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STABILIZATION METHODS IN RELAXED MICROMAGNETISM
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Abstract. The magnetization of a ferromagnetic sample solves a non-convex variational problem,
where its relaxation by convexifying the energy density resolves relevant macroscopic information.
The numerical analysis of the relaxed model has to deal with a constrained convex but degener-
ated, nonlocal energy functional in mixed formulation for magnetic potential u and magnetization m.
In [C. Carstensen and A. Prohl, Numer. Math. 90 (2001) 65–99], the conforming P1 − (P0)d-element
in d = 2, 3 spatial dimensions is shown to lead to an ill-posed discrete problem in relaxed micro-
magnetism, and suboptimal convergence. This observation motivated a non-conforming finite element
method which leads to a well-posed discrete problem, with solutions converging at optimal rate. In
this work, we provide both an a priori and a posteriori error analysis for two stabilized conforming
methods which account for inter-element jumps of the piecewise constant magnetization. Both methods
converge at optimal rate; the new approach is applied to a macroscopic nonstationary ferromagnetic
model [M. Kruž́ık and A. Prohl, Adv. Math. Sci. Appl. 14 (2004) 665–681 – M. Kruž́ık and T. Roub́ıček,
Z. Angew. Math. Phys. 55 (2004) 159–182 ].
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1. Introduction

The mathematical description of magnetization states m : ω → Sd−1 := {x ∈ R
d
∣
∣ |x | = 1} ⊂ R

d in rigid
ferromagnetic bodies that cover a domain ω ⊂ R

d, d = 2, 3 relies on the classical model by Weiss et al. [2],
where the magnetization minimizes the magnetostatic energy

E(m) = α

∫

ω

|∇m|2 dx +
∫

ω

φ(m) dx +
1
2

∫

Ω

|∇u|2 dx −
∫

ω

〈f ,m〉dx (1.1)

subject to the following consequence of Maxwell’s equations,

−∆u+ div (χωm) = 0 in H−1(Ω). (1.2)

Here, χω : Ω → R denotes the characteristic function of the set ω, i.e., χω(x) = 1 if x ∈ ω, and χω(x) = 0 if
not. Further, to account for non-local energy contributions, we choose a bounded set R

d ⊃⊃ Ω ⊃⊃ ω instead
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of R
d; for a different approach that couples finite element methods and boundary element methods we refer to

[3, 4].
The magnetic energy consists of four contributions which favour different magnetic properties: the first

term (“surface energy”) is scaled by α > 0 and favours non-oscillatory structures. The non-convex anisotropic
energy density 0 ≤ φ(·) reflects crystallographic properties of the ferromagnet, like uniaxial (e.g., iron) or cubic
(e.g., cobalt-samarium) materials [8]. In the uniaxial case which is considered below, there holds φ(m) = 0, if
m = ±e, for a given (constant) easy axis e ∈ Sd−1. The third term in (1.1) takes into account applied exterior
fields f : ω → R

d. Finally, the stray-field energy measures how much the magnetization deviates from being
divergence-free (i.e., ∇u is the Helmholtz projection of m, for u : Ω → R the magnetic potential).

As far as applications are concerned, we have mainly “macroscopic” bodies in mind which justifies deleting
the first term in (1.1) from the magnetic energy (α = 0) [6]. With this modification in (1.1), the fundamental
problem in micromagnetism reads

min
µµµ∈A

E(µµµ), where A :=
{

µµµ ∈ L2(ω)d, |µµµ | = 1, a.e. in ω
}

. (1.3)

Note that (1.3) does not have any solution in general that can be inferred from direct minimization method
since A is not weakly closed in L2(ω)d, and we have to extend the notion of solution to Young measure-valued
solutions. A proper relaxation is E : A → R [16], where

A =
{

ν = {νx}x∈ω

∣
∣ supp νx = Sd−1, x 	→ νx weakly measurable

}

⊂ L1
(

ω;C(Sd−1)
)∗ ≡ L∞

w

(

ω;M(Sd−1)
)

,

and

E(ν) =
∫

ω

∫

Sd−1
φ(A) νx(dA)dx +

1
2

∫

Ω

| ∇u |2 dx −
∫

ω

〈f ,m〉dx, where m(x) =
∫

Sd−1
A νx(dA),

for ∆u = div
(

χωm
)

in Ω ⊆ R
d, which is studied numerically in [11]. Another possibility is to convex-

ify the energy density φ(·) instead to obtain a degenerate energy functional E��(·) that attains minimizers
which gather (averaged) macroscopic properties of the ferromagnet [6], with the set A being replaced with
A�� :=

{

µµµ ∈ L2(ω)d, |µµµ | ≤ 1, a.e. in ω
}

. Since φ��(·) is assumed to be Fréchet-differentiable, and further
using the non-negative Lagrange multiplier λ ∈ L2(ω) associated to the constraint |m | ≤ 1, we have to solve
the corresponding Euler-Lagrange equation (P): Seek (u,m, λ ) ∈ H1

0 (Ω) × L2(ω)d × L2(ω) such that
∫

Ω

〈∇u,∇w〉dx =
∫

ω

〈m,∇w〉dx ∀w ∈ H1
0 (Ω), (1.4)

∇u+Dφ∗∗(m) + λm = f a.e. in ω, (1.5)
0 ≤ λ, |m | ≤ 1, and λ(1 − |m |)+ = 0 a.e. in ω. (1.6)

We denote (s)+ := max{s, 0}, and the last condition in (1.6) states that λ = 0 is possible only for |m | = 1, as
a consequence from λm ∈ ∂ψ(m) for the convex characteristic functional ψ : R

d → [0,∞] defined by ψ(m) = 0
if |m| ≤ 1, and ψ(m) = ∞ if not.

Remark 1.1. For uniaxial magnets with easy axis e ∈ Sd−1, the Young measure generated by minimizing
sequences in (1.3) can be obtained from solutions to (1.4)–(1.6) by the following formula (cf. [6]),

νx = λ(m)δm+(m) +
(

1 − λ(m)
)

δm−(m), (1.7)

m±(m) := ±(1 − | 〈m, e⊥〉 |2)1/2e + 〈m, e⊥〉e⊥, and λ(m) :=
1
2

+
〈m, e〉

2(1 − 〈m, e⊥〉2)1/2
· (1.8)

As is shown in [6], Theorem 4.2, Problem (P) has a solution. Moreover, solutions are unique in the uniaxial case,
where the convexified energy density is of the form φ��(m) = 1

2 | 〈m, e⊥〉 |2, cf. [5]. A corresponding uniqueness
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result does not hold for cubic materials, in general. For this reason, the uniaxial case is a good platform for the
subsequent numerical analysis of stationary ferromagnetism.

A first numerical modelling and analysis for Problem (P) in the case d = 2 is given in [5]; here, both
theoretical as well as computational analysis are given which evidence failure of the most simple choice of finite
element ansatz spaces, which are piecewise constant magnetizations mh : ω → R

d and piecewise affine, globally
continuous potentials uh : Ω → R. Instead, a non-conforming ansatz using the Crouzeix-Raviart element is
proposed to the problem and shown to give a well-posed problem (uniaxial case), leading to optimal convergence
behavior of the method. Secondly, the nonlinear side constraint on the pointwise modulus of the magnetization
is ensured via a penalization approach. The analysis is complemented by a posteriori error estimates which show
an efficiency–reliability gap that is caused by the strongly nonlinear character of the problem and restricted
regularity properties of the solution to (P).

The main goal of the present work is to come back to the non-stable ansatz sketched before which uses
conforming finite elements, together with a stabilization strategy for a penalized version of Problem (P).

