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MIXED FINITE ELEMENT APPROXIMATION OF 3D CONTACT
PROBLEMS WITH GIVEN FRICTION: ERROR ANALYSIS

AND NUMERICAL REALIZATION
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Abstract. This contribution deals with a mixed variational formulation of 3D contact problems with
the simplest model involving friction. This formulation is based on a dualization of the set of admissible
displacements and the regularization of the non-differentiable term. Displacements are approximated
by piecewise linear elements while the respective dual variables by piecewise constant functions on a
dual partition of the contact zone. The rate of convergence is established provided that the solution is
smooth enough. The numerical realization of such problems will be discussed and results of a model
example will be shown.
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1. Introduction

In the theory of variational inequalities, problems involving contact and friction conditions are of a permanent
interest (we refer to [8] and to [18] for a large review of the main unilateral contact models). Finite elements
are the most currently used methods for the approximation of contact problems involving friction (see [14,
17] and the references therein). In the primal variational formulation (where the displacement is the only
unknown), discretized non-penetration conditions constitute the key point of the approximation model. These
conditions can be relaxed and expressed in a weaker sense [4, 14, 16]. In the mixed variational formulation
where the displacement and the normal stresses on the contact zone are treated as independent variables, the
unilateral conditions have been expressed by using Lagrange multipliers (see [14]). Both variational formulations
lead to a non-differentiable problem. To overcome this difficulty one can introduce (see [12]) another set of
Lagrange multipliers related to the tangential component of the stress on the contact zone transforming the
non-differentiable problem into a smooth one.

The purpose of this contribution is to extend this approach to 3D contact problems with given friction by
using piecewise constant discretizations of Lagrange multipliers on the contact zone. Unlike to 2D problems,
constraints imposed on the “tangential” Lagrange multipliers are now quadratic. This fact complicates not only
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the theoretical analysis but also the practical realization. We establish a priori error estimates and propose the
efficient numerical method.

The paper is organized as follows. Firstly, we introduce the mathematical model of the Signorini problem
with given friction. In Section 2 we present the continuous mixed variational formulation of the problem.
In the third section, we propose a well-posed finite element discretization in order to approximate the mixed
formulation. In Section 4 a priori error estimates for the mixed finite element approximations are established.
Finally, in Section 5 we present a numerical approach which is based on the dual variational formulation (i.e.
the formulation in terms of the Lagrange multipliers) combined with a linearization of the quadratic constraints.
Numerical results of a model example will be shown.

2. Preliminary and notations

The Euclidean norm of a point x ∈ R
n, n ≥ 2 will be denoted ‖x‖ in what follows.

Let Ω ⊂ R
n be a bounded domain with the Lipschitz boundary ∂Ω. The symbol Hk(Ω), k ≥ 1 integer,

stands for the classical Sobolev space equipped with the norm:

‖v‖k,Ω :=


 ∑

0≤|α|≤k
‖Dαv‖2

0,Ω




1
2

using the standard multi-index notation (the following convention is adopted: H0(Ω) := L2(Ω), ‖ ‖0,Ω :=
‖ ‖L2(Ω)). Fractional Sobolev spaces Hτ (Ω), τ ∈ R

+ \ N are defined by

Hτ (Ω) = {v ∈ Hk(Ω) | ‖v‖τ,Ω < +∞},

where

‖v‖τ,Ω :=

(
‖v‖2

k,Ω +
∑
|α|=k

∫
Ω

∫
Ω

(Dαv(x) −Dαv(y))2

|x− y|2+2θ
dxdy

) 1
2

with k being the integer part of τ and θ its decimal part (see [1, 11]).
On any portion Γ ⊆ ∂Ω we introduce the space H

1
2 (Γ) as follows:

H
1
2 (Γ) =

{
ψ ∈ L2(Γ) | ‖ψ‖ 1

2 ,Γ
< +∞

}
,

where

‖ψ‖ 1
2 ,Γ

:=

(
‖ψ‖2

0,Γ +
∫

Γ

∫
Γ

(ψ(x) − ψ(y))2

|x− y|2 dΓx dΓy

) 1
2

. (2.1)

It is well-known that there exists a linear continuous mapping E ∈ L (H
1
2 (Γ), H1(Ω)) such that

Eψ|Γ = ψ on Γ,

where Eψ|Γ denotes the trace of Eψ on Γ.
The topological dual space of H

1
2 (Γ) is denoted H− 1

2 (Γ),
〈
,
〉

1
2 ,Γ

stands for the duality pairing and

‖µ‖− 1
2 ,Γ

:= sup
ψ∈H 1

2 (Γ), ψ �=0

〈
µ, ψ

〉
1
2 ,Γ

‖ψ‖ 1
2 ,Γ

(2.2)

is the norm in H− 1
2 (Γ).
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The Cartesian product ofm previous spaces and their elements are denoted by bold characters. The respective
norms are introduced as follows:

‖v‖k,Ω :=

(
m∑
�=1

‖v�‖2
k,Ω

)1/2

,v = (v1, · · ·, vm) ∈Hk(Ω)

‖ψ‖ 1
2 ,Γ

:=

(
m∑
�=1

‖ψ�‖2
1
2 ,Γ

)1/2

,ψ = (ψ1, · · ·, ψm) ∈H 1
2 (Γ)

‖µ‖− 1
2 ,Γ

:=

(
m∑
�=1

‖µ�‖2
− 1

2 ,Γ

)1/2

,µ = (µ1, · · ·, µm) ∈H− 1
2 (Γ).

