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ON A STABILIZED COLOCATED FINITE VOLUME SCHEME
FOR THE STOKES PROBLEM
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Abstract. We present and analyse in this paper a novel colocated Finite Volume scheme for the
solution of the Stokes problem. It has been developed following two main ideas. On one hand, the dis-
cretization of the pressure gradient term is built as the discrete transposed of the velocity divergence
term, the latter being evaluated using a natural finite volume approximation; this leads to a non-
standard interpolation formula for the expression of the pressure on the edges of the control volumes.
On the other hand, the scheme is stabilized using a finite volume analogue to the Brezzi-Pitkäranta
technique. We prove that, under usual regularity assumptions for the solution (each component of the
velocity in H2(Ω) and pressure in H1(Ω)), the scheme is first order convergent in the usual finite volume
discrete H1 norm and the L2 norm for respectively the velocity and the pressure, provided, in partic-
ular, that the approximation of the mass balance flux is of second order. With the above-mentioned
interpolation formulae, this latter condition is satisfied only for particular meshes: acute angles trian-
gulations or rectangular structured discretizations in two dimensions, and rectangular parallelepipedic
structured discretizations in three dimensions. Numerical experiments confirm this analysis and show,
in addition, a second order convergence for the velocity in a discrete L2 norm.
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1. Introduction

Finite volumes enjoy many favorable properties for the discretization of conservation equations: to cite only
a few examples, (computing time) efficiency, local conservativity and the possibility to hand-build, to some
extent, the discrete operators to recover properties of the continuous problem like, for instance, the positivity
of the advection operator. In addition, the complexity raised by the design of actually high order schemes
for multidimensional problems with finite volumes discretizations, in particular compared to finite elements
methods, may often be of little concern in real-life applications, when the regularity which can be expected for
the solution is rather poor. These features make finite volume attractive for industrial problems, as encountered
for instance in nuclear safety, which is a part of the context of this study.
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On the opposite, the difficulty to build stable pairs of discretization for the velocity and pressure in incom-
pressible flow problems remains, to our opinion, a severe drawback of the method. In most applications, this
stability is obtained by using a staggered arrangement for the velocity and pressure unknowns: the celebrated
MAC scheme (see [13] for the pioneering work and [16, 17] for an analysis). Although this discretization has
proved its low cost and reliability, it turns to be difficult to handle from a programming point of view: rather in-
tricate treatment of particular boundary conditions, as inner corners for instance, difficulty to deal with general
computational domains, to implement multilevel local refinement techniques, etc. For this reason, some schemes
making use of discretizations where the degrees of freedom for the velocity components and pressure are seen as
an approximation of the continuous solution at the same location (or as an average of the continuous solution
over the same control volume) have been proposed in the last two decades [11,18,19,21]. These discretizations
are referred to as “colocated”.

The purpose of this paper is to present and analyse a novel colocated scheme for the Stokes problem, which
has the following essential features. On one hand, the discretization of the pressure gradient term is designed to
be the discrete transposed operator of the velocity divergence term, the latter being evaluated using a natural
finite volume approximation. On the other hand, the scheme is stabilized using a finite volume analogue of the
Brezzi-Pitkäranta technique. We choose to restrict ourselves here to the linear case (i.e. the Stokes problem),
for the sake of readability, and to specific meshes for which an optimal order of convergence can be proven. An
extension of these results to the Navier-Stokes equations and to general meshes can be found in [8].

The outline of the paper is as follows: we first present the scheme under consideration, then the next section
is devoted to establish consistency error estimates which will be used to prove the convergence result (Sect. 4);
finally, we show some numerical experiments which substantiate the theoretical analysis.

2. The continuous problem and the discrete scheme

2.1. The Stokes problem

For the sake of simplicity, we restrict the presentation to homogeneous Dirichlet boundary conditions and
regular right-hand sides. In the so-called strong or differential form, the problem under consideration reads:⎧⎪⎨

⎪⎩
−∆u+ ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω

(1)

where Ω is a polygonal open bounded connected subset of R
d, d = 2 or 3, ∂Ω stands for its boundary, f is a

function of L2(Ω)d, u and p are respectively a vector valued (i.e. taking values in R
d) and a scalar (i.e. taking

values in R) function defined over Ω.
The weak solution of (1) (see e.g. [12]) (u, p) is the unique solution in H1

0(Ω)d × L2(Ω) of:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∇u : ∇v −
∫

Ω

p ∇ · v =
∫

Ω

f · v ∀v ∈ H1
0(Ω)d

∫
Ω

q ∇ · u = 0 ∀q ∈ L2(Ω)

∫
Ω

p = 0.

(2)

2.2. Discretization and discrete functional spaces

2.2.1. Admissible discretizations

The finite volume discretizations of the polygonal domain Ω which are considered here consist in a finite
family M of disjoint non-empty convex subdomains K of Ω (the “control volumes”) such that:
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– if d = 2, each control volume is either a rectangle or a triangle with internal angles strictly lower than
π/2;

– if d = 3, each control volume is a rectangular parallelepiped;
– the discretization is conforming in the sense that two neighbouring control volumes share a complete

(d− 1)-dimensional side, which will be called hereafter an edge of the meshing.
To each control volume K, we associate the following point, denoted by xK : if d = 2, the intersection of the
perpendicular bisectors of each edge, if d = 3 the intersection of the lines issued from the barycenter of the edge
and orthogonal to the edge. Note that, when K is a simplex of R

2, the fact that the interior angles are lower
than π/2 impose that xK is always located inside the triangle K.

The set of edges is denoted by E . It can be split into the set of internal edges, i.e. separating two control
volumes, denoted by Eint, and the set of external ones denoted by Eext. The set E(K) stands for the set of the
edges of the control volume K.

An internal edge separating two control volumes K and L is denoted by K|L. The segment [xK , xL] is
orthogonal to K|L and crosses K|L at xK|L. We denote by dK|L the distance between xK and xL and dK,K|L
the distance between xK and xK|L.

Remark 2.1. The class of admissible meshings is far smaller here than usual for elliptic problems (see [7]).
Additional constraints come from the need to suppose in the analysis that xK|L is located at the barycenter of
K|L, to obtain a second order approximation for the mass fluxes through K|L.

We will adopt hereafter the following conventions. The expression:∑
σ∈Eint (σ=K|L)

F (σ,K|L,K,L) or max
σ∈Eint (σ=K|L)

F (σ,K|L,K,L)

will stand for a summation or a maximum taken over the internal edges, the control volumes sharing the edge
σ being denoted by K and L. Similarly, the expression:∑

σ∈Eext (σ∈E(K))

F (σ,K) or max
σ∈Eext (σ∈E(K))

F (σ,K)

will stand for a summation or a maximum taken over the external edges, the unique control volume to which
the edge σ belongs being denoted by K. Finally:∑

σ=K|L
F (σ,K|L,K,L)

will stand, in a relation related to the control volume K, for a summation over the internal edges σ of K, the
second control volume to which σ belongs being denoted by L.

We denote by hK the diameter of each control volume and h the maximum of the values of hK , for K ∈ M.
Here and throughout the paper, m(K) and m(σ) will stand for, respectively, the d-measure of the control volume
K and the (d − 1)-measure of the edge σ. The regularity of the meshing is quantified by the following set of
real numbers:

regul(M) =

{
max

σ∈Eint (σ=K|L)

m(σ)
dσ (hK + hL)d−2

, max
σ∈Eext (σ∈E(K))

m(σ)
dK,σh

d−2
K

,

max
K∈M, L∈N (K)

hK

hL
, max

K∈M
hK

ρK

} (3)

where ρK is the diameter of the greatest ball included in K and N (K) stands for the set of neighbouring control
volumes of K.
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Throughout the paper, the following notation:

F1 ≤
reg

F2

means that there exists a positive number c, (possibly) depending on Ω and on the meshing only through
regul(M) and being a non-decreasing function of all the four elements of regul(M), such that:

F1 ≤ c F2.

2.2.2. Discrete functional spaces

Definition 2.2. Let M be a discretization as described in the preceding section. We denote by HD(Ω) ⊂ L2(Ω)
the space of functions which are piecewise constant over each control volume K ∈ M. For all u ∈ HD(Ω) and
for all K ∈ M, we denote by uK the constant value of u in K. The space HD(Ω) is equipped with the following
Euclidean structure. For (u, v) ∈ (HD(Ω))2, we define the following inner product (corresponding to Dirichlet
boundary conditions):

[u, v]D =
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

(uL − uK)(vL − vK) +
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

uK vK . (4)

Thanks to the discrete Poincaré inequality (7) given below, this scalar product defines a norm on HD(Ω):

‖u‖1,D = [u, u]1/2
D . (5)

Definition 2.3. We also define the following different inner product (corresponding to Neumann boundary
conditions), together with its associated seminorm:

〈u, v〉D =
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

(uL − uK)(vL − vK) |u|1,D = 〈u, u〉1/2
D . (6)

These definitions naturally extend to vector valued functions as follows. For u = (u(i))i=1,...,d ∈ HD(Ω)d and
v = (v(i))i=1,...,d ∈ HD(Ω)d, we define:

[u, v]D =
d∑

i=1

[u(i), v(i)]D ‖u‖1,D =

(
d∑

i=1

[u(i), u(i)]D

)1/2

.