The discrete penalized, stabilized problem (P�
ε,N |S1

0 (T ) × L0(T |ω)d × L0(T |ω)), or (P�
ε,N ), for


 ∈ {a,b} shortly, reads as follows, βE > 0: Seek (uh,mh, λh ) ∈ S1
0 (T )× L0(T |ω)d× L0(T |ω) such that

for all (wh,µµµh ) ∈ S1
0 (T ) × L0(T |ω)d,

(∇uh,∇wh)Ω − (mh,∇wh)ω = 0 , (1.9)
(∇uh,µµµh)ω +

(

Dφ∗∗(mh),µµµh

)

ω
+ (λhmh,µµµh)ω + t�

(

[mh], [µµµh]
)

= (fT ,µµµh)ω , (1.10)

λh = ε−1 (|mh| − 1)+
|mh|

a.e. in ω. (1.11)

Here, [·] denotes the jump across inter-element (interior) faces E ⊂ E|ω :=
⋃

T∈T |ω ∂T , according to a given but
arbitrary orientation of triangles T ∈ T . Alternatively, we deal with the following stabilization ansatzes,

ta([mh], [µµµh]) :=
∑

E⊂E|ω

βEhE

∫

E

[〈mh,n〉][〈µµµh,n〉] ds, (1.12)

tb([mh], [µµµh]) :=
∑

E⊂E|ω

βEhE

∫

E

〈

[mh], [µµµh]
〉

ds, (1.13)

with
(

βE
)

|E = βE > 0. Finally, other numerical scheme fit into this framework that employ element-wise affine,
globally continuous magnetizations, mh,µµµh ∈ S1(T |ω)d in (1.9)–(1.11) and replace t�

(

[mh], [µµµh]
)

in (1.10) with
d�

(

mh,µµµh

)

,

da(mh,µµµh) :=
∑

T∈T |ω

βTh
2
T (div mh, divµµµh)T , db(mh,µµµh) :=

∑

T∈T |ω

βTh
2
T (∇mh,∇µµµh)T ,

for
(

βT
)∣
∣
T
= βT > 0. We mention some physical relevancy of db(·, ·), whereas da(·, ·) is only motivated from

numerical reasons.
In our analysis, we confine to the investigation of the stabilization methods t�, 
 ∈ {a,b} in (1.9)–(1.11) that

incorporate jump terms to the scheme, and which allow for piecewise constant finite element magnetizations.
Apart from this reasoning, lower dimensional discrete problems (in practice) and significantly simplified a priori
and a posteriori error analysis with broader range of applicability make these stabilization methods attractive.
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In the following, we suppose that φ��(·) satisfies for all m1,m2 ∈ R
d, and c > 0,

c |Dφ��(m2) −Dφ��(m1) |2 ≤
〈

Dφ��(m2) −Dφ��(m1),m2 − m1

〉

, (1.14)

which covers the uniaxial case (c = 1), in particular.

Theorem 1.1. Let T be a quasiuniform triangulation of the domain Ω ⊂ R
d, d = 2, 3 that satisfies for Ei ∈ E|ω,

∃ξξξ =
⋂

i=1,..,d

Ei ∈ ω such that
∫

ω

〈∇φξξξ, e〉dx = 0, (1.15)

for any nodal basis function φξξξ ∈ S1
0 (T ) at ξξξ, and assume (1.14) for φ��(·). Then, the solution (uh,mh, λh) of

(P�
ε,N ), 
 ∈ {a,b} is unique for 
 = b but not for 
 = a, in general. Moreover, provided that the solution of (P)

satisfies m ∈ H(div, ω) (for 
 = a) or m ∈ H1(ω)d (for 
 = b), there holds

‖∇(u− uh) ‖L2(Ω) + ‖Dφ��(m) −Dφ��(mh) ‖L2(ω) + ‖λm − λhmh ‖L2(ω) + ‖ (βEhE)1/2[m − mh] ‖2;E|ω

≤ C
(

‖ ελ ‖2
L2(ω) + ‖ f − fT ‖2

L2(ω) + ‖λm − (λm)T ‖2
L2(ω) + ‖ u− I1

T u ‖L2(ω)

+ ‖∇(u− I1
T u) ‖2

L2(Ω) +
∑

E∈E

1
hE

∫

E

|u− I1
T u |2 dx + ‖m− mT ‖2

L2(ω) + ‖ (βEhE)1/2[m − mT ] ‖2;E|ω

)1/2

.

Remark 1.2.
(1) If we suppose (u,m, λm ) ∈ H1

0 (Ω)∩H2(Ω)×H1(ω)×H1(ω)d, the right hand side is of order O(ε+h),
which favours ε = O(hT ). According to Theorem 2.1(b) below, the nonconforming method in [5]
converges at same rate – whereas a conforming discretization without stabilization does not share this
property [5].

(2) Inverse-type inequalities enter the proof which restrict applicability to quasiuniform meshes; in partic-
ular, this implies existence of a uniform constant C > 0, s.t. by trace-inequality

1
C

∑

E∈E

1
hE

∫

E

|u− I1
T u |2 dx ≤ ‖∇(u− I1

T u) ‖2
L2(Ω) + ‖ h−1

T (u − I1
T u) ‖2

L2(ω),

and
1
C

∑

E∈E
βEhE

∫

E

|m − mT |2 dx ≤ ‖ hT ∇m ‖2
L2(ω) + ‖m − mT ‖2

L2(ω).

(3) The analysis for the nonconforming method in [5] is much more technical, using discrete Helmholtz-
decomposition principle (d = 2), and is more involved for general domains ω ⊂ R

d.
(4) Condition (1.15) can easily be realized in practice, using e.g. a “corner element” at ξξξ ∈ ∂ω.

Computational experiments are reported in Section 4 to illustrate our theoretical results. These studies aim at
shedding light at the following controversial subjects:

• comparison of the conforming, non-conforming and both stabilized conforming methods (P�
hT ,N),


 ∈ {a,b};
• mutual dependence of the choices of penalization and stabilization parameter;
• performance of the stabilization strategies (P�

hT ,N ), 
 ∈ {a,b} and some slight modifications in two and
three spatial dimensions.

As a summary, the computational experiments evidence broad flexibility of both stabilization ansatzes (P�
hT ,N),


 ∈ {a,b} with respect to different choices of βE = O(1), and optimal convergence behavior; academic examples
in Section 4 where | ∇m | is large compared to moderate values of | div m | show better performance of (Pa

hT ,N)
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if compared to (Pb
hT ,N ). Moreover, experiments indicate a slight reduction of performance of both stabilizations

(P�
hT ,N ), 
 ∈ {a,b} on non-quasiuniform meshes.
One motivation for computational micromagnetism is the practical difficulty to physically observe internal

magnetization pattern of 3D-ferromagnetic specimen [8]. A proper numerical tool to efficiently reduce complexity
of 3D numerical (FE-based) studies are adaptively refined meshes according to a posteriori error analysis which
is presented in Section 3; derived error indicators to control local mesh refinement are based on local residuals
and jump information for computed magnetization mh : ω → R

d across interfaces E ⊂ E|ω, as well as jumps of
the stray-field ∇uh : Ω → R

d across faces of elements E ⊂ E . It will be clear from Theorem 3.1 and Remark 3.1
that a posteriori error control cannot meet both, reliability and efficiency at the same time — which is plausible
from the strongly nonlinear character of Problem (P) and limited regularity of solutions; see Section 4 for
further discussion in this direction.

The static model above can describe quasistatic evolution of soft magnetic materials with sufficient accuracy,
but cannot be used to study hysteresis behavior of hard ferromagnets where the thickness of the loop is signif-
icant. Hysteretic behavior can be modeled by Landau-Lifshitz-Gilbert equation [12, 17], which is a mesoscopic
(phenomenological) model to describe spin dynamics behavior on submicron spatial scales across no more than
some nanoseconds [13]; in contrast, macroscopic (phenomenological) models describe evolutionary behavior in
ferromagnetic bulk specimen up to millimeter size on time-scales of much larger magnitude. Recently, a new
evolutionary, rate-independent macroscopic model to describe hysteresis losses based on plasticity models in
metals and shape-memory alloys has been proposed by Kruž́ık and Roub́ıček [14]: here, dissipation/hysteretic
effects are described in terms of evolution of the configuration, t 	→ q(t) ≡ (ννν(t),m(t) ), where at positive times
configurations

q(t) ∈ QQQ =
{

(ννν(t),m(t) ) ∈ A× L2(ω)d
∣
∣m(x, t) =

∫

Sd−1
A νx(t)(dA)

}

⊂ L∞
w

(

ω;M(Sd−1)
)

× L2(ω)d,

are governed by the following first-order evolution inclusion,

∂R(qt) +DE(q) +NQQQ(q) � f ⊗ Id, q(0) = q0 ∈ QQQ, (1.16)

where ∂R denotes the subdifferential of R(qt) ≡ R(νt,mt) :=
∫

ω | ξ • νt | dx, for a given function ξ : Sd−1 → R

that reflects a dissipation mechanism during pole transition, and NQ(q) the normal cone to QQQ at q. The
operation “⊗” is defined for any h ∈ L2(ω)d and any S ∈ C(Sd−1)d, by [h ⊗ S](x,A) =

∑d
i=1 hi(x)Si(A).