A special attention will be paid to the case when k = 1 and n = m = 3, i.e. Ω ⊂ R
3 and H1(Ω) = (H1(Ω))3.

Let V ⊂H1(Ω) be a subspace of functions vanishing on a non-empty portion Γu open in ∂Ω:

V =
{
v = (v1, v2, v3) ∈H1(Ω) | vi = 0 on Γu, i = 1, 2, 3

}
.

In addition to the classical norm ‖ ‖1,Ω, we introduce the energetic norm ‖| ‖|1,Ω in V corresponding to the
scalar product

((u,v))1,Ω :=
∫

Ω

3∑
i,j=1

εij(u)εij(v)dx,

where εij(u) is the i, jth component of the linearized strain tensor

ε(u) :=
1
2
(∇u + (∇u)T ).

From the Korn’s inequality it follows that ‖ ‖1,Ω and ‖| ‖|1,Ω are equivalent in V .

Let Γ ⊆ ∂Ω \ Γu be a portion of ∂Ω such that dist(Γ,Γu) > 01 and denote by H
1
2
Γ the space of traces v|Γ

for v ∈ V . Besides the norm ‖ ‖ 1
2 ,Γ

defined by (2.1) we introduce the following quotient norm:

‖|ψ‖| 1
2 ,Γ

:= inf
v∈V , v=ψ on Γ

‖|v‖|1,Ω.

It is readily seen that
‖|ψ‖| 1

2 ,Γ
= ‖|wψ‖|1,Ω,

where wψ ∈ V is the unique solution of the elliptic problem:

{
((wψ,v))1,Ω = 0 ∀v ∈ V 0 = {z ∈ V | z = 0 on Γ},
wψ = ψ on Γ.

From the Banach theorem on the isomorphism it follows that ‖ ‖ 1
2 ,Γ

and ‖| ‖| 1
2 ,Γ

are equivalent in H
1
2
Γ .

Let H− 1
2

Γ be the dual space of H
1
2
Γ and denote ‖| ‖|− 1

2 ,Γ
the dual norm corresponding to ‖| ‖| 1

2 ,Γ
:

‖|µ‖|− 1
2 ,Γ

:= sup
ψ∈H

1
2
Γ , ψ �=0

〈
µ,ψ

〉
1
2 ,Γ

‖|ψ‖| 1
2 ,Γ

·

1This assumption is not necessary but it simplifies the presentation.
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It is readily seen that
‖|µ‖|− 1

2 ,Γ
= ‖|wµ‖|1,Ω, (2.3)

where wµ ∈ V is the unique solution of the elliptic problem:

((wµ,v))1,Ω =
〈
µ,v

〉
1
2 ,Γ

∀v ∈ V . (2.4)

In addition, ‖ ‖− 1
2 ,Γ

and ‖| ‖|− 1
2 ,Γ

are equivalent in H− 1
2

Γ .

3. Variational formulation of the Signorini problem with given friction

Let us consider an elastic body occupying a domain Ω ⊂ R
3 with the Lipschitz boundary ∂Ω which is split

into three non-empty, non-overlapping parts Γu, Γg and Γc, dist(Γc,Γu) > 0: ∂Ω = Γu ∪ Γg ∪ Γc. For the sake
of simplicity of our presentation we shall suppose that Ω = (0, a) × (0, b) × (0, c), where a, b, c > 0 are given
and Γc = (0, a) × (0, b) × {0}. The zero displacements are prescribed on Γu while surface tractions of density
g ∈ L2(Γg) act on Γg . The body is unilaterally supported along Γc by the rigid half-space

S = {x = (x1, x2, x3) ∈ R
3 | x3 ≤ 0 }.

Besides constraints on the deformation of Ω we shall take into account effects of friction. We restrict ourselves
to the simplest model, namely the model with given friction. Finally the body is subject to volume forces of
density f ∈ L2(Ω). Our aim is to find an equilibrium state of Ω.

The classical formulation of the previous problem consists in finding a displacement vector u = (u1, u2, u3)
satisfying the equations and conditions (3.1)–(3.4):


divσ(u) + f = 0 in Ω,
σ(u)n− g = 0 on Γg,
u = 0 on Γu.

