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CONVERGENCE OF THE TIME-DISCRETIZED MONOTONIC SCHEMES ∗

Julien Salomon1, 2

Abstract. Many numerical simulations in (bilinear) quantum control use the monotonically conver-
gent Krotov algorithms (introduced by Tannor et al. [Time Dependent Quantum Molecular Dynamics
(1992) 347–360]), Zhu and Rabitz [J. Chem. Phys. (1998) 385–391] or their unified form described
in Maday and Turinici [J. Chem. Phys. (2003) 8191–8196]. In Maday et al. [Num. Math. (2006)
323–338], a time discretization which preserves the property of monotonicity has been presented. This
paper introduces a proof of the convergence of these schemes and some results regarding their rate of
convergence.
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Introduction

Quantum control has recently been subjected to significant developments through encouraging experimental
results [7, 15]. At computational level [4], the introduction of monotonic Krotov algorithms (introduced by
Tannor et al. in [18]), Zhu and Rabitz [20] or the unified form proposed by Maday and Turinici in [10] has
enabled us to design efficient methods being implemented to obtain laser fields that control the molecular
dynamics [13]. From a mathematical point of view, it can be proved that these procedures monotonically
increase the values of a given criterium. Yet, few results are available about the convergence of the control
sequences obtained by these schemes. In [14], a first necessary condition for convergence has been obtained
in case of large penalization of the L2-norm of the control. A functional analysis of the schemes has been
displayed in [6] in the abstract framework of semi-group theory. To complete these works, a first analysis of a
time-discretized version of the monotonic algorithms is presented here.

Let us briefly introduce the model and the corresponding optimal control framework used in this paper.
Consider a quantum system described by its wavefunction ψ = ψ(x, t). The relevant spatial coordinates, de-
noted by x, belong to a general space Ω ⊂ R

3p, where p is the number of particles considered (the symbol x
will often be omitted in the following developments in order to make it simple). Absorbing boundary condi-
tions [17] can be used to treat numerically the case of unbounded domains. We assume homogeneous Dirichlet
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boundary conditions. The dynamics of this system is characterized by its internal Hamiltonian:

H = H0 + V.

In this equation H0 is the kinetic part:

H0 = −1
2

p∑
n=1

1
mn

∆rn ,

where mn is the mass of the particle n and ∆rn the Laplace operator with respect to its coordinates. The
operator V = V (x) is the potential part. In case the domain is bounded and V is smooth, the spectrum of H is
discrete, see e.g. [2]. In corresponding numerical simulations, spectral decompositions can be used to discretize
the wavefunction.

A way to control such a system is to light it with a laser pulse modelled by a scalar electric field ε(t). The
contribution of this laser field is taken into account by introducing a perturbative term in the Hamiltonian
which then reads H − µ ε. Like V , the dipolar momentum µ is a function of x. In many models, the value
µ(x) = +∞ is only reached for |x| = +∞. Neglecting the interactions with far-off particles, we suppose that
the operator µ is bounded on L2(Ω). The evolution of ψ is then governed by the Schrödinger equation (we are
making use of atomic units, i.e. � = 1):

i ∂
∂tψ = Hψ − µ εψ

ψ(t = 0) = ψinit,
(1)

where ψinit is the initial condition for ψ, subjected to the constraint: ‖ψinit‖L2(Ω) = 1. In numerical simulations,
the ground state, i.e. a unitary eigenvector of H associated to the lowest eigenvalue, is generally taken as the
initial state. The Hamiltonian being real, the evolution through (1) preserves the L2-norm of ψ so that

‖ψ(t)‖L2(Ω) = 1. (2)

Remark 0.1. The analysis presented here after will be carried out in a general setting and prevails for all space
discretizations preserving property (2).

In order to design relevant fields of control, the optimal control framework usually introduces a cost functional
to assess their quality. A general example of such functional is given by:

J(ε) = 〈ψ(T )|O|ψ(T )〉 − α

∫ T

0

ε2(t)dt, (3)

where α and T are two positive real numbers and O is a positive symmetric operator, also called observable, that
encodes the target: the larger the value 〈ψ(T )|O|ψ(T )〉 is, the better the control objectives are met (here and
in what follows, we note 〈f |A|g〉 =

∫
Ω f(x)Ag(x)dx, where f and g are complex valued functions and A a given

operator). In this paper, we assume that O is bounded on L2(Ω). This assumption is true in many physical
models. However, the analysis presented here after is relevant if O is only bounded on sub-domains containing
the system. The Euler-Lagrange equations corresponding to J can be written by means of the introduction of
a Lagrange multiplier χ, called adjoint state in what follows. The system obtained by this way is [20]:⎧⎨

⎩
i ∂
∂tψ = (H − µ ε)ψ

ψ(t = 0) = ψinit

(4)

⎧⎨
⎩
i ∂
∂tχ = (H − µ ε)χ

χ(t = T ) = Oψ(T )
(5)

