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ON CONVERGENT SCHEMES FOR TWO-PHASE FLOW OF DILUTE
POLYMERIC SOLUTIONS

Stefan Metzger1,∗

Abstract. We construct a Galerkin finite element method for the numerical approximation of weak
solutions to a recent micro-macro bead-spring model for two-phase flow of dilute polymeric solutions
derived by methods from nonequilibrium thermodynamics ([Grün, Metzger, M3AS 26 (2016) 823–
866]). The model consists of Cahn–Hilliard type equations describing the evolution of the fluids and
the unsteady incompressible Navier–Stokes equations in a bounded domain in two or three spatial
dimensions for the velocity and the pressure of the fluids with an elastic extra-stress tensor on the
right-hand side in the momentum equation which originates from the presence of dissolved polymer
chains. The polymers are modeled by dumbbells subjected to a finitely extensible, nonlinear elastic
(FENE) spring-force potential. Their density and orientation are described by a Fokker–Planck type
parabolic equation with a center-of-mass diffusion term. We perform a rigorous passage to the limit
as the spatial and temporal discretization parameters simultaneously tend to zero, and show that a
subsequence of these finite element approximations converges towards a weak solution of the coupled
Cahn–Hilliard–Navier–Stokes–Fokker–Planck system. To underline the practicality of the presented
scheme, we provide simulations of oscillating dilute polymeric droplets and compare their oscillatory
behaviour to the one of Newtonian droplets.
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1. Introduction

In this paper, we present a stable, fully discrete finite-element scheme for a diffuse interface model for two-
phase flow of dilute polymeric solutions and establish convergence for the case of equal fluid mass densities.
Allowing for different solubility properties which are modelled by some phase dependent cost functional β, the
presented model covers the case of two dilute polymeric solutions as well as the case of one dilute polymeric
solution and one pure Newtonian fluid. In contrast to other approaches (see e.g. [7, 8]) our scheme solely relies
on standard finite element functions. In particular, it does not include simplices with curved edges or faces. The
presented results are excerpts from the author’s Ph.D. thesis [25].
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The aforementioned model derived by G. Grün and S. Metzger ([18]) combines a diffuse interface model for
two-phase flow of incompressible, viscous fluids (cf. [1]) for the description of the immiscible fluids in an open
domain Ω ⊂ Rd, d = 2 or 3, with a FENE-dumbbell description of the dissolved polymer chains. That is a
polymer chain is represented by two beads connected by a massless spring (cf. [5, 22]) and can be described by
the position of its barycenter and the configurational vector q connecting the beads. Using the so called FENE
spring potential (FENE: acronym for f initely extensible, nonlinear elastic), which reads

U
(

1
2 |q|

2
)

= −Q
2
max
2 ln

(
1− |q|2

Q2
max

)
, (1.1)

restricts the admissible polymer elongations to

q ∈ D := B(0, Qmax), (1.2)

where B(0, Qmax) is a bounded, open, origin centered ball with radius Qmax. Associated with the potential,
there comes the Maxwellian

M(q) :=
exp

(
−U
(

1
2 |q|

2
))

∫
D

exp
(
−U
(

1
2 |q|

2
))

dq
, (1.3)

which provides the energetically most favorable probability density of the elongation of a polymer chain. A
straight forward computation shows that

M∇qM
−1 = −M−1∇qM = U ′q. (1.4)

As shown in [5], the FENE-potential defined in (1.1) and the Maxwellian satisfy the following properties on
the corresponding set of admissible elongations D.

(P1) q 7→ U
(

1
2 |q|

2
)
∈ C∞(D), nonnegative;

(P2) q 7→ U ′
(

1
2 |q|

2
)

is positive on D;

(P3) there exist constants ci > 0 (i = 1, . . . , 5) such that for κ = Q2
max
2 the following inequalities hold true:

c1[dist (q, ∂D)]κ ≤M(q) ≤ c2[dist (q, ∂D)]κ ∀q ∈ D,

c3 ≤ [dist (q, ∂D)]U ′
(

1
2 |q|

2
)
≤ c4, [dist (q, ∂D)]2

∣∣∣U ′′( 1
2 |q|

2
)∣∣∣ ≤ c5 ∀q ∈ D,

(P4)
∫
D

[
1 +

(
1 + |q|2

)(
(U)2 + |q|2 (U ′)2

)]
M dq <∞.

Under the additional assumption Qmax >
√

2, the FENE-potential additionally satisfies the following estimates:

(P5) There exist constants c6, c7 > 0, such that for B(0, ( dc7 )
1/2

) ⊂⊂ D

(U ′)2 − U ′′ ≥ c6 ∀q ∈ D and (U ′)2 − U ′′ ≥ 2c7U ′ ∀q ∈ D : |q|2 ≥ d
c7
·

In [18], spatial distribution and configuration of the polymer chains is described by the configurational density
ψ : Ω × D × R+

0 → R+
0 . Following the approach in [7], we define the scaled configurational density function

ψ̂ := ψ
M . As the scaled configurational density is defined on the product space of the spatial domain Ω and the

configurational space D, we introduce two different variables, x ∈ Ω and q ∈ D, to determine the position in
the spatial domain Ω and the configurational space D. Consequently, we denote the gradient and the divergence
operators with respect to x and q by ∇x, ∇q, divx, and divq. Using this notation, the model reads as follows:

∂tφ+ u · ∇xφ− divx {m(φ)∇xµφ} = 0, (1.5a)

µφ = −δσ∆xφ+ σ
δW

′(φ) + β′(φ)Jε
{∫

D

Mψ̂

}
, (1.5b)
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M∂tψ̂ + Mu · ∇xψ̂ + divq

{
Mψ̂∇xJ ε{u} · q

}
= divq

{
cqM∇qψ̂

}
+ divx

{
cxMψ̂∇x

(
g′(ψ̂) + Jε{β(φ)}

)}
, (1.5c)

ρ(φ)∂tu + ((ρ(φ)u−m(φ)ρ′∇xµφ) · ∇x)u− divx {2η(φ)Du}+∇xp

= µφ∇xφ+
∫
D

M
(
g′(ψ̂) + Jε{β(φ)}

)
∇xψ̂ + divx

{
Jε

{∫
D

M∇qψ̂ ⊗ q
}}

, (1.5d)

divx u = 0 (1.5e)

on Ω ×R+ (or Ω ×D ×R+, respectively) with the boundary conditions

∇xφ · nx = 0 on ∂Ω ×R+, (1.5f)
∇xµφ · nx = 0 on ∂Ω ×R+, (1.5g)

Mψ̂∇x

(
g′(ψ̂) + Jε{β(φ)}

)
· nx = 0 on ∂Ω ×D ×R+, (1.5h)(

Mψ̂∇xJ ε{u} · q− cqM∇qψ̂
)
· nq = 0 on Ω × ∂D ×R+, (1.5i)

u = 0 on ∂Ω ×R+. (1.5j)

The Cahn–Hilliard type phase-field equations (1.5a) and (1.5b) describe the evolution of two immiscible fluids
in terms of the phase-field parameter φ and its chemical potential µφ. Thereby, m is the mobility and W is a
double-well potential with minima in ±1, representing the pure phases φ ≡ ±1. The parameters σ and δ denote
the surface tension and the width of the diffuse interface, respectively. Throughout this paper, we will set
σ = δ = 1 for the ease of notation and assume a constant mobility, i.e. m ≡ 1. In contrast to other publications
(see e.g. [23, 24]), the coefficient cx of the center-of-mass diffusion term is kept as it guarantees parabolicity
of the Fokker–Planck type equation (1.5c) (cf. [5]). The tuple (u, p) stands for the velocity and pressure field,
respectively, and

ρ(φ) :=
ρ̃2 + ρ̃1

2
− ρ̃2 − ρ̃1

2
φ (1.6)

is the phase-field dependent mass density of the fluids, where ρ̃1 and ρ̃2 denote the mass densities of the pure
phases.

Formal computations (cf. Lem. B.1) show that the energy

E(φ, ψ̂,u) :=
∫
Ω

σδ
2 |∇xφ|2 +

∫
Ω

σ
δW (φ) +

∫
Ω×D

Mg
(
ψ̂
)

+
∫
Ω×D

MJε{β(φ)}ψ̂

+
∫
Ω

1
2ρ(φ) |u|2

(1.7)

is not increasing over time. Thereby, the first two terms are the so-called Cahn–Hilliard free energy and describe
the contributions of the fluid-fluid contact area. The next two terms describe the properties of the polymers.
Introducing the entropic functional g(s) := s log s−s, the first one measures the deviation of the configurational
density ψ from the Maxwellian M . The second one, the so-called Henry energy, describes the solubility properties
in the different fluids: High values of β indicate a poor solubility of polymers, while low values indicate good
solubility properties in the corresponding fluid. The last term in (1.7) is the kinetic energy of the fluids. By
Jε : L1(Ω)→W 2,∞(Ω) (or J ε : L1(Ω)→W 2,∞(Ω), respectively), we denote the isotropic mollifier which is
defined as

Jε{f}(x) :=
∫
Ω

ζε(x− y)f(y)dy ∀x ∈ Ω, ∀f ∈ L1(Ω), (1.8)



2360 S. METZGER

where ζε(x) := ε−dζ
(
ε−1x

)
with ζ ∈ W 2,∞(Rd) being nonnegative and rotationally symmetric, satisfying

supp ζ ⊂ B(0, 1) and having mass one. This mollifier satisfies the following properties.

‖Jε{f}‖L2(Ω) ≤ ‖f‖L2(Ω) ∀f ∈ L2(Ω), (1.9a)

‖(I − Jε){f}‖L2(Ω) → 0 as ε↘ 0 ∀f ∈ L2(Ω), (1.9b)∫
Ω

Jε{f}g dx =
∫
Ω

fJε{g} dx ∀f, g ∈ L2(Ω), (1.9c)

∂xiJε{f} = Jε{∂xif} ∀f ∈ H1
0 (Ω), i = 1, . . . , d, (1.9d)

‖Jε{f}‖H1(Ω) ≤ ‖f‖H1(Ω) ∀f ∈ H1
0 (Ω), (1.9e)

‖Jε{f}‖W 2,∞(Ω) ≤ C(ε) ‖f‖L1(Ω) ∀f ∈ L1(Ω). (1.9f)

Restricting (1.5) to the case of a single-phase flow, i.e. φ, ρ, and η constant, allows to recover the set of
equations derived by Barrett and Süli [5]. Convergent numerical schemes for this single-phase model can be
found in [7,8]. Neglecting the mollifier and using simplices with curved edges or faces, J.W. Barrett and E. Süli
showed convergence towards weak solutions of a regularized single-phase model (cf. [7]) and, by passing to the
limit in space and time separately, convergence towards weak solutions of the original model (cf. [8] and [6]).

A first existence result for the two-phase flow model (1.5) was already established by Grün and Metzger in
[18]. In this paper, we suggest a stable numerical scheme for (1.5) and establish the convergence of discrete
solutions for the case of equal fluid mass densities. It turns out, that the resulting existence result is comparable
to the one established in [18].

The outline of the paper is as follows. In Section 2, we introduce the discrete function spaces and operators
used in the discrete scheme. In Section 3, we introduce the fully discrete finite element scheme for the case
of different mass densities and prove a first stability result which suffices to establish the existence of discrete
solutions. Restricting ourselves to the case of equal mass densities, we use Section 4 to establish regularity
results for discrete solutions, which are independent of the discretization parameters. In Section 5, we pass to
the limit as the spatial discretization parameter h and the time step parameter τ tend to zero.

Based on the regularity results of Section 4, we are able to identify subsequences of discrete solutions con-
verging towards weak solutions of (1.5).

As a proof of concept, we present simulations of oscillating non-Newtonian droplets in two and three spatial
dimensions in the last section.

Notation 1.1. In this paper, Ω denotes the spatial domain of the flow, and D stands for the configuration
space, both sets being contained in Rd with d ∈ {2, 3}. By “·”, we denote the Euclidean scalar product on Rd.
Sometimes, we write ΩT for the space-time cylinder Ω × (0, T ). By W k,p(Ω), we denote the space of k-times
weakly differentiable functions with weak derivatives in Lp(Ω). The symbol W k,p

0 (Ω) stands for the closure of
C∞0 (Ω) in W k,p(Ω). For p = 2, we will denote W k,2(Ω) by Hk(Ω) and W k,2

0 (Ω) by Hk
0 (Ω). Corresponding

spaces of vector- and matrix-valued functions are denoted in boldface. A similar notation is used for function
spaces defined on D or Ω×D. The space of solenoidal functions with homogeneous Dirichlet boundary data will
be denoted by H1

0,div(Ω) := {w ∈H1
0 : divx w = 0}, its dual space by (H1

0,div(Ω))
′
, and the duality pairing

between (H1
0,div(Ω))

′
and H1

0,div(Ω) by 〈., .〉. To describe the regularity properties of the scaled configurational
density ψ̂, we introduce the Maxwellian-weighted Lebesgue and Sobolev spaces

L2(Ω ×D;M) :=
{
θ ∈ L1

loc(Ω ×D) : ‖θ‖L2(Ω×D;M) <∞
}
, (1.10a)

X̂ := H1(Ω ×D;M) :=
{
θ ∈ L1

loc(Ω ×D) : ‖θ‖H1(Ω×D;M) <∞
}
, (1.10b)

X̂+ :=
{
θ ∈ X̂ : θ(x,q) ≥ 0 for a.e. (x,q) ∈ Ω ×D

}
, (1.10c)
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with the associated norms

‖θ‖L2(Ω×D;M) :=
(∫

Ω×D
M |θ|2

)1/2

, (1.11a)

‖θ‖H1(Ω×D;M) :=
(∫

Ω×D
M
[
|θ|2 + |∇xθ|2 + |∇qθ|2

])1/2

. (1.11b)

For a Banach space Y and a time interval I, the symbol Lp(I;Y ) stands for the parabolic space of Lp-integrable
functions on I with values in Y .

2. Technical preliminaries

This section addresses the discretization techniques used in the presented scheme. We introduce discrete
function spaces, list the essential estimates for the used approximation, interpolation, and projection operators,
and introduce a discrete version of the mollifier Jε.

2.1. Discretization in space and time

Concerning the discretization with respect to time, we assume that

(T) the time interval I := [0, T ) is subdivided in intervals Ik := [tk, tk+1) with tk+1 = tk+τk for time increments
τk > 0 and k = 0, . . . , N − 1 with tN = T . For simplicity, we take τk ≡ τ = T

N for k = 0, . . . , N − 1.

From now on, we consider the two-phase problem on a bounded, convex polygonal (or polyhedral, respectively)
spatial domain Ω ⊂ Rd in spatial dimensions d ∈ {2, 3}. As the mollifier Jε includes a convolution on Rd, we
also consider a likewise bounded, convex polygonal (or polyhedral, respectively) superset Ω∗ of Ω such that
dist (∂Ω∗, Ω) ≥ ε, i.e. supp ζε(x− .) ⊂ Ω∗ for all x ∈ Ω. We introduce partitions T x

h and T x∗
h of Ω and Ω∗

depending on a spatial discretization parameter h > 0 satisfying the following assumptions:

(S1) Let {T x∗
h }h>0 be a quasiuniform family (in the sense of [9]) of partitions of Ω∗ into disjoint, open,

nonobtuse simplices κx, so that

Ω∗ ≡
⋃

κx∈T x∗
h

κx with hx := max
κx∈T x∗

h

diam (κx) ≤ diam (Ω∗)h.

(S2) Let {T x
h }h>0 be a quasiuniform family of partitions of Ω into disjoint, open, nonobtuse simplices with

T x
h ⊂ T x∗

h , so that Ω ≡
⋃
κx∈T x

h
κx.

Instead of working with the configurational space D := BQmax ⊂ Rd and simplices with curved edges or faces
(see e.g. [7]), we use a bounded polygonal (or polyhedral, respectively) domain D ⊃ D. A suitable choice for
D might be e.g. the cube of side length 2Qmax which includes D. We make the following assumptions on the
partitions of T q

h of D.

(S3) Let {T q
h }h>0

be a quasiuniform family (in the sense of [9]) of partitions of D into disjoint open nonobtuse
simplices κq, so that

D ≡
⋃

κq∈T q
h

κq with hq := max
κq∈T q

h

diam (κq) ≤ diam (D)h.

Combining (S1) and (S3), we immediately obtain

c1h ≤hx ≤ c2h, c3h ≤hq ≤ c4h,
hx

hq
+
hq

hx
≤ c5 (2.1)
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as h ↘ 0 with ci (i = 1, . . . , 5) independent of h. For both, T x∗
h and T q

h , we use the same standard reference
simplex κ̃ with vertices {P̃i}i=0,...,d, where P̃0 is the origin and the P̃i are such that the jth component of P̃i

is δij for i, j = 1, . . . , d.
We denote the vertices of an element κx ∈ T x∗

h by {Pκx,i}i=0,...,d and define Bκx ∈ Rd×d such that the
mapping Bκx : Rd 3 y 7→ Pκx,0 + Bκxy maps the vertex P̃i to Pκx,i (i = 0, . . . , d) and hence κ̃ to κx. The
quantities {Pκq,i}i=0,...,d

, Bκq , and Bκq are defined analogously.

2.2. Discrete function spaces and interpolation operators

For the approximation of the phase-field parameter φ and its chemical potential µφ, we introduce the space
Ux
h of continuous, piecewise linear finite element functions on T x

h . The extension of Ux
h to T x∗

h is denoted by
Ux∗
h . Pressure and velocity field are approximated with the lowest order Taylor–Hood elements, i.e. we define

the space W h ⊂ H1
0(Ω) of continuous, piecewise quadratic finite element functions on T x

h together with the
spaces

Sh :=
{
θxh ∈ Ux

h :
∫
Ω

θxh dx = 0
}
, (2.2)

W h,div :=
{

wh ∈W h :
∫
Ω

divx whθ
x
h = 0 ∀θxh ∈ Sh

}
. (2.3)

Those spaces enjoy the following properties (see [14] and [21] in combination with the regularity results of [12]):

(TH1) The Babuška–Brezzi condition is satisfied, i.e. a positive constant C exists such that

sup
wh∈W h

(qh,divx wh)
‖wh‖H1

0(Ω)

≥ C ‖qh‖L2(Ω) (2.4)

for all qh ∈ Sh.
(TH2) The L2-projector Qh : H1

0,div(Ω)→W h,div defined by∫
Ω

(v −Qh[v]) ·wh = 0 ∀wh ∈W h,div, v ∈H1
0,div(Ω)

is uniformly H1(Ω)-stable, i.e.

‖Qh[v]‖H1(Ω) ≤ C ‖v‖H1(Ω) ,

and satisfies

‖v −Qh[v]‖L2(Ω) + hx ‖∇x(v −Qh[v])‖L2(Ω) ≤ Ch
2
x ‖v‖H2(Ω)

for all v ∈H1
0,div(Ω) ∩H2(Ω).

Similarly to Ux∗
h and Ux

h , we denote the space of continuous, piecewise linear finite element functions on
T q
h by Uq

h . To approximate ψ̂ on Ω × D, we introduce the space X̂h := Ux
h × Uq

h . That is for a given
basis {χx

h,i}i=1,...,dimUx
h

of Ux
h and a given basis {χq

h,j}j=1,...,dimUq
h

of Uq
h , X̂h is defined as the span of{

χx
h,iχ

q
h,j

}j=1,...,dimUq
h

i=1,...,dimUx
h

.