(3.1)

The symbol σ(u) = (σij(u))3i,j=1 stands for a symmetric stress tensor which is related to the linearized strain
tensor ε(u) by means of a linear Hooke’s law:

σ(u) = Aε(u), (3.2)

where A is a fourth order symmetric tensor satisfying the usual ellipticity conditions in Ω. Further n is the
outward unit normal vector to ∂Ω and div denotes the divergence operator acting on tensor functions (the
summation convention is adopted):

div σ =
(∂σij
∂xj

)3

i=1
·

Let un := unn, ut := u − unn be the normal, tangential component of the displacement vector u and
σn(u) := σn(u)n, and σt(ut) := σ(u)n − σn(u)n the normal, tangential component of the stress vector
σ(u)n, respectively, where un := u · n and σn(u) := (σ(u)n) · n. Here · denotes the scalar product of two
vectors.

The unilateral and friction conditions prescribed on Γc read as follows:

un ≤ 0, σn(u) ≤ 0, un σn(u) = 0 onΓc, (3.3)


‖σt(u)‖ ≤ s a.e. on Γc,
if ‖σt(u)(x)‖ < s(x) then ut(x) = 0, x ∈ Γc,
if ‖σt(u)(x)‖ = s(x) > 0 then there exists ν(x) ≥ 0
such that ut(x) = −ν(x)σt(u(x)), x ∈ Γc.

(3.4)

Here s ∈ L2(Γc) , s ≥ 0 is a given function and ‖σt(u)‖ is the Euclidean norm of σt(u).
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Remark 3.1. In the classical Coulomb’s law of friction [2, 6] the given slip bound s is replaced by the term
F|σn(u)| which is not known a priori. The symbol F stands for the coefficient of Coulomb friction.

Remark 3.2. Taking into account the fact that n = (0, 0,−1) on Γc, we have:

un = −u3, σn(u) = σ33(u),

σt(u) = (−σ13(u),−σ23(u), 0).

Remark 3.3. Let t1(x), t2(x), x ∈ Γc be two unit vectors such that the triplet {n(x), t1(x), t2(x)} forms a
local orthonormal basis in R

3 with origin at x ∈ Γc. Then any vector function w : Γc −→ R
3 can be represented

in the local coordinate system {n(x), t1(x), t2(x)} as follows:

w(x) = (wn(x),wt(x)) ∈ R × R
2,

where wn(x) = w(x) · n, wt(x) = (wt1(x), wt2(x)), wtj (x) = w(x) · tj(x), j = 1, 2. In particular, we shall use
this representation for the trace of displacement vectors v on Γc in what follows, i.e. v(x) = (vn(x),vt(x)) ∈
R × R

2,x ∈ Γc and

‖vt‖ =
(
|vt1 |2 + |vt2 |2

) 1
2

a.e. on Γc.

To give the variational formulation of our problem we first introduce the Hilbert space V :

V =
{
v ∈H1(Ω) | v = 0 on Γu

}
,

and its closed convex subset K of kinematically admissible displacements:

K =
{
v ∈ V | vn ≤ 0 on Γc

}·
Next, we define:

a(u,v) :=
∫

Ω

A ε(u)ε(v) dx,

L(v) :=
∫

Ω

f · v dx+
∫

Γg

g · v dΓ,

j(v) :=
∫

Γc

s ‖vt‖ dΓ.

The primal variational formulation of the contact problem with given friction reads as follows:

{
Find u ∈K such that
J(u) ≤ J(v) ∀v ∈K,

(3.5)

where
J(v) =

1
2
a(v,v) − L(v) + j(v)

is the total potential energy functional.
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On the basis of the previous assumptions we have:

Theorem 3.1. Problem (3.5) has a unique solution.

In order to release the unilateral constraint vn ≤ 0 on Γc and to regularize the non-differentiable term j we
use a duality approach. To this end we introduce several notations. Let γn : V −→ L2(Γc) be the trace
mapping defined by

γnv := vn on Γc, v ∈ V .
Further let

H
1
2
Γc

:= γnV , H
− 1

2
Γc

:= the dual of H
1
2
Γc
,

H
1
2
Γc

:= (H
1
2
Γc

)3, H
− 1

2
Γc

:= (H− 1
2

Γc
)3,

Mn =
{
µn ∈ H

− 1
2

Γc
, µn ≥ 0 on Γc

}
,

Mt =
{
µt = (µt1 , µt2) ∈ L2(Γc), ‖µt‖ ≤ s a.e. on Γc

}
=

{
µt ∈ L2(Γc) |

∫
Γc

µt · ψ dΓ −
∫

Γc

s‖ψ‖ dΓ ≤ 0 ∀ψ ∈ L2(Γc)
}
.

Remark 3.4. In accordance with the previous section, the spaces H
1
2
Γc

, H− 1
2

Γc
will be endowed with two

equivalent norms ‖ ‖ 1
2 ,Γc

, ‖| ‖| 1
2 ,Γc

and ‖ ‖− 1
2 ,Γc

, ‖| ‖|− 1
2 ,Γc

, respectively.