Also, q0 ≡ (ν0,m0) is the initial configuration; hence, one has to set up initial volume fractions additional to
the given momentum m0. By using the inherent energy balance, solutions to (1.16) are constructed in [14] as
certain limits of existing solutions qj ∈ QQQ, j ≥ 0 of the implicit Euler discretization

∂R
(qj − qj−1

∆t

)

+DE(qj) +NQ(qj) � f j ⊗ Id, q0 = q0 , j ≥ 1. (1.17)

In a next step, a spatial discretization of (1.17) is numerically solved by using an active set strategy for selected
contributing atoms {AT,i}T,i ⊂ Sd−1 to compute νh =

∑

T∈T |ω
∑

i≥0 αT,iδAT,i , cf. [10, 14]. If ξ : Sd−1 → R is
supposed to be affine, (1.16) may be rewritten as (cf. [10, 14])

∂R∗∗(mt) +DE∗∗(m) +NA∗∗(m) � f , m(0) = m0, (1.18)

for R∗∗(mt) :=
∫

ω
| ξ(mt) | dx; if compared to (1.16), the advantage of (1.18) is that the evolutionary problem

is formulated in physical quantities, i.e., in the macroscopic magnetization rather than in Young measures.
For subsequent applications, we choose ξ(m) = Hc〈m, e〉, where Hc > 0 is the so-called “coercive force”; our
choice of ξ is in accordance with the experimental observation that the thickness of the hysteresis loop vanishes
if we magnetize the specimen in a direction perpendicular to the easy axis e ∈ Sd−1. A discretization which
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Figure 1. Hysteresis loop for an applied field {f j
h}j vs. averaged magnetization

1
|ω |

∫

ω
〈mj

h, e〉dx in Example 4.5, using (Pa
hT ,N); compare with Figure 15.

uses implicit Euler method leads to the following (regularized) problem: for every j = 1, . . . , T/τ , minimize
E∗∗

δ;j : A∗∗ → R, where

E∗∗
δ;j(m) =

∫

ω

φ∗∗(m) dx +
1
2

∫

Ω

| ∇u |2 dx −
∫

ω

〈f j ,m〉dx +
∫

ω

√
(

ξ(m) − ξ(mj−1)
)2 + δ dx , δ ≥ 0 (1.19)

for f j(·) = f(·, jτ), subject to (1.4). For φ ∈ C1, minimizers are characterized as solutions to the Euler-Lagrange
equation

∇u+Dφ∗∗(m) +
ξ(m) − ξ(mj−1)

√

| ξ(m) − ξ(mj−1) |2 + δ
Dξ(m) + λm = f j a.e. in ω, (1.20)

∫

Ω

〈∇u,∇w〉dx =
∫

ω

〈m,∇w〉dx ∀w ∈ H1
0 (Ω), (1.21)

0 ≤ λ , |m | ≤ 1 , and λ(1 − |m |)+ = 0 a.e. in ω. (1.22)

As we will see later, the shape of corresponding hysteresis loops strongly depends on choices of δ (see Fig. 17).
The last term in (1.19) is derived from a (regularized) approximation of

∫ jτ

(j−1)τ

∫

ω
|ξ(mt)| dxdt. The choice

δ = O(τ2) is motivated by

∫ jτ

(j−1)τ

|ξ(mt)| dt ≈
∫ jτ

(j−1)τ

√

|ξ(mt(t))|2 + cδ dt

≈
∫ jτ

(j−1)τ

√
∣
∣ξ

(m(t) − m(t− τ)
τ

)∣
∣
2 + cδ dt ≈

√

|ξ(m(jτ)) − ξ(m((j − 1)τ))|2 + cδ τ2

with cδ > 0, where we used linearity of ξ.

Remark 1.3.
1. Since Hc in ξ(m) = Hc〈m, e〉 is kept constant, the used model (1.20)–(1.22) is not correct for modelling

a virgin magnetization curve. Modifications, allowing virgin magnetization are discussed in [15].
2. A numerical discretization of (1.20)–(1.22), using a stable nonconforming penalized mixed method in the

spirit of problem (3.5)–(3.7) in [5], is studied in [12], which uses δ = O(h).

In Example 4.5, we use the concept of a discrete penalized, stabilized problem (P�
ε,N ), 
 ∈ {a,b} in this

context to illustrate flexibility of the stabilization approach.



STABILIZATION METHODS IN RELAXED MICROMAGNETISM 1001

ω ω
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ΩΩ(0,0) (0,0)(1,0) (1,0)

(1,1) (1,1)(0,1) (0,1)

Figure 2. Non-uniqueness: spurious solutions Mh ∈ L0(T |ω)2 for the (a) conforming method
(aligned mesh) and (b) the stabilized method (Pa

ε,N ) (rotated cube).

In this paper, we use the following notations: Lp(Ω) and Hs(Ω) := W s,2(Ω) are standard Lebesgue and
Sobolev spaces endowed with norms ‖ · ‖p;Ω := ‖ · ‖Lp(Ω) and ‖ · ‖s,2,Ω for a bounded Lipschitz domain Ω ⊂ R

d

with boundary Γ. Let ‖ · ‖k,2;ω := ‖ · ‖Hk(ω) and | · |Hk(ω) denote the norm and semi-norm in Hk(ω) for ω ⊂ Ω
and an integer k, respectively.

Let T =
{

T
}

denote a regular triangulation of Ω, and ω is covered exactly by the sub-triangulation
T |ω = {T ∈ T : T ⊂ ω}. The set E gathers all element facesE ⊂ ∂T , with T ∈ T |ω and (hE)|E = hE = diam(E),
and [φ]|E = φ+ − φ− across E ∈ E , where nE ∈ Sd−1 denotes its fixed unit normal, and nE |E = nE . Let

L0(T ) := {V ∈ L∞(Ω) : ∀T ∈ T , V |T constant},
S1(T ) := {V ∈ C(Ω) : ∀T ∈ T , V |T affine}, S1

0 (T ) := {V ∈ S1(T ) : V = 0 on ∂Ω} .

Define fT ∈ L0(T |ω)d by fT |T = 1
|T |

∫

T f dx, where |T | denotes the area of T ∈ T . P 0
T : L2(ω)d → L0(T |ω)d

resp. I0
T : L2(ω)d → L0(T |ω)d, and P 1

T : H1
0 (Ω) → S1

0 (T ) resp. I1
T : H1

0 (Ω) → S1
0 (T ) stand for standard projec-

tors and (generalized) interpolation operators. The number of degrees of freedomN = dim(S1
0 )+2 dim(L0(T |ω))

serves as a reference to the spatial discretization T .

2. A PRIORI error analysis for the stabilized schemes (P�
ε,N), � ∈ {a,b}.

We start this section with observations concerning stability of the discrete models (P�
ε,N ), 
 ∈ {a,b}. This

can best be done for uniaxial ferromagnets where φ��(m) = 1
2 | 〈m, e⊥〉 |2, since uniqueness of the solution of

problem (P) is known from [5].
Let us recall results that have been obtained in [5] for the conforming method (i.e., βE ≡ 0, in (1.9)–(1.11))

and the nonconforming method (using Crouzeix-Raviart elements for the potential u : Ω → R) for d = 2.
Firstly, the conforming method is shown to give solutions that are non-unique, in general, and statements upon
well-posedness depend on the triangulation of Ω: Figure 2a shows a function Mh : ω → R

2, where |Mh | = 1
a.e., such that every (0, γMh) ∈ S1

0 (T ) × L0(T |ω)d, −1 < γ < 1 solves the discrete problem with f ≡ 0. We
refer to Example 1.1 in [5] for further details.