We define the nodal interpolation operator Ixh from C0(Ω∗) to Ux∗
h by

Ixh{a} :=
dimUx∗

h∑
i=1

a(xi)χx
h,i, (2.5)
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where the functions {χx
h,i}i=1,...,dimUx∗

h

form a dual basis to the vertices {xi}i=1,...,dimUx∗
h

of T x∗
h , i.e. χx

h,i(xj) =

δij for i, j = 1, . . . ,dimUx∗
h . In a slight misuse of notation, we also denote the nodal interpolation from C0(Ω)

to Ux
h by Ixh . In the context of the discrete mollifier (see (2.38)), we will introduce a second spatial variable y

and the corresponding operator Iyh which is defined analogously to Ixh .
Similarly, we define

Iqh : C0
(
D
)
→ Uq

h , a 7→ Iqh{a} :=
dimUq

h∑
i=1

a(qi)χ
q
h,i, (2.6)

where the functions {χq
h,i}i=1,...,dimUq

h

form a dual basis to the vertices {qi}i=1,...,dimUq
h

of T q
h . Combining these

operators defines the nodal interpolation operator

Ixq
h : C0

(
Ω ×D

)
→ X̂h, a 7→ Ixq

h {a} := Ixh{I
q
h{a}} = Iqh{I

x
h{a}}. (2.7)

Sometimes, we write Ixh{a} (or Ixh{A}) with a ∈ (C0(Ω))
d

(or A ∈ (C0(Ω))
d×d

) when we apply Ixh to each
component of a (or A, respectively). We also use similar conventions for Iqh and Ixq

h .
We define the discrete Laplacian ∆hφh ∈ Sh for all φh ∈ Ux

h by∫
Ω

Ixh{∆hφhθ
x
h} = −

∫
Ω

∇xφh · ∇xθ
x
h ∀θxh ∈ Ux

h . (2.8)

Using the nodal interpolation operator Ixh , we define the norm ‖.‖h via

‖θx‖2h :=
∫
Ω

Ixh
{
|θx|2

}
, for all θx ∈ C0(Ω). (2.9)

It is well-known that this norm is equivalent to the L2(Ω)-norm on Ux
h , i.e. there exist constants c, C > 0 such

that

c ‖.‖h ≤ ‖.‖L2(Ω) ≤ C ‖.‖h . (2.10)

Similarly, the following inequalities for the L4(Ω)- and L6(Ω)-norm hold true for all θxh ∈ Ux
h (cf. [25]).

c

∫
Ω

Ixh
{
|θxh |

4
}
≤
∫
Ω

|θxh |
4 ≤ C

∫
Ω

Ixh
{
|θxh |

4
}
, (2.11a)

c

∫
Ω

Ixh
{
|θxh |

6
}
≤
∫
Ω

|θxh |
6 ≤ C

∫
Ω

Ixh
{
|θxh |

6
}
. (2.11b)

For future reference, we collect additional useful estimates related to the nodal interpolation operators.

Lemma 2.1. Let {T x∗
h }h>0 and {T q

h }h>0
satisfy (S1)–(S3). Then the following estimates hold true for all

κx ∈ T x∗
h , κq ∈ T q

h , and 1 ≤ p <∞.

|Ixh{θx}(x)|p ≤ Ixh{|θx|
p}(x) ∀x ∈ κx ∀θx ∈ C0(κx), (2.12a)

|Iqh{θ
q}(q)|p ≤ Iqh{|θ

q|p}(q) ∀q ∈ κq ∀θq ∈ C0(κq), (2.12b)
|Ixq
h {θ}(x,q)|p ≤ Ixq

h {|θ|
p}(x,q) ∀(x,q) ∈ κx × κq ∀θ ∈ C0(κx × κq). (2.12c)
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Additionally, we have for affine linear functions θxh and θqh

‖θxh‖
2
L∞(κx) ≤ Ch

−d
x

∫
κx

|θxh |
2 dx, (2.13a)

‖θqh‖
2

L∞(κq)
≤ Ch−dq

∫
κq

|θqh |
2 dq, (2.13b)∫

κx

|∇xθ
x
h |

2 dx ≤ Ch−2
x

∫
κx

|θxh |
2 dx ≤ Ch−2

x

∫
κx

Ixh
{
|θxh |

2
}

dx, (2.13c)∫
κq

|∇qθ
q
h |

2 dq ≤ Ch−2
q

∫
κq

|θqh |
2 dq ≤ Ch−2

q

∫
κq

Iqh
{
|θqh |

2
}

dq. (2.13d)

Proof. The inequalities (2.12) are a direct consequence of Jensen’s inequality. Standard inverse estimates (see
e.g. [9], Lem. 4.5.3) yield (2.13a) and (2.13b), as well as the first inequalities in (2.13c) and (2.13d). The second
inequalities in (2.13c) and (2.13d) are a consequence of (2.12a) and (2.12b). �

Using the nodal interpolation operator Iqh mentioned above, we define a discrete version Mh of the Maxwellian
M . We start by defining an extension of M on D via

M̂(q) :=
{
M(q) if q ∈ D,

0 if q ∈ D \D, (2.14)

and continue with its finite element approximation

Mh(q) := chqI
q
h

{
M̂
}

(q) for all q ∈ D, (2.15)

with chq := [
∫

D
Iqh{M̂} dq]

−1
. As shown in [25], the following lemma holds true which in particular states that

M̂ is continuous and therefore that Mh is well-defined.

Lemma 2.2. Let the spring potential U and its associated Maxwellian M satisfy the properties (P1)–(P5) with
κ > 1. Then the extension M̂ of the Maxwellian on D (see (2.14)) and its discrete approximation Mh defined
via (2.15) have the following properties:

• M̂ ∈ C1
(
D
)

with M̂
∣∣∣
∂D

= 0.
• The constant chq is bounded from below by some constant cM > 0 independently of hq.

• For hq small enough, chq is bounded from above by some constant and we have
∥∥∥Mh − M̂

∥∥∥
L∞(D)

≤ Chq.

The proof of the lemma above can be found in the Appendix A.
For future reference, we state the following Maxwellian-weighted approximation results for the interpolation

operators.

Lemma 2.3. Let Mh be the finite element approximation of the Maxwellian M defined via (2.15) and let
{T x
h }h>0 and {T q

h }h>0
satisfy (S1)–(S3). Then the following estimates hold true for all κx ∈ T x

h , κq ∈ T q
h and

for all θ̂h, θ̃h ∈ X̂h.∫
κx×κq

∣∣∣Mh(I − Ixh )
{
∇qθ̂h · ∇qθ̃h

}∣∣∣ dq dx

≤ Chx

(∫
κx×κq

Mh

∣∣∣∇qθ̂h

∣∣∣2 dq dx

)1/2
 d∑
i=1

d∑
j=1

∫
κx×κq

Mh

∣∣∣∂xi∂qj θ̃h∣∣∣2 dq dx

1/2

(2.16a)
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κx×κq

∣∣∣Mh(I − Iqh )
{
∇xθ̂h · ∇xθ̃h

}∣∣∣ dq dx

≤ Chq

(∫
κx×κq

Mh

∣∣∣∇qθ̂h

∣∣∣2 dq dx

)1/2
 d∑
i=1

d∑
j=1

∫
κx×κq

Mh

∣∣∣∂xi∂qj θ̃h∣∣∣2 dq dx

1/2

(2.16b)

∫
κx×κq

∣∣∣Mh(I − Ixq
h )
{
θ̂hθ̃h

}∣∣∣ dq dx

≤ Ch2
x

(∫
κx×κq

Mh

∣∣∣∇xθ̂h

∣∣∣2 dq dx

)1/2(∫
κx×κq

Mh

∣∣∣∇xθ̃h

∣∣∣2 dq dx

)1/2

+ Ch2
q

(∫
κx×κq

Mh

∣∣∣∇qθ̂h

∣∣∣2 dq dx

)1/2(∫
κx×κq

Mh

∣∣∣∇qθ̃
∣∣∣2 dq dx

)1/2

. (2.16c)

In Lemma 2.3, we denoted the identity operator mapping scalar-valued functions onto themselves by I. For a
Proof of Lemma 2.3 we refer to the Appendix A or to [25] or [7]. In contrast to the proof presented in the latter
publication, the Proof of Lemma 2.3 uses (2.1) to obtain

∫
κx×κq

Mh|∇qθ̂|2 on the right hand-side of (2.16b).
Similar computations yield the following result.

Lemma 2.4. Let {T x
h }h>0 and {T q

h }h>0
satisfy (S1)–(S3). Then, for all κx ∈ T x

h , κq ∈ T q
h , and for all

fh, f̃h ∈ Ux
h and gh, g̃h ∈ Uq

h , we have that∫
κx

∣∣∣(I − Ixh )
{
fhf̃h

}∣∣∣ dx ≤ Ch2
x ‖∇xfh‖L2(κx) ‖∇xf̃h‖L2(κx). (2.17)∫

κx

∣∣∣(I − Ixh )
{
fhf̃h

}∣∣∣ dx ≤ Chx ‖fh‖L2(κx) ‖∇xf̃h‖L2(κx), (2.18)

∫
κq

|Mh(I − Iqh ){ghg̃h}| dq ≤ Ch2
q

(∫
κq

Mh |∇qgh|2 dq

)1/2(∫
κq

Mh |∇qg̃h|2 dq

)1/2

. (2.19)

2.3. Discrete versions of the chain rule

As the regularity results in Section 4 will heavily rely on the validity of the formal identities

g′′(ψ̂)
−1
∇qg

′(ψ̂) = ∇qψ̂, g′′(ψ̂)
−1
∇xg

′(ψ̂) = ∇xψ̂, and ψ̂∇xψ̂ = 1
2∇x|ψ̂|2, (2.20)

we extend the ideas of G. Grün and M. Rumpf (cf. [19]) and J.W. Barrett and E. Süli (cf. [7, 8]) to establish
discrete counterparts of (2.20). As we are not able to guarantee ψ̂ ≥ 0 in the discrete setting, we start by
defining a regularized version of the entropic function g via

gν(s) :=
{

s log s− s if s ≥ ν,
s2−ν2

2ν + (log ν − 1)s if s < ν,
(2.21a)

g′ν(s) =
{

log s if s ≥ ν,
s
ν + log ν − 1 if s < ν,

(2.21b)

g′′ν (s) = max {ν, s}−1
, (2.21c)
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for all s ∈ R and some regularization parameter ν > 0. Additionally, we define a function fν : R → R+ with
f ′ν(s) = (g′′ν (s))−1 via

fν(s) :=
{

1
2s

2 if s ≥ ν,
νs− 1

2ν
2 if s < ν,

(2.22a)

f ′ν(s) = max {ν, s}. (2.22b)

Using the ideas from [19] and [7], we define for a given function θh ∈ X̂h and a given element κx ∈ T x
h a diagonal

matrix Ξ̂x
ν [θh] by

[
Ξ̂x
ν [θh]

]
ii

(q) =

{
θh(Pκx,i,q)−θh(Pκx,0,q)

g′ν(θh(Pκx,i,q))−g′ν(θh(Pκx,0,q)) if θh(Pκx,i,q) 6= θh(Pκx,0,q),
1

g′′ν (θh(Pκx,0,q)) if θh(Pκx,i,q) = θh(Pκx,0,q),
(2.23a)

for any q ∈ D. Incorporating the affine mapping from κ̃ to κx, we define the matrix-valued operator Ξx
ν [.] via

Ξx
ν [θh](q)

∣∣
κx

:= B−Tκx
· Ξ̂x

ν [θh](q) ·BT
κx

(2.23b)

for θh ∈ X̂h. Analogously, we define Λx
ν [.] via

[
Λ̂x
ν [θh]

]
ii

(q) =

{
fν(θh(Pκx,i,q))−fν(θh(Pκx,0,q))

θh(Pκx,i,q)−θh(Pκx,0,q) if θh(Pκx,i,q) 6= θh(Pκx,0,q),
f ′ν(θh(Pκx,0,q)) if θh(Pκx,i,q) = θh(Pκx,0,q),

(2.23c)

Λx
ν [θh](q)

∣∣
κx

:= B−Tκx
· Λ̂x

ν [θh](q) ·BT
κx
, (2.23d)

on every κx ∈ T x
h for θh ∈ X̂h and q ∈ D. Ξq

ν [.] is defined via

[
Ξ̂q
ν [θh]

]
ii

(x) =


θh(x,Pκq,i)−θh(x,Pκq,0)

g′ν(θh(x,Pκq,i))−g′ν(θh(x,Pκq,0))
if θh

(
x,Pκq,i

)
6= θh

(
x,Pκq,0

)
,

1

g′′ν (θh(x,Pκq,0))
if θh

(
x,Pκq,i

)
= θh

(
x,Pκq,0

)
,

(2.23e)

Ξq
ν [θh](x)

∣∣
κq

:= B−Tκq
· Ξ̂q

ν [θh](x) ·BT
κq
, (2.23f)

on every κq ∈ T q
h for θh ∈ X̂h and x ∈ Ω.

Remark 2.5. For a simplex κx, which has a vertex Pκx,0 with the property that any two edges intersecting
each other in Pκx,0 form a right angle, we may define the mapping Bκx in a way that Bκx is orthogonal, i.e.
BT
κx
·Bκx is a diagonal matrix. In this case Ξx

ν [.](.)
∣∣
κx

and Λx
ν [.](.)

∣∣
κx

are symmetric matrices with eigenvalues
greater than or equal to ν.
As we will only consider nonobtuse simplices, Ξx

ν [.](.)
∣∣
κx

and Λx
ν [.](.)

∣∣
κx

may not be assumed to be symmetric.
Nevertheless, their eigenvalues are still greater than or equal to ν.

Similar considerations apply to Ξq
ν [.](.)

∣∣
κq

and the shape of κq.

As shown in the following lemma, those operators allow for a discrete version of (2.20).

Lemma 2.6. Let Ξq
ν [.], Ξx

ν [.], and Λx
ν [.] be matrix-valued operators on Ω×D which are defined via (2.23). Then

the following identities hold true for θh ∈ X̂h.

Iqh{Ξ
x
ν [θh]∇xIxq

h {g
′
ν(θh)}} = ∇xθh, (2.24a)

Iqh{Λ
x
ν [θh]∇xθh} = ∇xIxq

h {fν(θh)}, (2.24b)
Ixh{Ξq

ν [θh]∇qIxq
h {g

′
ν(θh)}} = ∇qθh. (2.24c)
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Proof. Restricting ourselves to κ̃ × κq with the vertices {(P̃i,Pκq,j)}i,j=0,...d
, we note that the x-gradient of

Ixq
h {g′ν(θh(x,q))} for some θh ∈ X̂ may be written as

∇xIxq
h {g

′
ν(θh(x,q))} =

d∑
i=1

[g′ν(θh(P̃i,q))− g′ν(θh(P̃0,q))]ei, (2.25)

for all x ∈ κ̃ and q ∈ κq. Therefore, we may compute on each κx × κq ∈ T x
h ⊗ T

q
h

Ξx
ν [θh]

(
Pκq,j

)
∇xIxq

h

{
g′ν
(
θh(x,Pκq,j)

)}
= B−Tκx

· Ξ̂x
ν [θh]

(
Pκq,j

)
·BT

κx
·B−Tκx

d∑
i=1

[
g′ν
(
θh
(
Pκx,i,Pκq,j

))
− g′ν

(
θh
(
Pκx,0,Pκq,j

))]
ei

= B−Tκx

d∑
i=1

[
θh
(
Pκx,i,Pκq,j

)
− θh

(
Pκx,0,Pκq,j

)]
ei = ∇xθh(x,Pκq,j), (2.26)

where {Pκq,j}j=0,...,d
denote the vertices of κq, which proves (2.24a). Similar arguments yield (2.24b) and

(2.24c). �

By definition, the smallest eigenvalues of Ξx
ν [.], Λx

ν [.], and Ξq
ν [.] are bounded from below by ν. As we will

also stumble upon the largest eigenvalues of those matrices in Section 4, we define piecewise constant functions
σΞx

ν [.](x,q), σΛx
ν [.](x,q), and σΞq

ν [.](x,q) as the supremum on κx × κq 3 (x,q) of the largest eigenvalues of
Ξx
ν [.]
∣∣
κx×κq3(x,q)

, Λx
ν [.]
∣∣
κx×κq3(x,q)

, and Ξq
ν [.]
∣∣
κx×κq3(x,q)

, respectively.

Lemma 2.7. Let Ξq
ν [.], Ξx

ν [.], and Λx
ν [.] be matrix-valued operators on Ω ×D which are defined via (2.23) and

let T x
h and T q

h be quasiuniform triangulations. Then, for θh ∈ X̂h, κx ∈ T x
h , κq ∈ T q

h , and any nonnegative
Mh ∈ Uq

h , the estimates∫
κx×κq

MhIxh{Ξq
ν [θh] : Ξq

ν [θh]} ≤ C
∫
κx×κq

Mhν
2 + C

∫
κx×κq

MhIxq
h

{
|θh|2

}
, (2.27a)∫

κx×κq

MhIqh{Ξ
x
ν [θh] : Ξx

ν [θh]} ≤ C
∫
κx×κq

Mhν
2 + C

∫
κx×κq

MhIxq
h

{
|θh|2

}
, (2.27b)∫

κx×κq

MhIqh{Λ
x
ν [θh] : Λx

ν [θh]} ≤ C
∫
κx×κq

Mhν
2 + C

∫
κx×κq

MhIxq
h

{
|θh|2

}
, (2.27c)∫

κx×κq

Mh

∣∣∣σΞq
ν [θh](x,q)

∣∣∣2 ≤ C ∫
κx×κq

Mhν
2 + C

∫
κx×κq

MhIxq
h

{
|θh|2

}
, (2.27d)∫

κx×κq

Mh

∣∣∣σΞx
ν [θh](x,q)

∣∣∣2 ≤ C ∫
κx×κq

Mhν
2 + C

∫
κx×κq

MhIxq
h

{
|θh|2

}
, (2.27e)∫

κx×κq

Mh

∣∣∣σΛx
ν [θh](x,q)

∣∣∣2 ≤ C ∫
κx×κq

Mhν
2 + C

∫
κx×κq

MhIxq
h

{
|θh|2

}
(2.27f)

hold true with some C > 0 independent of h, Mh, ν, and θh.

Proof. To prove (2.27a)–(2.27c), we will use the well-known estimates∥∥B−Tκx

∥∥∥∥BT
κx

∥∥ ≤ C, ∥∥∥B−Tκq

∥∥∥ ∥∥∥BT
κq

∥∥∥ ≤ C, (2.28)
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with the Frobenius matrix norm ‖.‖, which hold true for quasiuniform triangulations (cf. [11]). Denoting the
supremum on κx × κq of the largest eigenvalue of Ξ̂q

ν [θh] by σΞ̂q
ν [θh], we compute∫

κx×κq

MhIxh{Ξq
ν [θh] : Ξq

ν [θh]} ≤ C

∫
κx×κq

∥∥∥B−Tκq

∥∥∥2 ∥∥∥BT
κq

∥∥∥2

MhIxh
{

Ξ̂q
ν [θh] : Ξ̂q

ν [θh]
}

≤ C

∫
κx×κq

Mhd
∣∣∣σΞ̂q

ν [θh](x,q)
∣∣∣2=C ∫

κx×κq

Mhd
∣∣∣σΞq

ν [θh](x,q)
∣∣∣2 , (2.29)

as Ξq
ν [θh] and Ξ̂q

ν [θh] share the same eigenvalues. Combining (2.23e) with the mean value theorem yields∣∣∣σΞq
ν [θh](x,q)

∣∣∣2 =
∣∣∣σΞ̂q

ν [θh](x,q)
∣∣∣2 ≤ ∣∣∣∣max

{
ν, max
κx×κq

θh

}∣∣∣∣2 ≤ ν2 + max
κx×κq

|θh|2 . (2.30)

Due to the structure of X̂h, this maximum is attained in one of the vertices of κx × κq. The estimate∫
κx×κq

Mh max
κx×κq

{θh}2 ≤
∫
κx×κq

Mh

d∑
i,j=0

∣∣θh(Pκx,i,Pκq,j

)∣∣2 ≤ C ∫
κx×κq

MhIxq
h

{
|θh|2

}
(2.31)

finally yields (2.27a) and (2.27d). Analogous arguments show (2.27b), (2.27c), (2.27e), and (2.27f). �

As already indicated by their definition, the quantities Ξq
ν [θh], Ξx

ν [θh], and Λx
ν [θh] are meant to be local approx-

imations of θh ∈ X̂h. The following lemma characterizes the quality of the approximation. As Ξq
ν [θh], Ξx

ν [θh],
and Λx

ν [θh] are positive definite matrices, the quality of the approximation will naturally depend on the negative
fraction

[.]− : s 7→ [s]− := min {0, s} (2.32)

of θh.

Lemma 2.8. Let Ξq
ν [.], Ξx

ν [.], and Λx
ν [.] be matrix-valued operators on Ω ×D which are defined via (2.23) and

let the triangulations T x
h and T q

h be quasiuniform. Then, for θh ∈ X̂h, κx ∈ T x
h , κq ∈ T q

h , and any nonnegative
Mh ∈ Uq

h , the following estimates hold true

∫

κx×κq
MhIxh

{
|Ξq
ν [θh]− θh1|2

}
≤ C

(
h2
q

∫

κx×κq
MhIxh

{
|∇qθh|2

}
+

∫

κx×κq
Mhν

2 +

∫

κx×κq
MhIxq

h

{
[θh]2−

})
, (2.33a)

∫

κx×κq
MhIqh

{
|Ξx
ν [θh]− θh1|2

}
≤ C

(
h2
x

∫

κx×κq
MhIqh

{
|∇xθh|2

}
+

∫

κx×κq
Mhν

2 +

∫

κx×κq
MhIxq

h

{
[θh]2−

})
, (2.33b)

∫

κx×κq
MhIqh

{
|Λx
ν [θh]− θh1|2

}
≤ C

(
h2
x

∫

κx×κq
MhIqh

{
|∇xθh|2

}
+

∫

κx×κq
Mhν

2 +

∫

κx×κq
MhIxq

h

{
[θh]2−

})
, (2.33c)

∫

κx×κq
MhIqh

{
|Ξx
ν [θh]− Λx

ν [θh]|2
}
≤ Ch2

x

∫

κx×κq
MhIqh

{
|∇xθh|2

}
, (2.33d)

where 1 denotes the unit matrix in Rd×d.