It is easy to verify that

min
K

J(v) = min
V

sup
Mn×Mt

L(v, µn,µt),

where L : V ×Mn × Mt −→ R is the Lagrangian defined by

L(v, µn,µt) = J(v) +
〈
µn, vn

〉
1
2 ,Γc

+
∫

Γc

µt · vt dΓ,

and
〈
., .
〉

1
2 ,Γc

stands for the duality pairing between H− 1
2

Γc
and H

1
2
Γc

.

By a mixed formulation of (3.5) we call a problem of finding a saddle-point of L on V ×Mn × Mt:{
Find (w, λn,λt) ∈ V ×Mn × Mt such that

L(w, µn,µt) ≤ L(w, λn,λt) ≤ L(v, λn,λt) ∀ (v, µn,µt) ∈ V ×Mn × Mt,

or equivalently 


Find (w,λ) ∈ V × M such that

a(w,v) + b(λ,v) = L(v), ∀v ∈ V ,
b(µ− λ,w) ≤ 0, ∀µ ∈ M,

(3.6)

where λ := (λn,λt), M := Mn × Mt and

b(µ,v) :=
〈
µn, vn

〉
1
2 ,Γc

+
∫

Γc

µt · vt dΓ, µ ∈ M, v ∈ V .

The relation between (3.5) and (3.6) follows from the next theorem.
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Theorem 3.2. There exists a unique solution (w,λ) of (3.6). In addition,

w = u in Ω, λn = −σn(u), λt = −σt(u) on Γc,

where u ∈K is the solution to (3.5).

Proof is obvious.

Convention: the solution to (3.6) will be denoted by (u, λn,λt) in what follows.

4. Finite element approximation

The present section is devoted to a finite element approximation of the saddle-point problem (3.6). The key
point lies in the finite element discretization of the closed convex set M of Lagrange multipliers which leads to
a well-posed discrete problem and gives also a good convergence rate for approximate solutions.

We start with discretizations of V , Mn and Mt.
Let {Th}, h→ 0+ be a regular family (see [5]) of partitions of Ω into tetrahedrons κ. With any Th ∈ {Th}

we associate the following space of continuous piecewise linear functions:

Vh =
{
vh ∈ C(Ω) | vh|κ ∈ P1(κ) ∀κ ∈ Th, vh = 0 on Γu

}
,

V h = (Vh)3.
Further, let {RH}, H → 0+ be a strongly regular family of rectangulations of Γc with H > 0 being the norm
of RH . On every RH ∈ {RH} we construct the space of piecewise constant functions:

LH =
{
µH ∈ L2(Γc) | µH|R ∈ P0(R) ∀R ∈ RH

}
,

LH = (LH)3

and the following convex sets:

MHn =
{
µHn ∈ LH | µHn ≥ 0 a.e. on Γc

}
, (4.1)

MHt =
{
µHt ∈ (LH)2 |

∫
Γc

µHt · ψH dΓ −
∫

Γc

s‖ψH‖dΓ ≤ 0 ∀ψH ∈ (LH)2
}
. (4.2)

Recall that ‖ · ‖ stands for the Euclidean norm in R
2. The set MHt is the external approximation of Mt, while

MHn is the internal approximation of Mn.
The discretization of (3.6) is defined in a standard way:


Find uh ∈ V h and λH ∈ MH such that

a(uh,vh) + b(λH ,vh) = L(vh), ∀vh ∈ V h,

b(µH − λH ,uh) ≤ 0, ∀µH ∈ MH ,

(4.3)

where λH := (λHn,λHt) and MH := MHn × MHt. To ensure the existence and uniqueness of a solution to
(4.3), the following stability condition is needed:{

µH ∈ LH | b(µH ,vh) = 0 ∀vh ∈ V h

}
= {0}. (4.4)
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In the forthcoming convergence analysis, we will need more information on the compatibility between the spaces
LH and V h. We shall introduce a stronger assumption, namely the Ladyzhenskaya-Babuska-Brezzi condition
which in our particular case takes the form

sup
vh∈V h

b(µH ,vh)
‖|vh‖|1,Ω ≥ β‖|µH‖|− 1

2 ,Γc
∀µH ∈ LH , (4.5)

where β > 0 is independent of h and H . The dual norm ‖| ‖|− 1
2 ,Γc

in (4.5) is evaluated by means of (2.3).
Next we shall suppose that the auxiliary problem (2.4) is regular in the following sense:




there exists ε ∈ (0, 1/2) such that for every µ ∈H− 1
2+ε

Γc
:= the dual ofH

1
2−ε
Γc

the solution wµ of (2.4) belongs to V ∩H1+ε(Ω) and

‖wµ‖1+ε,Ω ≤ C(ε)‖µ‖− 1
2 +ε,Γc

,

holds with a positive constant C(ε) which depends solely on ε > 0. If it is so then using exactly the same
approach as in [12] one can prove the next lemma.