In contrast, the nonconforming method gives unique solutions for general triangulations, which favour this
method over the conforming discretization. The key tool to verify uniqueness is the discrete Helmholtz-
decomposition principle; it is also the key tool which leads to optimal error estimates for the nonconforming
method. The following theorem summarizes these observations.
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Theorem 2.1 (from [5]). Suppose that φ��(·) satisfies (1.14) and (P) is solved by (u,m, λ ), for d = 2. Then,
(a) for the conforming penalized discretization, and a solution (uh,mh, λh ) ∈ S1

0 (T ) × L0(T |ω)2 × L0(T |ω),

‖∇(u− uh) ‖L2(Ω) + ‖Dφ��(m) −Dφ��(mh) ‖L2(ω) + ‖λm − λhmh ‖L2(ω)

≤ C
(

‖ ελ ‖2
L2(ω) + ‖ f − fT ‖2

L2(ω) + ‖m − mT ‖2
L2(ω) + ‖λm − (λm)T ‖2

L2(ω)

+ ‖∇(u− I1
T u) ‖2

L2(Ω) + ‖m− mh ‖L2(ω)‖∇(u− I1
T u) ‖L2(ω)

)1/2

;

(b) for the nonconforming penalized discretization, and the solution (uh,mh, λh ) ∈ S1,NC
0 (T ) × L0(T |ω)2 × L0(T |ω),

‖∇T (u− uh) ‖L2(Ω) + ‖Dφ��(m) −Dφ��(mh) ‖L2(ω) + ‖λm − λhmh ‖L2(ω)

≤ C
(

‖ ελ ‖2
L2(ω) + ‖ f − fT ‖2

L2(ω) + ‖m − mT ‖2
L2(ω) + ‖λm − (λm)T ‖2

L2(ω)

+ ‖∇T (u− I1,NC
T u) ‖2

L2(Ω) + ‖ hT ∇T (m −∇T u) ‖2
L2(Ω)

)1/2

.

Remark 2.1.
(1) For the used notation in the nonconforming setting, see [5].
(2) If we suppose (u,m, λm ) ∈ H1

0 (Ω)∩H2(Ω)×H1(ω)2×H1(ω)2, the right hand side in (a) is bounded by
O

(

ε+
√
h
)

, for h = maxT hT , whereas the upper bound in (b) is of magnitude O(ε+h). The bottleneck
in (a) to obtain this bound is the last term in the brackets that cannot be controlled effectively, see
Example 3.1 in [5] for theoretical justification of this matter.

One may attribute deterioration of order of convergence for the conforming method to non-uniqueness of
the computed solution and pollution by unphysical oscillatory structures. In contrast, however, our studies for
the stabilization techniques involving t�(·, ·), 
 ∈ {a,b} show that these issues are not necessarily connected:
(Pb

ε,N ) is well-defined, provided that (1.14) holds, but not (Pa

ε,N ). Both methods give an optimal convergence
rate O(ε+ h), provided that (u,m, λm ) ∈ H1

0 (Ω) ∩H2(Ω) ×H1(ω)d ×H1(ω)d.
We start with a counterexample for (Pa

ε,N ) that excludes uniqueness of (uh,mh, λh ), in general.

Example 2.1. Let Ω = (0, 1)2 ⊂ R
2, ω = {R

2 � z := (x, y) : | z − (1
2 ,

1
2 ) |l1 < 1

4}, and T given as depicted
in Figure 2b. It can easily be seen that L0(T |ω)2 � Mh = γsign(x − 1

2 )e, 0 ≤ γ < 1 solves (Pa

ε,N ) for
φ��(m) = 1

2 | 〈m, e⊥〉 |2, and f ≡ 0. Note, in particular, that
∫

ω
〈Mh,∇φh〉dx = 0, for all φh ∈ S1

0 (T ).

This is in contrast to uniqueness for (Pb

ε,N ).

Lemma 2.1. Let (1.14) and (1.15) be valid, and e ∈ Sd−1, d = 2, 3. Then, Problem (Pb

ε,N ) has a unique
solution.

Proof. Let (ui
h,m

i
h, λ

i
h ), i = 1, 2 be two solutions of (Pb

ε,N ), we obtain

‖∇(u1
h − u2

h) ‖2
L2(Ω) + ‖Dφ∗∗(m2

h) −Dφ∗∗(m1
h) ‖2

L2(ω) + (λ1
hm

1
h − λ2

hm
2
h,m

1
h − m2

h)

+ tb
(

[m1
h − m2

h], [m1
h − m2

h]
)

= 0.

The third term is non-negative, see Theorem 3.1 in [5]. Clearly, this implies u1
h = u2

h ∈ S1
0 (T ), and

〈m1
h − m2

h, e〉 = const|ω. Filtering out these modes via (1.15) proves the assertion. �

The remainder of this section verifies Theorem 1.1 for (P�
ε,N ), 
 ∈ {a,b}, simultaneously. Let (uh,mh, λh )

be a solution to (P�
ε,N ), 
 ∈ {a,b}, and ( e,δδδ ) := (u − uh,m − mh ) ∈ H1

0 (Ω) × L2(ω)d. For m ∈ H(div, ω)
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(
 = a) or m ∈ H1(ω)d (
 = b) infer the following equations valid for all (wh,µµµh ) ∈ S1
0 (T ) × L0(T |ω)d,

(∇e,∇wh)Ω − (δδδ,∇wh)ω = 0,
(∇e,µµµh)ω +

(

Dφ∗∗(m) −Dφ∗∗(mh),µµµh

)

ω
+ (λm − λhmh,µµµh)ω + t�

(

[δδδ], [µµµh]
)

= (f − fT ,µµµh)ω .

Testing with the admissible functions (wh,µµµh) = (uh − I1
T u,mh − mT ), this leads to

‖∇e ‖2
L2(Ω) + ‖Dφ∗∗(m) −Dφ∗∗(mh) ‖2

L2(ω) + (λm − λhmh, δδδ) + t�
(

[δδδ], [δδδ]
)

=
(

∇e− δδδ,∇(u − I1
T u)

)

Ω
+ (m − mT ,∇e)ω +

(

Dφ∗∗(m) −Dφ∗∗(mh),m − mT
)

ω

+ (λm − λhmh,m − mT )ω + t�
(

[δδδ], [m − mT ]
)

+ (f − fT ,mh − mT )ω, (2.1)

since
∫

T
〈mh − mT , f − fT 〉dx = 0.

We deal with the terms on the right hand side of (2.1) independently. Firstly, the convexity of the indicator
function ψ in (P) and the penalization in (P�

ε,N ) yield the estimate

ε

2
|mh |2(λh)2 ≤ 〈λm − λhmh,m − mh〉 +

ε

2
λ2. (2.2)

Secondly, applying integration by parts on each element T ∈ T |ω in the first term on the right hand side of (2.1)
causes

|
(

δδδ,∇(u− I1
T u)

)

ω
| ≤ | (div m, u− I1

T u)ω | +

∣
∣
∣
∣
∣

∑

E∈E

∫

E

〈δδδ,n〉(u − I1
T u) dx

∣
∣
∣
∣
∣

≤ C‖ u− I1
T u ‖L2(ω) +

1
4
t�

(

[δδδ], [δδδ]
)

+
∑

E∈E

1
hE

∫

E

|u− I1
T u |2 dx ,

due to continuity of discrete potential functions. We can now benefit from standard interpolation results (for
traces) and a trace inequality to deal with the last term effectively.

Thirdly, in order to bound the fourth term on the right hand side of (2.1), we start testing (2.1) with
µµµh = (λm)T − λhmh and employ an inverse-type estimate for t1/2

�

(

[µµµh], [µµµh]
)

to obtain a constant C > 0, such
that

‖λm − λhmh ‖L2(ω) ≤ C
(

‖λm− (λm)T ‖L2(ω) + ‖∇e ‖L2(ω) + ‖Dφ∗∗(m) −Dφ∗∗(mh) ‖L2(ω) (2.3)

+t1/2
�

(

[δδδ], [δδδ]
)

+ ‖ f − fT ‖L2(ω)

)

.