Proof. We start with the estimate∫
κx×κq

MhIxh
{
|Ξq
ν [θh]− θh1|2

}
≤ C

∫
κx×κq

MhIxh
{∣∣∣Ξq

ν [θh]− g′′ν (θh)−1
1

∣∣∣2}+ C

∫
κx×κq

MhIxh
{∣∣∣g′′ν (θh)−1

1− θh1
∣∣∣2}

=: I + II. (2.34)
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Similarly to the proof of Lemma 2.7, we use (2.28) to gain access to the entries of the diagonal matrix Ξ̂q
ν [θh].

Then, we use the affine linearity of θh with respect to q to compute

I ≤C
∫
κx×κq

Mh

∥∥BT
κx

∥∥2 ∥∥B−Tκx

∥∥2 Ixh
{∣∣∣Ξ̂q

ν [θh]−max {ν, θh}1
∣∣∣2}

≤C
∫
κx×κq

MhdIxh

{∣∣∣∣ max
j=1,...,d

max
{
ν, θh(x,Pκq,j)

}
− min
j=1,...,d

max
{
ν, θh(x,Pκq,j)

}∣∣∣∣2
}

≤C
∫
κx×κq

MhdIxh

{∣∣∣∣ max
j=1,...,d

θh(x,Pκq,j)− min
j=1,...,d

θh(x,Pκq,j)
∣∣∣∣2
}

≤C
∫
κx×κq

Mhh
2
q ‖∇qθh‖2L∞(κx×κq) ≤ Ch2

q

∫
κx×κq

Mh

d∑
i=1

|∇qθh(Pκx,i,q)|2

≤Ch2
q

∫
κx×κq

MhIxh
{
|∇qθh|2

}
,

(2.35)

where we used that ∇qθh is constant with respect to q on each simplex. Concerning the second term, we use
that g′′ν (s)−1 ≡ s for s ≥ ν.

II ≤ d
∫
κx×κq

Mh

∥∥ν − [θh]−
∥∥2

L∞(κx×κq)
≤ C

∫
κx×κq

Mh

∥∥∥ν2 + [θh]2−
∥∥∥
L∞(κx×κq)

≤ C
∫
κx×κq

Mhν
2 + C

∫
κx×κq

Mh

d∑
i,j=0

[θh(Pκx,i,Pκq,j)]
2

−

≤ C
∫
κx×κq

Mhν
2 + C

∫
κx×κq

MhIxq
h

{
[θh]2−

}
. (2.36)

Therefore, (2.33a) is proven. Analogous computations yield (2.33b) and (2.33c). Noting g′′ν (θh)−1 ≡ f ′ν(θh), the
last inequality follows from∫
κx×κq

MhIqh
{
|Ξx
ν [θh]− Λx

ν [θh]|2
}

≤C
∫
κx×κq

MhIqh

{∣∣∣Ξx
ν [θh]− g′′ν (θh)−1

1

∣∣∣2}+ C

∫
κx×κq

MhIqh
{
|f ′ν(θh)1− Λx

ν [θh]|2
}

(2.37)

with arguments similar to (2.35). �

2.4. A discrete mollifier

In this subsection, we introduce a finite element version of the continuous mollifier Jε. It will turn out
that a suitable weak formulation (or discrete scheme, respectively) allows to drop the properties (1.9a)–(1.9e).
Therefore, we only demand that the discrete mollifier satisfies an inequality similar to (1.9f) and converges
towards Jε in a suitable sense (cf. Lem. 2.11).

We define a discrete mollification operator Jε,h analogously to (1.8). Again, we start with a nonnegative,
rotationally symmetric ζ ∈ W 2,∞(Rd) satisfying supp ζ ⊂ B(0, 1) with mass one. We then define ζε(x) :=
ε−dζ(ε−1x) and finally Jε,h via

Jε,h{f}(x) := cJ (x)
∫
Ω

Iyh{ζε(x− y)}f(y) dy, (2.38)
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for f ∈ L1(Ω) with the nodal interpolation operator Iyh which is equivalent to Ixh but works on the spatial
variable y. The weight function cJ (x) := [

∫
Rd
Iyh{ζε(x− y)} dy]−1 reduces the impact of the triangulation on

Jε,h but inhibits a property similar to (1.9c). As we defined Ω∗ such that dist (Ω, ∂Ω∗) ≥ ε, it suffices to write
cJ in a practically more convenient way as

cJ (x) :=
[∫

Ω∗
Iyh{ζε(x− y)} dy

]−1

. (2.39)

Lemma 2.9. Let {T x∗
h }h>0 and {T q

h }h>0
satisfy (S1)–(S3) and let cJ be the weight function defined via (2.39).

Then there exists C > 0 independent of hx such that

‖cJ ‖W 1,∞(Ω) ≤ C(ε), (2.40)

for hx small enough.

Proof. Using
∫
Ω∗
ζε(x− y) dy ≡ 1 for all x ∈ Ω and the standard error estimates for the interpolation operator

(see e.g. Thm. 4.4.4 and Them. 4.4.20 in [9]), we obtain∫
Ω∗
Iyh{ζε(x− y)} dy =

∫
Ω∗
ζε(x− y) dy +

∫
Ω∗

(Iyh{ζε(x− y)} − ζε(x− y)) dy

≥ 1−
∑

κx∈T x∗
h

|κx| ‖ζε(x− . )− Iyh{ζε(x− . )}‖
L∞(κx)

≥ 1−
∑

κx∈T x∗
h

|κx|Ch2
x |ζε(x− . )|W 2,∞(κx)

≥ 1− C |Ω∗|h2
x |ζε|W 2,∞(Rd) ≥ 1− C(ε)h2

x ≥ C̃(ε) > 0,

(2.41)

for hx small enough. Therefore, ‖cJ ‖L∞(Ω) is bounded from above by C̃(ε)
−1

. Combining this result with

|∂xicJ (x)| ≤
[∫

Ω∗
Iyh{ζε(x− y)} dy

]−2 ∣∣∣∣∂xi ∫
Ω∗
Iyh{ζε(x− y)} dy

∣∣∣∣
= c2J (x)

∣∣∣∣∣∣
∫
Ω∗

dimUx∗
h∑

j=1

∂xiζε(x− yj)χ
y
h,j(y) dy

∣∣∣∣∣∣ ≤ c2J (x) |Ω∗| ‖∂xiζε‖L∞(Rd)

(2.42)

for all i = 1, . . . , d, where {χy
h,j}j=1,...,dimUx∗

h

form a dual basis to the nodes {yj}j=1,...,dimUx∗
h

with∑dimUx∗
h

j=1 χy
h,j(y) ≡ 1, yields the result. �

The mollifier Jε was constructed as convolution with a W 2,∞(Rd)-kernel, which allowed for the estimate
(1.9f). In the discrete setting, the interpolation operator Iyh decreases the regularity. However, we still have an
analog to (1.9f) for the W 1,∞(Ω)-norm of the discrete mollifier.

Lemma 2.10. Let {T x∗
h }h>0 and {T q

h }h>0
satisfy (S1)–(S3) and let cJ be the weight function defined via

(2.39). Then, the discrete mollifier Jε,h defined in (2.38) satisfies

‖Jε,h{f}‖W 1,∞(Ω) ≤ C(ε) ‖f‖L1(Ω) for all f ∈ L1(Ω), (2.43)

with some C(ε) > 0 which is independent of hx.
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Proof. We use the result of Lemma 2.9 and the regularity of ζε to compute

‖Jε,h{f}‖L∞(Ω) ≤ sup
x∈Ω

(
cJ (x)

∫
Ω

|Iyh{ζε(x− y)}| |f(y)| dy
)

≤ C ‖ζε‖L∞(Rd)

∫
Ω

|f(y)| dy ≤ C(ε) ‖f‖L1(Ω) .

(2.44)

Applying the product rule on the derivative of Jε,h{f} yields

|∂xiJε,h{f}| ≤ |∂xicJ (x)|
∫
Ω

|Iyh{ζε(x− y)}| |f(y)| dy

+ |cJ (x)|
∫
Ω

|∂xiI
y
h{ζε(x− y)}| |f(y)| dy. (2.45)

The first summand is bounded from above by C(ε) ‖f‖L1(Ω) due to Lemma 2.9 and the regularity of ζε.
Concerning the second summand, we have ‖cJ ‖L∞(Ω) ≤ C(ε) and may apply the mean value theorem to obtain
the desired result. �

With the following lemma, we prove the convergence of Jε,h{f} towards Jε{f} for f ∈ L1(Ω).

Lemma 2.11. Let be Jε be the mollifier defined in (1.8) and Jε,h the finite element version of Jε which is
defined in (2.38). Furthermore, let {T x∗

h }h>0 and {T q
h }h>0

satisfy (S1)–(S3) and let cJ be the weight function
defined via (2.39). Then, there exists C > 0 independent of hx such that

‖Jε,h{f} − Jε{f}‖W 1,∞(Ω) ≤ C(ε)hx ‖f‖L1(Ω) (2.46)

for f ∈ L1(Ω) and hx small enough.

Proof. We start with the estimate

‖Jε,h{f} − Jε{f}‖W 1,∞(Ω) ≤
∥∥∥∥cJ (.)

∫
Ω

(Iyh{ζε( . − y)} − ζε( . − y))f(y) dy
∥∥∥∥
W 1,∞(Ω)

+
∥∥∥∥(1− cJ (.))

∫
Ω

ζε( . − y)f(y) dy
∥∥∥∥
W 1,∞(Ω)

=: I + II. (2.47)

Applying the product rule on I yields

I ≤‖cJ ‖W 1,∞(Ω)

∥∥∥∥∫
Ω

(Iyh{ζε( . − y)} − ζε( . − y))f(y) dy
∥∥∥∥
L∞(Ω)

+ ‖cJ ‖L∞(Ω) max
i=1,..,d

∥∥∥∥∫
Ω

∂xi(I
y
h{ζε( . − y)} − ζε( . − y))f(y) dy

∥∥∥∥
L∞(Ω)

.

(2.48)

Lemma 2.9 provides ‖cJ ‖W 1,∞(Ω) ≤ C(ε). To control the second factors in the terms on the right-hand

side of (2.48), we denote the dual basis to the nodes {yj}j=1,...,dimUx∗
h

by
{
χy
h,j

}
j=1,...,dimUx∗

h

. Noting∑dimUx∗
h

j=1 χy
h,j(y) ≡ 1 for y ∈ Ω, we compute for x ∈ Ω

sup
y∈Ω
|(Iyh{ζε(x− y)} − ζε(x− y))| = sup

y∈Ω

∣∣∣∣∣∣
dimUx

h∑
j=1

(ζε(x− yj)− ζε(x− y))χy
h,j(y)

∣∣∣∣∣∣
≤ sup

y∈Ω
max

j : y∈suppχy
h,j

|ζε(x− yj)− ζε(x− y)| ≤ C(ε)hx, (2.49)
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where we used 0 ≤ χy
h,j ≤ 1 for j = 1, . . . ,dimUx

h , |ζε(x̃)− ζε(ỹ)| ≤ C(ε) |x̃− ỹ| for x̃, ỹ ∈ Ω (as ζε ∈
W 2,∞(Rd)), and maxj=1,...,dimUx

h
diam

(
suppχy

h,j

)
≤ Chx. Similarly, we compute for i = 1, . . . , d and x ∈ Ω

sup
y∈Ω
|∂xi(I

y
h{ζε(x− y)} − ζε(x− y))| ≤ C(ε)hx. (2.50)

Combining (2.48) with Lemma 2.9, (2.49), and (2.50) yields

I ≤ C(ε)hx ‖f‖L1(Ω) . (2.51)

To control II, we compute

II ≤ C ‖1− cJ (.)‖W 1,∞(Ω) ‖Jε{f}‖W 1,∞(Ω) . (2.52)

As (1.9f) yields ‖Jε{f}‖W 1,∞(Ω) ≤ ‖Jε{f}‖W 2,∞(Ω) ≤C(ε) ‖f‖L1(Ω), it remains to show that
‖1− cJ (.)‖W 1,∞(Ω) ≤ hxC(ε). From (2.41), we have

∫
Ω∗
Iyh{ζε(x− y)} dy ≥ 1 − C(ε)h2

x for x ∈ Ω.
Analogously, we may compute

∫
Ω∗
Iyh{ζε(x− y)} dy ≤ 1 + C(ε)h2

x. Hence, we have for hx small enough

‖1− cJ (.)‖L∞(Ω) =
∥∥∥∥
∫
Ω∗
Iyh{ζε( . − y)} dy − 1∫
Ω∗
Iyh{ζε( . − y)} dy

∥∥∥∥
L∞(Ω)

≤ C(ε)h2
x

1− C(ε)h2
x

≤ C(ε)h2
x. (2.53)

Noting
∫
Ω∗
ζε(x− y) dy = 1 for all x ∈ Ω and reusing the idea of (2.50), we obtain

‖∂xi(1− cJ (.))‖L∞(Ω)

≤ ‖cJ ‖2L∞(Ω) |Ω
∗| sup

y∈Ω∗,x∈Ω
|∂xi(I

y
h{ζε(x− y)} − ζε(x− y))| ≤ C(ε)hx (2.54)

for i = 1, . . . , d, which completes the proof. �

By applying Jε,h on each component of a vector-valued function f ∈ L1(Ω), we obtain a discrete version of
J ε denoted by J ε,h which satisfies a vector-valued version of Lemma 2.10 and Lemma 2.11. As we will not
consider the limit ε↘ 0, we suppress the dependence of constants on ε and denote the discrete mollifiers by Jh
and J h.

3. A stable, discrete scheme

In this section, we introduce a stable, fully discrete finite element scheme allowing to approximate the solutions
of (1.5) in the case of different mass densities and establishing an a priori stability result for possible solutions.
An existence result may easily be deduced using Brouwer’s fixed point theorem.

As we show in the subsequent sections, the presented scheme is convergent in the case of equal mass densities.
As the mass density function ρ depends affine linearly on the phase-field parameter φ, it is positive as long

as φ stays in the interval (−At−1,At−1) with At :=
∣∣∣ ρ̃2−ρ̃1ρ̃2+ρ̃1

∣∣∣ < 1 denoting the Atwood number. Since there is no
mechanism guaranteeing that φ stays in this region, we introduce a regularized mass density function (cf. [15]).
Picking some parameter φ ∈ (1,At−1), we approximate the mass density of the two-phase flow by a smooth,
monotonously increasing (or decreasing, respectively), strictly positive function ρ satisfying

ρ(φ)
∣∣
(−φ,+φ) = ρ̃2+ρ̃1

2 − ρ̃2−ρ̃1
2 φ, (3.1a)

ρ(φ)
∣∣
(−∞,−φ] ≡ const, ρ(φ)

∣∣
[+φ,+∞) ≡ const. (3.1b)

As the original mass density ρ depends affine linearly on the phase-field parameter, we introduce δρ
δφ := ρ̃2−ρ̃1

2

as an approximation of the derivative of ρ (cf. [15]).
Similarly to [16], we make the following assumption on the general structure of the double-well potential W .
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(W1) W ∈ C1(R;R+
0 ) with

∣∣W (s)s−3
∣∣→∞ for |s| → ∞ such that W ′ is piecewise C1 and that its derivatives

have at most quadratic growth for |s| → ∞.

We allow for different discrete approximations of the derivative W ′ which we denote by W ′h : R2 → R+
0 .

Thereby, we will assume that the following conditions hold true.

(W2) There is a positive constant C such that for all a, b ∈ R

|W ′h(a, b)| ≤ C
(

1 + |a|3 + |b|3
)
.

(W3) W ′h(a, b)(a− b) ≥W (a)−W (b) for all a, b ∈ R.
(W4) W ′h(a, a) = W ′(a) for all a ∈ R.
(W5) There is a positive constant C, such that for all a, b, c ∈ R

|W ′h(a, b)−W ′h(b, c)| ≤ C(a2 + b2 + c2)(|a− b|+ |b− c|).

Remark 3.1. In the simulations presented in Section 6, we will consider a polynomial double-well potential
with penalty terms which reads

W (φ) = 1
4 (1− φ2)

2
+ 1

δ′ max {|φ| − 1, 0}2 (3.2)

with some penalty parameter 0 < δ′ << 1. This approach often suffices to confine the phase-field parameter to
an interval close to the physical meaningful interval [−1,+1]. The double-well potential defined in (3.2) satisfies
(W1). Suitable choices for W ′h( . , . ) satisfying (W2)–(W5) are e.g. discretizations using a difference quotient or
the classical convex-concave splitting (cf. [16]).

For the approximation of β′, we use a difference quotient, i.e. we define β′DQ by

β′DQ(a, b) :=
{
β(a)−β(b)

a−b if a 6= b,
β′(a) if a = b,

(3.3)

for all a, b ∈ R, which immediately yields β′DQ(a, b)(a− b) = β(a)− β(b) for all a, b ∈ R.

Denoting the backward difference quotient in time by ∂−τ and using the above definitions, we introduce
the following discrete scheme. Given φn−1

h ∈ Ux
h , ψ̂n−1

h ∈ X̂h, and un−1
h ∈ W h,div, we compute a quadruple{

φnh, µ
n
φ,h, ψ̂

n
h ,u

n
h

}
∈ Ux

h × Ux
h × X̂h ×W h,div solving

∫
Ω

Ixh
{
∂−τ φ

n
hθ

x
h

}
−
∫
Ω

φn−1
h un−1

h · ∇xθ
x
h

+ τ

∫
Ω

(
min ρn−1

h

)−1 ∣∣φn−1
h

∣∣2∇xµ
n
φ,h · ∇xθ

x
h +

∫
Ω

∇xµ
n
φ,h · ∇xθ

x
h = 0 ∀θxh ∈ Ux

h , (3.4a)∫
Ω

Ixh
{
µnφ,hθ

x
h

}
=
∫
Ω

Ixh
{
W ′h
(
φnh, φ

n−1
h

)
θxh
}

+
∫
Ω

(ϑ∇xφ
n
h + (1− ϑ)∇xφ

n−1
h ) · ∇xθ

x
h

+
∫
Ω

Ixh
{
Jh
{
Ixh
{
β′DQ

(
φnh, φ

n−1
h

)
θxh
}}∫

D

(Mh + m)ψ̂n−1
h

}
∀θxh ∈ Ux

h , (3.4b)
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Ω×D

(Mh + m)Ixq
h

{
∂−τ ψ̂

n
hθh

}
−
∫
Ω×D

Mhunh · I
q
h

{
Λx
ν [ψ̂nh ]∇xθh

}
−
∫
Ω×D

(∇xIxh{J h{unh}} · I
q
h{qMh}) · Ixh

{
Ξq
ν [ψ̂nh ]∇qθh

}
+(1− γ)

∫
Ω×D

cxMhIqh
{(

Ξx
ν [ψ̂nh ]∇xIxq

h

{
g′ν(ψ̂nh) + Jh{Ixh{β(φnh)}}

})
· ∇xθh

}
+γ
∫
Ω×D

cxMhIqh
{(

Λx
ν [ψ̂nh ]∇xIxq

h

{
g′ν(ψ̂nh) + Jh{Ixh{β(φnh)}}

})
· ∇xθh

}
+
∫
Ω×D

cqMhIxh
{
∇qψ̂

n
h · ∇qθh

}
= 0

∀θh ∈ X̂h,

(3.4c)

∫
Ω

1
2

(
ρnh + ρn−1

h

)
∂−τ unh ·wh + 1

2

∫
Ω

∂−τ ρ
n
hun−1

h ·wh

+ 1
2

∫
Ω

ρnh

(
(∇xunh)T ·wh

)
· un−1

h − 1
2

∫
Ω

ρnh

(
(∇xwh)T · unh

)
· un−1

h

+ 1
2

∫
Ω

δρ
δφ

(
(∇xunh)T ·wh

)
· ∇xµ

n
φ,h − 1

2

∫
Ω

δρ
δφ

(
(∇xwh)T · unh

)
· ∇xµ

n
φ,h

+
∫
Ω

2Ixh{η(φnh)}Dunh : Dwh = −
∫
Ω

φn−1
h ∇xµ

n
φ,h ·wh

−
∫
Ω×D

Mhwh · Iqh
{

Λx
ν [ψ̂nh ]∇xIxq

h

{
g′ν(ψ̂nh) + Jh{Ixh{β(φnh)}}

}}
−
∫
Ω×D

(∇xIxh{J h{wh}} · Iqh{qMh}) · ∇qψ̂
n
h

∀wh ∈W h,div,

(3.4d)

with some fixed ϑ ∈ (0.5, 1], γ ∈ (0, 1) and some regularization parameter m > 0. To simplify the notation, we
used the abbreviation ρnh := Ixh{ρ(φnh)}. For better readability, we introduce the discrete version of the chemical
potential of the polymer densities as

µnψ,h,ν := Ixq
h

{
g′ν(ψ̂nh) + Jh{β(φnh)}

}
∈ X̂h (3.5)

for n = 1, . . . , N .