Proposition 2.4. The following discrete Poincaré inequalities hold (see [7]):

‖u‖L2(Ω) ≤ diam(Ω) ‖u‖1,D ∀u ∈ HD(Ω)

‖u‖L2(Ω) ≤ C(Ω) |u|1,D ∀u ∈ HD(Ω) such that
∫

Ω

u = 0, (7)

where C(Ω) only depends on the computational domain Ω.

In addition, we define a mesh dependent seminorm | · |h over HD(Ω) by:

∀u ∈ HD(Ω), |u|2h =
∑

σ∈Eint (σ=K|L)

(h2
K + h2

L)
m(σ)
dσ

(uL − uK)2.
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The following inverse inequality holds:

Proposition 2.5. Let u be a function of HD(Ω). Then:

|u|h ≤
reg

‖u‖L2(Ω) (8)

Proof. We have:

∑
σ∈Eint (σ=K|L)

(h2
K + h2

L)
m(σ)
dσ

(uL − uK)2 ≤ 2
∑

σ∈Eint (σ=K|L)

(h2
K + h2

L)
m(σ)
dσ

(u2
L + u2

K)

= 2
∑

K∈M
u2

K

∑
σ=K|L

(h2
K + h2

L)
m(σ)
dσ

·

Owing to the fact that card(E(K)) is bounded and
hL

hK
,

m(σ)
dσ (hK + hL)d−2

and
hK

ρK
are controlled by elements

of regul(M), we get:

2
∑

K∈M
u2

K

∑
σ=K|L

(h2
K + h2

L)
m(σ)
dσ

≤
reg

∑
K∈M

ρd
Ku

2
K

which concludes the proof. �

2.3. The finite volume scheme

The finite volume scheme under consideration reads:

Find u ∈ HD(Ω)d and p ∈ HD(Ω) such that for each control volume K of the mesh:∣∣∣∣∣∣∣∣∣∣

∑
σ=K|L

−m(σ)
dσ

(uL − uK) +
∑

σ∈E(K)∩Eext

−m(σ)
dK,σ

(−uK) +
∑

σ=K|L
m(σ)

dL,σ

dσ
(pL − pK) nσ =

∫
K

f

∑
σ=K|L

m(σ)
(
dL,σ

dσ
uK +

dK,σ

dσ
uL

)
· nσ − λ

∑
σ=K|L

(h2
K + h2

L)
m(σ)
dσ

(pL − pK) = 0

(9)

where λ is a positive parameter and nK|L stands for the normal to the edge K|L oriented from K to L. It is
easily seen that this system of equations is singular, the vector of unknowns corresponding to a zero velocity
and a constant pressure belonging to the kernel of the associated discrete operator. Consequently, we impose
to the solution to fulfill the following constraint:∑

K∈M
m(K) pK = 0.

As the functions of HD(Ω) are constant over each control volume, this relation is an exact reformulation of the
third relation of (2): ∫

Ω

p = 0. (10)

On the discrete gradient expression

While the expression of the velocity divergence term is built with a natural interpolation for the velocity on
the side σ, the expression of the pressure gradient is not. In fact, the latter is specially constructed to ensure
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that the discrete gradient is the transposed operator of the discrete divergence, i.e.:

∀u ∈ (HD(Ω))d, ∀p ∈ HD(Ω),

∑
K∈M

pK

∑
σ=K|L

m(σ)
(
dL,σ

dσ
uK +

dK,σ

dσ
uL

)
· nσ = −

∑
K∈M

uK ·
∑

σ=K|L
m(σ)

dL,σ

dσ
(pL − pK) nσ.

This property seems to be of crucial importance in the analysis of the stability of the scheme.

Another equivalent expression can be derived for the discrete gradient term. Indeed, using the fact that, for
each element K,

∑
σ∈E(K)

m(σ) nσ = 0, we get:

∑
σ=K|L

m(σ)
dL,σ

dσ
(pL − pK) nσ =

∑
σ=K|L

m(σ)
dL,σ

dσ
(pL − pK) nσ

+pK

⎡
⎣ ∑

σ=K|L
m(σ) nσ +

∑
σ∈E(K)∩Eext

m(σ) nσ

⎤
⎦

=
∑

σ=K|L
m(σ) (

dL,σ

dσ
pL + (1 − dL,σ

dσ
) pK) nσ +

∑
σ∈E(K)∩Eext

m(σ) pK nσ

=
∑

σ=K|L
m(σ) (

dL,σ

dσ
pL +

dK,σ

dσ
pK) nσ +

∑
σ∈E(K)∩Eext

m(σ) pK nσ.

(11)

This last expression can be seen as a rather natural discretization of the integral over the edge σ of the quantity
p nσ, although with a less natural interpolation formula to estimate the pressure on each edge. Note also that
this latter formulation is conservative. Both formulations of the discrete gradient are used hereafter.

On the necessity of adding a stabilization term

Let us consider the particular case of a regular meshing of a square two-dimensional domain by square control
volumes. It is then easy to see that, without stabilization term, the considered scheme becomes the same as the
usual colocated finite volume scheme, which is known to be hardly usable. In particular, the pressure gradient
term reads, with the usual notations for the computational molecule:

1
2
hd−1

[
pW − pE

pN − pS

]
.

This relation enlights the risk of odd-even decoupling of the pressure (even if checkerboard pressure modes may
be filtered out by boundary conditions); this phenomena has indeed been evidenced in numerical experiments.

On the stabilization term

In the particular case of a uniform meshing, the stabilization term is the discrete counterpart of −2λh2∆p,
which explains why we consider that this stabilization falls into the Brezzi-Pitkäranta family [4]. However,
it can also be seen as a sum of jump terms across each internal edge, as classically used for stabilizing finite
element discretizations using a discontinuous approximation space for the pressure [14, 22].

Other stabilizations for colocated finite volumes are possible. In particular, Brezzi and Fortin proposed a few
years ago the so-called “minimal stabilization procedure” [3] which consists in adding, as in the present work,
a stabilization term in the continuity equation, which reads in the framework of a Galerkin numerical scheme:

c(p, q) =
∫

Ω

(
p− ΠQ̄h

p)(q − ΠQ̄h
q
)
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where p ∈ Qh is the pressure unknown, q ∈ Qh is a test function, ΠQ̄h
is a projection operator from Qh onto Q̄h

and Q̄h is a subset of Qh such that the pair of discrete spaces obtained by associating the velocity discretization
space to Q̄h is inf-sup stable. Later on, Dohrmann and Bochev [6] introduced a stabilized scheme for equal
degree (let say k) finite element discretizations of the Stokes problem based of the same relation, choosing for
Q̄h the discontinuous space of piecewise k−1 degree polynomials. A finite volume analogue to these procedures
is to use for Q̄h the space of pressures keeping a constant value over clusters of control volumes; this is the line
which we follow in ongoing works [9, 10].

3. A quasi-interpolation operator and consistency error bounds

This section is devoted to state and prove the consistency error estimates useful for the analysis. It is written
so as to give, as much as possible, a self-consistent presentation of the matter at hand. We thus give a proof
of the whole set of relevant estimates, even if some of them can be found in already published literature (in
particular [7]). These proofs are new, and rely on the Clément quasi-interpolation technique [5], which presents
two advantages: first, they allow some straightforward generalizations (for instance, dealing with cases when
the full regularity of the solution is not achieved); second, they make the presentation closer to the literature
of some related topics, as for instance a posteriori error estimates.

3.1. Two technical preliminary lemma

The two following lemmas will be useful in the rest of the paper. The first one is a trace lemma, the proof of
which can be found in the case of a simplex in ([23], Sect. 3). Applying a similar technique to parallelepipeds
leads to the same relation, with the space dimension d replaced by the (lower) constant (1 +

√
5)/2.

Lemma 3.1. Let K be an admissible control volume as defined in Section 2.2.1, hK its diameter and σ one of
its edges. Let u be a function of H1(K). Then:

‖u‖L2(σ) ≤
(
d
m(σ)
m(K)

)1/2 (‖u‖L2(K) + hK |u|H1(K)

)
.