Lemma 4.1. Let us suppose that (2.4) is regular, {RH} is a strongly regular family of rectangulations of Γc
and the ratio h/H is sufficiently small. Then the Ladyzhenskaya-Babuska-Brezzi condition (4.5) is satisfied.

5. Error analysis

In this section we establish a priori error estimates for the mixed finite element approximation (4.3). We
start with the following lemma [3]:

Lemma 5.1. Let (u,λ), (uh,λH) be the solution of (3.6), (4.3), respectively. Then for any vh ∈ V h and
µH ∈ MH it holds:

a(u− uh,u− uh) ≤ a(u− uh,u− vh) + b(λ− µH ,uh − u) + b(λ− λH ,u− vh)
+b(λ− µH ,u) + b(λH − λ,u). (5.1)

Proof. Let vh be an element of V h. Then

a(u − uh,u− uh) = a(u− uh,u− vh) + a(u− uh,vh − uh).

From the equations in (3.6) and (4.3), we obtain:

a(u− uh,vh − uh) = L(vh − uh) − b(λ,vh − uh) − L(vh − uh) + b(λH ,vh − uh)
= b(λ,uh − vh) + b(λH ,vh − uh).

Further
a(u− uh,u− uh) = a(u− uh,u− vh) + b(λ,uh − vh) + b(λH ,vh − uh),

and finally

a(u− uh,u− uh) = a(u − uh,u− vh) + b(µH − λ,u− uh) + b(λ− λH ,u− vh)
+b(λ− µH ,u) + b(λH − λ,u) + b(µH − λH ,uh).

The inequality in (4.3) implies that b(µH − λH ,uh) ≤ 0 for any µH ∈ MH . From this the error estimate (5.1)
follows. �
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We now derive an upper bound for ‖u− uh‖1,Ω.

Lemma 5.2. Let (u,λ), (uh,λH) be the solution of (3.6), (4.3), respectively. Suppose that u ∈ H2(Ω) and
the fourth order tensor A defining the Hooke’s law is sufficiently smooth. Then

‖u− uh‖2
1,Ω ≤ C

[
h‖λ− λH‖− 1

2 ,Γc
+H

1
2 +ε‖λ− λH‖− 1

2+ε,Γc
+H

3
2 +H

]
, (5.2)

where ε > 0 is arbitrarily small and C > 0 is a positive constant which does not depend on h, H.

Proof. We shall estimate each term on the right hand side of (5.1). But before proving these estimates, let us
recall some approximation results. Let Ih be the Lagrange interpolation operator with values in V h. There
exists a constant C > 0 which does not depend on h and such that for all v ∈H2(Ω) (see [5]) it holds:

‖v − Ihv‖1,Ω ≤ Ch‖v‖2,Ω. (5.3)

Next, we introduce the projection operator ΠH : L2(Γc) −→ LH by

ΠHϕ ∈ LH ,
∫

Γc

(ΠHϕ−ϕ) · µH dΓ = 0, ∀µH ∈ LH . (5.4)

The operator ΠH has the following approximation property (see [19]): there exists a positive constant C
independent of H such that ∀ϕ ∈Hν

Γc
, ν = 1

2 , 1 and any µ ∈ [0, 1
2 ), it holds that

‖ϕ−ΠHϕ‖µ,Γc ≤ C Hν−µ‖ϕ‖ν,Γc . (5.5)

Moreover, if ϕ ∈ L2(Γc) then

‖ϕ− ΠHϕ‖− 1
2+ε,Γc

≤ C H
1
2−ε ‖ϕ−ΠHϕ‖0,Γc , ε ∈ [0, 1

2 ). (5.6)

Finally, let us note that the trace theorem implies that

‖λ‖ 1
2 ,Γc

≤ C‖u‖2,Ω, (5.7)

provided that the tensor A is sufficiently smooth (the constant C > 0 depends only on A).
Next we estimate each term appearing on the right hand side of (5.1) by choosing: vh = Ihu and µH =

ΠHλ = (πHnλn,πHtλt), where πHn and πHt are the components of ΠH in LH and (LH)2, respectively. It is
readily seen that ΠHλ ∈ MH as follows from the definition of M, MH and (5.4).

(i) The first term is evaluated by using continuity of a(., .) and (5.3):

a(u− uh,u− vh) ≤ Ch‖u− uh‖1,Ω.

(ii) The second is estimated by using (5.5), (5.6), (5.7) and the trace theorem:

b(λ− µH ,uh − u) ≤ C‖λ−ΠHλ‖− 1
2 ,Γc

‖uh − u‖1,Ω ≤ CH‖uh − u‖1,Ω.