α ε(t) = −Im 〈χ(t)|µ|ψ(t)〉.
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An efficient tool to solve these equations is provided by the monotonic schemes. A general formulation of these
algorithms is given by the following system (see [10]), which is defined recursively:

⎧⎨
⎩
i ∂
∂tψ

k = (H − µ εk)ψk

ψk(t = 0) = ψinit

εk(t) = (1 − δ)ε̃k−1(t) − δ

α
Im 〈χk−1(t)|µ|ψk(t)〉⎧⎨

⎩
i ∂
∂tχ

k = (H − µ ε̃k)χk

χk(t = T ) = Oψk(T )

ε̃k(t) = (1 − η)εk(t) − η

α
Im 〈χk(t)|µ|ψk(t)〉, (6)

where δ, η ∈ [0, 2], with (δ, η) �= (0, 0). A significant property of these schemes is that the cost functional values
monotonically increase during the iterations since:

J(εk+1) − J(εk) = 〈ψk+1(T ) − ψk(T )|O|ψk+1(T ) − ψk(T )〉

+
(

2
δ
− 1

)∫ T

0

α(εk+1(t) − ε̃k(t))2dt+
(

2
η
− 1

)∫ T

0

α(ε̃k(t) − εk(t))2dt ≥ 0.

Implicit and explicit relevant time discretizations of these schemes have been designed and tested in [11, 12].
Their main property is to maintain the monotonic character at the discrete level. This paper aims at proving
the convergence of these algorithms.

The paper is structured as follows: the time discretizations of the Schrödinger equation (1) and the cost
functional defined in (3) will be presented in Section 1. In Section 2, we will study the variations in the discrete
cost functional with respect to ε. In Section 3, we will recall the main features of the implicit time discretized
monotonic schemes. Section 4 is dedicated to proving the convergence of these schemes. Finally, we will give
some estimates of the rate of convergence in Section 5. Sufficient condition of convergence of the explicit scheme
is provided in the appendix.

1. Discrete optimal control setting

For any given integer N , let us introduce the discretization parameter ∆T defined by N∆T = T and εj ,
ε̃j , ψj , χj that stand respectively for approximations of ε(j∆T ), ε̃(j∆T ), ψ(j∆T ), χ(j∆T ). We denote in the
following ε = (εj)0≤j≤N−1, ε̃ = (ε̃j)0≤j≤N−1, ψ = (ψj)0≤j≤N and χ = (χj)0≤j≤N .

To solve (1) numerically with enough accuracy, a propagation method based on the Strang’s second-order
split-operator technique [16] is generally used (see e.g. [1,19,20]). This method also simplifies algebraic manip-
ulations as it will appear later in this study (see Eq. (21)).

In this part, for any prescribed sequences ε, ε̃, the approximations of the state ψ and the adjoint state χ are
thus defined by the semi-discretized propagation equations:

⎧⎨
⎩
ψε

j+1 = e
H0∆T

2i e
V −µεj

i ∆T e
H0∆T

2i ψε
j

ψε
0 = ψinit,

(7)

⎧⎨
⎩
χε̃

j = e−
H0∆T

2i e
−V +µε̃j

i ∆T e−
H0∆T

2i χε̃
j+1

χε̃
N = Oψε

N .

(8)
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Note that actually χε̃ also depends on ε. We omit this dependence for purpose of simplicity. We refer to [12] for
more details about full discretization. This discretization of (4) and (5) preserves the L2-norm of the propagated
vectors, which means:

∀j = 0...N − 1, ‖ψε
j‖L2(Ω) = ‖ψinit‖L2(Ω) = 1, (9)

‖χε̃
j‖L2(Ω) = ‖χε̃

N‖L2(Ω) ≤ ‖O‖∗, (10)

where ‖O‖∗ denotes the norm of the operator O over L2(Ω). We consider the following time discretization of
the cost functional defined in (3):

J∆T (ε) = 〈ψε
N |O|ψε

N 〉 − α∆T
N−1∑
j=0

|εj |2.

Let us also introduce norms on R
N corresponding to the time discretization:

‖ε‖1 = ∆T
N−1∑
j=0

|εj |, ‖ε‖2 =
(

∆T
N−1∑
j=0

|εj |2
) 1

2
.

Note that the inner product associated with the norm ‖.‖2 is defined by:

ε.ε′ = ∆T
N−1∑
j=0

εj ε
′
j.

2. Variations in J∆T

In this section, we investigate some variational properties of J∆T .

2.1. Gradient of J∆T

Given a field ε, the dependence of ψε
N with respect to the field can be explicitly stated with the formula:

ψε
N =

N−1∏
j=0

(
e

H0∆T

2i e−i(V −µεj)∆T e
H0∆T

2i

)
ψinit.

