.1, 0.2, 0.4 (Fig. 11) does not modify the optimal value of the relaxation
parameter which is always located around 0.6 with E1 E2, ν and a mesh-size (190 nodes) fixed.

Finally, choosing the first body much harder (E1 = 0.7×105, E2 = 0.2×105) or much softer than the second
body (E1 = 0.2× 105, E2 = 0.7× 105) or choosing the same Young modulus (E1 = 0.2× 103, E2 = 0.2× 103),
we obtain the same kind of results (Fig. 12).
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Figure 6. Mesh 1: 60 nodes. Figure 7. Mesh 2: 190 nodes.

Figure 8. Mesh 3: 666 nodes. Figure 9. Mesh 4: 2482 nodes.
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Figure 10. Number of iterations as a function of the relaxation parameter θ for 4 mesh-size
with k = 0.2, E1 = 0.7 × 105, E2 = 0.2 × 105, ν = 0.3.

7. Conclusion

A Neumann-Dirichlet algorithm of a domain decomposed contact problem with friction has been introduced
and studied. For small friction coefficient, convergence result is derived for the continuous problem.The optimal
parameter has been numerically found to be independent of several physical and numerical parameters. This
phenomena needs further theoretical investigation. The extension of such approach to 2D and 3D contact
problem between more than 2 bodies should be investigated.
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Figure 11. Number of iterations as a function of the relaxation parameter θ for 3 friction
coefficient with E1 = 0.7 × 105, E2 = 0.2 × 105, ν = 0.3, 190 nodes.
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Figure 12. Number of iterations as a function of the relaxation parameter θ for 3 Young
modulus with k = 0.2, ν = 0.3, 190 nodes.
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[11] J. Haslinger, Z. Dostál and R. Kučera, On a splitting type algorithm for the numerical realization of contact problems with
Coulomb friction. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2261–2281.

[12] N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods,
SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988).

[13] R. Kornhuber and R. Krause, Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4
(2001) 9–20.

[14] R.H. Krause, Monotone multigrid methods for Signorini’s problem with friction. Ph.D. thesis, University of Berlin, Germany
(2001).

[15] R.H. Krause and B.I. Wohlmuth, Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer.
Math. 8 (2000) 177–206.

[16] R.H. Krause and B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci.
5 (2002) 139–148.

[17] P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv. 1 (1994) 121–220.
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