For vector functions of H1(K)d, applying this lemma to each component yields the following estimate:

‖u‖L2(σ) ≤
(

2d
m(σ)
m(K)

)1/2 (‖u‖L2(K) + hK |u|H1(K)

)
. (12)

Similarly, if u ∈ H2(K), we have:

|u|H1(σ) ≤
(

2d
m(σ)
m(K)

)1/2 (|u|H1(K) + hK |u|H2(K)

)
. (13)

The second lemma allows to bound the L∞(K) norm of a degree one polynomial by its L2(K) norm:

Lemma 3.2. Let P1 be the space of linear polynomials and φ be an element of P1. Then there exists a constant
c∞,2 such that:

‖φ‖L∞(K) ≤ c∞,2
1

m(K)1/2
‖φ‖L2(K).

Proof. To each type of control volume under consideration, we can associate a reference control volume by an
affine mapping: for instance, for two-dimensional simplices, we can choose the triangle of vertices (0, 0), (1, 0)
and (0, 1). The vector space of degree one polynomials on the reference control volume is a finite dimensional
space, on which the L∞(K) and L2(K) norm are equivalent. The result then follows by a change of coordinates
in the integral. �
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In addition, we will repeatedly use hereafter the following inequality, which is an easy consequence of the
Cauchy-Schwarz inequality:

∀u ∈ L2(ω)
∫

ω

u ≤ m(ω)1/2 ‖u‖L2(ω) (14)

where ω is (for the cases under consideration here) a polygonal (necessarily bounded) domain of R
d or R

d−1.

3.2. Definition and properties of a quasi-interpolation operator

Definition 3.3. Let u be a function in L2(Ω). For each control volume K ∈ M, we define ωK as the convex
hull of K ∪ (∪L∈N (K)L). Let P1 be the space of linear polynomials and φK ∈ P1 be defined by:∫

ωK

(u− φK) ψ = 0 ∀ψ ∈ P1. (15)

Then we define ΠDu ∈ HD(Ω) by (ΠDu)K = φK(xK), ∀K ∈ M.
By extension, we will keep the same notation for vector valued functions.

The following estimates hold:

Lemma 3.4. Let h̄K be the diameter of ωK . If u is a function from ωK to R and φK is defined by (15), then:

if u ∈ H1(ωK) : ‖u− φK‖L2(ωK) ≤ capp
0,1 h̄K |u|H1(ωK)

|u− φK |H1(ωK) ≤ capp
1,1 |u|H1(ωK)

if u ∈ H2(ωK) : ‖u− φK‖L2(ωK) ≤ capp
0,2 h̄2

K |u|H2(ωK)

|u− φK |H1(ωK) ≤ capp
1,2 h̄K |u|H2(ωK)

where capp
0,1 , capp

1,1 , capp
0,2 and capp

1,2 only depend on d.

The existence of these constants is due to the independence of the shape of a convex domain of the constants
in Jackson’s type inequalities, as stated in [24].

Remark 3.5. Let M be a meshing as described in Section 2.2.1. Each control volume K is intersected by a
finite number of domains ωL, L ∈ M. This number is known to be bounded by a constant Nω which can be
expressed as a non-decreasing function of the parameters in regul(M) (for simplicial discretizations, the number
of simplices sharing a vertex is limited by max

K∈M
(hK/ρK), see ([2], Sect. 2)).

In addition, it is easy to see that:
∀K ∈ M, h̄K ≤

reg
hK .

The continuity of the projection operator ΠD from H1(Ω) to HD(Ω) is addressed in the following proposition:

Proposition 3.6. Let u be a function of H1(Ω). Then the following estimate holds:

|ΠDu|1,D ≤
reg

|u|H1(Ω).

If in addition u belongs to H1
0(Ω), then:

‖ΠDu‖1,D ≤
reg

|u|H1(Ω).

The following result gives some insight into the way the projection of u approximates the function u itself.
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Proposition 3.7. Let u be a function of H1(Ω). Then the following estimate holds:

‖u− ΠDu‖L2(Ω) ≤
reg

h |u|H1(Ω). (16)

Let us now suppose that u belongs to H2(Ω) ∩ H1
0(Ω). As a consequence, u is continuous and we can define

ū ∈ HD(Ω) by ūK = u(xK), ∀K ∈ M. Then we have:

‖ΠDu− ū‖1,D ≤
reg

h |u|H2(Ω). (17)

The proofs of both preceding propositions are given in appendix.

3.3. Consistency error bounds

In this section, we successively provide estimates for the consistency residuals associated to the diffusive term
(Lem. 3.8), the pressure gradient term (Lem. 3.9) and, finally, the velocity divergence term (Lem. 3.10).

Lemma 3.8. Let u be a function of H2(Ω) ∩ H1
0(Ω). For any side σ of E, we define:

if σ ∈ Eint, σ = K|L : R∆,K|L(u) =
m(K|L)
dK|L

((ΠDu)L − (ΠDu)K) −
∫

K|L
∇u · nK|L

if σ ∈ Eext, σ ∈ E(K) : R∆,σ(u) =
m(σ)
dK,σ

(−(ΠDu)K) −
∫

σ

∇u · nσ

where nσ is the normal vector to the edge σ oriented outward to K. Then:

if σ ∈ Eint, σ = K|L :

|R∆,K|L(u)| ≤ f(c∞,2, c
app
0,2 , c

app
1,2 )

m(K|L)

dK|L min [m(K),m(L)]1/2
(h̄2

K |u|H2(ωK) + h̄2
L |u|H2(ωL));

if σ ∈ Eext, σ ∈ E(K) :

|R∆,σ(u)| ≤ f(capp
0,2 , c

app
1,2 )

m(σ)
dK,σ m(K)1/2

h̄2
K |u|H2(ωK).

Proof. We begin with the case of an internal side. By definition of the projection operator ΠD, the quantity
R∆,K|L reads:

R∆,K|L(u) =
m(K|L)
dK|L

(φL(xL) − φK(xK)) −
∫

K|L
∇u · nK|L

=
m(K|L)
dK|L

(φK(xL) − φK(xK)) −
∫

K|L
∇u · nK|L︸ ︷︷ ︸

T1,K|L

+
m(K|L)
dK|L

(φL(xL) − φK(xL))︸ ︷︷ ︸
T2,K|L

. (18)

Using the fact that φK is a linear polynomial, the first term of the right hand side of the preceding relation can
be expressed as:

T1,K|L = m(K|L) ∇φK ·
−−−→xKxL

dK|L
−
∫

K|L
∇u · nK|L = −

∫
K|L

∇(u− φK) · nK|L.
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Making use of inequality (14), with ω = K|L, applying inequality (13) to u − φK and finally using lemma 3.4,
we obtain the following estimate:

|T1,K|L| ≤ m(K|L)1/2 |u− φK |H1(K|L)

≤ m(K|L)1/2

(
2d

m(K|L)
m(K)

)1/2 (|u− φK |H1(K) + hK |u− φK |H2(K)

)
≤ (2d)1/2 m(K|L)

m(K)1/2

(|u− φK |H1(ωK) + hK |u− φK |H2(ωK)

)
≤ (1 + capp

1,2 ) (2d)1/2 m(K|L)
m(K)1/2

h̄K |u|H2(ωK).

On the other hand, using lemma 3.2, the triangular inequality, the fact that L is included in both ωL and ωK ,
then finally lemma 3.4, the second term at the right hand side of equation (18) can be estimated as follows:

|T2,K|L| ≤ m(K|L)
dK|L

‖φK − φL‖L∞(L)

≤ c∞,2
m(K|L)

dK|L m(L)1/2
‖φK − φL‖L2(L)

≤ c∞,2
m(K|L)

dK|L m(L)1/2
(‖φK − u‖L2(L) + ‖φL − u‖L2(L))

≤ c∞,2
m(K|L)

dK|L m(L)1/2
(‖φK − u‖L2(ωK) + ‖φL − u‖L2(ωL))

≤ c∞,2 c
app
0,2

m(K|L)
dK|L m(L)1/2

(h̄2
K |u|H2(ωK) + h̄2

L |u|H2(ωL)).

The proof is then easily completed by collecting the bounds of T1,K|L and T2,K|L and using the fact that dK|L
is smaller than h̄K .

On an external side σ associated to the control volume K, we have:

R∆,σ(u) =
m(σ)
dK,σ

(−φK(xK)) −
∫

σ

∇u · nσ

=
m(σ)
dK,σ

(φK(xσ) − φK(xK)) −
∫

σ

∇u · nσ︸ ︷︷ ︸
T1,σ

+
m(σ)
dK,σ

(−φK(xσ))︸ ︷︷ ︸
T2,σ

.