The computation of the gradient of J∆T is simplified by the introduction of the adjoint state χε. Indeed, note
first that the partial derivative of 〈ψε

N |O|ψε
N 〉 with respect to εj0 reads:

∂ψε
N

∂εj0

= ∆T
N−1∏

j=j0+1

(
e

H0∆T
2i e

V −µεj
i ∆T e

H0∆T
2i

)× (
e

H0∆T
2i e

V −µεj0
i ∆T iµe

H0∆T
2i

)× j0−1∏
j=0

(
e

H0∆T
2i e

V −µεj
i ∆T e

H0∆T
2i

)
ψinit.

Consequently, the following equations hold true:

∂〈ψε
N |O|ψε

N 〉
∂εj0

= 2 Re
〈
∂ψε

N

∂εj0

|O|ψε
N

〉
= −2∆T Im 〈χ̃ε

j0 |µ|ψ̆ε
j0〉,

where:
χ̃ε

j = e
H0∆T

2i χε
j , ψ̆ε

j = e
H0∆T

2i ψε
j .
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The gradient of J∆T is then given by:

∇J∆T (ε).δε = −2∆T
N−1∑
j=0

(Im 〈χ̃ε
j |µ|ψ̆ε

j 〉 + αεj)δεj . (11)

The previous computation allows us to define set C of the critical points of J∆T :

C =
{
ε/ ∀j = 0...N − 1, Im 〈χ̃ε

j |µ|ψ̆ε
j 〉 + α εj = 0

}
. (12)

2.2. About the Hessian of J∆T

For some reasons that will be developed in Section 4.1, it can be useful to find conditions to make sure that
the Hessian matrix HJ∆T (ε) of J∆T is invertible.

Denoting by (∇J∆T (ε))� the �-th component of ∇J∆T (ε), the following equation prevails:

∂

∂εm
(∇J∆T (ε))� = −2

(
Im

〈
∂

∂εm
χ̃ε

� |µ|ψ̆ε
�

〉
+ Im

〈
χ̃ε

� |µ|
∂

∂εm
ψ̆ε

�

〉
+ α δ�,m

)
,

where δ�,m is the Kronecker’s symbol. Repeating the analysis carried out in the previous section, we find out
that HJ∆T (ε) reads:

HJ∆T (ε) = −2(S(ε) + α Id),

where Id is the identity matrix and S(ε) = (s�,m) �=0...N−1
m=0...N−1

has the following property (see (9) and (10)):

|s�,m| ≤ 2∆T ‖µ‖2
∗‖O‖∗, (13)

where ‖µ‖∗ is the norm of the operator µ on L2(Ω). This estimate enables us to claim the following result.

Lemma 2.1. Let be ε ∈ R
N . Suppose that α > 2‖µ‖2

∗‖O‖∗T . Then HJ∆T (ε) is invertible.

Proof. Let us denote by h�,m the coefficients of HJ∆T (ε). According to (13), we obtain, for any � = 0...N − 1:

|h�,�| ≥ 2(α− 2∆T ‖µ‖2
∗‖O‖∗)

> 4‖µ‖2
∗‖O‖∗(T − ∆T )

≥
N−1∑

m=0,m �=�

|hm,�|.

Thus, HJ∆T (ε) is a dominant diagonal matrix and the result comes as a consequence. �

2.3. Variations in ψε and χε

The variations in the state ψε and adjoint state χε with respect to ε can also be estimated by means of direct
computations. Given two discrete fields ε′ and ε, the difference ψε′

j+1 − ψε
j+1 reads:

ψε′
j+1 − ψε

j+1 = e
H0∆T

2i

(
e

V −µε′j
i ∆T − e

V −µεj
i ∆T

)
e

H0∆T
2i ψε

j + e
H0∆T

2i e
V −µε′j

i ∆T e
H0∆T

2i

(
ψε′

j − ψε
j

)
.

The mean value inequality then yields:

‖ψε′
j+1 − ψε

j+1‖L2(Ω) ≤ ∆T ‖µ‖∗|ε′j − εj | + ‖ψε′
j − ψε

j‖L2(Ω).
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Hence:

‖ψε′
j − ψε

j‖L2(Ω) ≤ ∆T ‖µ‖∗
j−1∑
l=0

|ε′l − εl| ≤ ‖µ‖∗‖ε′ − ε‖1.

According to a similar argument:

‖χε′
j − χε

j‖L2(Ω) ≤ ∆T ‖µ‖∗|ε′j − εj| + ‖χε′
j+1 − χε

j+1‖L2(Ω),

and consequently:

‖χε′
j − χε

j‖L2(Ω) ≤ ∆T ‖µ‖∗
N−1∑
l=j

|ε′l − εl| + ‖O‖∗‖ψε′
N − ψε

N‖L2(Ω)

≤ ‖µ‖∗‖ε′ − ε‖1 + ‖O‖∗‖ψε′
N − ψε

N‖L2(Ω)

≤ ‖µ‖∗(1 + ‖O‖∗)‖ε′ − ε‖1.