(iii) The third term is estimated as follows:

b(λ− λH ,u− vh) ≤ C‖λ− λH‖− 1
2 ,Γc

‖u− vh‖1,Ω ≤ Ch‖λ− λH‖− 1
2 ,Γc

.
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(iv) To evaluate the fourth term, we invoke the definition of the L2-projection operators:

b(λ− µH ,u) =
∫

Γc

(λn − πHnλn)undΓ +
∫

Γc

(λt − πHtλt) · utdΓ

=
∫

Γc

(λn − πHnλn)(un − πHnun)dΓ +
∫

Γc

(λt − πHtλt) · (ut − πHtut)dΓ

≤ ‖λn − πHnλn‖0,Γc‖un − πHnun‖0,Γc

+‖λt − πHtλt‖0,Γc‖ut − πHtut‖0,Γc

≤ CH3/2,

making use of (5.5) and (5.7).
(v) To estimate the last term, let us observe that the complementarity condition λnun = 0 a.e. on Γc yields:

b(λH − λ,u) =
∫

Γc

λHn un dΓ +
∫

Γc

(λHt − λt) · ut dΓ.

Since un ≤ 0 and λHn ≥ 0 a.e. on Γc, we have
∫

Γc

λHn undΓ ≤ 0.

Therefore

b(λH − λ,u) ≤
∫

Γc

(λHt − λt) · ut dΓ. (5.8)

We now shall estimate (5.8). Noticing that

∫
Γc

µHt ·ψH dΓ −
∫

Γc

s‖ψH‖ dΓ ≤ 0 ∀ψH ∈ (LH)2,

and using that −λt · ut + s‖ut‖ = 0 a.e. on Γc (see (3.4) and Th. 3.2), we have:

∫
Γc

(λHt − λt) · utdΓ =
∫

Γc

(λHt − λt) · (ut − πHt(ut))dΓ +
∫

Γc

(λHt − λt) · πHt(ut)dΓ

+
∫

Γc

λt · utdΓ −
∫

Γc

s‖ut‖dΓ

≤
∫

Γc

(λHt − λt) · (ut − πHt(ut))dΓ +
∫

Γc

s(‖πHt(ut)‖ − ‖ut‖)dΓ

+
∫

Γc

λt · (ut − πHt(ut))dΓ

≤
∫

Γc

(λHt − λt) · (ut − πHt(ut))dΓ +
∫

Γc

s(‖πHt(ut) − ut‖)dΓ

+
∫

Γc

λt · (ut − πHt(ut))dΓ

≤ ‖λHt − λt‖− 1
2+ε,Γc

‖ut − πHt(ut)‖ 1
2−ε,Γc

+‖s‖0,Γc‖ut − πHt(ut)‖0,Γc + ‖λt‖0,Γc‖ut − πHt(ut)‖0,Γc

≤ CH
1
2+ε‖λH − λ‖− 1

2+ε,Γc
+ CH (5.9)
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making use of (5.5) and

‖µt‖(Hj
Γc

)2 ≤ ‖µ‖(Hj
Γc

)3 for any µ = (µn,µt) ∈Hj
Γc
, j = ±1

2
·

From (i)–(v) and the V -ellipticity of the bilinear form a(., .), we easily arrive at (5.2). �
The next lemma gives the error estimate for the Lagrange multiplier.

Lemma 5.3. Let all the assumptions of Lemma 5.2 together with (4.5) be satisfied. Then

‖λ− λH‖− 1
2 ,Γc

≤ C‖u− uh‖1,Ω + CH, (5.10)

‖λ− λH‖− 1
2+ε,Γc

≤ CH−ε‖u− uh‖1,Ω + CH1−ε, (5.11)
where ε > 0 is arbitrarily small and C is a positive constant which does not depend on h and H.

Proof. Let us consider the equations in (3.6) and (4.3). Since V h ⊂ V , we have

a(u,vh) + b(λ,vh) = L(vh) ∀vh ∈ V h,

a(uh,vh) + b(λH ,vh) = L(vh) ∀vh ∈ V h.

Therefore

a(u− uh,vh) + b(λ− λH ,vh) = 0 ∀vh ∈ V h,

and

b(λH −ΠHλ,vh) = a(u− uh,vh) + b(λ−ΠHλ,vh)
≤ C‖u− uh‖1,Ω‖vh‖1,Ω + CH‖λ‖ 1

2 ,Γc
‖vh‖1,Ω ∀vh ∈ V h.

The inf-sup condition (4.5) yields:

β̃‖λH −ΠHλ‖− 1
2 ,Γc

≤ sup
vh∈V h

b(λH −ΠHλ,vh)
‖|vh‖|1,Ω ≤ C‖u− uh‖1,Ω + CH‖λ‖ 1

2 ,Γc
. (5.12)

Here we used the Korn’s inequality and the fact that the dual norms ‖ ‖− 1
2 ,Γc

and ‖| ‖|− 1
2 ,Γc

are equivalent

in H− 1
2

Γc
. The constant β̃ > 0 appearing on the left of (5.12) is independent of h and H.