The first term T1,σ can be estimated strictly as the term T1 of the relation (18). As the function u vanishes on
the boundary of the domain, the second one reads:

T2,σ = − 1
dK,σ

∫
σ

φK = − 1
dK,σ

∫
σ

(φK − u).
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Making use of inequality (14), lemma 3.1 and lemma 3.4, we get:

|T2,σ| ≤ m(σ)1/2

dK,σ
‖φK − u‖L2(σ)

≤ d1/2 m(σ)
dK,σ m(K)1/2

(‖φK − u‖L2(K) + hK |φK − u|H1(K)

)
≤ (capp

0,2 + capp
1,2 ) d1/2 m(σ)

dK,σ m(K)1/2
h̄2

K |u|H2(ωK).

Once again, collecting the bounds for T1,σ and T2,σ yields the result. �

Lemma 3.9. Let u be a function of H1(Ω). For any side σ of E, we define the following vector valued quantity:

if σ ∈ Eint, σ = K|L : Rgrad,K|L(u) = m(K|L)
[
dK,K|L
dK|L

(ΠDu)K +
dL,K|L
dK|L

(ΠDu)L

]
nK|L −

∫
K|L

u nK|L,

if σ ∈ Eext, σ ∈ E(K) : Rgrad,σ(u) = m(σ) (ΠDu)K nσ −
∫

σ

u nσ,

where nσ is the normal vector to the edge σ oriented outward to K. Then:

if σ ∈ Eint, σ = K|L :

|Rgrad,K|L(u)| ≤ f(c∞,2, c
app
0,1 , c

app
1,1 )

m(K|L)
min(m(K),m(L))1/2

[
h̄K |u|H1(ωK) + h̄L |u|H1(ωL)

]
,

if σ ∈ Eext, σ ∈ E(K) :

|Rgrad,σ(u)| ≤ f(c∞,2, c
app
0,1 , c

app
1,1 )

m(σ)
m(K)1/2

h̄K |u|H1(ωK),

where | · | stands in the preceding relation for the Euclidean norm in R
d.

Proof. First of all, we remark that we can recast the case of an external edge into the formulation associated
to an internal one by defining a fictitious external control volume L, setting dL,K|L = 0 and giving to (ΠDu)L

any finite value. So the major part of the proof addresses both cases.

Using the linearity of φK , the quantity Rgrad,K|L can be decomposed as follows:

Rgrad,K|L(u) = m(K|L) (
dK,K|L
dK|L

φK(xK) +
dL,K|L
dK|L

φL(xL)) nK|L −
∫

K|L
u nK|L

= m(K|L) φK(
dK,K|L
dK|L

xK +
dL,K|L
dK|L

xL) nK|L −
∫

K|L
u nK|L

+m(K|L)
dL,K|L
dK|L

(φL(xL) − φK(xL)) nK|L.
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Let xG be the point defined by xG =
dK,K|L
dK|L

xK +
dL,K|L
dK|L

xL. We recall that xK|L is defined as the midpoint

of the edge K|L. We then have, as the midpoint integration rule is exact for the linear polynomial φK :

Rgrad,K|L(u) = m(K|L)(φK(xG) − φK(xK|L)) nK|L︸ ︷︷ ︸
T1,K|L

+
∫

K|L
(φK − u) nK|L︸ ︷︷ ︸
T2,K|L

+m(K|L)
dL,K|L
dK|L

(φL(xL) − φK(xL)) nK|L︸ ︷︷ ︸
T3,K|L

.

Next step is to bound successively the three terms T1,K|L, T2,K|L and T3,K|L.
First, we have:

T1,K|L = m(K|L) (φK(xG) − φK(xK|L)) nK|L = m(K|L) (∇φK · −−−−−→xK|L xG) nK|L.

As the distance between xK|L and xG is smaller than h̄K , by Lemma 3.2 then 3.4, the following estimate holds:

|T1,K|L| ≤ m(K|L) h̄K |∇φK | ≤ c∞,2
m(K|L)
m(K)1/2

h̄K |φK |H1(ωK) ≤ c∞,2(1 + capp
1,1 )

m(K|L)
m(K)1/2

h̄K |u|H1(ωK).

The term T2,K|L is estimated as follows, using successively inequality (14), Lemmas 3.1 and 3.4:

|T2,K|L| ≤ m(K|L)1/2‖φK − u‖L2(K|L)

≤ m(K|L)1/2

(
d
m(K|L)
m(K)

)1/2 (‖φK − u‖L2(K) + hK |φK − u|H1(K)

)
≤ (capp

0,1 + capp
1,1 ) d1/2 m(K|L)

m(K)1/2
h̄K |u|H1(ωK).

If the edge under consideration is an external one, the term T3,K|L is zero (since dL,K|L = 0). Otherwise, by
Lemma 3.2 then 3.4, T3,K|L is bounded by:

|T3,K|L| ≤ m(K|L) ‖φL − φK‖L∞(L)

≤ c∞,2
m(K|L)
m(L)1/2

‖φL − φK‖L2(L)

≤ c∞,2
m(K|L)
m(L)1/2

(‖φL − u‖L2(L) + ‖φK − u‖L2(L)

)
≤ c∞,2

m(K|L)
m(L)1/2

(‖φL − u‖L2(ωL) + ‖φK − u‖L2(ωK)

)
≤ c∞,2 c

app
0,1

m(K|L)
m(L)1/2

(
h̄L |u|H1(ωL) + h̄K |u|H1(ωK)

)
.

Collecting the bounds of T1,K|L, T2,K|L and T3,K|L, the proof is over. �
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Lemma 3.10. Let u be a function of H1
0(Ω)d and K be a control volume of M. For each neighbouring control

volume L of K, we denote by Rdiv,K|L(u) the following quantity:

Rdiv,K|L(u) = m(K|L) (
dL,K|L
dK|L

(ΠDu)K +
dK,K|L
dK|L

(ΠDu)L) · nK|L −
∫

K|L
u · nK|L.

Then:

|Rdiv,K|L(u)| ≤ f(c∞,2, c
app
0,1 , c

app
1,1 )

m(K|L)
min(m(K),m(L))1/2

(h̄K |u|H1(ωK)d + h̄L |u|H1(ωL)d) (19)

and, if u belongs to H2(Ω)d:

|Rdiv,K|L(u)| ≤ f(c∞,2, c
app
0,2 , c

app
1,2 )

m(σ)
min(m(K),m(L))1/2

(h̄2
K |u|H2(ωK)d + h̄2

L |u|H2(ωL)d). (20)

Proof. By definition of (ΠDu)K and (ΠDu)L, we can write (ΠDu)K = φK(xL) and (ΠDu)K = φL(xL), where
φK and φL are two vector valued linear polynomials. With this notation, we have:

Rdiv,K|L(u) = m(K|L) (
dL,K|L
dK|L

φK(xK) +
dK,K|L
dK|L

φK(xL)) · nK|L −
∫

K|L
u · nK|L

+m(K|L)
dK,K|L
dK|L

(φL(xL) − φK(xL)) · nK|L. (21)

By linearity of φK and recognizing a one point integration rule valid up to degree one, because:

xK|L =
dL,K|L
dK|L

xK +
dK,K|L
dK|L

xL

is the barycenter of the edge σ = K|L, we get for the first two terms of the preceding relation:

T1 = m(K|L) φK

(
dL,K|L
dK|L

xK +
dK,K|L
dK|L

xL

)
· nK|L −

∫
K|L

u · nK|L =
∫

K|L
(u− φK) · nK|L.

Inequality (14) then (12) yields:

|T1| = ≤ m(K|L)1/2‖u− φK‖L2(K|L)d

≤ m(K|L)1/2

(
2d

m(K|L)
m(K)

)1/2

(‖u− φK‖L2(K)d + hK |u− φK |H1(K)d)

≤ (2d)1/2 m(K|L)
m(K)1/2

(‖u− φK‖L2(ωK)d + hK |u− φK |H1(ωK)d).

By the approximation lemma 3.4 and because hK ≤ h̄K :

|T1| ≤ (capp
0,1 + capp

1,1 ) (2d)1/2 m(K|L)
m(K)1/2

h̄K |u|H1(ωK)d if u ∈ H1(Ω)d

|T1| ≤ (capp
0,2 + capp

1,2 ) (2d)1/2 m(K|L)
m(K)1/2

h̄2
K |u|H2(ωK)d if u ∈ H2(Ω)d.

(22)
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The last part of the right hand side of equation (21) reads:

T2 = m(K|L)
dK,K|L
dK|L

(φL − φK)(xL) · nK|L.

By Lemma 3.2, we have:

|T2| ≤ m(K|L) ‖φL − φK‖L∞(L)d ≤ c∞,2
m(K|L)
m(L)1/2

‖φL − φK‖L2(L)d .