Remark 3.2. As (3.4a) and (3.4b) do not depend on ψ̂nh and unh, it is possible to compute φnh and µnφ,h
separately before advancing to (3.4c) and (3.4d). To maintain stability, the third term in (3.4a) was added.
Similar splitting ideas have previously been used in [3], [20], and [26] for a model of magnetohydrodynamics and
for diffuse interface models for multi-phase and two-phase flows, respectively. For the case of a pure two-phase
flow with different mass densities without any additional species, convergence of this splitting approach has
been established in [16].

Remark 3.3. For time-discretizations of
∫
Ω
∇xφ · ∇xθ

x, we have chosen a compromise between

∇xφ
n
h · ∇x∂

−
τ φ

n
h = 1

2τ |∇xφ
n
h|

2 + 1
2τ

∣∣∇xφ
n
h −∇xφ

n−1
h

∣∣2 − 1
2τ

∣∣∇xφ
n−1
h

∣∣2
and

1
2

(
∇xφ

n
h +∇xφ

n−1
h

)
· ∇x∂

−
τ φ

n
h = 1

2τ |∇xφ
n
h|

2 − 1
2τ

∣∣∇xφ
n−1
h

∣∣2 ,
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to reduce the numerical dissipation of the scheme (cf. Sect. 4.2 in [25]). Although the scheme is still stable for ϑ =
0.5, the presented proof of convergence requires ϑ > 0.5, as we need to control τ−1

∑n
k=1

∫
Ω

∣∣∇xφ
k
h −∇xφ

k−1
h

∣∣2
(cf. Lem. 5.1).

Remark 3.4. The choice of Λx
ν [ψ̂nh ] as an approximation for ψ̂ in the x-convective term in (3.4c) allows to

establish improved regularity results for the scaled configurational density ψ̂ (cf. Lem. 4.5). Unfortunately, this
enforces the application of Λx

ν [ψ̂nh ] on the right-hand side of (3.4d). As a result, we will need control over∫
Ω×D

MhIqh
{(

Λx
ν [ψ̂nh ]∇xµ

n
ψ,h,ν

)
· ∇xµ

n
ψ,h,ν

}
to prove compactness in time for the velocity field (cf. Lem. 4.8). Therefore, the approximation of ψ̂ by
(1− γ)Ξx

ν [ψ̂nh ] + γΛx
ν [ψ̂nh ] in the fourth and fifth term in (3.4c) is necessary.

Replacing Λx
ν [ψ̂nh ] by Ξx

ν [ψ̂nh ] also results in a stable scheme, but by now there is no technique at hand to
improve the regularity of ψ̂ and therefore to prove convergence of this version of (3.4).

As Mh vanishes on the majority of D\D for hq small enough, we introduced the regularization parameter m

to prevent definition gaps in (3.4c).

Remark 3.5. By choosing weakly solenoidal test functions in (3.4d), we eliminated the pressure term, which
is more convenient for the analysis of the scheme. As shown in ([14], Chap. 1, Sect. 4), the formulation in (3.4d)
is equivalent to the straightforward approach using w ∈W h and the pressure term −

∫
Ω
pnh divx w, as W h and

Sh satisfy the inf-sup condition (cf. (TH1)).
After passing to the limit in Theorem 5.2, one may recover the pressure in a very weak sense following the

procedure discussed in [28].

Remark 3.6. In the third term on the left-hand-side of (3.4c) and in the third term on the right-hand side
of (3.4d) we used Iqh{qMh}. At this point, the interpolation operator is neither necessary for stability nor for
convergence, but it reduces the costs of an exact integration of these terms.

Testing (3.4a) and (3.4c) by 1 shows that solutions to (3.4), if they exists, satisfy the conservation properties∫
Ω

φnh =
∫
Ω

φn−1
h and

∫
Ω×D

(Mh + m)ψ̂nh =
∫
Ω×D

(Mh + m)ψ̂n−1
h (3.6)

for all n ∈ {1, . . . , N}.
As shown in the following lemma, the scheme presented in (3.4) is consistent with thermodynamics in the

sense that the discrete version of the energy

Eh(φnh, ψ̂
n
h ,u

n
h) := 1

2

∫
Ω

|∇xφ
n
h|

2 +
∫
Ω

Ixh{W (φnh)}+
∫
Ω×D

(Mh + m)Ixq
h

{
gν(ψ̂nh)

}
+
∫
Ω×D

(Mh + m)Ixh
{
ψ̂nhJh{Ixh{β(φnh)}}

}
+ 1

2

∫
Ω

ρnh |unh|
2

(3.7)

is not increasing. In particular, testing (3.4a) by τµnφ,h, (3.4b) by τ∂−τ φ
n
h, (3.4c) by τµnψ,h,ν , and (3.4d) by τunh

yields the following result (cf. [25]).

Lemma 3.7. Let W and W ′h satisfy (W1)–(W5). Furthermore, let (T) and (S1)–(S3) hold true. Assuming
η ≥ c > 0 and β ≥ 0, a solution (φnh, µ

n
φ,h, ψ̂

n
h ,u

n
h) ∈ Ux

h × Ux
h × X̂h ×W h,div to (3.4), if exists, satisfies for

n = 1, . . . , N
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Eh(φnh, ψ̂
n
h ,u

n
h) + 2ϑ−1

2

∫
Ω

∣∣∇xφ
n
h −∇xφ

n−1
h

∣∣2 + 1
4

∫
Ω

ρn−1
h

∣∣unh − un−1
h

∣∣2
+ τ

∫
Ω

∣∣∇xµ
n
φ,h

∣∣2 + τ

∫
Ω

2Ixh{η(φnh)} |Dunh|
2

+ τ

∫
Ω×D

cqMhIxh
{(

Ξq
ν [ψ̂nh ]∇qIxq

h

{
g′ν(ψ̂nh)

})
· ∇qIxq

h

{
g′ν(ψ̂nh)

}}
+ τ

∫
Ω×D

cxMhIqh
{((

(1− γ)Ξx
ν [ψ̂nh ] + γΛx

ν [ψ̂nh ]
)
∇xµ

n
ψ,h,ν

)
· ∇xµ

n
ψ,h,ν

}
≤ Eh(φn−1

h , ψ̂n−1
h ,un−1

h ) (3.8)

with given initial data (φ0
h, ψ̂

0
h,u

0
h) ∈ Ux

h × X̂h ×W h,div.

As we can not guarantee ψ̂nh ≥ 0 for n ∈ {1, . . . , N}, the Henry energy, i.e. the term∫
Ω×D

(Mh + m)Ixh
{
ψ̂nhJh{Ixh{β(φnh)}}

}
, may become arbitrarily negative and therefore Lemma 3.7 alone does

not provide stability of the scheme. By enhancing the ideas of [7], we refine this result to guarantee stability.

Lemma 3.8. Let initial data (φ0
h, ψ̂

0
h,u

0
h) ∈ Ux

h × X̂h ×W h,div be given, let W and W ′h satisfy (W1)–(W5),
let (T) and (S1)–(S3) hold true, and let η ≥ c > 0 and β ≥ 0. For n = 1, . . . , N , a solution (φnh, µ

n
φ,h, ψ̂

n
h ,u

n
h) ∈

Ux
h × Ux

h × X̂h ×W h,div to (3.4), if exists, satisfies

1
2

∫
Ω

|∇xφ
n
h|

2 +
∫
Ω

Ixh{W (φnh)} +
∫
Ω×D

(Mh + m)Ixq
h

{
gν(ψ̂nh)

}
+ ν−1

∫
Ω×D

(Mh + m)Ixq
h

{
[ψ̂nh ]

2

−

}
+ 1

2

∫
Ω

ρnh |unh|
2

+ 2ϑ−1
2

n∑
k=1

∫
Ω

∣∣∇xφ
k
h −∇xφ

k−1
h

∣∣2 + 1
4

n∑
k=1

∫
Ω

ρk−1
h

∣∣ukh − uk−1
h

∣∣2
+ τ

n∑
k=1

∫
Ω

∣∣∇xµ
k
φ

∣∣2 + τ

n∑
k=1

∫
Ω

2Ixh
{
η(φkh)

} ∣∣Dukh
∣∣2

+ τ

n∑
k=1

∫
Ω×D

cqMhIxh
{(

Ξq
ν [ψ̂kh]∇qIxq

h

{
g′ν(ψ̂kh)

})
· ∇qIxq

h

{
g′ν(ψ̂kh)

}}
+ τ

n∑
k=1

∫
Ω×D

cxMhIqh
{((

(1− γ)Ξx
ν [ψ̂kh] + γΛx

ν [ψ̂kh]
)
∇xµ

k
ψ,h,ν

)
· ∇xµ

k
ψ,h,ν

}
≤ CEh(φ0

h, ψ̂
0
h,u

0
h) + C, (3.9)

with some constant C > 0 independent of h, τ , m, and ν.

Proof. We consider a dual basis to the nodes {xi}i=1,...,dimUx
h

and {qj}j=1,...,dimUq
h

which is denoted by

{χx
h,i}i=1,...,dimUx

h

and {χq
h,j}j=1,...,dimUq

h

. Furthermore, we denote ψ̂nh(xi,qj) by ψ̂nh,i,j and define positive

weights λij :=
∫
Ω×D

(Mh + m)χx
h,iχ

q
h,j for all i ∈ {1, . . . ,dimUx

h }, j ∈ {1, . . . ,dimUq
h }. We compute

1
2

∫
Ω×D

(Mh + m)Ixq
h

{
gν(ψ̂nh)

}
= 1

2

dimUx
h∑

i=1

dimUq
h∑

j=1

λijgν(ψ̂nh,i,j)

= 1
2

∑
i,j : ψ̂nh,i,j≥0

λijgν(ψ̂nh,i,j) + 1
2

∑
i,j : ψ̂nh,i,j<0

λijgν(ψ̂nh,i,j). (3.10)
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As there exists a ν-independent lower bound for gν , the first summand is bounded from below. From (2.21a),
we have for negative ψ̂nh,i,j

gν(ψ̂nh,i,j) =
|ψ̂nh,i,j |2

2ν
− ν

2
+ ψ̂nh,i,j(log ν − 1) ≥ 1

2ν
[ψ̂nh,i,j ]

2

− −
ν

2
, (3.11)

as [ψ̂nh,i,j ]−(log ν − 1) ≥ 0. Therefore, we have

1
2

∫
Ω×D

(Mh + m)Ixq
h

{
gν(ψ̂nh)

}
≥ −C +

1
4ν

∫
Ω×D

(Mh + m)Ixq
h

{
[ψ̂nh ]

2

−

}
. (3.12)

On the other hand, we may apply Young’s inequality to compute∫
Ω×D

(Mh + m)Ixh
{
Jh{Ixh{β(φnh)}}ψ̂nh

}
≥
∫
Ω×D

(Mh + m)Ixq
h

{
Jh{Ixh{β(φnh)}}[ψ̂nh ]−

}
≥ −δ

∫
Ω×D

(Mh + m)Ixq
h

{
[ψ̂nh ]

2

−

}
− Cδ,

(3.13)

with 0 < δ << 1 independent of ν. Combining (3.12) and (3.13) provides(
1
4ν − δ

) ∫
Ω×D

(Mh + m)Ixq
h

{
[ψ̂nh ]

2

−

}
≤
∫
Ω×D

(Mh + m)Ixh
{
Jh{Ixh{β(φnh)}}ψ̂nh

}
+ 1

2

∫
Ω×D

(Mh + m)Ixq
h

{
gν(ψ̂nh)

}
+ C. (3.14)

Applying this on a discrete integration in time over the result of Lemma 3.7 provides the result. �

At this point, we want to emphasize that the constants in Lemma 3.8 does not depend on the mollification
parameter ε. Combining the a priori estimates above with Brouwer’s fixed point theorem, we obtain the existence
of discrete solutions (cf. [25]).

Lemma 3.9. Let the assumptions (W1)–(W5) hold true. Furthermore, let β ∈ C1(R+
0 ) ∩W 1,∞(R) and η ∈

C1(R) ∩W 1,∞(R) with η ≥ c > 0, then for given
(
φn−1
h , ψ̂n−1

h ,un−1
h

)
∈ Ux

h × X̂h ×W h,div and a given time

increment τ > 0, there exists at least one quadruple
(
φnh, µ

n
φ,h, ψ̂

n
h ,u

n
h

)
∈ Ux

h × Ux
h × X̂h ×W h,div satisfying

(3.4).

4. Compactness in space and time

From now on, we restrict ourselves to the case of equal mass densities. Without loss of generality, we assume
ρ ≡ 1. Furthermore, we make the following general assumptions

(A1) The spring potential U and its associated Maxwellian M satisfy (P1)–(P5) with some κ > 1 such that
Lemma 2.2 holds true.

(A2) The discretization in time satisfies (T).
(A3) Ω∗ and Ω are bounded, convex polygonal (or polyhedral) domains with families of partitions {T x∗

h }h>0

and {T x
h }h>0 satisfying (S1)–(S2).

D is a bounded polygonal (or polyhedral) domain with a family of partitions {T q
h }h>0

satisfying (S3).
(A4) Assumptions (W1)–(W5) apply to the double-well potential W and the time-discrete approximations of

its derivatives.
(A5) The mollification operators Jε and J ε are defined by (1.8), while their discrete counterparts Jh and J h

are obtained via (2.38).
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(A6) β, η ∈ C∞(R) ∩W 2,∞(R), and there exist constants c1, c2 > 0 such that

0 ≤ β(s) ≤ c2 c1 ≤ η(s) ≤ c2 ∀s ∈ R.

(A7) There is a constant C > 0 such that hκq ≤ Cm with the κ > 1 used in assumption (A1). Furthermore, hx

and ν satisfy the relation h2
x

ν → 0, as hx, ν ↘ 0.
(A8) Let initial data Φ0 ∈ H2(Ω; [−1, 1]) and U0 ∈ H1

0,div(Ω) be given such that we have for discrete initial
data φ0

h = Ixh
{
Φ0
}

and u0
h := Qh

{
U0
}

uniformly in h > 0 that

∥∥u0
h

∥∥
H1(Ω)

+
∫
Ω

∣∣∆hφ
0
h

∣∣2 +
∫
Ω

∣∣∇xφ
0
h

∣∣2 +
∫
Ω

Ixh
{
W (φ0

h)
}
≤ C <∞.

(A9) Let nonnegative initial data for the scaled configurational density be given as Ψ̂0 ∈ L2(Ω ×D). We
compute discrete initial data ψ̂0

h via∫
Ω×D

(Mh + m)Ixq
h

{
ψ̂0
hθh

}
+ τ

∫
Ω×D

MhIqh
{
∇xψ̂

0
h · ∇xθh

}
+τ
∫
Ω×D

MhIxh
{
∇qψ̂

0
h · ∇qθh

}
=
∫
Ω×D

(Mh + m)Ψ̂0θh ∀θh ∈ X̂h. (4.1)

Remark 4.1. The definition of the discrete initial data is an adaption of the ideas used in [7]. As shown in
[25], it is also possible to adapt (4.1) to allow for Ψ̂0 ∈ L2(Ω ×D; M̂).

Lemma 4.2. Under the assumptions (A1), (A3), (A7), and (A9) the discrete initial data ψ̂0
h satisfies∫

Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂0
h

∣∣∣2}+ τ

∫
Ω×D

MhIqh

{∣∣∣∇xψ̂
0
h

∣∣∣2}+ τ

∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

0
h

∣∣∣2} ≤ C, (4.2)

with some C > 0 independent of h, τ , m, and ν. In addition, we have

ψ̂0
h ≥ 0. (4.3)

To prove this lemma, we need an additional result concerning the Maxwellian M̂ and its discrete counterpart
Mh.

Lemma 4.3. Let (A1) and (A7) hold true. Then there is a positive constant c independent of h, τ , m, and ν
such that

M̂(q) ≤ c(Mh(q) + m)

for all q ∈ D.

Proof. Let T q
h,inner ⊂ T

q
h be the set containing all κq ∈ T q

h satisfying κq ⊂ D and dist (κq, ∂D) ≥ hq. Then we
have for every κq ∈ T q

h,inner

min
q∈κq

M̂(q) ≥ c1[dist (κq, ∂D)]κ, (4.4)

max
q∈κq

M̂(q) ≤ c2[dist (κq, ∂D) + hq]κ ≤ c22κ[dist (κq, ∂D)]κ (4.5)

with κ > 1 due to (P3) and therefore

M̂ ≤ max
q∈κq

M̂(q) ≤ c22κ

c1

chq
cM

min
q∈κq

M̂(q) ≤ c22κ

c1cM
Mh, (4.6)



ON CONVERGENT SCHEMES FOR TWO-PHASE FLOW 2379

as chq ≥ cM (see Lem. 2.2). We use (P3) and hκq ≤ Cm on every κq ∈ T q
h \ T

q
h,inner to compute

max
q∈κq

M̂(q) ≤ Chκq ≤ Cm. (4.7)

�

Proof of Lemma 4.2. Testing (4.1) by ψ̂0
h ∈ X̂ yields

(1− δc)
∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂0
h

∣∣∣2} + τ

∫
Ω×D

MhIqh

{∣∣∣∇xψ̂
0
h

∣∣∣2}
+τ
∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

0
h

∣∣∣2} ≤ C (4.8)

and therefore (4.2) for δ small enough. The nonnegativity of ψ̂0
h follows from standard arguments (cf. Chap. 11

in [29]). �

Combining Lemma 3.8 with the regularity assumptions on the initial data and noting∣∣∣∣∫
Ω×D

(Mh + m)Ixq
h

{
gν(ψ̂0

h)
}∣∣∣∣ ≤ ∫

Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂0
h

∣∣∣2}+ C. (4.9)

for ψ̂0
h ≥ 0, we obtain our first regularity result.

Lemma 4.4. Let the assumptions (A1)–(A9) hold true. Then for n = 1, . . . , N a solution {φnh, µnφ,h, ψ̂nh ,unh} ∈
Ux
h × Ux

h × X̂h ×W h,div to the equal density version of (3.4) satisfies∫
Ω

|∇xφ
n
h|

2 +
∫
Ω

Ixh{W (φnh)}+
∫
Ω×D

(Mh + m)Ixq
h

{
gν(ψ̂nh)

}
+ ν−1

∫
Ω×D

(Mh + m)Ixq
h

{
[ψ̂nh ]

2

−

}
+
∫
Ω

|unh|
2 + 2ϑ−1

2

n∑
k=1

∫
Ω

∣∣∇xφ
k
h −∇xφ

k−1
h

∣∣2 +
n∑
k=1

∫
Ω

∣∣ukh − uk−1
h

∣∣2 + τ

n∑
k=1

∫
Ω

∣∣∇xµ
k
φ

∣∣2
+ τ

n∑
k=1

∫
Ω

2Ixh
{
η(φkh)

} ∣∣Dukh
∣∣2 + τ

n∑
k=1

∫
Ω×D

MhIxh
{(

Ξq
ν [ψ̂kh]∇qIxq

h

{
g′ν(ψ̂kh)

})
· ∇qIxq

h

{
g′ν(ψ̂kh)

}}
+ τ

n∑
k=1

∫
Ω×D

MhIqh
{((

(1− γ)Ξx
ν [ψ̂kh] + γΛx

ν [ψ̂kh]
)
∇xµ

k
ψ,h,ν

)
· ∇xµ

k
ψ,h,ν

}
≤ C, (4.10)

with some constant C > 0 independent of h, τ , m, and ν.

Starting from this result, we use the specific discretization of the x-convective term in (3.4c) to improve the
regularity results for the scaled configurational density. In particular, we establish the following lemma.