The triangle inequality

‖λ− λH‖− 1
2 ,Γc

≤ ‖λ−ΠHλ‖− 1
2 ,Γc

+ ‖ΠHλ− λH‖− 1
2 ,Γc

together with (5.12) and (5.5) proves (5.10).
Let us prove (5.11). The triangle and inverse inequality yield:

‖λ− λH‖− 1
2+ε,Γc

≤ ‖λ−ΠHλH‖− 1
2+ε,Γc

+ ‖ΠHλ− λH‖− 1
2 +ε,Γc

≤ C
(
H1−ε +H−ε‖ΠHλ− λH‖− 1

2 ,Γc

)
,

making use of (5.6). The rest of the proof now follows from (5.12) �
We finally obtain the following global result giving an upper bound for our mixed finite element approxima-

tion.
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Theorem 5.1. Let (u,λ), (uh,λH) be the solution to (3.6), (4.3), respectively. Suppose that u ∈H2(Ω), the
fourth order tensor A defining the Hooke’s law is sufficiently smooth and the Ladyzhenskaya-Babuska-Brezzi
condition (4.5) is satisfied. Then

‖u− uh‖1,Ω + ‖λ− λH‖− 1
2 ,Γc

≤ CH
1
2 , (5.13)

where the positive constant C does not depend on h and H.

Proof. Assembling (5.2), (5.10) and (5.11) we arrive at (5.13) making use that h ≤ CH , where C > 0 does not
depend on h and H . �
Remark 5.1. Let us suppose that the slip bound s is a positive constant. Then the error estimate (5.13) can
be improved. Indeed, instead of (4.2) we define the set MHt as follows:

MHt =
{
µHt ∈ (LH)2 | ‖µHt‖ ≤ s a.e. on Γc

}
·

Then MHt is the internal approximation of Mt so that∫
Γc

µHt · ψ dΓ − s

∫
Γc

‖ψ‖ dΓ ≤ 0 ∀ψ ∈ L2(Γc). (5.14)

It is very easy to verify that if µt ∈ Mt then πHt µt ∈ MHt so that the estimates (i)–(iv) of Lemma 5.2 remain
valid. Since −λt · ut + s‖ut‖ = 0 a.e. on Γc, the last term can be written as follows (see (5.8)):

b(λH − λ,u) ≤
∫

Γc

(λHt · ut − s‖ut‖) dΓ ≤ 0

making use of (5.14) with µHt := λHt and ψ := ut. Therefore this term which is responsible for the lower order
of convergence can be omitted in (5.1). Under the assumptions of Theorem 5.1 we have

‖u− uh‖1,Ω + ‖λ− λH‖− 1
2 ,Γc

≤ CH
3
4 .

6. Numerical realization

In this section we describe in brief the numerical method for the realization of 3D contact problems with
given friction. This method is based on the the dual formulation of (3.5).

Let (u, λn,λt) be the saddle-point of L on V ×Mn × Mt with the notation introduced in Section 2. Then

L(u, λn,λt) = min
V

sup
Mn×Mt

L(v, µn,µt)

= max
Mn×Mt

inf
V

L(v, µn,µt).

Denote
S(µn,µt) := − inf

V
L(v, µn,µt)

the dual functional. The dual variational formulation to (3.5) reads as follows:

{
Find (µ∗

n,µ
∗
t ) ∈Mn × Mt such that

S(µ∗
n,µ

∗
t ) ≤ S(µn,µt) ∀ (µn,µt) ∈Mn × Mt.

(6.1)

It is well-known [9] that (6.1) has a unique solution and, in addition (µ∗
n,µ

∗
t ) = (λn,λt), where (λn,λt) is a

part of the solution to (3.6). It is also readily seen [13] that S is a quadratic functional. Therefore (6.1) is a
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quadratic programming problem for the dual variable (µn,µt) defined on Γc and subject to the linear, quadratic
constraints µn ≥ 0, ‖µt‖2 ≤ s2, respectively.

Let us recall that all constraints appearing in the dual formulation of 2D contact problems with given
friction are linear [14]. This fact is important from the practical point of view: one can use [7] efficient CG
type algorithms for solving (6.1). To be able to use the same algorithms in 3D problems, a linearization of the
quadratic constraints will be necessary. This is what we shall do now.

Let M(r) be the ball in R
2 of radius r ≥ 0 with the center at origin:

M(r) =
{
λ ∈ R

2 | ‖λ‖2 ≤ r2
}
.

Next we construct a piecewise linear approximation of M(r) which will be realized by the intersection of N
squares rotated around the origin on a constant angle α = π/(2N):

M(r) ∼ ∩Ni=1Mi(r),

where
Mi(r) =

{
λ ∈ R

2 | ‖λαi‖max ≤ r, λαi :=mαi
λ
}
,

with

mαi =
(

cosαi sinαi
− sinαi cosαi

)
, αi = iα, i = 1, .., N

being the rotation matrix and ‖λ‖max := maxi=1,2|λi|.
Instead of (6.1) we shall consider the new problem:


Find (λ̂n, λ̂t) ∈Mn × ∩Ni=1M

i
t such that

S(λ̂n, λ̂t) ≤ S(µn,µt) ∀ (µn,µt) ∈Mn × ∩Ni=1M
i
t,

(6.2)

where
Mi

t =
{
µt ∈ L2(Γc), | µt(x) ∈ Mi(s(x)) a.e. on Γc

}
·

It is known (see [10]) that minimization problems on the intersection of convex sets can be transformed into
a sequence of minimization problems over each subset of this intersection. In what follows we show how to
proceed in our particular case.