Because L is included in both ωK and ωL, we get:

|T2| ≤ c∞,2
m(K|L)
m(L)1/2

(‖φL − u‖L2(L)d + ‖φK − u‖L2(L)d)

≤ c∞,2
m(K|L)
m(L)1/2

(‖φL − u‖L2(ωL)d + ‖φK − u‖L2(ωK)d)

and, by Lemma 3.4:

|T2| ≤ c∞,2 c
app
0,1

m(K|L)
m(L)1/2

(h̄L |u|H1(ωL)d + h̄K |u|H1(ωK)d) if u ∈ H1(Ω)d

|T2| ≤ c∞,2 c
app
0,2

m(K|L)
m(L)1/2

(h̄2
L |u|H2(ωL)d + h̄2

K |u|H2(ωK)d) if u ∈ H2(Ω)d.

(23)

Finally, both desired results follow by collecting the bounds (22) and (23). �

4. Error analysis

This section is aimed at the error analysis of the scheme under consideration. As usual in the analysis of
stabilized methods for saddle point problems, the first step is to prove the stability of the scheme; this is the
purpose of Proposition 4.1. Then the error bound (Thm. 4.3) follows from the consistency error estimates.

Proposition 4.1 (stability of the scheme). Let u, v and p, q be two elements of respectively HD(Ω)d and
HD(Ω). We define:

B(u, p; v, q) =∑
K∈M

vK .

⎡
⎣ ∑

σ=K|L
−m(σ)

dσ
(uL − uK) +

∑
σ∈E(K)∩Eext

−m(σ)
dK,σ

(−uK) +
∑

σ=K|L
m(σ)

dL,σ

dσ
(pL − pK) nσ

⎤
⎦

+
∑

K∈M
qK

∑
σ=K|L

m(σ) (
dL,σ

dσ
uK +

dK,σ

dσ
uL) · nσ − λ

∑
σ=K|L

(h2
K + h2

L)
m(σ)
dσ

(pL − pK).

Then for each pair u ∈ HD(Ω)d and p ∈ HD(Ω), there exists ũ ∈ HD(Ω)d and p̃ ∈ HD(Ω) such that:

‖ũ‖1,D + ‖p̃‖L2(Ω) ≤
reg

‖u‖1,D + ‖p‖L2(Ω) (24)

and
‖u‖2

1,D + ‖p‖2
L2(Ω) ≤

reg
B(u, p ; ũ, p̃). (25)
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Proof. Let u and p be given as in the proposition statement. The proof of this proposition is obtained by
building explicitly ũ and p̃ such that the relations (24) and (25) hold.

In a first step, we recall that the discrete gradient is chosen as the transpose of the divergence, i.e. such that:

∑
K∈M

uK ·
∑

σ=K|L
m(σ)

dL,σ

dσ
(pL − pK) nσ +

∑
K∈M

pK

∑
σ=K|L

m(σ)
(
dL,σ

dσ
uK +

dK,σ

dσ
uL

)
· nσ = 0.

Consequently, by a standard reordering of the summations, we have:

B(u, p ;u, p) = ‖u‖2
1,D + λ |p|2h.

In a second step, we know (see e.g. [15]) that, since p ∈ L2(Ω) and the integral of p over Ω is zero, there exists
cdr > 0, which only depends on d and Ω, and v̄ ∈ H1

0(Ω)d such that ∇ · (v̄(x)) = −p(x) for a.e. x ∈ Ω and

|v̄|H1(Ω)d ≤ cdr ‖p‖L2(Ω). (26)

For short, we note v̄K be (ΠD v̄)K . We have:

B(u, p ; ΠDv̄, 0) =
∑

K∈M
v̄K ·

⎡
⎣ ∑

σ=K|L
−m(σ)

dσ
(uL − uK) +

∑
σ∈E(K)∩Eext

−m(σ)
dK,σ

(−uK)

⎤
⎦

+
∑

K∈M
v̄K ·

∑
σ=K|L

m(σ)
dL,σ

dσ
(pL − pK) nσ.

The Cauchy-Schwarz inequality yields the following estimate for the first summation:

∑
K∈M

v̄K ·
⎡
⎣ ∑

σ=K|L
−m(σ)

dσ
(uL − uK) +

∑
σ∈E(K)∩Eext

−m(σ)
dK,σ

(−uK)

⎤
⎦ ≥ − ‖ΠDv̄‖1,D ‖u‖1,D. (27)

Using the fact that the discrete gradient is by construction the transpose of the discrete divergence, we obtain
for the second term:

T2 =
∑

K∈M
v̄K ·

∑
σ=K|L

m(σ)
dL,σ

dσ
(pL − pK) nσ = −

∑
K∈M

pK

∑
σ=K|L

m(σ)
(
dL,σ

dσ
v̄K +

dK,σ

dσ
v̄L

)
· nσ.

Adding and subtracting the integral over each element of the divergence of v̄ yields:

T2 = −
∑

K∈M
pK

∫
K

∇ · v̄
︸ ︷︷ ︸

T3

−
∑

K∈M
pK

⎡
⎣ ∑

σ=K|L
m(σ) (

dL,σ

dσ
v̄K +

dK,σ

dσ
v̄L) · nσ −

∫
σ

v̄ · nσ

⎤
⎦

︸ ︷︷ ︸
T4

.

The first term reads:
T3 = −

∑
K∈M

∫
K

pK ∇ · v̄ =
∑

K∈M

∫
K

p2
K = ‖p‖2

L2(Ω). (28)

Reordering the sums in the second one, we obtain:

T4 =
∑

σ∈Eint (σ=K|L)

[(
m(σ)
dσ

)1/2 (
h2

K + h2
L

)1/2
(pK − pL)

] [(
dσ

m(σ)

)1/2 1
(h2

K + h2
L)1/2

Rdiv,σ(v̄)

]
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and using the Cauchy-Schwarz inequality:

|T4| ≤ |p|h
⎡
⎣ ∑

σ∈Eint (σ=K|L)

dσ

m(σ)
1

h2
K + h2

L

(Rdiv,σ(v̄))2

⎤
⎦1/2

.

By Lemma 3.10, we then get:

|T4| ≤ g(c∞,2, c
app
0,1 , c

app
1,1 ) |p|h⎡

⎣ ∑
σ∈Eint(σ=K|L)

dσ m(σ)
min(m(K),m(L))

(
h̄2

L

h2
K + h2

L

|v̄|2H1(ωK)d +
h̄2

K

h2
K + h2

L

|v̄|2H1(ωL)d

)⎤⎦1/2

.

The quantity dσ m(σ) can be seen as the area of a volume (d = 3) or surface (d = 2) included in K ∪ L.
Consequently, since max

K∈M, L∈N (K)
hK/hL is one of the elements of regul(M), we get:

dσ m(σ)
min(m(K),m(L))

≤
reg

1.

In the same way:
h̄2

L

h2
K + h2

L

≤
reg

1 ,
h̄2

K

h2
K + h2

L

≤
reg

1.

Finally, as a control volume is intersected by at most Nω domains ωL, the integral of the H1 seminorm of v̄ over
each control volume is encountered only a bounded number of times in the above summation, and we have:

|T4| ≤
reg

|p|h |v̄|H1(Ω)d . (29)

Finally, gathering the estimates (27),(28) and (29) yields:

B(u, p ; ΠDv̄, 0) ≥ ‖p‖2
L2(Ω) − ‖v̄‖1,D ‖u‖1,D − c1 |p|h |v̄|H1(Ω)d

where c1 is a non-decreasing function of the parameters of regul(M). As, by construction, |v̄|H1(Ω)d ≤
cdr‖p‖L2(Ω) and, by continuity of the projection operator ΠD from H1(Ω)d in HD(Ω)d) (proposition 3.6),
‖ΠDv̄‖1,D ≤

reg
|v̄|H1(Ω)d , this inequality equivalently reads:

B(u, p ; ΠDv̄, 0) ≥ ‖p‖2
L2(Ω) − c2‖p‖L2(Ω) ‖u‖1,D − c1cdr|p|h ‖p‖L2(Ω)

with c2 being once again a non-decreasing function of the parameters of regul(M). Using Young’s inequality,
we obtain:

B(u, p ; ΠDv̄, 0) ≥ 1
2
‖p‖2

L2(Ω) − c22 ‖u‖2
1,D − c21c

2
dr |p|2h.

By linearity of (v, q) �→ B(u, p; v, q), we then have, for each positive constant ξ:

B(u, p ;u+ ξ ΠD v̄, p) ≥ (1 − ξ c22) ‖u‖2
1,D +

ξ

2
‖p‖2

L2(Ω) + (λ − ξc21c
2
dr) |p|2h.