Lemma 4.5. Let the assumptions (A1)–(A9) hold true. Then for τ small enough, there is a positive constant
C > 0 independent of h, τ , m, and ν such that∫

Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂nh ∣∣∣2}+
n∑
k=1

∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂kh − ψ̂k−1
h

∣∣∣2}

+τ
n∑
k=0

∫
Ω×D

MhIqh

{∣∣∣∇xψ̂
k
h

∣∣∣2}+ τ

n∑
k=0

∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

k
h

∣∣∣2} ≤ C (4.11)

for all n ∈ {0, . . . , N}.
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Proof. By testing (3.4c) by ψ̂nh for n ∈ {1, . . . , N}, we obtain

0 =
∫
Ω×D

(Mh + m)Ixq
h

{
∂−τ ψ̂

n
h ψ̂

n
h

}
−
∫
Ω×D

Mhunh · I
q
h

{
Λx
ν [ψ̂nh ]∇xψ̂

n
h

}
−
∫
Ω×D

(∇xIxh{J h{unh}} · I
q
h{qMh}) · Ixh

{
Ξq
ν [ψ̂nh ]∇qψ̂

n
h

}
+ (1− γ)

∫
Ω×D

cxMhIqh
{(

Ξx
ν [ψ̂nh ]∇xµ

n
ψ,h,ν

)
· ∇xψ̂

n
h

}
+ γ

∫
Ω×D

cxMhIqh
{(

Λx
ν [ψ̂nh ]∇xµ

n
ψ,h,ν

)
· ∇xψ̂

n
h

}
+
∫
Ω×D

cqMhIxh
{∣∣∣∇qψ̂

n
h

∣∣∣2}
=: I + II + III + IV + V + V I.

(4.12)

Combining (2.24b) with the weak solenoidality of unh, we obtain

II = −
∫
Ω×D

Mhunh · I
q
h

{
∇xIxq

h

{
fν(ψ̂nh)

}}
= 0. (4.13)

Applying Young’s inequality with 0 < δ << 1, Lemma 2.10, Lemma 4.4, and Lemma 2.7, we compute

III + IV ≥ (1− γ)(cx − δ)
∫
Ω×D

MhIqh

{∣∣∣∇xψ̂
n
h

∣∣∣2}− δ ∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

n
h

∣∣∣2}
− Cδ

[∫
Ω×D

Mhν
2 +

∫
Ω×D

MhIxq
h

{∣∣∣ψ̂nh ∣∣∣2}]. (4.14)

Applying similar arguments on the fifth term on the right-hand side of (4.12) yields

V = γ

∫
Ω×D

cxMhIqh
{(

Λx
ν [ψ̂nh ] · Ξx

ν [ψ̂nh ]
−1
∇xψ̂

n
h

)
· ∇xψ̂

n
h

}
+ γ

∫
Ω×D

cxMhIqh
{(

Λx
ν [ψ̂nh ]∇xIxh{Jh{Ixh{β(φnh)}}}

)
· ∇xψ̂

n
h

}
≥ −γδ

∫
Ω×D

MhIqh

{∣∣∣∇xψ̂
n
h

∣∣∣2}− γCδ[∫
Ω×D

Mhν
2 +

∫
Ω×D

MhIxq
h

{∣∣∣ψ̂nh ∣∣∣2}],
(4.15)

as Λx
ν [ψ̂nh ] · Ξx

ν [ψ̂nh ]
−1

is positive definite. Combining the above results and multiplying by τ yields

1
2

∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂nh ∣∣∣2}+ 1
2

∫
Ω

(Mh + m)Ixq
h

{∣∣∣ψ̂nh − ψ̂n−1
h

∣∣∣2}
+ τ(1− γ)

∫
Ω×D

cxMhIqh

{∣∣∣∇xψ̂
n
h

∣∣∣2}+ τ

∫
Ω×D

cqMhIxh
{∣∣∣∇qψ̂

n
h

∣∣∣2}
− τδ

∫
Ω×D

MhIqh

{∣∣∣∇xψ̂
n
h

∣∣∣2}− τδ ∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

n
h

∣∣∣}
≤ 1

2

∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂n−1
h

∣∣∣2}+ τC0

∫
Ω×D

MhIxq
h

{∣∣∣ψ̂nh ∣∣∣2}+ τC

∫
Ω×D

Mhν
2. (4.16)
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For δ small enough, we have (1− γ)cx − δ ≥ c > 0 and cq − δ ≥ c > 0. Therefore, a summation in time yields

1
2

∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂nh ∣∣∣2} + 1
2

n∑
k=1

∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂kh − ψ̂k−1
h

∣∣∣2}+ cτ

n∑
k=1

∫
Ω×D

MhIqh

{∣∣∣∇xψ̂
k
h

∣∣∣2}

+ cτ

n∑
k=1

∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

k
h

∣∣∣2} ≤ 1
2

∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂0
h

∣∣∣2}

+ τC0

∫
Ω×D

MhIxq
h

{∣∣∣ψ̂nh ∣∣∣2}+ τC

n−1∑
k=1

∫
Ω×D

MhIxq
h

{∣∣∣ψ̂kh∣∣∣2}+ τnC. (4.17)

As the constant C0 on the right-hand side depends neither on τ nor on the solution itself, we may safely

assume τC0 <
1
4 . Absorbing τC0

∫
Ω×D

MhIxq
h

{∣∣∣ψ̂nh ∣∣∣2} on the left-hand side and applying a discrete version of

Gronwall’s lemma (see e.g. [31]) shows

∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂nh ∣∣∣2}+
n∑
k=1

∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂kh − ψ̂k−1
h

∣∣∣2}

+τ
n∑
k=1

∫
Ω×D

MhIqh

{∣∣∣∇xψ̂
k
h

∣∣∣2}+ τ

n∑
k=1

∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

k
h

∣∣∣2} ≤ C (4.18)

for n ∈ {1, . . . , N}. Combining (4.18) with Lemma 4.2 completes the proof. �

Following the arguments in [15, 16, 18], we establish the following regularity results for the phase-field
parameter.

Lemma 4.6. Let the assumptions (A1)–(A9) hold true and let τ be small enough. Then there is C > 0
independent of h, τ , m, and ν such that∣∣∣∣∫

Ω

µnφ,h

∣∣∣∣+
n∑
k=0

τ
∥∥∆hφ

k
h

∥∥2

L2(Ω)
+

n∑
k=0

τ
∥∥φkh∥∥4

L∞(Ω)
≤ C (4.19)

for all n ∈ {1, . . . , N}.

Lemma 4.7. Let the assumptions (A1)–(A9) hold true and let τ be small enough. Then there is C > 0
independent of h, τ , m, and ν such that

τ

N−l∑
k=0

∥∥φk+l
h − φkh

∥∥2

L2(Ω)
≤ Clτ (4.20)

for all l ∈ {1, . . . , N}.

Proof of Lemma 4.6. A straightforward computation relying in particular on (2.11a), (W2), and the already
established regularity results yields

∣∣∣∫Ω µnφ,h∣∣∣ ≤ C.
Therefore, the mean value of the chemical potential is bounded which allows to apply Poincaré’s inequality.
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We continue by testing (3.4b) by −∆hφ
n
h and use the definition of the discrete Laplacian (2.8) to obtain

ϑ

∫
Ω

Ixh{∆hφ
n
h∆hφ

n
h} = −

∫
Ω

Ixh
{
µnφ,h∆hφ

n
h

}
+
∫
Ω

Ixh
{
W ′h(φnh, φ

n−1
h )∆hφ

n
h

}
+
∫
Ω×D

(Mh + m)Ixh
{
Jh
{
Ixh
{
β′DQ(φnh, φ

n−1
h )∆hφ

n
h

}}
ψ̂n−1
h

}
− (1− ϑ)

∫
Ω

Ixh
{

∆hφ
n−1
h ∆hφ

n
h

}
=: I + II + III + IV.

(4.21)

Combining Hölder’s inequality and Poincaré’s inequality provides

|I| ≤
∥∥µnφ,h∥∥h ‖∆hφ

n
h‖h ≤ C

(∥∥∇xµ
n
φ,h

∥∥
L2(Ω)

+ 1
)
‖∆hφ

n
h‖h . (4.22)

We infer from Hölder’s inequality and (W2) that

II ≤
∥∥W ′h(φnh, φ

n−1
h )

∥∥
h
‖∆hφ

n
h‖h ≤ C ‖∆hφ

n
h‖h . (4.23)

To gain control over the third term, we combine Hölder’s inequality and (2.10) with the results of Lemma 4.5,
the results of Lemma 2.10, and (A6).

III ≤C
∥∥Jh{Ixh{β′DQ(φnh, φ

n−1
h )∆hφ

n
h

}}∥∥
L2(Ω)

(∫
Ω×D

(Mh + m)Ixq
h

{∣∣∣ψ̂n−1
h

∣∣∣2})1/2

≤C
∫
Ω

∣∣Ixh{β′DQ(φnh, φ
n−1
h )∆hφ

n
h

}∣∣ ≤ C ‖∆hφ
n
h‖h .

(4.24)

Concerning the fourth term,

|IV | ≤ (1− ϑ) ‖∆hφ
n
h‖h

∥∥∆hφ
n−1
h

∥∥
h

(4.25)

holds true. Collecting the previous results, we obtain

ϑ ‖∆hφ
n
h‖h ≤ C

∥∥∇xµ
n
φ,h

∥∥
L2(Ω)

+ C + (1− ϑ)
∥∥∆hφ

n−1
h

∥∥
h
. (4.26)

As Young’s inequality implies

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc ≤ Cδ(a2 + b2) + (1 + 2δ)c2 (4.27)

for a, b, c ∈ R with 0 < δ << 1, a discrete integration with respect to time over (4.26) yields

ϑ2
n∑
k=1

τ
∥∥∆hφ

k
h

∥∥2

h
≤ Cδ

(
n∑
k=1

∥∥∇xµ
k
φ,h

∥∥2

L2(Ω)
+ T

)
+ (1− ϑ)2(1 + 2δ)

n∑
k=1

τ
∥∥∆hφ

k−1
h

∥∥2

h
. (4.28)

As we assumed ϑ ∈ (0.5, 1], we have ϑ2 > (1− ϑ)2. Therefore, we may choose δ > 0 such that ϑ2 −
(1− ϑ)2(1 + 2δ) =: c̃ > 0. Noting the regularity assumptions on the initial data (cf. (A8)), we infer

c̃

n∑
k=0

τ
∥∥∆hφ

k
h

∥∥2

L2(Ω)
≤ Cδ(1 + T ) . (4.29)

The last claim of Lemma 4.6 follows from Lemma 4.4 and the interpolation inequality

‖χh‖L∞(Ω) ≤ C ‖∆hχh‖1/2L2(Ω) ‖χh‖
1/2
H1(Ω) + ‖χh‖H1(Ω) for all χh ∈ Ux

h , (4.30)

which was proven in Corollary A.1 in [16]. �
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Proof of Lemma 4.7. Following the lines of [18], we test (3.4a) by τ(φk+l
h − φkh) with 0 ≤ k ≤ N − l and sum

from n = k + 1 to k + l to obtain

0 =
∫
Ω

Ixh
{∣∣φk+l

h − φkh
∣∣2}− τ k+l∑

n=k+1

∫
Ω

φn−1
h un−1

h · ∇x(φk+l
h − φkh)

+ τ2
k+l∑

n=k+1

∫
Ω

∣∣φn−1
h

∣∣2∇xµ
n
φ,h · ∇x(φk+l

h − φkh) + τ

k+l∑
n=k+1

∫
Ω

∇xµ
n
φ,h · ∇x(φk+l

h − φkh)

=: I + II + III + IV .

(4.31)

Using Hölder’s inequality, the well-known Sobolev embedding theorem, and Poincaré’s inequality, we compute

|II| ≤ τ
k+l∑

n=k+1

∥∥un−1
h

∥∥
L6(Ω)

∥∥φn−1
h

∥∥
L3(Ω)

∥∥∇xφ
k+l
h −∇xφ

k
h

∥∥
L2(Ω)

≤C
l−1∑
m=0

τ1/2
∥∥∇xuk+m

h

∥∥
L2(Ω)

∥∥∇xφ
k+m
h

∥∥
L2(Ω)

τ1/2
∥∥∇xφ

k+l
h −∇xφ

k
h

∥∥
L2(Ω)

.

(4.32)

Noting the inequality
∥∥φn−1

h

∥∥
L∞(Ω)

≤ C(1 +
∥∥∆hφ

n−1
h

∥∥
L2(Ω)

), which is a direct consequence of the interpolation
inequality (4.30) and Lemma 4.4 (see also [15]), we obtain

|III| ≤ τ2
k+l∑

n=k+1

∥∥φn−1
h

∥∥2

L∞(Ω)

∥∥∇xµ
n
φ,h

∥∥
L2(Ω)

∥∥∇xφ
k+l
h −∇xφ

k
h

∥∥2

L2(Ω)

≤C
l−1∑
m=0

τ(1 +
∥∥∆hφ

k+m
h

∥∥
L2(Ω)

)
2
τ1/2

∥∥∥∇xµ
k+m+1
φ,h

∥∥∥
L2(Ω)

τ1/2
∥∥∇xφ

k+l
h −∇xφ

k
h

∥∥
L2(Ω)

.

(4.33)

We deduce by combining (4.31)–(4.33), multiplying by τ , summing from k = 0 to N − l, and applying Hölder’s
inequality that

τ

N−l∑
k=0

∥∥φk+l
h − φkh

∥∥2

h
≤Cτ

l−1∑
m=0

(
N−l∑
k=0

τ
∥∥∇xuk+m

h

∥∥2

L2(Ω)

)1/2(
sup

k=0,...,N−l

∥∥∇xφ
k+m
h

∥∥2

L2(Ω)

)1/2

×

(
N−l∑
k=0

τ
∥∥∇xφ

k+l
h −∇xφ

k
h

∥∥2

L2(Ω)

)1/2

+ Cτ

l−1∑
m=0

(
N−l∑
k=0

τ
(

1 +
∥∥∆hφ

k+m
h

∥∥
L2(Ω)

)2
)

×

(
N−l∑
k=0

τ
∥∥∥∇xµ

k+m+1
φ,h

∥∥∥2

L2(Ω)

)1/2(N−l∑
k=0

τ
∥∥∇xφ

k+l
h −∇xφ

k
h

∥∥2

L2(Ω)

)1/2

+ Cτ

l−1∑
m=0

(
N−l∑
k=0

τ
∥∥∥∇xµ

k+m+1
φ,h

∥∥∥2

L2(Ω)

)1/2(N−l∑
k=0

τ
∥∥∇xφ

k+l
h −∇xφ

k
h

∥∥2

L2(Ω)

)1/2

.

(4.34)

Applying the results of Lemma 4.4 and Lemma 4.6 to the right-hand side of (4.34) and using the norm equiva-
lence (2.10) yields the result. �

In a final step, we show compactness in time for the velocity field.
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For this reason, we introduce the Helmholtz–Stokes operator S :
(
H1

0,div(Ω)
)′ → H1

0,div(Ω), v 7→ S{v},
which is defined via ∫

Ω

S{v} ·w dx +
∫
Ω

∇xS{v} : ∇xw dx = 〈v,w〉 ∀w ∈H1
0,div(Ω), (4.35)

where 〈., .〉 denotes the duality pairing between
(
H1

0,div(Ω)
)′

andH1
0,div(Ω). This operator satisfies the following

properties (see e.g. [5]).

(H1) 〈v,S{v}〉 = ‖S{v}‖2H1(Ω) ∀v ∈
(
H1

0,div(Ω)
)′

,

(H2) ‖S{.}‖H1(Ω) is a norm on (H1
0,div(Ω))

′
,

(H3) ‖S{v}‖2L2(Ω) + ‖∇xS{v}‖2L2(Ω) ≤ ‖v‖
2
L2(Ω) ∀v ∈ L2(Ω),

(H4) ‖(I − S){v}‖2L2(Ω) + ‖∇x(I − S){v}‖2L2(Ω) ≤ ‖∇xv‖2L2(Ω) ∀v ∈H1
0,div(Ω),

where I denotes the identity operator on Rd. Following the lines of [13], we also consider the orthogonal Stokes
projector Rh : W h,div →H1

0,div(Ω) which is defined via∫
Ω

∇x(Rh{vh} − vh) : ∇xw = 0, ∀w ∈H1
0,div(Ω) . (4.36)

Analogously to [13], where Rh is defined on a different finite element space, one can show that Rh satisfies the
properties

‖Rh{vh}‖H1(Ω) ≤ C ‖vh‖H1(Ω) , (4.37a)

‖Rh{vh} − vh‖L2(Ω) ≤ Chx ‖divx vh‖L2(Ω) , (4.37b)

‖Rh{vh}‖(H1
0,div(Ω))′ ≤ C

(
hx ‖divx vh‖L2(Ω) + ‖vh‖(H1

0,div(Ω))′

)
(4.37c)

for vh ∈ W h,div ⊂ L2(Ω) ⊂ (H1
0,div(Ω))

′
. To prove compactness in time for the velocity field, we start by

establishing a bound, which is independent of h, τ , m, and ν, on the time derivative of the velocity in the
dual space of H1

0,div(Ω). Then we use this result to establish a regularity result for projected velocity field. In
particular, we prove the following estimates.

Lemma 4.8. Let the assumptions (A1)–(A9) hold true, let τ and hx be small enough (such that Lem. 2.10 and
Lem. 4.5 hold true), and let S be the Helmholtz–Stokes operator satisfying (H1)–(H4). Then there is a positive
constant C independent of h, τ , m, and ν such that

N∑
k=1

τ
∥∥S{∂−τ ukh

}∥∥4/λ

H1(Ω)
≤ C (4.38)

with λ ∈ (2, 4), if d = 2, or λ = 3, if d = 3.

Lemma 4.9. Let the assumptions (A1)–(A9) hold true, let τ and hx be small enough (such that Lem. 2.10
and Lem. 4.5 hold true), let Rh be the orthogonal Stokes projector satisfying (4.37). Then there is a positive
constant C independent of h, τ , m, and ν such that

τ

N−l∑
k=0

∥∥Rh

{
uk+l
h − ukh

}∥∥2

(H1
0,divΩ)′

≤ Cτlλ/4 + Ch2
x

for all l ∈ {1, . . . , N} with λ ∈ (2, 4), if d = 2, or λ = 3, if d = 3.
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Noting that λ/4 < 1, these results will enable us to apply a “compactness by pertubation” result by Azérad
and Guillén [4] and to identify strongly converging subsequences.

Proof of Lemma 4.8. S{∂−τ unh} ∈H
1
0,div(Ω) is well-defined as ∂−τ unh ∈W h,div ⊂ L2(Ω) ⊂ (H1

0,div(Ω))
′
. Recall-

ing the H1-stable L2-projector Qh from (TH2), we adapt the proof of a similar regularity result in [7] and test
(3.4d) by Qh[S{∂−τ unh}].

0 =
∫
Ω

∂−τ unh · Qh
[
S
{
∂−τ unh

}]
− 1

2

∫
Ω

((
∇xQh

[
S
{
∂−τ unh

}])T · unh) · un−1
h

+ 1
2

∫
Ω

(
(∇xunh)T · Qh

[
S
{
∂−τ unh

}])
· un−1

h +
∫
Ω

2Ixh{η(φnh)}Dunh : DQh
[
S
{
∂−τ unh

}]
+
∫
Ω

φn−1
h ∇xµ

n
φ,h · Qh

[
S
{
∂−τ unh

}]
+
∫
Ω×D

MhQh
[
S
{
∂−τ unh

}]
· Iqh

{
Λx
ν [ψ̂nh ]∇xµ

n
ψ,h,ν

}
+
∫
Ω×D

(
∇xIxh

{
J h

{
Qh
[
S
{
∂−τ unh

}]}}
· Iqh{qMh}

)
· ∇qψ̂

n
h

=: I + II + III + IV + V + V I + V II .

(4.39)

We obtain from (TH2) and from (H1) that

I =
∫
Ω

∂−τ unh · Qh
[
S
{
∂−τ unh

}]
=
∥∥S{∂−τ unh

}∥∥2

H1(Ω)
. (4.40)

Using Young’s inequality together with the Gagliardo–Nirenberg inequality and Poincaré’s inequality, we com-
pute

|II| ≤ δ
∫
Ω

∣∣∇xQh
[
S
{
∂−τ unh

}]∣∣2 + Cδ

(
‖unh‖

4
L4(Ω) +

∥∥un−1
h

∥∥4

L4(Ω)

)
≤ δ

∫
Ω

∣∣∇xQh
[
S
{
∂−τ unh

}]∣∣2 + Cδ

(∥∥∇xun−1
h

∥∥d
L2(Ω)

+ ‖∇xunh‖
d
L2(Ω)

)
.