We use the following notations:

µi := (µn,µt) ∈Mn × Mi
t, µ = (µ1, ...,µN ) ∈∏N

i=1Mn × Mi
t,

SN (µ) := 1
N

∑N
i=1 S(µi).

Then it is easy to see that (6.2) is equivalent to




Minimize SN (µ)

subject to µi ∈Mn × Mi
t, i = 1, ..., N

µi = µi+1, i = 1, ..., N − 1.

(6.3)

Let us observe that the inclusion µi ∈ Mn × Mi
t can be easily expressed by means of box constraints after

an appropriate rotation of µi, i.e. we formally obtain the same situation as in 2D contact problems. The
discretized version of (6.3) together with the augmented Lagrangian formulation has been used in (see [15]) for
the numerical realization of 3D contact problems with friction, including Coulomb’s model of friction.
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Figure 1. The loaded body.

The previous numerical method has a drawback, too, namely the number of variables is now equal to N × q,
where N is the number of squares and q = dimLH . This drawback however can be compensated by using
coarser partitions of Γc when constructing LH (another reason for the use of coarser partitions is mentioned
in Lem. 4.1). It is worth noticing that one has to find a good compromise between the mesh sizes h and H .
Larger H leads to a smaller number of the dual variables on the one hand, but to the poorer approximation of
the non-penetration conditions on Γc on the other hand. In the following example the relative error between
the “exact” and computed displacements for different ratios H/h will be shown. By the “exact” solution we
mean the displacement field computed by the same algorithm but using the “pointwise” Lagrange multipliers
(algebraic multipliers) which act at each contact node.

The elastic body is represented by the brick Ω = (0, 3) × (0, 1) × (0, 1) which is made of an elastic material
characterized by Young modulus E = 21.19 × 1010 and Poisson’s ratio ν = 0.277. The body is fixed along the
face Γu = {0}×(0, 1)×(0, 1) and surface tractions g act on Γ1

g = (0, 3)×(0, 1)×{1} and Γ2
g = {3}×(0, 1)×(0, 1),

where
g = (0, 0,−2 × 106x1) on Γ1

g

and
g = (0, 0, 106) on Γ2

g .

The density of volume forces f is equal to zero and the slip bound s = 5.25 × 104 on Γc. The brick is cut
into small cubes of size h and each cube is divided into five tetrahedrons (see Fig. 1). Results for the ratios
H/h = 2, 4 and the number of squares N = 2, 4 are summarized in Tables 1–4. All computations were done
on IBM SP2. From these results we see that even for higher ratios H/h (i.e. for a less accurate satisfaction of
non-penetration conditions) one can get a good approximation of the displacement field. In Table 5 the relative
errors between the computed and “exact” solution for nx = 36, ny = nz = 12 and N = 2 on the first 5 grid
levels above the contact surface are shown. The largest error occurs just on the contact (first line) surface while
decreases when moving inside of the brick.

Table 1. Piecewise constant multipliers, H/h = 2, N = 2.

nx, ny, nz nλ erru

6,2,2 9N 0.0202
12,4,4 36N 0.0178
18,6,6 81N 0.0064
24,8,8 144N 0.000691

30,10,10 225N 0.002201
36,12,12 324N 0.000685
42,14,14 441N 0.000323
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Figure 2. The body after deformation.

Table 2. Piecewise constant multipliers, H/h = 4, N = 2.

nx, ny, nz nλ erru

12,4,4 9N 0.0107
24,8,8 36N 0.0249

36,12,12 54N 0.0045

Table 3. Piecewise constant multipliers, H/h = 2, N = 4.

nx, ny, nz nλ erru

6,2,2 9N 0.0201
12,4,4 36N 0.0179
18,6,6 81N 0.0064
24,8,8 144N 0.000699

30,10,10 225N 0.002203
36,12,12 324N 0.000677

Table 4. Piecewise constant multipliers, H/h = 4, N = 4.

nx, ny, nz nλ erru

12,4,4 9N 0.0106
24,8,8 36N 0.0249

36,12,12 54N 0.0044

• nx, ny, nz . . . the numbers of cubes of size h in the x, y, z–directions;
• nu . . . the number of the primal variables;
• nλ . . . the number of the dual variables;
• N . . . the number of squares approximating the circle;
• erru . . . the Euclidean norm of the relative error of the primal variable.
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Table 5. The relative error on different levels of the finite element mesh.

H/h=2 H/h=4
0.00083178 0.004496
0.00066490 0.004283
0.00062992 0.004184
0.00061946 0.004132
0.00061324 0.004097
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