Choosing a value of ξ small enough, this inequality yields an estimate of the form (25). As the relation (24) is
clearly verified by the pair (u + ξ ΠD v̄, p), this concludes the proof. �
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An immediate consequence of this stability inequality is that the discrete problem is well posed:

Proposition 4.2. The discrete system (9), completed by the constraint (10), admits a unique solution (u, p).

Proof. We define the following finite dimensional vector space:

V =
{

(u, p) ∈ HD(Ω)d × HD(Ω) such that
∫

Ω

p = 0
}
.

Let F be the linear mapping which associates to (u, p) ∈ V the pair (û, p̂) defined by the following relations,
written for each control volume K of the mesh:∣∣∣∣∣∣∣∣∣∣

m(K) ûK =
∑

σ=K|L
−m(σ)

dσ
(uL − uK) +

∑
σ∈E(K)∩Eext

−m(σ)
dK,σ

(−uK) +
∑

σ=K|L
m(σ)

dL,σ

dσ
(pL − pK) nσ

m(K) p̂K =
∑

σ=K|L
m(σ)

(
dL,σ

dσ
uK +

dK,σ

dσ
uL

)
· nσ − λ

∑
σ=K|L

(h2
K + h2

L)
m(σ)
dσ

(pL − pK).

By summing over each control volume of the mesh the last relation, we check that the integral of p̂ over Ω is
zero, which means that (û, p̂) ∈ V . Proposition 4.1 then implies that the kernel of F is reduced to (0, 0), which
proves that the mapping F is one to one from V onto V . As the right hand side of (9) belongs to V , this
concludes the proof. �

We are now in position to state the convergence result of the scheme:

Theorem 4.3. We assume that the weak solution (ū, p̄) of the Stokes problem in the sense of (2) is such that
(ū, p̄) ∈ H1

0(Ω)d ∩ H2(Ω)d × H1(Ω). Let (u, p) ∈ HD(Ω)d × HD(Ω) be the solution to (9). Let ūD = ΠDū and
p̄D = ΠD v̄ and define e ∈ HD(Ω)d and ε ∈ HD(Ω) by e = u− ūD and ε = p− p̄D. Then:

‖e‖1,D + ‖ε‖L2(Ω) ≤
reg

h (|ū|H2(Ω)d + |p̄|H1(Ω)). (30)

In addition, let ûD be the function of HD(Ω)d defined by û(i)
D |K = ū(i)(xK), ∀K ∈ M. Then:

‖u− ûD‖1,D + ‖ε‖L2(Ω) ≤
reg

h (|ū|H2(Ω)d + |p̄|H1(Ω)). (31)

Finally, we also have:

‖u− ū‖L2(Ω)d + ‖p− p̄‖L2(Ω) ≤
reg

h (|ū|H1(Ω)d + |ū|H2(Ω)d + |p̄|H1(Ω)). (32)

Proof. Subtracting the same terms at the left and right hand side of the discrete momentum balance equation,
we get, for each control volume K of M:

∑
σ=K|L

−m(σ)
dσ

(eL − eK) +
∑

σ∈E(K)∩Eext

−m(σ)
dK,σ

(−eK) +
∑

σ=K|L
m(σ)

dL,σ

dσ
(εL − εK) nσ =

∫
K

f

+
∑

σ=K|L

m(σ)
dσ

((ūD)L − (ūD)K) +
∑

σ∈E(K)∩Eext

m(σ)
dK,σ

(−(ūD)K) +
∑

σ=K|L
−m(σ)

dL,σ

dσ
((p̄D)L − (p̄D)K) nσ.

The regularity of ū and p̄ assumed in the statement of the theorem allows to integrate the continuous partial
derivative equation (1) over each element K:∫

∂K

−∇ū · n+
∫

∂K

p̄ n =
∫

K

f.
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Subtracting this relation to the previous one and switching, for the pressure term in the right hand side of the
relation, to the equivalent formulation given by (11), we get, for each control volume K of M:

∑
σ=K|L

−m(σ)
dσ

(eL − eK) +
∑

σ∈E(K)∩Eext

−m(σ)
dK,σ

(−eK) +
∑

σ=K|L
m(σ)

(
dL,σ

dσ
εL +

dK,σ

dσ
εK

)
nσ = T1,K + T2,K

with

T1,K =
∑

σ=K|L

[
m(σ)
dσ

(ūD)L − (ūD)K) −
∫

σ

∇ū · nσ

]
+

∑
σ∈E(K)∩Eext

[
m(σ)
dK,σ

(−(ūD)K) −
∫

σ

∇ū · nσ

]

T2,K =
∑

σ=K|L

[
−m(σ) (

dL,σ

dσ
(p̄D)L +

dK,σ

dσ
(p̄D)K) nσ +

∫
σ

p̄ nσ

]
+

∑
σ∈E(K)∩Eext

[
−m(σ) (p̄D)K nσ +

∫
σ

p̄ nσ

]
.

Repeating the same process for the mass balance equation yields, once again for each control volume K of M:

∑
σ=K|L

m(σ)
(
dL,σ

dσ
eK +

dK,σ

dσ
eL

)
· nσ − λ

∑
σ=K|L

(h2
K + h2

L)
m(σ)
dσ

(εL − εK) = T3,K + T4,K

with

T3,K = −
∑

σ=K|L
m(σ)

(
dL,σ

dσ
(ūD)K +

dK,σ

dσ
(ūD)L

)
· nσ −

∫
σ

ū · nσ

T4,K = λ
∑

σ=K|L
(h2

K + h2
L)

m(σ)
dσ

((p̄D)L − (p̄D)K).

We choose ẽ ∈ HD(Ω)d and ε̃ ∈ HD(Ω) in such a way that the stability relations (24) and (25) are satisfied with
u = e and p = ε. We then obtain:

‖e‖2
1,D + ‖ε‖2

L2(Ω) ≤
reg

∑
K∈M

ẽK · T1,K︸ ︷︷ ︸
(T∆)

+
∑

K∈M
ẽK · T2,K︸ ︷︷ ︸

(Tgrad)

+
∑

K∈M
ε̃KT3,K︸ ︷︷ ︸

(Tdiv)

+
∑

K∈M
ε̃KT4,K︸ ︷︷ ︸

(Tc)

·

Next step consists in bounding each of these terms. Reordering the summations, we get for T∆:

T∆ =
∑

K∈M
ẽK ·

⎧⎨
⎩ ∑

σ=K|L

[
m(σ)
dσ

((ūD)L − (ūD)K) −
∫

σ

∇ū · nσ

]

+
∑

σ∈E(K)∩Eext

[
m(σ)
dK , σ

(−(ūD)K) −
∫

σ

∇ū · nσ

]⎫⎬
⎭

=
∑

σ∈Eint (σ=K|L)

(ẽK − ẽL) ·
(
m(σ)
dσ

((ūD)L − (ūD)K) −
∫

σ

∇ū · nσ

)

+
∑

σ∈Eext (σ∈E(K))

ẽK ·
(
m(σ)
dK,σ

(−(ūD)K) −
∫

σ

∇ū · nσ

)
.
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The Cauchy-Schwarz inequality yields:

|T∆| ≤
⎡
⎣ ∑

σ∈Eint(σ=K|L)

m(σ)
dσ

(ẽK − ẽL)2 +
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

ẽ2K

⎤
⎦1/2

⎡
⎣ ∑

σ∈Eint (σ=K|L)

dσ

m(σ)

(
m(σ)
dσ

((ūD)L − (ūD)K) −
∫

σ

∇ū · nσ

)2

+
∑

σ∈Eext (σ∈E(K))

dK,σ

m(σ)

(
m(σ)
dK,σ

(−(ūD)K) −
∫

σ

∇ū · nσ

)2
⎤
⎦1/2

= ‖ẽ‖1,D

⎡
⎣ ∑

σ∈Eint (σ=K|L)

dσ

m(σ)

d∑
i=1

(R∆,σ(ū(i)))2 +
∑

σ∈Eext (σ∈E(K))

dK,σ

m(σ)

d∑
i=1

d∑
i=1

(R∆,σ(ū(i)))2

⎤
⎦1/2

.

Using Lemma 3.8 and examining the functions of the geometrical features of the mesh appearing as coefficients
in the summations, we obtain:

|T∆| ≤
reg

h ‖ẽ‖1,D

⎡
⎣ ∑

σ∈Eint(σ=K|L)

|ū|2H2(ωK)d + |ū|2H2(ωL)d +
∑

σ∈Eext (σ∈E(K))

|ū|2H2(ωK)d

⎤
⎦1/2

.