Remark 2.2. For algorithmic reasons, the adjoint state may be propagated with a field ε̃ that does not coincide
with ε (see (6)), the field bringing about the final condition χε̃

N = Oψε
N . However, the previous estimate still

holds insofar as we have:

‖χε̃′
j − χε̃

j‖L2(Ω) ≤ ‖µ‖∗‖ε̃′ − ε̃‖1 + ‖O‖∗‖ψε′
N − ψε

N‖L2(Ω)

≤ ‖µ‖∗(‖ε̃′ − ε̃‖1 + ‖O‖∗‖ε′ − ε‖1). (14)

3. Implicit discrete monotonic schemes

This section aims at recalling the definition of the implicit discrete monotonic schemes and presenting some
of their properties.

3.1. Definition of the schemes

Consider two real numbers δ, η ∈ [0, 2[ and the operator µ∗(h) defined by:

µ∗(h) =
e−iµh∆T − Id

−ih∆T
· (15)

This function is an approximation of µ inasmuch as:

‖µ∗(h) − µ‖∗ ≤ ∆T ‖µ‖2
∗|h|, (16)

which can be obtained by the mean value inequality, since ‖dµ∗(h)
dh ‖∗ ≤ ∆T ‖µ‖2∗.
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Given initial control fields ε0, ε̃0 and their associated state ψ0 and adjoint state χ0, suppose that for some
k ≥ 1, ψk−1, χk−1, εk−1, ε̃k−1 are known. The computation of ψk, χk, εk, ε̃k is achieved as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψk
j+1 = e

H0∆T
2i e

V −µεk
j

i ∆T e
H0∆T

2i ψk
j

εk
j = (1 − δ)ε̃k−1

j − δ
α Im 〈χ̃k−1

j |µ∗(ε̃k−1
j − εk

j )|ψ̆k
j 〉

ψk
0 = ψinit,

(17)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χk
j = e−

H0∆T
2i e

−V +µε̃k
j

i ∆T e−
H0∆T

2i χk
j+1

ε̃k
j = (1 − η)εk

j − η
α Im 〈χ̆k

j |µ∗(εk
j − ε̃k

j )|ψ̃k
j+1〉

χk
N = Oψk

N ,

(18)

where:

χ̆ε
j = e−

H0∆T
2i χε

j , ψ̃
ε
j = e−

H0∆T
2i ψε

j .

Subsequently, the initial value ε0 of the monotonic schemes is considered fixed.

3.2. Properties of sequence (εk)k∈N

3.2.1. Upper bound

A first property of (εk)k∈N and (ε̃k)k∈N defined in (17) and (18) is that these sequences are bounded. Indeed,
the following result can be proved by induction (see [12]).

Lemma 3.1. Given an initial field ε0, let us defined M by:

M = max
(
‖ε0‖∞,max

(
1,

δ

2 − δ
,

η

2 − η

) ‖O‖∗‖µ‖∗
α

)
.

The sequences (εk)k∈N and (ε̃k)k∈N match the following conditions:

∀k ∈ N, ∀j = 0...N − 1, |εk
j | ≤M, |ε̃k

j | ≤M. (19)

3.2.2. Monotonic convergence

A computation of the variation in the cost functional values leads to:

J∆T (εk+1) − J∆T (εk) = 〈ψk+1
N − ψk

N |O|ψk+1
N − ψk

N 〉

+
∑N−1

j=0 2 Re
〈
χ̆k

j+1|e
µ(εk

j −ε̃k
j )

i ∆T − Id|ψ̃k
j+1

〉
− α∆T ((ε̃k

j )2 − (εk
j )2)

+
∑N−1

j=0 2 Re
〈
χ̃k

j |e−
µ(εk+1

j
−ε̃k

j )

i ∆T − Id|ψ̆k+1
j

〉
− α∆T ((εk+1

j )2 − (ε̃k
j )2).

(20)
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Note that this equality holds for any sequence of controls (εk)k∈N and (ε̃k)k∈N. In the case of the implicit
schemes (17)–(18), this expression reads:

J∆T (εk+1) − J∆T (εk) =
〈
ψk+1

N − ψk
N |O|ψk+1

N − ψk
N

〉

+ α∆T
N−1∑
j=0

(
2
δ
− 1

)
(ε̃k

j − εk+1
j )2 +

(
2
η
− 1

)
(εk

j − ε̃k
j )2

=
〈
ψk+1

N − ψk
N |O|ψk+1

N − ψk
N

〉

+ α

(
2
δ
− 1

)
‖ε̃k − εk+1‖2

2 + α

(
2
η
− 1

)
‖εk − ε̃k‖2

2. (21)

This result, combined with the bounded character of (εk)k∈N leads to the following theorem.

Theorem 3.2. The implicit schemes (17)–(18) ensure the monotonic convergence of the cost functional J∆T

insofar as:
J∆T (εk) ≤ J∆T (εk+1). (22)

Furthermore there exists lε0 such that:
lim

k→+∞
J∆T (εk) = lε0 .

Proof. Inequality (22) is a trivial consequence of (21), since O is a positive operator. Moreover, we know that:

∀k ∈ N, J∆T (εk) ≤ ‖O‖∗,

hence the existence of lε0 . �
We keep the notation lε0 in the sequel.