Now, unknown terms in (2.3) can be absorbed on the left hand side of (2.1), where Young’s inequality is used
for the fourth term on the right hand side. Hence, we have

‖∇e ‖2
L2(Ω) + ‖Dφ∗∗(m) −Dφ∗∗(mh) ‖2

L2(ω) +
∫

ω

ε

2
|mh |2(λh)2 dx + ‖ (βEhE)1/2[m − mh] ‖2

2;E|ω

≤ C

(

‖ u− I1
T u ‖L2(ω) +

∑

E∈E

1
hE

∫

E

|u− I1
T u |2 dx + ‖∇(u− I1

T u) ‖2
L2(Ω) (2.4)

+‖m− I0
T m ‖2

L2(ω) + ‖ (λm) − (λm)T ‖2
L2(ω) + ‖ f − fT ‖2

L2(ω)

)

+
∫

ω

ε

2
λ2 dx =: B.

Finally, a bootstrapping argument helps to effectively control the right hand side of (2.4) with respect to the
last term, by using

(λh)2|mh |2 − λ2|m |2 ≤
(

λh|mh | + λ|m |
)

|λhmh − λm |, (2.5)
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and hence, by using (2.4), and choosing γ > 0 sufficiently small,
∣
∣
∣
∣

∫

ω

ε

2
(

(λh)2|mh |2 − λ2|m |2
)

dx
∣
∣
∣
∣
≤ 1

4γ2

∫

ω

ε2

2
λ2 dx + γ2 ‖λm − λhmh ‖2

L2(ω) + εB. (2.6)

(Part of) The latter term can be absorbed via (2.3) on the left hand side of (2.4). This furnishes the proof of
Theorem 1.1.

3. A POSTERIORI error analysis for the stabilized schemes (P�
ε,N), � ∈ {a,b}

Our goal is to construct residual-based adaptive algorithms for selective mesh refinement. It is due to the
strongly nonlinear character of Problem (P) and limited regularity properties of its solution that we cannot
expect a posteriori error estimates which meet both, reliability and efficiency; cf. Remark 3.1. In the sequel, we
denote ωh =

{

x ∈ ω
∣
∣ 0 < λh(x)}. Our subsequent a posteriori error analysis controls errors in terms of local

residuals, jumps of the computed stray-field ∇uh : Ω → R
d and magnetization mh : Ω → R

d, and fulfillment of
the convex side-constraint.

Theorem 3.1. Suppose that φ∗∗ satisfies (1.14), that (u,m, λ ) solves Problem (P), and (uh,mh, λh ) solves the
discrete Problem (P�

ε,N), for 
 ∈ {a,b}. Let 0 <
√

ε
2 < γ � 1. Then there exists an ( γ, ε, hT , hE )-independent

constant C > 0 such that

‖∇(u− uh) ‖2
L2(Ω) + ‖Dφ∗∗(m) −Dφ∗∗(mh) ‖2

L2(ω)

≤ C ‖ ε
γ
λhmh ‖2

L2(ωh) + ‖∇uh +Dφ∗∗(mh) + λhmh − fT ‖L1(ω)‖m− mT ‖L∞(ω)

+ C ‖ h1/2
E 〈mh −∇uh,nE〉 ‖2

2;E + ‖ (1 + Cγ)(βEhE)1/2[mh] ‖2
2;E|ω

+ ‖ [mT ] ‖∞;E|ω‖ βEhE [mh] ‖1;E|ω + C ‖ γ(λm − (λm)T ) ‖2
L2(ω) + ‖ (1 + Cγ)(f − fT ) ‖2

L2(ω). (3.1)

This constant C > 0 depends on the shape of the elements in T but neither on their sizes nor on the data or
computed solutions.

Remark 3.1.
1. The a posteriori error analysis for (PNC

ε,N ) in [5] is different from here, where stabilization terms in (1.10)
only allow a variational form and prevent a point-/elementwise identity like (1.5). This is the reason for arising
local residual terms, next to those which account for jumps. Also, the second term in the last row of (3.1)
comes from this fact, and balances regularity properties of the solution against penalization effects, which are
accounted for by the leading error term of right hand side of (3.1) in terms of γ > 0.

2. The constraint |m | ≤ 1 a.e. in ω implies ‖m − mT ‖L∞(ω) ≤ 2, whereas for m ∈ W 1,∞(ω)d, a standard
approximation result yields ‖m − mT ‖L∞(ω) ≤ C ‖ hT ∇m ‖L∞(ω).

3. The first term in the last line can be controlled by ≤ 2 ‖ βEhE [mh] ‖1;E|ω , for T quasiuniform. In the case of
m ∈ W 1,∞(ω)d, by Poincaré’s inequality ≤ C‖∇m ‖L∞(ω)‖ βEh2

E [mh] ‖1;E|ω . Here, we account for total jumps
in both cases 
 ∈ {a,b}.

4. The reliable upper bound (γ = O(
√
ε)) for the last but one term uses

1
4
‖λm ‖2

L2(ω) ≤ ‖ f ‖2
L2(ω)d + ‖Dφ∗∗(m) ‖2

L2(ω)d + ‖∇u ‖2
L2(Ω) ≤ C ‖ f ‖2

L2(ω)d .

In case λm ∈ W 1,2(ω)d, it may then be controlled by ≤ C ‖ γhT ∇(λm) ‖2
L2(ω)d2 , hence γ = O(1). Note that

reliability favours choices γ2 = ε = O(h2
T ) for (P�

ε,N) to assure optimality of above a posteriori estimate.
5. The leading term in the third line motivates a completely discontinuous method which uses elementwise

affine ansatzes for uh : Ω → R, with the stabilization term above replaced with t�
(

[mh − ∇uh], [µµµh]
)

, and an
additional jump term which is necessary in (1.9) to control ∇uh.
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Proof. We consider terms I + · · · + Ṽ + V I on the right hand side of (2.1), where Ṽ := t�
(

[mh], [mh − mT ]
)

,
and the last term on the left hand side of (2.1) vanishes; using Galerkin-orthogonality property for term I, we
find

(

∇e− δδδ,∇(u − I1
T u)

)

=
(

∇uh − mh,∇(u− I1
T u)

)

=
∫

E
〈∇uh − mh,nE〉(u− I1

T u) ds

≤ C ‖∇e ‖L2(Ω) ‖ h1/2
E 〈∇uh − mh,nE〉 ‖2,E .

Thanks to (1.5), terms II, III, IV , and V I can be controlled by computable local residuals,

II + III + IV + V I ≤ ‖∇uh +Dφ∗∗(mh) + λhmh − fh ‖L2(ω)‖mh − mT ‖L2(ω).

Next,

Ṽ = t�
(

[mh], [mh]
)

− t
(

[mh], [mT ]
)

≤ ‖ (βEhE)1/2[mh] ‖2
2;E|ω + ‖ [mT ] ‖∞;E|ω‖ βEhE [mh] ‖1;E|ω .

Finally, in order to control the third term on the left hand side of (2.1), we use again (2.2); instead of (2.6),
and 0 <

√
ε
2 < γ, we obtain

∣
∣
∣
∣

∫

ω

(ε

4
λ2

h|mh |2 − λ2|m |2
)

dx
∣
∣
∣
∣
≤

∫

ω

ε2

8γ2
λ2

h|mh |2 dx + γ2 ‖λm − λhmh ‖2
L2(ω).

Upon choosing γ � 1, we may now employ (2.3), and the assertion is proved. �

4. Numerical examples

We now discuss several numerical experiments for uniaxial ferromagnets, including a comparison of meth-
ods (P�

hT ,N ), 
 ∈ {a,b} to the nonconforming and the unstabilized conforming method (see [5]). For academic
studies, we consider a slightly generalized version (P̃) of Problem (P), for general right hand side s ∈ L2(Ω)
of (1.2). The modified discrete penalized, stabilized problem (P̃�

hT ,N |S1
0 (T )×L0(T |ω)d×L0(T |ω)), shortly

(P̃�
hT ,N), 
 ∈ {a,b}, for βE > 0, and given ( s, f ) ∈ L2(Ω) × L2(ω)d, reads as follows:

Seek (uh,mh, λh ) ∈ S1
0 (T )× L0(T |ω)d× L0(T |ω) such that for all (wh,µµµh ) ∈ S1

0 (T ) × L0(T |ω)d,
∫

Ω

〈∇uh,∇wh〉dx −
∫

ω

〈mh,∇wh〉dx =
∫

Ω

swh dx, (4.1)

(∇uh,µµµh)ω + (〈mh, e⊥〉, 〈µµµh, e⊥〉)ω +
(

λhmh,µµµh

)

ω
+ t�

(

[mh], [µµµh]
)

= (f ,µµµh)ω , (4.2)

λh =
1

cεhT

(|mh| − 1)+
|mh|

a.e. in ω, (4.3)

for choices 0 < cε = O(1). Correspondingly, we refer to (P̃C
hT ,N ) and (P̃NC

hT ,N) as (unstabilized) conforming and
nonconforming discretizations, respectively.