And, finally, since by assumption the integral over each control volume is counted no more than a bounded
number of times (depending on Nω and the number of sides of the considered control volumes):

|T∆| ≤
reg

h ‖ẽ‖1,D |ū|H2(Ω)d . (33)

Following the same line, reordering the summations and using the Cauchy-Schwarz inequality yields for Tgrad:

|Tgrad| ≤ ‖ẽ‖1,D

⎡
⎣ ∑

σ∈Eint (σ=K|L)

dσ

m(σ)
(Rgrad,σ(p̄))2 +

∑
σ∈Eext (σ∈E(K))

dK,σ

m(σ)
(Rgrad,σ(p̄))2

⎤
⎦1/2

which leads, by Lemma 3.9, to the following estimate for Tgrad:

|Tgrad| ≤
reg

h ‖ẽ‖1,D |p̄|H1(Ω). (34)

By the same way, we obtain for Tdiv:

|Tdiv| ≤ ‖ε̃‖L2(Ω)

⎡
⎢⎣ ∑

K∈M

1
m(K)

⎛
⎝ ∑

σ=K|L
Rdiv,σ(ū)

⎞
⎠2
⎤
⎥⎦

1/2

and, by Lemma 3.10:
|Tdiv| ≤

reg
h ‖ε̃‖L2(Ω) |u|H2(Ω)d . (35)

Finally, reordering summations and using the Cauchy-Schwarz inequality, the following bound holds for Tc:

|Tc| ≤ 2λ h |ε̃|h |p̄D|1,D.
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Using Proposition 3.6 and the inverse inequality (8), we finally obtain:

|Tc| ≤
reg

λ h ‖ε̃‖L2(Ω) |p̄|H1(Ω). (36)

The four terms T∆, Tgrad, Tdiv and Tc are now bounded respectively by the estimates (33), (34), (35) and (36),
and we get:

‖e‖2
1,D + ‖ε‖2

L2(Ω) ≤
reg

h
[‖ẽ‖1,D + ‖ε̃‖L2(Ω)

] [|u|H2(Ω)d + |p̄|H1(Ω)

]
.

The first estimate of the theorem 30 then follows by Young’s inequality and using relation (24). The second
one is easily deduced from (30), using the triangular inequality and the second estimate of Proposition 3.7. The
third one follows similarly from the triangular inequality, the first estimate of Proposition 3.7 and the discrete
Poincaré inequality (7). �

Remark 4.4. In view of this proof (see Eq. (35)), the second order estimate for the residual associated to the
divergence term seems to be necessary to obtain a first order convergence rate for the scheme. This considerably
reduces the generality of the possible meshings, as it imposes for the segment [xK , xL] to cross the edge K|L at
its barycenter. For more general discretizations, we prove in [8] a suboptimal h1/2 error estimate for a scheme
with an enhanced stabilization.

5. Numerical tests

The aim of this section is to check the validity of the theoretical analysis against a practical test case for
which an analytic solution can be exhibited. This solution is built as follows. We choose a streamfunction and
a geometrical domain such that homogeneous Dirichlet conditions hold:

ϕ = 1000 [ x (1 − x) y (1 − y) ]2 , Ω =]0, 1[×]0, 1[ , ū =

⎡
⎢⎣

∂ϕ

∂y

−∂ϕ
∂x

⎤
⎥⎦ ;

we pick an arbitrary pressure in L2
0(Ω):

p = 100
(
x2 + y2 − 2

3

)

and the right hand side f is computed in order that the equations of the Stokes problem (1) are satisfied.

To obtain the numerical results displayed here, the practical implementation has been performed using the
software object-oriented component library PELICANS, developed at IRSN [20].

In all cases, we choose for the parameter λ the value 2 × 10−2, which is within the range of recommended
values for the stabilization parameter of the Brezzi-Pitkäranta scheme [4].

The velocity and pressure errors are defined respectively as:

e
(i)
K = u

(i)
K − ū(i)(xK) , ε = pK − p̄(xK).

This pressure error definition is not the same as in the analysis. However, for a sufficiently regular pressure
field, both definitions are equivalent. Indeed, let p̂ be the function of HD defined by p̂K = p(xK). Due to the
regularity of p̄, the discrete Poincaré-Friedrich inequality and Proposition 3.7 yields:

‖ΠDp− p̂‖L2(Ω) ≤
reg

|ΠDp− p̂|1,D ≤
reg

h|p|H2(Ω)
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Figure 1. Coarsest meshing for simplicial control volumes.

and, by the triangular inequality, estimate (31) yields:

‖ε‖L2(Ω) ≤ ‖p− ΠDp‖L2(Ω) + ‖ΠDp− p̂‖L2(Ω) ≤
reg

h (|p|H1(Ω) + |p|H2(Ω)).

We first solve this problem using a family of acute angles triangulations. The meshings used in this study are
built by first splitting the domain into sub-squares and then cutting each sub-square into 26 triangles, all having
angles of at most 80◦ (corresponding to Fig. 5 – bbbb in [1]). The coarsest one is displayed in Figure 1.

The obtained errors are reported in Figure 2. As foreseen by the theory, we observe a first order convergence
for both the velocity in the ‖ · ‖1,D norm and pressure in L2 norm. In addition, a second order convergence is
observed for the velocity in the discrete L2 norm (i.e. ‖e‖L2(Ω)d).

In a second step, we turn to regular n × n square grids. Figure 3 shows the evolution of the errors as a
function of the grid parameter h. Results are better than can be expected from the theory: the convergence
rate is close to 3/2 for both the velocity in ‖ · ‖1,D norm and the pressure in L2 norm. In addition, as for
simplicial triangulations, the velocity shows a second order convergence in the discrete L2 norm.

In a third step, the reliability of the scheme for structured irregular grids is checked. To this purpose, we
build meshings of the domain Ω generated by the same sequence of subdivisions along each direction, defined
as follows: the size of the first, third, . . . (2i− 1)th intervals is h while the size of the second, fourth, . . . (2i)th
intervals is h/10. The quality of the results (not displayed here) is only slightly affected by the irregularity of
this family of meshings: compared to results obtained with square control volumes, pressure and velocity errors
are almost the same in the L2 norm (the pressure approximation is even more accurate), and only twice greater
for the velocity in ‖ · ‖1,D norm.

6. Conclusion

We have presented in this paper a colocated finite volume scheme for the Stokes problem. Its stability is
obtained by the addition to the continuity equation of a perturbation term which is a finite volume analogue of
the well-known Brezzi-Pitkäranta stabilization term. For acute angles triangulations in 2D and for structured
meshings of quadrangular (in 2D) or parallelepipedic (in 3D) control volumes, we prove a first order convergence
in the natural finite volume discrete norms for both the velocity and the pressure. To the best of our knowledge,
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Figure 2. Errors for the velocity and the pressure obtained with simplicial control volumes.

this theoretical result is, for incompressible flow problems, the first of this type for colocated finite volume
schemes, or even (in 2D) for finite volume schemes based on general simplicial discretizations of the equations
in primitive variables. This analysis is confirmed by numerical experiments, which show, in addition, a second
order convergence for the velocity in the discrete L2 norm. A discretization for the Navier-Stokes equations
following the same ideas and dealing with general meshings can be found in [8].

In view of the popularity of cheap (low degree) approximations in fluid flow applications, the considered
scheme should deserve further work. In particular, a stable discretization should be derived for the more
realistic Stokes problem where the divergence of the stress tensor is used instead of the velocity Laplacian, to
allow to handle many practical applications involving a non-constant fluid viscosity.

Appendix A. Proof of Proposition 3.6

Proof. The proof of the first inequality of the proposition can be easily derived from the proof of the second
one. Consequently, we will only address the latter here.

Let u be a function in H1
0(Ω) and the φK , K ∈ M be defined by (15). By definition of the projection operator

ΠD, the discrete norm of û = ΠDu reads:

‖û‖2
1,D =

∑
σ∈Eint (σ=K|L)

m(σ)
dσ

(ûL − ûK)2 +
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

û2
K

=
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

(φL(xL) − φK(xK))2 +
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

φK(xK)2

≤ 2
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

(φK(xL) − φK(xK))2 + 2
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

(φL(xL) − φK(xL))2

+2
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

(φK(xK) − φK(xσ))2 + 2
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

φK(xσ)2.

(37)
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Figure 3. Errors for the velocity and the pressure obtained with square control volumes.

To proceed, we must now bound each term of the right hand side of this relation. Since φK is a linear polynomial,
the first summation in the above relation reads:

T1 =
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

(φK(xL) − φK(xK))2 =
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

(∇φK · −−−→xKxL)2

=
∑

σ∈Eint (σ=K|L)

m(σ) dσ (∇φK · nK|L)2.