3.2.3. Limit points of (εk)k∈N

Having reached these preliminary results, we are now in a position to describe the limit points set Cε0 of
sequence (εk)k∈N.

Lemma 3.3. Keeping the previous notations:
Cε0 ⊂ C,

where C is the set of critical points, defined by (12).

Proof. Consider a convergent subsequence (εkn)n∈N of (εk)k∈N and its limit ε∞. By means of continuity and
since ‖εkn − ε̃kn−1‖2 → 0 (see (21)), we find the following limits:

ε̃kn−1 → ε∞,
µ∗(εk

j − ε̃k−1
j ) → µ,

ψkn → ψε∞
,

χkn−1 → χε∞
.

When n tends to +∞, Equation (17) becomes:

∀j = 0...N − 1, ε∞j = − 1
α

Im 〈χ̃ε∞
j |µ|ψ̆ε∞

j 〉,

which is the desired conclusion. �
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Thanks to (19), a standard argument of compactness shows that:

d(εk, Cε0) → 0, (23)

where d(εk, Cε0) is the distance associated to ‖.‖2 between εk and set Cε0 . Furthermore, inequality (22) then
implies:

J∆T (Cε0 ) = lε0 . (24)
Finally, note that since C is compact (see (12)), Cε0 is also compact.

3.3. Estimates of the gradient

This section introduces an estimate of the norm of the gradient at the points of the monotonic schemes. Let
us recall that according to (11), we know that:

‖∇J∆T (εk)‖1 = 2∆T
N−1∑
j=0

|Im 〈χ̃εk

j |µ|ψ̆k
j 〉 + α εk

j |.

Lemma 3.4. There exists λ ≥ 0 such that:

‖∇J∆T (εk)‖1 ≤ λ(‖εk − ε̃k−1‖2 + ‖ε̃k−1 − εk−1‖2). (25)

Proof. If we focus on one coefficient of J∆T (εk), we find:

Im 〈χ̃εk

j |µ|ψ̆k
j 〉 + α εk

j = Im 〈χ̃k−1
j |µ∗(ε̃k−1

j − εk
j )|ψ̆k

j 〉 + α εk
j

+ Im 〈χ̃k−1
j |µ− µ∗(ε̃k−1

j − εk
j )|ψ̆k

j 〉

+ Im 〈χ̃εk

j − χ̃k−1
j |µ|ψ̆k

j 〉. (26)

Let us estimate each term of this decomposition. Definition (17) of the algorithm implies that:

Im 〈χ̃k−1
j |µ∗(ε̃k−1

j − εk
j )|ψ̆k

j 〉 + α εk
j =

α

δ
(ε̃k−1

j − εk
j ). (27)

Then, thanks to (16), we obtain:

|Im 〈χ̃k
j |µ− µ∗(ε̃k−1

j − εk
j )|ψ̆k

j 〉| ≤ ∆T ‖µ‖2
∗‖O‖∗|εk

j − ε̃k−1
j |. (28)

Lastly, inequality (14) (see Rem. 2.2) yields:

|Im〈χ̃εk

j − χ̃k−1
j |µ|ψ̆k

j 〉| ≤‖µ‖2
∗(‖εk − ε̃k−1‖1+‖O‖∗‖εk − εk−1‖1). (29)

Combining (27)–(29) with (26), we come to equation (25) where

λ = 2
√
T

(α
δ

+ (T + ∆T )‖µ‖2
∗(1 + ‖O‖∗)

)
. �

4. Convergence of the implicit schemes

The above mentioned results enable us to prove the convergence of the schemes. First we will present a
general inequality due to �Lojasiewicz [8, 9] (see also [3]), and use it to prove that (εk)k∈N defined by (17)–(18)
is Cauchy.
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4.1. �Lojasiewicz inequality

The �Lojasiewicz inequality enables us to estimate the variation in an analytic function by its gradient. This
result is detailed in the next theorem.

Theorem 4.1 (�Lojasiewicz inequality). Let Γ : R
n → R be an analytic function in a neighborhood of a point a

in R
n. Then there exists σ > 0 and 0 < θ ≤ 1

2 such that:

∀x ∈ R
n, x ∈ B(a, σ) ‖∇Γ(x)‖ ≥ |Γ(x) − Γ(a)|1−θ,

where B(a, σ) denotes the ball centered in a with a radius equal to σ, ‖.‖ is a norm on R
n.

The real number θ is called a �Lojasiewicz exponent of a. A more precise result can be obtained if the Hessian
matrix of Γ, denoted by HΓ(a), is invertible (see, e.g. [5]).

Lemma 4.2. Suppose that HΓ(a) is invertible, then there exists σ > 0 and κ > 0 such that:

∀x ∈ R
n, x ∈ B(a, σ) ‖∇Γ(x)‖ ≥ κ|Γ(x) − Γ(a)| 12 .