The discrete, nonlinear problems (P̃�
hT ,N), (P̃C

hT ,N), and (P̃NC
hT ,N ) are solved numerically by Newton-

Raphson’s method. If we abstract from the specific form of (P̃�
hT ,N) by setting

F
(

[uh,mh]; [wh,µµµh]
)

= 0 ∀ [wh,µµµh] ∈ S1
0 (T ) × L0(T |ω)d ,

this amounts to running the following iteration, for n ≥ 1,

DF
(

[un
h,m

n
h], [wh,µµµh]; [un

h − un+1
h ,mn

h − mn+1
h ]

)

= F
(

[un
h,m

n
h]; [wh,µµµh]

)

,
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for all tuples (wh,µµµh ) ∈ S1
0 (T ) × L0(T |ω)d, until a certain tolerance is reached. This calculation is followed

at each step by an algebraic update to compute (un+1
h ,mn+1

h ). The implementation of the Newton-Raphson
algorithm for 2D as well as 3D problems is performed in Matlab in the spirit of [1].

In the present situation and for given values (uh,mh ), DF
(

([uh,mh], [wh,µµµh]; [Vh,Mh]
)

has the form

(∇Vh,µµµh)ω +
(

〈Mh, e⊥〉, 〈µµµh, e⊥〉
)

ω
+

(
1

cεhT

H(|mh | − 1)〈mh,Mh〉
|mh|3

mh,µµµh

)

ω

+
(

1
cεhT

(mh − 1)+
|mh|

Mh,µµµh

)

ω

+ t�
(

[mh], [µµµh]
)

,

for tuples (Vh,Mh ) satisfying (∇Vh,∇wh)Ω− (Mh,∇wh)ω = 0, for all wh ∈ S1
0 (T ). Here, H : R → R

+
0 denotes

the Heaviside function.

Remark 4.1. According to Example 2.1, solutions to (P̃C
hT ,N) are not unique, in general. In our computations,

we added the term γ(mh,µµµh)ω to the left hand side of (4.2) to single out one solution, setting γ = 10−6.

In order to approximate the right hand side in (P̃�
hT ,N), 
 ∈ {a,b} for given functions s ∈ L2(Ω) and

f ∈ (L2(ω))d, we compute
∫

Ω sη dx and
∫

ω fθ dx via a 7-point Gaussian quadrature rule of order 6 where η, θ
denote corresponding basis functions. The indefinite linear systems of equations is solved directly.

In the Examples 4.1, 4.3 below, the potential u and the magnetization m are given. Hence the L2(Ω)-norms
of u − uh, ∇(u − uh), 〈m − mh, e〉, and 〈m − mh, e⊥〉 can be calculated via a 7-point quadrature rule on any
triangle to run convergence studies.

Example 4.1. Consider (P̃), for Ω = (−1, 2)2, ω = (0, 1)2, and

u(x, y) = (x2 − x− 2)(y2 − y − 2) and mk(x, y) = (wk(x, y), wk(y, x))T ,

where

wk(x, y) :=







w̃k(x, y) , if w̃k(x, y)2 + w̃k(y, x)2 ≤ 1

w̃k(x, y)/
√

w̃k(x, y)2 + w̃k(y, x)2 , else,

for w̃k(x, y) := sin(πx) sin(kπy). We choose λ = 0 on {x ∈ ω
∣
∣ |mk | < 1}, and λ = 1 else.

The prescribed potential u is smooth and |divmk| is bounded, but |∇mk| is unbounded as k → ∞. Given
e ∈ S1, the right hand sides s and f are computed by (4.1) and (4.2) from u and mk above. Given these data,
we compute discrete solutions of (P̃�

hT ,N), 
 ∈ {a,b}.
As initial mesh we use a partitioning of Ω into right-angled triangles of size h =

√
2/16. If not stated

otherwise, we always put βE = 1
10 below.

Figure 3 shows the computed magnetization mh for a meshing T aligned to e and obtained by (P̃C
hT ,N) (left)

and (P̃a
hT ,N) (right), where the first one shows spurious oscillations that are avoided by the stabilized analogue

(k = 4). The approximated magnetization is depicted by vectors given in the center of each triangle and the
colorbars show the modulus of magnetization.

Table 1 gathers convergence rates experimentally obtained for u − uh in the H1(Ω)-seminorm and the
L2(Ω)-norm, for k = 4 and both types of stabilization (P̃�

hT ,N), 
 ∈ {a,b}. The computed convergence rates ξh
coincide with the theoretical predictions in Theorem 1.1 in both cases. Figures 4 and 5 provide a direct compar-
ison of all numerical schemes discussed above for e = (1, 0) and k = 4. These results support a convergence be-
havior of first order for both methods (P̃�

hT ,N), 
 ∈ {a,b} for error = ‖∇(u−uh) ‖L2(Ω)+‖ 〈m−mh, e⊥〉 ‖L2(ω).
Corresponding results hold for the conforming (unstabilized) method (P̃C

hT ,N) and the nonconforming method
(P̃NC

hT ,N) as well, although shifting of corresponding curves reflect an increased number of unknowns in the
latter case (slope −1/2, resp. 1 in Figures 4 and 5 corresponds to an experimental convergence rate 1, resp. 2,
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Figure 3. Plot of magnetization mh using no stabilization (left) and stabilization (P̃a
hT ,N)

(right) for e = (1, 0) and k = 4.
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Figure 4. Errors ‖∇(u − uh) ‖L2(Ω) and ‖ u − uh ‖L2(Ω) vs. number of unknowns N in
Example 4.1 (k = 4).

Table 1. Error ‖∇(u− uh) ‖L2(Ω), resp. ‖ u− uh ‖L2(Ω) and convergence rate ξh, resp. ζh in
Example 4.1 for (P̃a

hT ,N) (left) and (P̃b
hT ,N) (right) (k = 4).

N ‖∇(u− uh) ‖ ξh ‖ u− uh ‖ ζh
65 3.2506 0.77331.07 2.58233 1.6377 0.14871.03 2.22881 0.8236 0.03401.02 2.313425 0.4122 0.00711.01 2.2013505 0.2058 0.00161.07 1.7653633 0.1028 0.0005

N ‖∇(u− uh) ‖ ξh ‖ u− uh ‖ ζh
65 3.2516 0.77771.07 2.53233 1.6392 0.15511.03 2.13881 0.8272 0.03761.00 1.903425 0.4194 0.01040.99 1.3013505 0.2118 0.00421.02 1.3153633 0.1056 0.0017

owing to N ∝ h−2 in two dimensions). As to the error ‖ u− uh ‖L2(Ω), improved convergence behavior of both
methods (P̃�

hT ,N), 
 ∈ {a,b} over the remaining two is observed.
The present example of a mesh that is aligned to e ∈ S1 has been chosen to reflect non-stable behavior of

(P̃C
hT ,N) as already observed in [5]. This can be seen from Figure 5 (left), which shows poor convergence of
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Figure 6. Errors ‖ 〈m − mh, e〉 ‖L2(ω) and ‖ 〈m− mh, e⊥〉 ‖L2(ω) vs. parameter k in Example 4.1.

this method. In contrast, the stabilizing effect in (P̃�
hT ,N), 
 ∈ {a,b} is evident from corresponding curves in

this figure. Numerical experiments for (P̃b
hT ,N) asymptotically show the same convergence behavior as is found

for (P̃a
hT ,N) and (P̃NC

hT ,N), but values of the error ‖〈m − mh, e〉‖L2(ω) are larger up to a factor 7 for this kind
of stabilization. This observation regarding performance of (P̃�

hT ,N), 
 ∈ {a,b} has been made for different
aligned and nonaligned meshes in 2D.