(4.41)

Young’s inequality yields, together with Sobolev’s embedding theorem,

|III| ≤ δ
∥∥S{∂−τ unh

}∥∥2

H1(Ω)
+ Cδ

∥∥∣∣un−1
h

∣∣ |∇xunh|
∥∥2

L1+σ(Ω)
(4.42)

with σ ∈ (0, 1) in the case d = 2 and σ = 1
5 in the case d = 3. Similarly to (4.77) in [7], we compute for d = 2

and σ = λ−2
6−λ by applying Hölder’s inequality, the Gagliardo–Nirenberg inequality, Poincaré’s inequality, and

Young’s inequality∥∥∣∣un−1
h

∣∣ |∇xunh|
∥∥2

L1+σ(Ω)
≤
∥∥un−1

h

∥∥2

L2(1+σ)/(1−σ)(Ω)
‖∇xunh‖

2
L2(Ω)

≤C
∥∥un−1

h

∥∥ 2(1−σ)
1+σ

L2(Ω)

(
‖∇xunh‖

2+6σ
1+σ
L2(Ω) +

∥∥∇xun−1
h

∥∥ 2+6σ
1+σ
L2(Ω)

)
≤C

(∥∥∇xun−1
h

∥∥λ
L2(Ω)

+ ‖∇xunh‖
λ
L2(Ω)

)
,

(4.43)

where we used
∥∥un−1

h

∥∥
L2(Ω)

≤ C (cf. Lem. 4.4) in the last step. Analogously, we obtain for d = 3∥∥∣∣un−1
h

∣∣ |∇xunh|
∥∥2

L6/5(Ω)
≤C

∥∥un−1
h

∥∥2

L3(Ω)
‖∇xunh‖

2
L2(Ω)

≤C
∥∥un−1

h

∥∥
L2(Ω)

(∥∥∇xun−1
h

∥∥3

L2(Ω)
+ ‖∇xunh‖

3
L2(Ω)

)
≤C

(∥∥∇xun−1
h

∥∥3

L2(Ω)
+ ‖∇xunh‖

3
L2(Ω)

)
.

(4.44)
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Therefore,

|III| ≤ δ
∥∥S{∂−τ unh

}∥∥2

H1(Ω)
+ Cδ

(∥∥∇xun−1
h

∥∥λ
L2(Ω)

+ ‖∇xunh‖
λ
L2(Ω)

)
. (4.45)

As η is a bounded function, Young’s inequality yields

|IV | ≤ δ
∥∥S{∂−τ unh

}∥∥2

H1(Ω)
+ Cδ ‖∇xunh‖

2
L2(Ω) . (4.46)

Using Hölder’s inequality, Sobolev’s embedding theorem, Poincaré’s inequality, the H1-stability of Qh, Young’s
inequality, and the already established regularity results for φn−1

h (see Lem. 4.4), we compute for the fifth term
on the right-hand side of (4.39)

|V | ≤C
∥∥Qh[S{∂−τ unh

}]∥∥
H1(Ω)

∥∥∇xφ
n−1
h

∥∥
L2(Ω)

∥∥∇xµ
n
φ,h

∥∥
L2(Ω)

≤ δ
∥∥S{∂−τ unh

}∥∥2

H1(Ω)
+ Cδ

∥∥∇xµ
n
φ,h

∥∥2

L2(Ω)
.

(4.47)

In order to deal with the sixth term, we use an analogon of Young’s inequality which is applicable in the case
of matrix-valued coefficients. In particular, we apply the pointwise inequality

Qh
[
S
{
∂−τ unh

}]
·
(

Λx
ν [ψ̂nh ]∇xµ

n
ψ,h,ν

)
≤ δσΛx

ν [ψ̂nh ]
∣∣Qh[S{∂−τ unh

}]∣∣2 + 1
4δ

(
σΛx

ν [ψ̂nh ]
)−1 ∣∣∣Λx

ν [ψ̂nh ]∇xµ
n
ψ,h,ν

∣∣∣2
≤ δσΛx

ν [ψ̂nh ]
∣∣Qh[S{∂−τ unh

}]∣∣2 + 1
4δ

(
Λx
ν [ψ̂nh ]∇xµ

n
ψ,h,ν

)
· ∇xµ

n
ψ,h,ν . (4.48)

Applying (4.48) to |V I| yields

|V I| ≤ δ̃
∫
Ω×D

Mh

∣∣Qh[S{∂−τ unh
}]∣∣2 σΛx

ν [ψ̂nh ](x,q)

+ Cδ̃

∫
Ω×D

MhIqh
{(

Λx
ν [ψ̂nh ]∇xµ

n
ψ,h,ν

)
· ∇xµ

n
ψ,h,ν

}
,

(4.49)

where σΛx
ν [ψ̂nh ](x,q) denotes the supremum of the largest eigenvalue of Λx

ν [ψ̂nh ] on κx × κq 3 (x,q). Recalling
(2.27f), we obtain∫

Ω×D

Mh

∣∣Qh[S{∂−τ unh
}]∣∣2 σΛx

ν [ψ̂nh ](x,q)

≤
(∫

Ω×D

Mh

∣∣Qh[S{∂−τ unh
}]∣∣4)1/2(∫

Ω×D

Mh

∣∣∣σΛx
ν [ψ̂nh ](x,q)

∣∣∣2)1/2

≤ C
∥∥Qh[S{∂−τ unh

}]∥∥2

L4(Ω)

(∫
Ω×D

Mhν
2 +

∫
Ω×D

MhIxq
h

{∣∣∣ψ̂nh ∣∣∣2})1/2

≤ C
∥∥S{∂−τ unh

}∥∥2

H1(Ω)
. (4.50)

Therefore, we have

|V I| ≤ δ
∥∥S{∂−τ unh

}∥∥2

H1(Ω)
+ Cδ

∫
Ω×D

MhIqh
{(

Λx
ν [ψ̂nh ]∇xµ

n
ψ,h,ν

)
· ∇xµ

n
ψ,h,ν

}
, (4.51)
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with some 0 < δ << 1. Due to our specific discretization (cf. Rem. 3.4), the stability result in Lemma 4.4 enables
us to control the L2-norm with respect to time of the second term.
As D is bounded, we use Hölder’s inequality to compute

|V II| ≤C
(∫

Ω×D

Mh

∣∣∇xIxh
{
J h

{
Qh
[
S
{
∂−τ unh

}]}}∣∣2)1/2(∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

n
h

∣∣∣2})1/2

. (4.52)

Due to the mean value theorem, Lemma 2.10, and the H1-stability of Qh, we may compute(∫
Ω×D

Mh

∣∣∇xIxh
{
J h

{
Qh
[
S
{
∂−τ unh

}]}}∣∣2)1/2

≤ C
∥∥∇xJ h

{
Qh
[
S
{
∂−τ unh

}]}∥∥
L∞(Ω)

≤ C
∥∥S{∂−τ unh

}∥∥
H1(Ω)

.

(4.53)

Combining (4.52) with (4.53) and applying Young’s inequality, we deduce

|V II| ≤ δ
∥∥S{∂−τ unh

}∥∥2

H1(Ω)
+ Cδ

∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

n
h

∣∣∣2} . (4.54)

Collecting the above results and taking the 2
λ power on both sides, we obtain∥∥S{∂−τ unh

}∥∥4/λ

H1(Ω)
≤C + C

∥∥∇xun−1
h

∥∥2

L2(Ω)
+ C ‖∇xunh‖

2
L2(Ω) + C

∥∥∇xµ
n
φ,h

∥∥2

L2(Ω)

+ C

∫
Ω×D

MhIqh
{(

Λx
ν [ψ̂nh ]∇xµ

n
ψ,h,ν

)
· ∇xµ

n
ψ,h,ν

}
+ C

∫
Ω×D

MhIxh
{∣∣∣∇qψ̂

n
h

∣∣∣2} .
(4.55)

A discrete integration with respect to time, together with (A8) and the results of Lemma 4.4 and Lemma 4.5,
finally provides the result. �

Proof of Lemma 4.9. From (4.37c) we obtain

τ

N−l∑
k=0

∥∥Rh

{
uk+l
h − ukh

}∥∥2

(H1
0,div(Ω))′

≤ Cτ
N−l∑
k=0

∥∥uk+l
h − ukh

∥∥2

(H1
0,div(Ω))′

+ Ch2
xτ

N−l∑
k=0

∥∥divx {uk+l
h − ukh}

∥∥2

L2(Ω)
. (4.56)

Applying Hölder’s inequality and (H3) provides

τ

N−l∑
k=0

∥∥uk+l
h − ukh

∥∥2

(H1
0,div(Ω))′

≤

(
τ

N−l∑
k=0

∥∥uk+l
h − ukh

∥∥4/λ

(H1
0,div(Ω))′

)λ/4(
τ

N−l∑
k=0

∥∥uk+l
h − ukh

∥∥4/(4−λ)

L2(Ω)

)(4−λ)/λ

. (4.57)

Due to the L∞-L2-bound for the velocity field obtained in Lemma 3.8, the second factor is bounded. Concerning
the first factor, we use Lemma 4.8 and compute

τ

N−l∑
k=0

∥∥uk+l
h − ukh

∥∥4/λ

(H1
0,div(Ω))′

≤ Cτ
N−l∑
k=0

l∑
m=1

τ4/λ
∥∥∂−τ uk+m

h

∥∥4/λ

(H1
0,div(Ω))′

≤ Cτ4/λl . (4.58)

Combining Korn’s inequality and Lemma 3.8 shows that the second term on the right-hand side of (4.56) is
bounded by Ch2

x, which gives the result. �
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To conclude this section, we collect the bounds derived so far. In particular, we have

max
k=1,...,n

∫
Ω

∣∣∇xφ
k
h

∣∣2 + max
k=1,...,n

∫
Ω

∣∣ukh∣∣+ max
k=1,...,n

∫
Ω×D

(Mh + m)
∣∣∣ψ̂kh∣∣∣2

+ ν−1 max
k=1,...,n

∫
Ω×D

(Mh + m)Ixq
h

{
[ψ̂kh]

2

−

}
+

n∑
k=1

∫
Ω

∣∣∇xφ
k
h −∇xφ

k−1
h

∣∣2 +
n∑
k=1

∣∣ukh − uk−1
h

∣∣2 +
n∑
k=1

∫
Ω×D

(Mh + m)
∣∣∣ψ̂kh − ψ̂k−1

h

∣∣∣2
+ τ

n∑
k=0

∫
Ω

∣∣∆hφ
k
h

∣∣2 + τ

n∑
k=0

∥∥φkh∥∥2

L∞(Ω)
+ τ

n∑
k=1

∫
Ω

∣∣∇xµ
k
φ,h

∣∣2 + τ

n∑
k=1

∫
Ω

∣∣∇xukh
∣∣2

+ τ

n∑
k=0

∫
Ω×D

Mh

∣∣∣∇xψ̂
k
h

∣∣∣2 + τ

n∑
k=0

∫
Ω×D

Mh

∣∣∣∇qψ̂
k
h

∣∣∣2 + τ

n∑
k=1

∥∥S{∂−τ ukh
}∥∥4/λ

H1(Ω)
≤ C

(4.59a)

and

τ

N−l∑
k=0

∥∥φk+l
h − φkh

∥∥2

L2(Ω)
≤ Clτ, τ

N−l∑
k=0

∥∥Rh

{
uk+l
h − ukh

}∥∥2

(H1
0,div(Ω))′

≤ C(lτ)λ/4 + Ch2
x (4.59b)

for all l ∈ {1, . . . , N}, as λ/4 < 1.

5. Passage to the limit

In this section, we simultaneously pass to the limit (h, τ,m, ν) ↘ 0. For this purpose, we define time-
interpolants of time-discrete functions an, n = 0, . . . , N , and introduce some time-index-free notation as follows.

aτ (., t) := t−tn−1

τ an(.) + tn−t
τ an−1(.) t ∈ [tn−1, tn], n ≥ 1, (5.1a)

aτ,+(., t) := an(.), aτ,−(., t) := an−1(.) t ∈ (tn−1, tn], n ≥ 1. (5.1b)

We want to point out that the time derivative of aτ coincides with the difference quotient, i.e.

∂ta
τ = ∂t

(
t−tn−1

τ an + tn−t
τ an−1

)
= 1

τ a
n − 1

τ a
n−1 = ∂−τ a

n . (5.2)

If a statement is valid for aτ , aτ,+, and aτ,−, we will use the abbreviation aτ,(±).
Using these notations and summing (3.4a)–(3.4d) from n = 1 to N , we restate our set of equations as∫
ΩT

Ixh{∂tφτhθxh} −
∫
ΩT

(uτ,−h − τφτ,−h ∇xµ
τ,+
φ,h )φτ,−h · ∇xθ

x
h +

∫
ΩT

∇xµ
τ,+
φ,h · ∇xθ

x
h = 0

∀θx ∈ L2(0, T ;Ux
h ), (5.3a)

∫
ΩT

Ixh
{
µτ,+φ,hθ

x
h

}
=
∫
ΩT

Ixh
{
W ′h(φτ,+h , φτ,−h )θxh

}
+
∫
ΩT

(ϑ∇xφ
τ,+
h + (1− ϑ)∇xφ

τ,−
h ) · ∇xθ

x
h

+
∫
ΩT

Ixh
{
Jh
{
Ixh
{
β′DQ(φτ,+h , φτ,−h )θxh

}}∫
D

(Mh + m)ψ̂τ,−h

}
∀θxh ∈ L2(0, T ;Ux

h ),

(5.3b)
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ΩT×D

(Mh + m)Ixq
h

{
∂tψ̂

τ
hθh

}
−
∫
ΩT×D

Mhu
τ,+
h · Iqh

{
Λx
ν [ψ̂τ,+h ]∇xθh

}
−
∫
ΩT×D

(
∇xIxh

{
J h

{
uτ,+h

}}
· Iqh{qMh}

)
· Ixh

{
Ξq
ν [ψ̂τ,+h ]∇qθh

}
+
∫
ΩT×D

cxMhIqh
{((

(1− γ)Ξx
ν [ψ̂τ,+h ] + γΛx

ν [ψ̂τ,+h ]
)
∇xµ

τ,+
ψ,h,ν

)
· ∇xθh

}
+
∫
ΩT×D

cqMhIxh
{
∇qψ̂

τ,+
h · ∇qθh

}
= 0

∀θh ∈ L2(0, T ; X̂h),

(5.3c)

∫
ΩT

∂tuτh ·wh − 1
2

∫
ΩT

(
(∇xwh)T · uτ,+h

)
· uτ,−h + 1

2

∫
ΩT

((
∇xuτ,+h

)T ·wh

)
· uτ,−h

+
∫
ΩT

2Ixh
{
η(φτ,+h )

}
Duτ,+h : Dwh = −

∫
ΩT

φτ,−h ∇xµ
τ,+
φ,h ·wh

−
∫
ΩT×D

Mhwh · Iqh
{

Λx
ν [ψ̂τ,+h ]∇xµ

τ,+
ψ,h,ν

}
−
∫
ΩT×D

(∇xIxh{J h{wh}} · Iqh{qMh}) · ∇qψ̂
τ,+
h

∀wh ∈ L4/(4−λ)(0, T ;W h,div), (5.3d)

where we again used the abbreviation

µτ,+ψ,h,ν := Ixq
h

{
g′ν(ψ̂τ,+h ) + Jε

{
β(φτ,+h )

}}
. (5.4)

Similarly, we rewrite the bounds from (4.59) as∫ T−lτ

0

∥∥φτ,+h (·+ lτ)− φτ,+h (·)
∥∥2

L2(Ω)
≤ C(lτ) ∀l ∈ {1, . . . , N}, (5.5a)

∫ T−lτ

0

∥∥Rh

{
uτ,+h (·+ lτ)

}
−Rh

{
uτ,+h (·)

}∥∥2

(H1
0,div(Ω))′

≤ C(lτ)λ/4 + Ch2
x ∀l ∈ {1, . . . , N}, (5.5b)

sup
t∈[0,T ]

∫
Ω

∣∣∣∇xφ
τ,(±)
h

∣∣∣2 + τ−1

∫
ΩT

∣∣∇xφ
τ,+
h −∇xφ

τ,−
h

∣∣2 +
∫
ΩT

∣∣∣∆hφ
τ,(±)
h

∣∣∣2
+
∫ T

0

∥∥∥φτ,(±)
h

∥∥∥4

L∞(Ω)
+
∫
ΩT

∣∣∣∇xµ
τ,+
φ,h

∣∣∣2
+ sup
t∈[0,T ]

∫
ΩT×D

(Mh + m)Ixq
h

{∣∣∣ψ̂τ,(±)
h

∣∣∣2}+ ν−1 sup
t∈[0,T ]

∫
Ω×D

(Mh + m)Ixq
h

{
[ψ̂τ,(±)
h ]

2

−

}
+ τ−1

∫
ΩT×D

(Mh + m)Ixq
h

{∣∣∣ψ̂τ,+h − ψ̂τ,−h
∣∣∣2}+

∫
ΩT×D

MhIqh

{∣∣∣∇xψ̂
τ,(±)
h

∣∣∣2}
+
∫
ΩT×D

MhIxh
{∣∣∣∇qψ̂

τ,(±)
h

∣∣∣2}+
∫
ΩT×D

MhIqh
{(

Ξx
ν [ψ̂τ,+h ]∇xµ

τ,+
ψ,h,ν

)
· ∇xµ

τ,+
ψ,h,ν

}
+
∫
ΩT×D

MhIqh
{(

Λx
ν [ψ̂τ,+h ]∇xµ

τ,+
ψ,h,ν

)
· ∇xµ

τ,+
ψ,h,ν

}
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+ sup
t∈[0,T ]

∫
Ω

∣∣∣uτ,(±)
h

∣∣∣2 + τ−1

∫
ΩT

∣∣uτ,+h − uτ,−h
∣∣2 +

∫
ΩT

∣∣∣Duτ,(±)
h

∣∣∣2 +
∫ T

0

‖S{∂tuτh}‖
4/λ
H1(Ω)

≤ C . (5.5c)

Applying (2.12a)–(2.12c) and noting the results of Lemma 4.3, we additionally obtain

sup
t∈[0,T ]

∫
Ω×D

(Mh + m)
∣∣∣ψ̂τ,(±)
h

∣∣∣2 + τ−1

∫
ΩT×D

(Mh + m)
∣∣∣ψ̂τ,+h − ψ̂τ,−h

∣∣∣2
+
∫
ΩT×D

Mh

∣∣∣∇xψ̂
τ,(±)
h

∣∣∣2 +
∫
ΩT×D

Mh

∣∣∣∇qψ̂
τ,(±)
h

∣∣∣2
+ sup

t∈[0,T ]

∫
Ω×D

M̂
∣∣∣ψ̂τ,(±)
h

∣∣∣2 + τ−1

∫
ΩT×D

M̂
∣∣∣ψ̂τ,+h − ψ̂τ,−h

∣∣∣2 ≤ C . (5.5d)

We use the bounds in (5.5) to show the existence of a subsequence, which is again denoted by
(φτ,(±)
h , µ

τ,(±)
φ,h , ψ̂

τ,(±)
h ,uτ,(±)

h )
(h,τ,m,ν)

, converging towards limit functions in an appropriate sense. As we only

have Maxwellian-weighted bounds for the scaled configurational density function ψ̂
τ,(±)
h , we may not expect to

obtain any information on the limit function outside of D. As we will show in Theorem 5.2, the values of the
limit functions on ΩT ×D \D are negligible, as the integrals over this part of the domain do not contribute to
the weak formulation. Therefore, we concentrate on identifying its limit functions on ΩT ×D. Analogously to
the notation aτ,(±), we denote the triple of limit functions (a, a+, a−) by a(±).