In order to apply these results to our problem, let us define the shifted cost functional:

J̃∆T (ε) = lε0 − J∆T (ε).

It is easy to check that J̃∆T is analytic. Now, consider a in Cε0 . By means of (24), we find that J̃∆T (a) = 0.
Consequently, Theorem 4.1 ensures that there exist 0 < θa ≤ 1/2 and σa > 0 such that:

∀ε ∈ R
N , ‖ε− a‖1 < σa ‖∇J∆T (ε)‖1 ≥ |J̃∆T (ε)|1−θa .

The compactness of Cε0 enables us to extract from the set {B(a, σa

2 ), a ∈ Cε0} a family Fε0 = {B(ai,
σai

2 )}i∈I ,
where I is a finite set of indexes such that:

Cε0 ⊂ Fε0 .

Let us denote by θ′ ∈ ]0, 1/2], the lower bound of {θai}i∈I and by σ′, the lower bound of {σai

2 }i∈I . Given
ε such that d(ε, Cε0 ) < σ′, there exists iε such that ε ∈ B(aiε , σaiε

) and we come to the following version of
Theorem 4.1:

Lemma 4.3. Keeping the above notations:

∀ε ∈ R
N , d(ε, Cε0) < σ′, ‖∇J∆T (ε)‖1 ≥ |J̃∆T (ε)|1−θ′

.

In case HJ∆T is invertible on Cε0 , a similar analysis can be led to obtain the corresponding version of Lemma 4.2.

Lemma 4.4. Suppose that HJ∆T (ε) is invertible for all ε ∈ Cε0 ,

∃σ′′ > 0, ∃κ′ > 0, ∀ε ∈ R
N , d(ε, Cε0 ) < σ′′, ‖∇J∆T (ε)‖1 ≥ κ′|J̃∆T (ε)| 12 .

Summarizing the above mentioned results, we have obtained that there exist σ̃ > 0, κ̃ > 0 and θ̃ ∈ ]0, 1
2 ] such

that:

d(ε, Cε0 ) < σ̃, ‖∇J∆T (ε)‖1 ≥ κ̃|J̃∆T (ε)|1−θ̃, (30)

with θ̃ = 1/2 when HJ∆T (ε) is invertible.
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4.2. Cauchy property of the monotonic sequences

It is now possible to prove the convergence of sequence (εk)k∈N.

Theorem 4.5. Sequence (εk)k∈N defined by (17)–(18) converges towards a critical point of J∆T .

Proof. First suppose that:

∀k ∈ N, J̃∆T (εk) �= 0.

According to (23), there exists k0 such that (30) holds for all εk with k ≥ k0, with θ̃ = 1/2 if HJ∆T is invertible
on Cε0 . Consider an integer k ≥ k0. Thanks to the results above:

(J̃∆T (εk))θ̃ − (J̃∆T (εk+1))θ̃≥ θ̃

(J̃∆T (εk+1))1−θ̃

(
J∆T (εk+1) − J∆T (εk)

)

≥ κ̃ θ̃

‖∇J∆T (εk+1)‖1

((
2
δ
− 1

)
‖εk+1 − ε̃k‖2

2 +
(

2
η
− 1

)
‖ε̃k − εk‖2

2

)

≥ κ̃ θ̃ a(δ,η)

‖∇J∆T (εk+1)‖1

(‖εk+1 − ε̃k‖2 +‖ε̃k − εk‖2

)2

≥ κ̃ θ̃ a(δ,η)

λ

(‖εk+1 − ε̃k‖2 + ‖ε̃k − εk‖2

)
(31)

≥ κ̃ θ̃ a(δ,η)

λ
‖εk+1 − εk‖2 (32)

where a(δ,η) = 1
max(δ,η) − 1

2 . Given q ∈ N, inequality (32) leads to:

(J̃∆T (εk))θ̃ − (J̃∆T (εk+q))θ̃ ≥ κ̃ θ̃ a(δ,η)

λ

k+q−1∑
l=k

‖εl+1 − εl‖2

≥ κ̃ θ̃ a(δ,η)

λ
‖εk+q − εk‖2.

Since
(
(J̃∆T (εk))θ̃

)
k∈N

is a Cauchy sequence, we conclude that the sequence (εk)k∈N is also Cauchy.

In case there exists k1 such that J̃∆T (εk1) = 0, the monotonicity of the algorithm implies that J∆T (εk1) =
J∆T (εk1+1) = J∆T (εk1+2) = ... and according to (21) the sequence (εk)k∈N is constant for k ≥ k1.
Lastly, the limit that has been reached belongs to C according to Lemma 3.3. �

Remark 4.6. A similar proof can be developed when δ = 0, η �= 0 and δ �= 0, η = 0. In case δ = 0, η = 0, the
convergence is trivial.

5. Rate of convergence

In this section, we will present both theoretical and numerical results regarding the rate of convergence of
the discrete monotonic schemes.