We now study the stabilized methods (P̃�
hT ,N), 
 ∈ {a,b} for highly oscillatory magnetizations. For

a fixed number of unknowns (N = 13 505 and N = 53 653), the dependence of ‖〈m − mh, e〉‖L2(ω) and
‖〈m − mh, e⊥〉‖L2(ω) on the parameter k ≥ 1 is shown in Figure 6.

Our results motivate reduced convergence behavior for ‖〈m−mh, e⊥〉‖L2(ω) for (P̃b
hT ,N), opposed to (P̃a

hT ,N),
for growing values of k, which illustrates higher robustness of (Pa

hT ,N) in the studied case.
The following two Figures 7 and 8 study the dependence of ‖∇(u − uh) ‖L2(Ω), ‖ u − uh ‖L2(Ω),

‖〈m − mh, e〉‖L2(ω), and ‖〈m − mh, e⊥〉‖L2(ω) on β := βE , for e = (2, 1)/
√

5, and k = 4. As to (P̃a
hT ,N), all

considered quantities behave almost insensitive on a broad range of β, and we found optimal choices β ∈ (0.1, 1).
A slightly more sensitive behavior can be stated for (P̃b

hT ,N).
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Figure 7. Errors vs. stabilization factor β ≡ βE in Example 4.1 for (P̃a
hT ,N).

Next, we study the effect of mesh refinement based on error indicators evidenced from Theorem 3.1; in the
sequel, we set γ2 = ε = h2

T . Then

1
2
‖∇(u− uh) ‖2

L2(Ω) + ‖Dφ∗∗(m) −Dφ∗∗(mh) ‖2
L2(ω) ≤ Cδ η

(δ)
C , δ = 0, 1 ,

where C0 does not depend on hT , hE but on the shape of T ,

η
(0)
C := ‖ hT λhmh ‖2

L2(ωh) + 2 ‖∇uh +Dφ∗∗(mh) + λhmh − fT ‖L1(ω) + ‖ (βEhE)1/2[mh] ‖2
2;E|ω

+‖ h1/2
E 〈mh −∇uh,nE〉 ‖2

2;E|ω + 2 ‖ βEhE [mh] ‖1;E + ‖ f − fT ‖2
L2(ω) + ‖ hT f ‖2

L2(ω) , (4.4)

and C1 additionally depends on ‖m ‖W 1,∞(ω)d ,

η
(1)
C := ‖ hT λhmh ‖2

L2(ωh) + 2 ‖∇uh +Dφ∗∗(mh) + λhmh − fT ‖L1(ω) + ‖ (βEh2
E)1/2[mh] ‖2

2;E|ω

+‖ h1/2
E 〈mh −∇uh,nE〉 ‖2

2;E|ω + ‖ βEh2
E [mh] ‖1;E + ‖ f − fT ‖2

L2(ω) . (4.5)
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Figure 8. Errors vs. stabilization factor β ≡ βE in Example 4.1 for (P̃b
hT ,N).

The reason for two error estimators is based on the efficiency-reliability gap of the a posteriori analysis which
is discussed in Remark 3.1. Now, (4.4), (4.5) motivate error indicators for local mesh refinement,

η
(0)
C,T := ‖ hT λhmh ‖2

L2(T ) + 2 ‖∇uh +Dφ∗∗(mh) + λhmh − fT ‖L1(T ) + ‖ (βEhE)1/2[mh] ‖2
2;E|ω

+‖ h1/2
E 〈mh −∇uh,nE〉 ‖2

2;∂T + 2 ‖ βEhE [mh] ‖1;∂T + ‖ f − fT ‖2
L2(T ) + ‖ hT f ‖2

L2(T ) ,

η
(1)
C,T := ‖ hT λhmh ‖2

L2(T ) + 2 ‖∇uh +Dφ∗∗(mh) + λhmh − fT ‖L1(T ) + ‖ (βEh2
E)1/2[mh] ‖2

2;E|ω

+‖ h1/2
E 〈mh −∇uh,nE〉 ‖2

2;∂T + ‖ βEh2
E [mh] ‖1;∂T + ‖ f − fT ‖2

L2(T ) ,

such that η(δ)
C =

∑

T η
(δ)
C,T , δ = 0, 1. The subsequent mesh-refining algorithm generates a sequence T0, T1, ... of

adapted meshes.

Algorithm 4.1.
1. Start with a coarse mesh T0.
2. Solve the discrete problem with respect to Tk.
3. Compute η(δ)

C,T for all T ∈ Tk.

4. Compute error bound η(δ)
C and terminate or goto 5.
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Figure 9. Configuration of Example 4.2 (left) and corresponding solution using (Pa
hT ,N), and

adaptive mesh refinement via Alg. 4.1 (δ = 1) (right).

Figure 10. Sequence of adaptive meshes T1, . . . , T8 using Alg. 4.1 (δ = 1) and (Pa
hT ,N) in

Example 4.2.

5. Mark element T red iff η
(δ)
C,T ≥ 1

2 maxT∈Tk
η
(δ)
C,T .

6. Red-green-blue refinement (see [18]) to avoid hanging nodes, generate mesh Tk+1, set k = k+1 and goto 2.

The next example illustrates the effect of adaptive mesh-refinement.

Example 4.2. Let Ω = (−5.5, 5.5)2, ω = (−0.5, 0.5)×(−2.5, 2.5), f = (0, 1.1)T and e = (2, 1)T /
√

5 in (Pa
hT ,N).

This problem studies potential and the magnetization in a symmetric configuration where the easy-axis e is not
aligned to the coordinate-axis. A plot of (isolines of) the computed solution of the potential uh : Ω → R on an
adaptively refined mesh T7 according to Algorithm 4.1 (δ ≡ 1) is shown in Figure 9 (left); the corresponding
computed magnetization mh : ω → R

2 in the top half of ω is given in Figure 9 (right).
We use Algorithm 4.1 to generate a sequence of meshes (see Fig. 10), which refine towards the corners of ω

and which show a higher mesh density in ω than outside. To assess the discretization error in the approximation
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(left) and error estimator η(δ)
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Figure 12. Number of Newton-iterations vs. number of unknowns N in Example 4.1 for
(P̃a

hT ,N) (left) and (P̃b
hT ,N) (right).

given in Figure 9, error estimators are displayed in Figure 9 for computed η
(δ)
C , δ = 0, 1. The result is plotted

in Figure 11. The error estimates show the same convergence rate as the computed approximation error.

Example 4.3. We consider a 3D-example for (P̃�
hT ,N), 
 ∈ {a,b} and calculate approximations in the case of

an aligned mesh (e = (0, 0, 1)) and an unaligned mesh (e = (1, 2, 3)/
√

14). Let Ω = (−1, 2)3 and ω = (0, 1)3.
The right hand sides s and f are determined from the given functions

u(x, y, z) = (x2 − x− 2)(y2 − y − 2)(z2 − z − 2),

mk(x, y, z) =
1
2





sin(kπx) sin(πy) sin(πz)
sin(πx) sin(kπy) sin(πz)
sin(πx) sin(πy) sin(πz)



 , λ(x, y, z) =

{

0, if |mk(x, y, z)| < 1
1, else.
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Figure 13. Errors ‖∇(u − uh) ‖L2(Ω), ‖ u − uh ‖L2(Ω), ‖〈m − mh, e〉‖L2(ω), and
‖〈m − mh, e⊥〉‖L2(ω) vs. number of unknowns N in Example 4.3 (k = 3).

Similar to Example 4.1, the prescribed potential u is smooth and |divmk| is bounded, but |∇mk| is unbounded
as k tends to infinity.

Division of Ω into equally sized cubes and subdivision of these cubes into five tetrahedra give the uniform
triangulation T used in our computations. To integrate quantities like

∫

Ω
sη dx,

∫

ω
fθ dx, etc., we use a Gaussian

quadrature rule of order 6 [9] where η, θ denote basis functions.
We set e⊥ := span{e1

⊥, e
2
⊥} and ‖〈m − mh, e⊥〉‖2

L2(ω) := ‖〈m − mh, e1
⊥〉‖2

L2(ω) + ‖〈m − mh, e2
⊥〉‖2

L2(ω).
For two easy axes e = (0, 0, 1) and e = (1, 2, 3)/

√
14, we compute approximations (uh,mh, λh ) for (Pa

hT ,N),
(Pb

hT ,N), and without stabilization. The corresponding numerical convergence results for ‖∇(u − uh) ‖L2(Ω),
‖ u − uh ‖L2(Ω), ‖〈m − mh, e〉‖L2(ω), and ‖〈m − mh, e⊥〉‖L2(ω) versus the number of unknowns N are plotted
in Figure 13.