Lemma 5.1. Let the assumptions (A1)–(A9) hold true. Then there exists a subsequence (again denoted by
(φτ,(±)
h , µ

τ,(±)
φ,h , ψ̂

τ,(±)
h ,uτ,(±)

h )
(h,τ,m,ν)

) and functions φ, µφ, and u satisfying

φ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L4(0, T ;L∞(Ω)), (5.6a)
µφ ∈ L2(0, T ;H1(Ω)), (5.6b)

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0,div(Ω)) ∩W 1,4/λ(0, T ; (H1

0,div(Ω))
′
), (5.6c)

with λ ∈ (2, 4), if d = 2, and λ = 3, if d = 3, as well as functions ψ̂, P1, P2, P3, P (±)
4 , P (±)

5 satisfying

ψ̂ ∈ L2(0, T ; X̂+) ∩ L∞(0, T ;L2(Ω ×D;M)), (5.6d)
P1, P2, P3 ∈ L∞(0, T ;L2(Ω ×D)), (5.6e)

P
(±)
4 ,P

(±)
5 ∈ L2(0, T ;L2(Ω ×D)), (5.6f)

with

P1

∣∣
ΩT×D

= P2

∣∣
ΩT×D

= P3

∣∣
ΩT×D

=
√
Mψ̂, (5.7a)

P
(±)
4

∣∣∣
ΩT×D

=
√
M∇xψ̂, (5.7b)

P
(±)
5

∣∣∣
ΩT×D

=
√
M∇qψ̂, (5.7c)
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such that, as (h, τ,m, ν)↘ 0,

φ
τ,(±)
h

∗
⇀ φ in L∞(0, T ;H1(Ω)), (5.8a)

φ
τ,(±)
h

∗
⇀ φ in L4(0, T ;L∞(Ω)), (5.8b)

φ
τ,(±)
h → φ in Lp(0, T ;Ls(Ω)), ∀p <∞, s ∈ [1, 2d

d−2 ), (5.8c)

∆hφ
τ,(±)
h ⇀ ∆φ in L2(0, T ;L2(Ω)), (5.8d)

µτ,+φ,h ⇀ µφ in L2(0, T ;H1(Ω)), (5.8e)

Mh → M̂ in L∞(D), (5.9a)√
M̂ψ̂

τ,(±)
h

∗
⇀ P1 in L∞(0, T ;L2(Ω ×D)), (5.9b)√

Mh + mψ̂
τ,(±)
h

∗
⇀ P2 in L∞(0, T ;L2(Ω ×D)), (5.9c)√

Mhψ̂
τ,(±)
h

∗
⇀ P3 in L∞(0, T ;L2(Ω ×D)), (5.9d)√

Mh∇xψ̂
τ,(±)
h ⇀ P

(±)
4 in L2(0, T ;L2(Ω ×D)), (5.9e)√

Mh∇qψ̂
τ,(±)
h ⇀ P

(±)
5 in L2(0, T ;L2(Ω ×D)), (5.9f)

uτ,(±)
h

∗
⇀ u in L∞(0, T ;L2(Ω)), (5.10a)

uτ,(±)
h ⇀ u in L2(0, T ;H1

0,div(Ω)), (5.10b)

S{∂tuτh}⇀ S{∂tu} in L4/λ(0, T ;H1
0,div(Ω)), (5.10c)

uτ,(±)
h → u in L2(0, T ;Ls(Ω)), s ∈ [1, 2d

d−2 ) . (5.10d)

In addition, we have

Ixh
{
Jh
{
Ixh
{
β′DQ(φτ,+h , φτ,−h )θx

}}}
→ Jε{β′(φ)θx} in L2(0, T ;W 1,∞(Ω)), (5.11a)

for θx ∈ C∞(0, T ;C∞(Ω)),

Ixh
{
Jh
{
Ixh
{
β(φτ,(±)

h )
}}}

→ Jε{β(φ)} in L2(0, T ;W 1,∞(Ω)), (5.11b)

Ixh
{

J h

{
uτ,(±)
h

}}
→ J ε{u} in L2(0, T ;W 1,∞(Ω)) . (5.11c)

Proof. The convergence results stated in (5.8a), (5.8b), (5.8d), and (5.8e) are direct consequences of the bounds
in (5.5c). As we can control τ−1

∫
ΩT

∣∣∇xφ
τ,+
h −∇xφ

τ,−
h

∣∣2 (cf. (5.5c)), it is possible to show that appropriate
subsequences of φτ,+h , φτ,−h , and φτh converge towards the same limit function. The strong convergence in (5.8c)
follows from Simon’s compactness theorem (cf. [27]) and the bound in (5.5a).

As proving the convergence expressed in (5.9) and (5.7) is more technical, we provide additional details on
this part of the proof. (5.9a) is a direct consequence of Lemma 2.2. The convergence implied by (5.9b) follows
from (5.5d). Using ∫

ΩT×D

√
M̂ψ̂τ,+h θ =

∫
ΩT×D

√
M̂ψ̂τ,−h θ +

∫
ΩT×D

√
M̂
(
ψ̂τ,+h − ψ̂τ,−h

)
θ, (5.12)
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for all θ ∈ L1(0, T ;L2(Ω ×D)), we show that
√
M̂ψ̂τ,+h ,

√
M̂ψ̂τ,−h , and

√
M̂ψ̂τh converge towards the same limit

function P1 which we use to define the limit function ψ̂ on ΩT ×D. Analogously, we obtain that
√
Mh + mψ̂

τ,(±)
h

converge towards the same limit function denoted by P2. Using the strong convergence of the discrete Maxwellian
from (5.9a), we choose a test function θ̃ :=

√
M̂θ with θ ∈ L1(0, T ;L2(Ω ×D)) and deduce∫

ΩT×D

P2θ̃ ←
∫
ΩT×D

√
Mh + mψ̂

τ,(±)
h θ̃ =

∫
ΩT×D

√
Mh + mψ̂

τ,(±)
h

√
M̂θ

→
∫
ΩT×D

√
M̂P1θ =

∫
ΩT×D

P1θ̃, (5.13)

which shows that P1 and P2 coincide on ΩT × D. Similar arguments yield (5.9d). Choosing a test function
η ∈ L2(0, T ;C∞0 (Ω ×D)), we obtain∫

ΩT×D
P

(±)
4 · η ←

∫
ΩT×D

√
Mh∇xψ̂

τ,(±)
h · η =

∫
ΩT×D

∇x(
√
Mhψ̂

τ,(±)
h ) · η

= −
∫
ΩT×D

√
Mhψ̂

τ,(±)
h divx {η} → −

∫
ΩT×D

P3 divx {η} =
∫
ΩT×D

√
M∇xψ̂ · η, (5.14)

which yields (5.9e). Concerning the proof of (5.9f), we infer from the bounds in (5.5d) that the subsequences
converge towards limit functions which we denote by P (±)

5 . We prove that P (±)
5 coincide with

√
M∇qψ̂ on every

compact subset of D. In a first step, we restrict ourselves to subsets Dδ := {q ∈ D : dist (q, ∂D) ≥ δ} of D

with δ > 2hq. From (4.6), we have M̂ ≤ CMh on Dδ, which implies
∫
ΩT×Dδ M̂

∣∣∣∇qψ̂
τ,(±)
h

∣∣∣2≤ C and therefore
the existence of subsequences converging weakly towards some limit function. Following the approach in [7] (see
also [5] and [18]), we choose a test function η ∈ L2(0, T ;C∞0 (Ω ×Dδ)) and compute

∫
ΩT×Dδ

√
M̂∇qψ̂

τ,(±)
h · η = −

∫
ΩT×Dδ

√
M̂ψ̂

τ,(±)
h

divq

{√
M̂η

}
√
M̂

→ −
∫
ΩT×Dδ

P1

divq

{√
M̂η

}
√
M̂

= −
∫
ΩT×Dδ

√
M̂ψ̂

divq

{√
M̂η

}
√
M̂

=
∫
ΩT×Dδ

√
M̂∇qψ̂ · η . (5.15)

In the next step, we choose some test function η̃ ∈ L1(0, T ;C∞0 (Ω ×D)). Hence, there exists δ > 0 such that
supp η̃ ⊂ Ω ×Dδ, which implies∫

ΩT×D

√
Mh∇qψ̂

τ,(±)
h ·

(√
M̂ η̃

)
=
∫
ΩT×Dδ

√
M̂∇qψ̂

τ,(±)
h ·

(√
Mhη̃

)
→
∫
ΩT×Dδ

√
M̂∇qψ̂ ·

(√
M̂ η̃

)
, (5.16)

and therefore yields the result.

The nonnegativity of ψ̂ on ΩT ×D follows from sup
t∈[0,T ]

∫
Ω×D

(Mh + m)Ixq
h

{
[ψ̂τ,(±)
h ]

2

−

}
≤ νC (cf. (5.5c)).

(5.10a) and (5.10b) follow directly from the bounds in (5.5c). Due to the denseness of
⋃
h>0 U

x
h in L2(Ω), we

have u ∈ L2(0, T ;H1
0,div(Ω)). Noting that S denotes the inverse Riesz-isomorphism on H1

0,div(Ω) (cf. [5], [18]),
we obtain (5.10c), which also implies weak* convergence of ∂tuτh towards ∂tu. To prove the strong convergence
postulated in (5.10d), we show that ‖uτ,(±)

h − u‖L2(0,T ;Ls(Ω)), which is bounded by

‖uτ,(±)
h − uτ,+h ‖L2(0,T ;Ls(Ω)) + ‖uτ,+h −Rh{uτ,+h }‖L2(0,T ;Ls(Ω)) + ‖Rh{uτ,+h }− u‖L2(0,T ;Ls(Ω)), (5.17)
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tends to zero. The first two terms vanish due to (5.5c), (4.37b), and the Gagliardo–Nirenberg inequality. The
convergence of the third term is a direct consequence of the bound in (5.5b) and the bounds in (5.5c) and a
“compactness by pertubation” result by Azérad and Guillén [4] which we cited in Lemma B.2.

To prove (5.11a), we apply the decomposition∥∥Ixh{Jh{Ixh{β′DQ(φτ,+h , φτ,−h )θx
}}}
− Jε{β′(φ)θx}

∥∥
L2(0,T ;W 1,∞(Ω))

≤
∥∥Ixh{Jh{Ixh{β′DQ(φτ,+h , φτ,−h )θx

}
− β′(φ)θx

}}∥∥
L2(0,T ;W 1,∞(Ω))

+ ‖Ixh{Jh{β′(φ)θx} − Jε{β′(φ)θx}}‖L2(0,T ;W 1,∞(Ω))

+ ‖Ixh{Jε{β′(φ)θx}} − Jε{β′(φ)θx}‖L2(0,T ;W 1,∞(Ω)) (5.18)

and show that the terms on the right-hand side vanish. Using Lemma 2.10, we compute∥∥Ixh{Jh{Ixh{β′DQ(φτ,+h , φτ,−h )θx
}
− β′(φ)θx

}}∥∥
L2(0,T ;W 1,∞(Ω))

≤ C(ε)
∥∥Ixh{β′DQ(φτ,+h , φτ,−h )θx

}
− β′(φ)θx

∥∥
L2(0,T ;L1(Ω))

. (5.19)

Therefore, the first term vanishes, if Ixh
{
β′DQ(φτ,+h , φτ,−h )θx

}
converges strongly towards β′(φ)θx in

L2(0, T ;L1(Ω)). To prove this convergence, we start with the estimate∫
Ω

∣∣Ixh{β′DQ(φτ,+h , φτ,−h )θx
}
− β′(φ)θx

∣∣ ≤ ∫
Ω

∣∣Ixh{β′DQ(φτ,+h , φτ,−h )θx − β′(φ)θx
}∣∣

+
∫
Ω

|Ixh{β′(φ)θx} − β′(φ)θx| =: I + II .

(5.20)

As we have θx ∈ C∞(0, T ;C∞(Ω)) and φτ,+h , φτ,−h ∈ Ux
h , we use the mean value theorem to compute

I ≤ max
x∈Ω
|θx|

∫
Ω

Ixh
{∣∣β′DQ(φτ,+h , φτ,−h )− β′(φ)

∣∣}
≤C

∫
Ω

Ixh
{∣∣φτ,+h − φ

∣∣}+ C

∫
Ω

Ixh
{∣∣φτ,−h − φ

∣∣}
=C

∫
Ω

Ixh
{∣∣φτ,+h − Ixh{φ}

∣∣}+ C

∫
Ω

Ixh
{∣∣φτ,−h − Ixh{φ}

∣∣} .
(5.21)

To deduce the last equality in (5.21), we used in particular that the integrals depend only on the values in the
vertices of the simplices. Therefore, it is possible to interchange φ and Ixh{φ}. Combining a discrete version of
Hölder’s inequality and (2.10) shows∫

Ω

Ixh
{∣∣φτ,+h − Ixh{φ}

∣∣} ≤ C(∫
Ω

Ixh
{

(φτ,+h − Ixh{φ})
2
})1/2

≤ C
∥∥φτ,+h − Ixh{φ}

∥∥
L2(Ω)

≤ C
∥∥φτ,+h − φ

∥∥
L2(Ω)

+ C ‖Ixh{φ} − φ‖L2(Ω) → 0 (5.22)

due to (5.8c), φ ∈ L2(0, T ;H2(Ω)), and standard error estimates for the nodal interpolation operator (cf. [9]).
Similar arguments imply ∫

Ω

Ixh
{∣∣φτ,−h − Ixh{φ}

∣∣}→ 0 . (5.23)

From (5.8c), we also infer II → 0. The second term on the right hand side of (5.18) vanishes as we have

‖Ixh{Jh{β′(φ)θx} − Jε{β′(φ)θx}}‖L2(0,T ;W 1,∞(Ω))

≤ ‖Jh{β′(φ)θx} − Jε{β′(φ)θx}‖L2(0,T ;W 1,∞(Ω))

≤ Chx ‖β′(φ)θx‖L2(0,T ;L1(Ω)) ≤ Chx . (5.24)
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Combining standard error estimates for the nodal interpolation operator with (1.9f), we compute for the last
term on the right hand side of (5.18)

‖Ixh{Jε{β′(φ)θx}} − Jε{β′(φ)θx}‖L2(0,T ;W 1,∞(Ω)) ≤ Chx ‖Jε{β′(φ)θx}‖L2(0,T ;W 2,∞(Ω))

≤ Chx ‖β′(φ)θx‖L2(0,T ;L1(Ω)) ≤ Chx → 0 . (5.25)

Similar arguments provide (5.11b) and (5.11c). �

Using the above mentioned convergence results, we pass to the limit (h, τ,m, ν) ↘ (0, 0, 0, 0) in (5.3) and
obtain the following result.

Theorem 5.2. Let d ∈ {2, 3}. Under the assumptions (A1)–(A9), there is a quadruple (φ, µφ, ψ̂,u) which can
be obtained from discrete solutions of (5.3) by passing to the limit (h, τ,m, ν)↘ (0, 0, 0, 0) and which solves the
equal-density version of (1.5) in the following weak sense.∫

ΩT

(
Φ0 − φ

)
∂tθ

x −
∫
ΩT

φu · ∇xθ
x +

∫
ΩT

∇xµφ · ∇xθ
x = 0

∀θx ∈ C1([0, T ];H1(Ω)) with θx(., T ) ≡ 0, (5.26a)

∫
ΩT

µφθ
x =

∫
ΩT

∇xφ · ∇xθ
x +

∫
ΩT

W ′(φ)θx +
∫
ΩT

β′(φ)Jε
{∫

D

Mψ̂

}
θx

∀θx ∈ L2(0, T ;H1(Ω)), (5.26b)

∫
ΩT×D

(Ψ̂0 − ψ̂)∂tθ −
∫
ΩT×D

Mψ̂u · ∇xθ −
∫
ΩT×D

Mψ̂(∇xJ ε{u} · q) · ∇qθ

+ cq

∫
ΩT×D

M∇qψ̂ · ∇qθ + cx

∫
ΩT×D

M∇xψ̂ · ∇xθ

+ cx

∫
ΩT×D

Mψ̂∇xJε{β(φ)} · ∇xθ = 0 ∀θ ∈ C1([0, T ], X̂) with θ(., T ) ≡ 0, (5.26c)

∫ T

0

〈∂tu,w〉+
∫
ΩT

(u · ∇x)u ·w +
∫
ΩT

2η(φ)Du : Dw

=
∫
ΩT

µφ∇xφ ·w +
∫
ΩT

divx

{
Jε

{∫
D

M∇qψ̂ ⊗ q
}}
·w +

∫
ΩT×D

Jε{β(φ)}M∇xψ̂ ·w

∀w ∈ L4/(4−λ)(0, T ;H1
0,div(Ω)), (5.26d)

with λ ∈ (2, 4), if d = 2, and λ = 3, if d = 3. Moreover, the solution has the following regularity properties

φ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L4(0, T ;L∞(Ω)), (5.27a)
µφ ∈ L2(0, T ;H1(Ω)), (5.27b)

ψ̂ ∈ L2(0, T ; X̂+) ∩ L∞(0, T ;L2(Ω ×D;M)), (5.27c)

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0,div(Ω)) ∩W 1,4/λ(0, T ; (H1

0,div(Ω))
′
), (5.27d)

with λ ∈ (2, 4), if d = 2, and λ = 3, if d = 3.
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Proof. In order to pass to the limit in (5.3a), we choose θxh = Ixh{θx} with θx ∈ C1([0, T ], C∞(Ω)) and
θx(., T ) ≡ 0. Therefore, the first term in (5.3a) can be rewritten as∫

ΩT

∂tφ
τ
hIxh{θx} −

∫
Ω

(I − Ixh ){∂tφτhIxh{θx}} =: Ia + Ib . (5.28)

Partial integration with respect to time, the assumptions on the initial data, (5.8c), and the strong convergence
of Ixh{θx} towards θx provided by standard estimates on the interpolation error (cf. [9]) yield the convergence
of Ia →

∫
ΩT

(Φ0 − φ)∂tθx. Ib vanishes due to the estimates stated in Lemma 2.4. The convergence of the
second term in (5.3a) is a direct consequence of the convergence results obtained in Lemma 5.1 and standard
interpolation error estimates (cf. Thm. 4.4.4 in [9]). From the bounds in (5.5c), we obtain that the third term
is bounded by τC and therefore vanishes when passing to the limit. The last convergence of the last term in
(5.3a) follows from the weak convergence of ∇xµ

τ,+
φ,h and the strong convergence of ∇xIxh{θx} → ∇xθ

x.
In order to pass to the limit in (5.3b), we choose θxh = Ixh{θx} with θx ∈ C∞([0, T ], C∞(Ω)). Then, the
convergence of term on the left-hand side of (5.3b) follows from the weak convergence of µτ,+φ,h stated in (5.8e)
and (2.18). The first term on the right-hand side of (5.3b) can be rewritten as∫

ΩT

Ixh
{

(W ′h(φτ,+h , φτ,−h )−W ′h(φτ,−h , φ) +W ′h(φτ,−h , φ)−W ′h(φ, φ))θx
}

+
∫
ΩT

Ixh{W ′h(φ, φ)θx}. (5.29)

Thereby, the first term vanishes. In particular, (W5) and the bounds on ‖φτ,(±)
h ‖L4(0,T ;L∞(Ω)) and

‖φ‖L4(0,T ;L∞(Ω)) show that it is bounded by

C

(∫ T

0

[∫
Ω

Ixh
{∣∣φτ,+h − φτ,−h

∣∣+
∣∣φτ,−h − φ

∣∣}]2
)1/2

. (5.30)

Due to
∥∥φτ,−h − Ixh{φ}

∥∥
L2(Ω)

≤
∥∥φτ,−h − φ

∥∥
L2(Ω)

+ C ‖φ− Ixh{φ}‖L∞(Ω), (5.30) is bounded by

C
∥∥φτ,+h − φτ,−h

∥∥
L2(ΩT )

+ C
∥∥φτ,−h − φ

∥∥
L2(ΩT )

+ Ch1/2
x ‖φ‖L2(0,T ;H2(Ω)) → 0 . (5.31)

The convergence of the second term in (5.29) towards
∫
ΩT
W ′(φ)θx follows from (W4) and the estimate

‖Ixh{f} − f‖L6(Ω) ≤ Chx |f |W 1,6(Ω) (cf. [9]), as we have

|W ′(φ)θx|L1(0,T ;W 1,6(Ω)) ≤ C
(
‖W ′(φ)‖L1(0,T ;L6(Ω)) + ‖W ′′(φ)∇xφ‖L1(0,T ;L6(Ω))

)
. (5.32)

Due to (W1), the terms on the right-hand side of (5.32) are bounded. The convergence of the third integral in
(5.3b) towards

∫
ΩT
∇xφ · ∇xθ

x is a direct consequence of (5.8a), while the convergence of the last term follows
from the weak* convergence in (5.9c), the strong convergence in (5.11a), and (2.18). Altogether, we have∫

ΩT

µφθ
x =

∫
ΩT

∇xφ · ∇xθ
x +

∫
ΩT

W ′(φ)θx +
∫
ΩT×D

Jε{β′(φ)}
√
M̂P2θ

x

∀θx ∈ C∞([0, T ], C∞(Ω)) . (5.33)

Noting the estimate∣∣∣∣∣
∫
ΩT×(D\D)

Jε{β′(φ)θx}
√
M̂P2

∣∣∣∣∣ ≤
(∫

ΩT

|Jε{β′(φ)θx}|2
∫

D\D
M̂

)1/2(∫
ΩT×D

P 2
2

)1/2

= 0 (5.34)
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and P2

∣∣
D

=
√
Mψ̂, shifting the continuous mollifier Jε onto

∫
D
Mψ̂, and recalling the denseness of

C∞([0, T ], C∞(Ω)) in L2(0, T ;H1(Ω)), we obtain (5.26b).