5.1. Theoretical results

The rate of convergence can be evaluated by making a second use of �Lojasiewicz inequality. The result is
summarized in the next theorem.
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Theorem 5.1. Let us denote by ε∞ the limit of (εk)k∈N defined by (17)–(18) and by θ̃ and κ̃ the real numbers
appearing in (30), where Cε0 = {ε∞}.

If θ̃ < 1
2 , then there exists c > 0 such that:

‖εk − ε∞‖2 ≤ ck
− θ̃

1−2θ̃ . (33)

If θ̃ = 1
2 , then there exist c′ and τ such that:

‖εk − ε∞‖2 ≤ c′e−τk. (34)

Proof. As in the proof of Theorem 4.5, let be k0 ≥ 0 such that

∀l ≥ k0 ‖∇J∆T (εl)‖1 ≥ κ̃ |J̃∆T (εl)|1−θ̃. (35)

Let us fix k ≥ k0 and introduce ∆k defined by:

∆k =
∞∑

l=k

‖εl+1 − ε̃l‖2 + ‖ε̃l − εl‖2.

Sticking to a general way of reasoning, we may assume that ∆k > 0 for any k ≥ k0. By summing (31) between
k and +∞, we obtain:

(J̃∆T (εk))θ̃ ≥ κ̃ θ̃ a(δ,η)

λ
∆k.

This estimate, combined with (35), yields:

‖∇J∆T (εk)‖1 ≥ κ̃
( κ̃ θ̃ a(δ,η)

λ
∆k

) 1−θ̃

θ̃
.

From Lemma 3.4, we get:

λ(∆k−1 − ∆k) ≥ κ̃
( κ̃ θ̃ a(δ,η)

λ
∆k

) 1−θ̃

θ̃
,

which can be rewritten as follows:
∆k−1 − ∆k

(∆k)β
≥ ν, (36)

with ν > 0 and β = 1−θ̃
θ̃

.

Suppose that θ̃ = 1
2 , i.e., β = 1. Equation (36) reads:

(1 + ν)k0∆k0

(
1

1 + ν

)k

≥ ∆k,

and (34) is proved with c′ = (1 + ν)k0∆k0 and τ = ln(1 + ν).
Now let us consider the case in which θ̃ < 1

2 . Let r ∈ ]0, 1[, and first suppose that:

(∆k)β ≥ r(∆k−1)β .
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Since 1 − β < 0, the function s �→ s1−β is convex and consequently:

(∆k)1−β − (∆k−1)1−β ≥ (β − 1)
∆k−1 − ∆k

(∆k−1)β

≥ (β − 1) r
∆k−1 − ∆k

(∆k)β

≥ (β − 1) rν.

In the other case:
(∆k)β ≤ r(∆k−1)β ,

and consequently:

(∆k)1−β − (∆k−1)1−β ≥ (∆k)1−β − (r
1
β ∆k)1−β = (1 − r

1−β
β )(∆k)1−β ≥ (1 − r

1−β
β )(∆k0 )1−β .

Thus, in any case, there exists ν′ ≥ 0 such that:

(∆k)1−β − (∆k−1)1−β ≥ ν′. (37)

Consider now k′ > k. Inequality (37) implies that for small enough a c, we get:

∆k′ ≤
(
ν′(k′ − k) + (∆k)2−

1
θ̃

)− θ̃
1−2θ̃ ≤ ck

′− θ̃
1−2θ̃ ,

and (33) follows. �

Remark 5.2. Thanks to Lemma 2.1, we have thus obtained that if:

α > 2‖µ‖2
∗‖O‖∗T, (38)

the convergence of the schemes is at least linear.

5.2. Numerical results

In order to test the performance of the algorithm we have chosen a case already treated in the literature. The
system under consideration is the O−H bond that vibrates in a Morse type potential. We refer to [20] for the
numerical details concerning this system. The objective is to localize the wavefunction at a given location x′;
this is expressed through the requirement that 〈ψ(T )|O|ψ(T )〉 is maximized, where the observable O is defined
by O(x) = γ0√

π
e−γ2

0(x−x′)2 . In our test, β = 1, ‖µ‖∗ = 0.68151, ‖O‖∗ = 12.375 and T = 131000. Numerical tests
carried out on this example show that though (38) is not true at all, the convergence of the algorithm is linear,
as it appears in Figure 1. Therefore some further analysis has to be done to improve Lemma 2.1 and the results
of Section 5.1.

Appendix: convergence of the explicit discrete monotonic scheme

In [12], an explicit scheme has also been presented. The proof of convergence of this scheme, although
analogous to that of the implicit scheme, is slightly more elaborate. We briefly introduce here a sufficient
condition for convergence.
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Figure 1. The rate of convergence is linear after the 500-th iteration.