The quantity m(σ) dσ can be seen as the measure of a domain included in K ∪ L, and so is lower than the
measure of ωK ; we then get, by lemma 3.4:

T1 ≤
∑

σ∈Eint (σ=K|L)

|φK |2H1(ωK) ≤ (capp
1,1 )2

∑
σ∈Eint (σ=K|L)

|u|2H1(ωK). (38)

Using lemma 3.2, the second summation in (37) can be estimated as follows:

T2 =
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

(φL(xL) − φK(xL))2 ≤ (c∞,2)2
∑

σ∈Eint (σ=K|L)

m(σ)
dσ m(L)

‖φL − φK‖2
L2(L).
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Then, because L is included in both ωK and ωL, we get by Lemma 3.4:

T2 ≤ 2 (c∞,2)2
∑

σ∈Eint (σ=K|L)

m(σ)
dσ m(L)

[
‖φL − u‖2

L2(L) + ‖φK − u‖2
L2(L)

]
≤ 2 (c∞,2)2

∑
σ∈Eint (σ=K|L)

m(σ)
dσ m(L)

[
‖φL − u‖2

L2(ωL) + ‖φK − u‖2
L2(ωK)

]
≤ 2 (c∞,2 c

app
1,2 )2

∑
σ∈Eint (σ=K|L)

m(σ)
dσ m(L)

[
h̄2

L |u|2H1(ωL) + h̄2
K |u|2H1(ωK)

]
.

(39)

Using the same arguments as for the bound of the term T1 (the only difference is to replace dσ by dK,σ, we
obtain similarly for the third term in (37):

T3 ≤ (capp
1,1 )2

∑
σ∈Eext (σ∈E(K))

|u|2H1(ωK). (40)

Finally, using the linearity of φK and the fact that u vanishes on ∂Ω, the fourth term in (37) reads:

T4 =
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

φK(xσ)2 =
∑

σ∈Eext (σ∈E(K))

1
m(σ) dK,σ

[∫
σ

(φK − u)
]2
.

By inequality (14), Lemmas 3.1 and 3.4, we find that:

T4 ≤
∑

σ∈Eext (σ∈E(K))

1
dK,σ

‖φK − u‖2
L2(σ)

≤ d
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ m(K)

[‖φK − u‖L2(K) + hK |φK − u|H1(K)

]2
≤ d (capp

1,2 + capp
1,1 )2

∑
σ∈Eext (σ∈E(K))

m(σ) h̄2
K

dK,σ m(K)
|u|2H1(ωK).

(41)

Elementary considerations show that the constants depending on the geometry in (39) and (41) are controlled
by quantities which are non-decreasing functions of the parameters of the meshing gathered in regul(M).
Consequently, relations (38), (39), (40) and (41) yields:

‖û‖2
1,D ≤

reg

∑
σ∈Eint (σ=K|L)

|u|2H1(ωK) + |u|2H1(ωL) +
∑

σ∈Eext (σ∈E(K))

|u|2H1(ωK).

As the integral over each element is accounted for in this summation a bounded number of times (depending on
Nω and the number of sides of the considered control volumes, see remark 3.5), this completes the proof. �



ON A STABILIZED COLOCATED FINITE VOLUME SCHEME FOR THE STOKES PROBLEM 525

Appendix B. Proof of Proposition 3.7

Proof. Proof of relation (16)

Decomposing the L2(Ω) norm on each element and applying the triangular inequality, we get:

‖u− ΠDu‖2
L2(Ω) =

∑
K∈M

‖u− ΠDu‖2
L2(K) =

∑
K∈M

‖u− φK(xK)‖2
L2(K)

≤ 2
∑

K∈M
‖u− φK‖2

L2(K)︸ ︷︷ ︸
T1

+ ‖φK − φK(xK)‖2
L2(K)︸ ︷︷ ︸

T2

·

By Lemma 3.4, the first term is bounded by:

T1 ≤ ‖u− φK‖2
L2(ωK) ≤ capp

0,1 h̄
2
K |u|2H1(ωK).

As φK is a linear polynomial, we have φK(x) − φK(xK) = ∇φK · −−−→xK x, ∀x ∈ K. Then, by lemma 3.4, T2 is
bounded by:

T2 =
∫

K

(∇φK · −−−→xK x)2 ≤ h2
K

∫
K

|∇φK |2 ≤ capp
1,1 h2

K |u|H1(ωK).

These two bounds yield:

‖u− ΠDu‖2
L2(Ω) ≤

reg
h2
∑

K∈M
|u|H1(ωK).

And consequently, by remark 3.5:

‖u− ΠDu‖2
L2(Ω) ≤

reg
h2 |u|H1(Ω).

Proof of relation (17)

By definition of the discrete H1(Ω) norm and using the fact that u vanishes on ∂Ω, we have:

‖ΠDu− ū‖2
1,D =

∑
σ∈Eint (σ=K|L)

m(σ)
dσ

[(φL(xL) − u(xL)) − (φK(xK) − u(xK))]2

+
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

(φK(xK) − u(xK))2

≤ 2
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

[(φK(xL) − φK(xK)) − (u(xL) − u(xK))]2︸ ︷︷ ︸
T1

+2
∑

σ∈Eint (σ=K|L)

m(σ)
dσ

[φL(xL) − φK(xL)]2︸ ︷︷ ︸
T2

+2
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

[(φK(xK) − φK(xσ)) − (u(xK) − u(xσ))]2︸ ︷︷ ︸
T3

+2
∑

σ∈Eext (σ∈E(K))

m(σ)
dK,σ

(φK(xσ))2︸ ︷︷ ︸
T4

.
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To estimate the term T1, a possible technique is to decompose T1 as follows:

T1 =

⎡
⎢⎢⎢⎢⎣
m(K|L)
dK|L

(φK(xL) − φK(xK)) −
∫

σ

∇u · nσ︸ ︷︷ ︸
T1,1

+
∫

σ

∇u · nσ − m(K|L)
dK|L

(u(xL) − u(xK))︸ ︷︷ ︸
T1,2

⎤
⎥⎥⎥⎥⎦

2

.

The first term is bounded in the proof of lemma 3.8 in the present paper and an estimate for the second one
can be found in [7], pp. 786–790. However, for two dimensional problems, T1 can be estimated quite simply,
making use of the tools repeatedly employed in this paper. We restrict here the exposition to this case and, to
this purpose, we write T1 as:

T1 =
m(K|L)
dK|L

[
∇φK · −−−−→xK xL −

∫ xL

xK

∇u · nK|L

]2
=
m(K|L)
dK|L

[∫ xL

xK

∇(φK − u) · nK|L

]2
.

We denote by DK|L the simplex of edges [xKxL] and a segment of first point xK and last point located on a
vertex of K|L. Note that DK|L is included in ωK and, for the particular polygonal domains under consideration,
m(DK|L) = 1/4 m(K|L) dK|L. Inequalities (14) and (13) yields:

|T1| ≤ m(K|L) |φK − u|2H1([xKxL])

≤ 2d m(K|L)
dK|L

m(DK|L)

(
|φK − u|H1(DK|L) + diam(DK|L)|φK − u|H2(DK|L)

)2

≤ 8 (capp
1,2 + 1)2 d h̄2

K |u|H2(ωK).

The term T2 can be estimated using successively Lemmas 3.2 and 3.4 as follows:

|T2| =
m(K|L)
dK|L

[(φL(xL) − φK(xL)]2 ≤ m(K|L)
dK|L

‖φL − φK‖2
L∞(L)

≤ (c∞,2)2
m(K|L)
dK|L m(L)

‖φL − φK‖2
L2(L)

≤ (c∞,2)2
m(K|L)
dK|L m(L)

(‖φL − u‖2
L2(L) + ‖φK − u‖2

L2(L))

≤ 2 (c∞,2 c
app
0,2 )2

m(K|L)
dK|L m(L)

(h̄4
L |u|2H2(ωL) + h̄4

K |u|2H2(ωL)).

The term T3 is estimated using the same arguments as for T1, and we get in particular for two-dimensional
problems:

|T3| ≤ 8 (capp
1,2 + 1)2 d h̄2

K |u|H2(ωK).

Finally, using the linearity of φK , the fact that xσ is the barycenter of σ and the fact that u vanishes on ∂Ω,
the term T4 reads:

T4 =
m(σ)
dK,σ

φK(xσ)2 =
1

m(σ) dK,σ

[∫
σ

(φK − u)
]2
.
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By the inequality (14), lemma 3.1 and lemma 3.4, we find that:

|T4| ≤ 1
dK,σ

‖φK − u‖2
L2(σ)

≤ d
m(σ)

dK,σ m(K)
[‖φK − u‖L2(K) + hK |φK − u|H1(K)

]2
≤ (capp

0,2 + capp
1,2 )2d

m(σ) h̄4
K

dK,σ m(K)
|u|2H2(K).

The proof is then completed by collecting the bounds, checking that the geometrical coefficients can be bounded
by non-decreasing functions of of the parameters gathered in regul(M) and using the remark 3.5. �
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