For a sequence of uniform meshes, we verify experimentally first order of convergence for
error = ‖∇(u − uh) ‖L2(Ω) + ‖ 〈m − mh, e⊥〉 ‖L2(ω) for both stabilized methods (slope −1/3, resp. −2/3 in
Figure 13 corresponds to an experimental rate of convergence 1, resp. 2, owing to N ∝ h−3 in three dimen-
sions). Our numerical experiments show a rate of convergence ≥ 2 for ‖ u−uh ‖L2(Ω), for all meshes (N ≤ 44791).
Without stabilization, no convergence for ‖〈m − mh, e〉‖L2(ω) can be obtained for both easy axes e ∈ S2, and
only poor convergence for (Pa

hT ,N) if e is aligned to the mesh T . Only for stabilization method (Pb
hT ,N), we
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Figure 14. Streamlines of computed ∇uh : Ω → R
3 (left) and approximated magnetization

mh : ω → R
3 (right) of Example 4.4, using (Pb

hT ,N).

find first order rate of convergence for both easy axes e ∈ S2. However, we like to point out again that no
theoretical justification for rates of convergence for the error ‖〈m− mh, e〉‖L2(ω) is available.

Example 4.4. Similar to Example 4.2, the approximate magnetization is computed in a 3D ferromagnetic
rod by means of a stabilized method, using the data Ω = (0, 3)3, ω = (1, 2) × (4/3, 5/3)2, f = ( 1, 0, 0 )T ,
e = ( 1, 2, 3 )/

√
14, and β = 0.1 in (Pb

ε,N). A plot of the solution potential uh : Ω → R (h = 0.2), as well as
some magnified details of mh : ω → R

3 are shown in Figure 14.

The last experiments study nonstationary ferromagnetism governed by (1.18); see also (1.20)–(1.22) for the
related incremental formulation, for every δ ≥ 0: the discrete regularized, penalized, stabilized problem
(P̃�,j

hT ,N |S1
0 (T ) × L0(T |ω)d × L0(T |ω)), shortly (P̃�,j

hT ,N), for 
 ∈ {a,b}, reads as follows, for δ > 0:
For every j = 0, . . . , T/τ , seek (uj

h,m
j
h, λ

j
h ) ∈ S1

0 (T )× L0(T |ω)d× L0(T |ω) satisfying for all
(wh,µµµh ) ∈ S1

0 (T ) × L0(T |ω)d,

(∇uj
h,∇wh)Ω − (mj

h,∇wh)ω = 0 , (4.6)

(∇uj
h,µµµh)ω +

(

Dφ∗∗(mj
h),µµµh

)

ω
+




ξ(mj

h) − ξ(mj−1
h )

√

| ξ(mj
h) − ξ(mj−1

h ) |2 + cδ τ
Dξ(mj

h),µµµh





ω

(4.7)

+(λj
hm

j
h,µµµh)ω + t�

(

[mj
h], [µµµh]

)

= (f j ,µµµh)ω,

λj
h =

1
cεhT

(|mj
h| − 1)+
|mj

h|
a.e. in ω, (4.8)

with f j(·) = f(·, jτ), and 0 < cδ = O(1). Existence of solutions follows from a direct method variational
argument.

Example 4.5. Let ω = ( 1
4 ,

3
4 )2, Ω = ( 0, 1 )2, with e = ( 0, 1 ), f(t) =

(

0, 10 sin(t)
)

, T = 3π, τ = T/600,
and ξ(m) = 〈m, e〉. We fix (h, cδ ) = ( 1

16 ,
1

1000 ); Figure 15 displays magnetization patterns at subsequent
times close to the first switching time for the corresponding hysteresis loop Figure 1, for applied fields {f j

h}j

vs. averaged magnetization 1
|ω |

∫

ω〈m
j
h, e〉dx; compare also with [12], where corresponding results using a stable,
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Figure 16. Hysteresis loops (Ex. 4.5 (left, h = 1
16 ), Ex. 4.6 (right, h = 1

9 )): applied field {f j
h}j

vs. (averaged) magnetization 1
|ω |

∫

ω〈m
j
h, e〉dx (cε = 1, 1

10 ,
1

100 ,
1

1000 ).

nonconforming mixed discretization of (4.6)–(4.8) are obtained. Next, we study the influence of different values
of parameters ( ε, δ ): Figure 16 illustrates violation of convex side-constraint for too large values of ε; Figure 17
(right) evidences the effect of regularization parameter δ onto the shape of the hysteresis loop.

Dynamical behavior governed by (1.18) for the uniaxial case where ω is a 3D bounded ferromagnetic specimen
is studied in the next example.

Example 4.6. Let Ω = ( 0, 3 )3, ω = ( 1, 2 ) × ( 4
3 ,

5
3 )2, e = (0, 0, 1), and f(t) =

(

0, 0, 10 sin(t)
)

, T = 3π, T/
τ = 600, and ξ(m) = 3〈m, e〉. Computational studies for (h, cδ, cε ) = ( 1

9 ,
1

1000 ,
1

1000 ) are performed. Figure 18
displays hysteresis loops for various cε = 1

1000 , . . . , 1 and an applied field {f j
h}j vs. averaged magnetization

1
|ω |

∫

ω〈m
j
h, e〉dx; compare with Example 4.5.

The last 2D example studies impact of a mixed ferromagnetic specimen onto hysteretic behavior.
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Figure 17. Hysteresis loops (Ex. 4.5 (h = 1
16 , cε = 1)): applied field {f j

h}j vs. (averaged)
magnetization 1

|ω |
∫

ω〈m
j
h, e〉dx (T/τ = 18, 36, 75, 150, 300 (left), cδ = 1, 1

10 ,
1

100 ,
1

1000 (right)).
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Figure 18. Example 4.7: computed magnetization (inside the magnet) and the self-induced
magnetic field (outside the magnet) at six subsequent time steps ((h, cδ ) = ( 1

32 ,
1

1000 )).

Example 4.7. Let Ω = (− 7
2 ,

7
2 )× (−5, 5 ), ω = (−1, 1 )× (−2, 2 ), e = e(x), as depicted in Figure 18 (right),

and f(t) = 10 sin(t) ē with ē = (1, 0)T (resp. ē = (0, 1)T ), for T = 3π, T/τ = 600, and ξ(m) = 3〈m, e〉.
Computational studies for (h, cδ, cε ) = ( 1

32 ,
1

1000 ,
1

1000 ) are performed. Figure 18 displays hysteresis loops for
applied fields ēT · {f j

h}j vs. averaged magnetization 1
|ω |

∫

ω
〈mj

h, ē〉dx; compare with Example 4.5.

Acknowledgements. Part of the results presented here are taken from the unpublished work [7]. This paper was partly
written during S.A. Funken’s stay at the “Forschungsinstitut für Mathematik” of ETH Zurich in April 2005.



STABILIZATION METHODS IN RELAXED MICROMAGNETISM 1017

References

[1] J. Alberty, C. Carstensen and S.A. Funken, Remarks around 50 lines of Matlab: finite element implementation. Numer. Algo-
rithms 20 (1999) 117–137.

[2] W.F. Brown, Micromagnetics. Interscience, New York (1963).
[3] C. Carstensen and S. Funken, Adaptive coupling of penalised finite element methods and boundary element methods for

relaxed micromagnetics. In preparation.
[4] C. Carstensen and D. Praetorius, Numerical analysis for a macroscopic model in micromagnetics. SIAM J. Numer. Anal. 42

(2005) 2633–2651, electronic.
[5] C. Carstensen and A. Prohl, Numerical analysis of relaxed micromagnetics by penalized finite elements. Numer. Math. 90

(2001) 65–99.
[6] A. De Simone, Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 (1993) 99–143.
[7] S.A. Funken and A. Prohl, On stabilized finite element methods in relaxed micromagnetism. Preprint 99-18, University of

Kiel (1999).
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