1. Definition of the scheme

Given the initial control amplitudes ε0, ε̃0 and their associated state ψ0 and adjoint state χ0, suppose that
for some k ≥ 1, ψk−1, χk−1, εk−1, ε̃k−1 have already been computed. The iterated quantities of ψk, χk, εk, ε̃k

are defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψk
j+1 = e

H0∆T
2i e

V −µεk
j

i ∆T e
H0∆T

2i ψk
j

εk
j = (1 − δk

j )ε̃k−1
j − δk

j

α Im 〈χ̃k−1
j |µ|ψ̆k

j 〉

ψk
0 = ψinit,

(39)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

χk
j = e−

H0∆T

2i e
−V +µε̃k

j
i ∆T e−

H0∆T

2i χk
j+1

ε̃k
j = (1 − ηk

j )εk
j − ηk

j

α Im 〈χ̆k
j+1|µ|ψ̃k

j+1〉

χk
N = Oψk

N ,

(40)

where:

δk
j =

α

α+ ∆T Re〈χ̃k−1
j |µ2|ψ̆k

j 〉
,

and:

ηk
j =

α

α+ ∆T Re〈χ̆k
j+1|µ2|ψ̃k

j+1〉
·
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2. Properties of sequence (εk)k∈N

2.1. Upper bound

The first step of the convergence analysis is to obtain an upper bound for the fields. Suppose that:

α > 2∆T ‖µ‖2
∗‖O‖∗. (41)

This condition ensures that:

∀k ∈ N, ∀j = 0...N − 1, δk+1
j ∈

[
0, 2

α

α+ e

]
, ηk+1

j ∈
[
0, 2

α

α+ e

]
,

where e = α−2∆T ‖µ‖2
∗‖O‖∗. An analysis similar to that in the proof of Lemma 3.1 (see [12]) gives the following

result:

Lemma 5.3. Suppose that (41) is fulfilled. Given an initial field ε0, let us define M by:

M = max (‖ε0‖∞,max
(

1,
1
e

)
‖O‖∗‖µ‖∗).

The sequences (εk)k∈N and (ε̃k)k∈N meet the requirements:

∀k ∈ N, ∀j = 0...N − 1, |εk
j | ≤M, |ε̃k

j | ≤M.

2.2. Monotonic convergence

In the case of the explicit scheme, equation (20) cannot be explicitly simplified as was the case for the
implicit schemes. However, the Taylor-Lagrange formula stipulates the existence of two real numbers xk

j and
yk

j in [−M,M ] such that:

Re 〈χ̆k
j+1|e

µ(εk
j −ε̃k

j )

i ∆T −Id|ψ̃k
j+1〉 = Im 〈χ̆k

j+1|µ|ψ̃k
j+1〉(εk

j − ε̃k
j )∆T

− Re 〈χ̆k
j+1|µ2e−iµxk

j ∆T |ψ̃k
j+1〉

(εk
j − ε̃k

j )2∆T 2

2
, (42)

and:

Re 〈χ̃k
j |eiµ(εk+1

j −ε̃k
j )∆T −Id|ψ̆k+1

j 〉 = − Im 〈χ̃k
j |µ|ψ̆k+1

j 〉(εk+1
j − ε̃k

j )∆T

+ Re 〈χ̃k
j |µ2eiµyk

j ∆T |ψ̆k+1
j 〉 (εk+1

j − ε̃k
j )2∆T 2

2
· (43)
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Combining (42) and (43) with the definitions of εk
j and ε̃k

j given by (39)–(40), we can conclude that (20) can
be written as follows:

J∆T (εk+1) − J∆T (εk) = 〈ψk+1
N − ψk

N |O|ψk+1
N − ψk

N 〉

+ ∆T
∑N−1

j=0 (εk
j − ε̃k

j )2[ α+ ∆T Re 〈χ̆k
j+1|µ2|ψ̃k

j+1〉

+ ∆T Re 〈χ̆k
j+1|µ2(Id− e−iµxk

j ∆T )|ψ̃k
j+1〉]

+ ∆T
∑N−1

j=0 (ε̃k
j − εk+1

j )2[ α+ ∆T Re 〈χ̃k
j |µ2|ψ̆k+1

j 〉

+ ∆T Re 〈χ̃k
j |µ2(Id− eiµyk

j ∆T )|ψ̆k+1
j 〉].

We are now in a position to claim the following result, which is the equivalent of formula (21) associated with
the implicit schemes.

Lemma 5.4. Suppose that the real number γ = α−3∆T ‖µ‖2∗‖O‖∗ is strictly positive. Then the explicit scheme
is monotonic and:

J∆T (εk+1) − J∆T (εk) ≥ γ[‖εk
j − ε̃k

j ‖2
2 + ‖ε̃k

j − εk+1
j ‖2

2].

3. Convergence

The end of the proof of convergence of the explicit scheme can then be done in a similar way as for implicit
schemes (in particular, the proof of Lem. 3.4 can be easily adapted). The next theorem summarizes the result
reached.

Theorem 5.5. Suppose that:
α > 3∆T ‖µ‖2

∗‖O‖∗.
Then the sequence (εk)k∈N defined by (39)–(40) converges towards a critical point of J∆T .
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