To pass to the limit in the Fokker–Planck type equation (5.3c), we again use Ixq
h {θ} with θ ∈

C1([0, T ];C∞(Ω ×D)) and θ(., T ) ≡ 0 as test function. Applying partial integration with respect to time,
we split the first term in (5.3c) into

−
∫
ΩT×D

Mhψ̂
τ
h∂tI

xq
h {θ}+

∫
ΩT×D

Mh(I − Ixq
h )
{
ψ̂τh∂tI

xq
h {θ}

}
−m

∫
ΩT×D

Ixq
h

{
ψ̂τh∂tI

xq
h {θ}

}
−
∫
Ω×D

(Mh + m)Ixq
h

{
ψ̂0
hI

xq
h

{
θ
∣∣
t=0

}}
(5.35)

The results of the previous lemma provide the convergence of the first term towards −
∫
ΩT×D

√
M̂P3∂tθ. The

second term vanishes due to (2.16c) and the bounds stated in (5.5c). Applying Young’s inequality shows that
the third term vanishes, too. Recalling the definition of ψ̂0

h in (4.1), one obtains the convergence of the last term
in (5.35) towards −

∫
Ω×D

M̂Ψ̂0 θ
∣∣
t=0

.
Concerning the convergence in the second term of (5.3c), we rewrite the term as∫

ΩT×D

Mhu
τ,+
h · Iqh

{
ψ̂τ,+h ∇xIxq

h {θ}
}
−
∫
ΩT×D

Mhu
τ,+
h · Iqh

{(
ψ̂τ,+h 1− Λx

ν [ψ̂τ,+h ]
)
∇xIxq

h {θ}
}
. (5.36)

As Λx
ν [ψ̂τ,+h ] is an approximation of ψ̂τ,+h in the sense of (2.33c), the second term vanishes when passing to the

limit, while the first term converges towards
∫
ΩT×D

√
M̂P3u · ∇xθ due to (5.9a), (5.10d), (5.9d), (2.19), and

the standard error estimates for the interpolation error.
Similarly, we obtain from (2.33a) and the convergence results established in Lemma 5.1∫

ΩT×D

(
∇xIxh

{
J h

{
uτ,+h

}}
· Ixh{qMh}

)
· Ixh

{
Ξq
ν [ψ̂τ,+h ]∇qIxq

h {θ}
}

→
∫
ΩT×D

√
M̂P3(∇xJ ε{u} · q) · ∇qθ, (5.37)

where we used in particular the high regularity of the mollified velocity field. Recalling (2.24a), we split the
fourth term in (5.3c) into

∫
ΩT×D

cxMhIqh
{(

Ξx
ν [ψ̂τ,+h ]∇xµ

τ,+
ψ,h,ν

)
· ∇xIxh{θ}

}
=
∫
ΩT×D

cxMhIqh
{
∇xψ̂

τ,+
h · ∇xIxh{θ}

}
+
∫
ΩT×D

cxMhIqh
{(

Ξx
ν [ψ̂τ,+h ]∇xIxh

{
Jh
{
Ixh
{
β(φτ,+h )

}}})
· ∇xIxh{θ}

}
=: A+B . (5.38)

The convergence of A follows from (5.9a), (5.9e), and (2.16b), while the convergence of B can be established
using Lemma 2.10, (A6), (2.19), (5.9d), (5.11b), (2.12b), and (2.33b). Therefore, we obtain

A+B →
∫
ΩT×D

cx

√
M̂P+

4 · ∇xθ +
∫
ΩT×D

cx

√
M̂P3∇xJε{β(φ)} · ∇xθ . (5.39)
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As the following computations show, we may substitute Ξx
ν [ψ̂τ,+h ] by Λx

ν [ψ̂τ,+h ] without changing the limit, which
provides the convergence in the fifth term (cf. (5.38), (5.39)).∣∣∣∣∫

ΩT×D

MhIqh
{((

Λx
ν [ψ̂τ,+h ]− Ξx

ν [ψ̂τ,+h ]
)
∇xµ

τ,+
ψ,h,ν

)
· ∇xµ

τ,+
ψ,h,ν

}∣∣∣∣
≤ C

(
ν−1

∫
ΩT×D

MhIqh

{∣∣∣Λx
ν [ψ̂τ,+h ]− Ξx

ν [ψ̂τ,+h ]
∣∣∣2})1/2(

ν

∫
ΩT×D

MhIqh

{∣∣∣∇xµ
τ,+
ψ,h,ν

∣∣∣2})1/2

.

(5.40)

As the eigenvalues of Ξx
ν [ψ̂τ,+h ] are greater than or equal to ν, we have

ν

∫
ΩT×D

Mh

∣∣∣∇xµ
τ,+
ψ,h,ν

∣∣∣2 ≤ ∫
ΩT×D

MhIqh
{(

Ξx
ν [ψ̂τ,+h ]∇xµ

τ,+
ψ,h,ν

)
· ∇xµ

τ,+
ψ,h,ν

}
≤ C (5.41)

due to (5.5c). We obtain from (2.33d) that the first factor on the right-hand side of (5.40) scales with h2
x

ν . In
combination with assumption (A7) and the bounds in (5.5c), we obtain

ν−1

∫
ΩT×D

MhIqh

{∣∣∣Λx
ν [ψ̂τ,+h ]− Ξx

ν [ψ̂τ,+h ]
∣∣∣2} ≤ Ch2

x

ν

∫
ΩT×D

MhIqh

{∣∣∣∇xψ̂
τ,+
h

∣∣∣2}→ 0 . (5.42)

The convergence ∫
ΩT×D

cqMhIxh
{
∇qψ̂

τ,+
h · ∇qIxq

h {θ}
}
→
∫
ΩT×D

cq

√
M̂P+

5 · ∇qθ (5.43)

follows directly from the results of Lemma 5.1 and (2.16a).
Collecting the above results yields∫

ΩT×D

(M̂Ψ̂0 −
√
M̂P3)∂tθ −

∫
ΩT×D

√
M̂P3u · ∇xθ −

∫
ΩT×D

√
M̂P3(∇xJ ε{u} · q) · ∇qθ

+
∫
ΩT×D

cx

√
M̂P+

4 · ∇xθ +
∫
ΩT×D

cx

√
M̂P3∇xJε{β(φ)} · ∇xθ

+
∫
ΩT×D

cq

√
M̂P+

5 · ∇qθ = 0, (5.44)

for all θ ∈ C1([0, T ];C∞(Ω ×D)) with θ(., T ) ≡ 0. Arguments similar to (5.34) show that the integrals over
D \D provide no contribution to (5.44). Recalling (5.7) and M̂ ≡ M on D, we obtain (5.26c) as C∞(Ω ×D)
is dense in X̂ (cf. [30]).

Recalling the strong convergence of Qh[w] towards w for all w ∈H1
0,div(Ω)∩H2(Ω) (see (TH2)), we choose

wh = Qh[w] ∈ W h,div with some w ∈ C∞([0, T ];C∞0 (Ω) ∩H1
0,div(Ω)) and pass to the limit in (5.3d). The

convergence in the first term follows immediately from the weak* convergence of ∂tuτh in L4/λ(0, T ; (H1
0,div(Ω))

′
)

implied by (5.10c) and the aforementioned strong convergence of Qh[w]. The convergence in the next four terms
also follows directly from the results of Lemma 5.1 in combination with Hölder’s inequality, Young’s inequality,
Poincaré’s inequality and the Gagliardo-Nirenberg inequality. In particular, we have

1
2

∫
Ω

((
∇xuτ,+h

)T · Qh[w]
)
· uτ,−h − 1

2

∫
ΩT

(
(∇xQh[w])T · uτ,+h

)
· uτ,−h →

∫
ΩT

(u · ∇x)u ·w,∫
ΩT

2Ixh
{
η(φτ,+h )

}
Duτ,+h : DQh[w]→

∫
ΩT

2η(φ)Du : Dw,

−
∫
ΩT

φτ,−h ∇xµ
τ,+
φ,h · Qh[w]→ −

∫
ΩT

φ∇xµφ ·w .

(5.45)
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Passing to the limit in the sixth term is more technical due to the operator Λx
ν [.]. Recalling the ideas of the

proof of Lemma 4.8 (in particular (4.49)–(4.51)), we dispose the projection operator Qh by computing∣∣∣∣∫
ΩT×D

Mh(Qh[w]−w) · Iqh
{

Λx
ν [ψ̂τ,+h ]∇xµ

τ,+
ψ,h,ν

}∣∣∣∣ ≤ (∫
ΩT×D

Mh |Qh[w]−w|2 σΛx
ν [ψ̂τ,+h ](x,q)

)1/2

×
(∫

ΩT×D

MhIqh
{(

Λx
ν [ψ̂τ,+h ]∇xµ

τ,+
ψ,h,ν

)
· ∇xµ

τ,+
ψ,h,ν

})1/2

≤ C ‖Qh[w]−w‖L2(0,T ;H1(Ω)) → 0 . (5.46)

Recycling the ideas used to establish convergence in the fifth term of (5.3c), we compute∣∣∣∣∫
ΩT×D

Mhw · Iqh
{(

Λx
ν [ψ̂τ,+h ]− Ξx

ν [ψ̂τ,+h ]
)
∇xµ

τ,+
ψ,h,ν

}∣∣∣∣
≤ C

(
ν−1

∫
ΩT×D

MhIqh

{∣∣∣Λx
ν [ψ̂τ,+h ]− Ξx

ν [ψ̂τ,+h ]
∣∣∣2})1/2(∫

ΩT×D

νMhIqh

{∣∣∣∇xµ
τ,+
ψ,h,ν

∣∣∣2})1/2

→ 0

(5.47)

due to (A7). Therefore, replacing replacing Λx
ν [.] by Ξx

ν [.] does not change the limit. Using (2.24a) and the
convergence implied by Lemma 5.1, we obtain∫

ΩT×D

Mhw · Iqh
{

Ξx
ν [ψ̂τ,+h ]∇xµ

τ,+
ψ,h,ν

}
=
∫
ΩT×D

Mhw · ∇xψ̂
τ,+
h +

∫
ΩT×D

Mhw · Iqh
{

Ξx
ν [ψ̂τ,+h ]∇xIxq

h

{
Jh
{
β(φτ,+h )

}}}
=
∫
ΩT×D

Mhw · Iqh
{
ψ̂τ,+h ∇xIxq

h

{
Jh
{
β(φτ,+h )

}}}
+
∫
ΩT×D

Mhw · Iqh
{

(Ξx
ν [ψ̂τ,+h ]− ψ̂τ,+h 1)∇xIxq

h

{
Jh
{
β(φτ,+h )

}}}
→
∫
ΩT×D

√
M̂P3w · ∇xJε{β(φ)},

(5.48)

as w is solenoidal. Similarly to (5.11c), we obtain the convergence Ixh{J h{Qh[w]}} → J ε{w}
in L2(0, T ;W 1,∞(Ω)) which allows us to show convergence of the last term of (5.3d) towards∫
ΩT×D

√
M̂(∇xJh{w} · q) · P+

5 . As before, we use Young’s inequality to justify the restriction to ΩT × D.
The final result follows from the denseness of C∞([0, T ];C∞0 (Ω) ∩H1

0,div(Ω)) in L4/(4−λ)(0, T ;H1
0,div(Ω)). �

Remark 5.3. In [18], the existence of weak solutions with similar regularity properties was established starting
from an only time-discrete scheme. The regularity properties of the marginal ω :=

∫
D
Mψ̂ established in [18] –

namely ω ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) – may be recovered from Theorem 5.2 (cf. Rem. 2.2.41 in [25]).

In the presented discrete scheme, the Fokker–Planck type equation was stated on a superset of Ω ×D. While
passing to the limit, we restricted ourselves to the original domain Ω ×D. This, however, does not violate the
conservation of the number density of the polymer chains.

Corollary 5.4. Let the assumptions of Theorem 5.2 hold true. Then∫
Ω×D

Mψ̂(t) =
∫
Ω×D

MΨ̂0

holds true for almost every t ∈ (0, T ).
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Proof. Combining (3.6) with the computation of ψ̂0
h stated in (4.1) in (A9), we obtain∫

Ω×D

(Mh + m)ψ̂τ,(±)
h =

∫
Ω×D

(Mh + m)ψ̂0
h =

∫
Ω×D

(Mh + m)Ψ̂0 (5.49)

for every t ∈ (0, T ). The strong convergence (Mh + m)→ M̂ in L∞(D) (cf. Lem. 2.2) implies∫
Ω×D

(Mh + m)Ψ̂0 →
∫
Ω×D

M̂Ψ̂0 =
∫
Ω×D

MΨ̂0 . (5.50)

Passing to the limit on the left-hand side of (5.49) then provides the result (cf. [25]). �

6. Numerical simulations

For practical computations, the finite element scheme (3.4) is implemented in the framework of the inhouse
code EconDrop which is written in C++ (cf. [2, 10, 17]). As a proof of concept, we compute the oscillatory

Table 1. Parameters used in the two-dimensional setting.

σ δ m ρ (±1) η (±1) cx cq ν m γ β (−1) β (+1) ε ϑ

10 0.01 10−4 2 0.005 0.01 0.1 10−7 10−23 10−9 5 1 0.01 1

50 S. METZGER

(a) t = 0.00 (b) t = 0.13 (c) t = 0.30

(d) t = 0.60 (e) t = 0.90 (f) t = 2.00

Figure 6.1. Oscillating droplet
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Figure 6.2. Comparison of the length of the semiaxis of oscillating
droplets (vertical lines corresponding to shnapshots in Figure 6.1).

droplet. Figure 6.1 shows the evolution of the non-Newtonian droplet. To illustrate oc-
curing additional stresses, we computed the Kramers tensor

´
D
Mh∇qψ̂ ⊗ q and, if its

eigenvalues are real, its eigenvectors and eigenvalues on each κx ∈ T x
h . The eigenvectors

to the largest eigenvalue of these tensors are depicted in Figure 6.1 as yellow and green

Figure 1. Oscillating droplet
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droplet. Figure 6.1 shows the evolution of the non-Newtonian droplet. To illustrate oc-
curing additional stresses, we computed the Kramers tensor

´
D
Mh∇qψ̂ ⊗ q and, if its

eigenvalues are real, its eigenvectors and eigenvalues on each κx ∈ T x
h . The eigenvectors

to the largest eigenvalue of these tensors are depicted in Figure 6.1 as yellow and green

Figure 2. Comparison of the length of the semiaxis of oscillating droplets (vertical lines
corresponding to shnapshots in Fig. 1).

Table 2. Parameters used in the three-dimensional setting.

σ δ m ρ (±1) η (±1) cx cq ν m γ β (±1) τ ε ϑ

10 0.02 2·10−4 2 0.005 0.1 0.2 10−7 10−7 10−12 0 10−4 0.01 1

52 S. METZGER

Figure 6.3. Triangula-
tion of D (d = 2) adapted
to values of Mh.

uer

uer

uer

Figure 6.4. Dumbbell
subjected to a radial
velocity field uer.

appear in Figures 6.5b and 6.5c on the inside of the droplet, as the radial component
of the velocity field may induce elongation of polymer chains in azimuthal direction (cf.
Figure 6.4).
Similar to the first scenario, we compare the evolution of the semiaxes for the case of
dilute polymeric solutions and pure Newtonian fluids. As depicted in Figure 6.6, the
oscillation is more damped in the non-Newtonian case than in the Newtonian one. As
the Deborah number is chosen larger and the polymer concentration is chosen smaller
than in the two-dimensional setting, the additional stresses caused by the polymer chains
dissipate faster and have less impact on the evolution of the droplet. Consequently, the
damping is not as asymmetric as in the first scenario.
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processes at fluidic interfaces".

Appendix A. Proofs of Section 2

Proof of Lemma 2.2. (P3) provides c3[dist (q, ∂D)]κ ≤ M(q) ≤ c4[dist (q, ∂D)]κ on D

with κ > 1 implying the continuity of M̂ . Recalling the definition of the Maxwellian (see
(1.3)), we compute for q-derivatives on D

|∂qiM | = C
∣∣exp (−U(1

2
|q|2))U ′(1

2
|q|2)qi

∣∣
≤ C

∣∣M(q)U ′(1
2
|q|2)

∣∣ ≤ C[dist (q, ∂D)]κ−1 → 0 (A.1)

as q→ ∂D, for i = 1, ..., d. Noting M̂ ≡ 0 on D\D, we have M̂ ∈ C1
(
D
)
with M̂

∣∣∣
∂D

= 0.

Due to
´
D
Iqh{M̂} dq ≤ |D|maxq∈D M̂(q) ≤ C, there is a constant cM > 0 independent

of hq such that chq ≥ cM .
Noting M̂ ∈ C1

(
D
)
and applying standard bounds for the interpolation error (cf. [9]),

Figure 3. Triangulation of D (d = 2) adapted to values of Mh.

behaviour of non-Newtonian droplets and compare these results to the behaviour of Newtonian ones. Information
concerning the implementation of the discrete scheme can be found in [25]. For a more detailed investigation
on the influence of the Deborah number

De :=
relaxation time

typical observation time
, (6.1)

which corresponds to (2cq)−1, and the polymer concentration, we also refer to [25].
In a first simulation, we consider a non-Newtonian droplet surrounded by a Newtonian fluid in a two-

dimensional set-up, i.e. Ω × D ⊂ R2 × R2. For this simulation, we use the following general setting. The
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appear in Figures 6.5b and 6.5c on the inside of the droplet, as the radial component
of the velocity field may induce elongation of polymer chains in azimuthal direction (cf.
Figure 6.4).
Similar to the first scenario, we compare the evolution of the semiaxes for the case of
dilute polymeric solutions and pure Newtonian fluids. As depicted in Figure 6.6, the
oscillation is more damped in the non-Newtonian case than in the Newtonian one. As
the Deborah number is chosen larger and the polymer concentration is chosen smaller
than in the two-dimensional setting, the additional stresses caused by the polymer chains
dissipate faster and have less impact on the evolution of the droplet. Consequently, the
damping is not as asymmetric as in the first scenario.
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Proof of Lemma 2.2. (P3) provides c3[dist (q, ∂D)]κ ≤ M(q) ≤ c4[dist (q, ∂D)]κ on D

with κ > 1 implying the continuity of M̂ . Recalling the definition of the Maxwellian (see
(1.3)), we compute for q-derivatives on D

|∂qiM | = C
∣∣exp (−U(1

2
|q|2))U ′(1

2
|q|2)qi

∣∣
≤ C

∣∣M(q)U ′(1
2
|q|2)

∣∣ ≤ C[dist (q, ∂D)]κ−1 → 0 (A.1)

as q→ ∂D, for i = 1, ..., d. Noting M̂ ≡ 0 on D\D, we have M̂ ∈ C1
(
D
)
with M̂

∣∣∣
∂D

= 0.

Due to
´
D
Iqh{M̂} dq ≤ |D|maxq∈D M̂(q) ≤ C, there is a constant cM > 0 independent

of hq such that chq ≥ cM .
Noting M̂ ∈ C1

(
D
)
and applying standard bounds for the interpolation error (cf. [9]),

Figure 4. Dumbbell subjected to a radial velocity field uer.

spatial domain is given as Ω = (−1, 1)2 and discretized using an adaptive triangulation consisting of simplices
with diameters between approximately 0.0667 and 0.0083. To evaluate the discrete mollifier which is defined
according to (2.38) with ε = 0.01, we choose Ω∗ = (−1− hx, 1 + hx)2 where hx is the maximal diameter of the
simplices (i.e. hx ≈ 0.0667). Setting Qmax = 10, we choose D as suppMh ⊃ D on the coarsest triangulation
which consists of simplices with a diameter of approximately 3.5355. We refine this triangulation by means of
the Maxwellian (cf. Fig. 3) such that the smallest simplices have a diamter of approximately 0.3125. Concerning
the discretization in time, a fixed time increment τ = 10−4 is used.

Initially, an elliptical shaped droplet (with axes of length 1.3 and 0.7) is placed with its barycenter at (0, 0).
This droplet, which is indicated by φ = 1, is non-Newtonian and contains polymers with number density ω0

h = 3.
As the ambient liquid, indicated by φ = −1, is assumed to be Newtonian, we set ω0

h ≡ 0 outside of the droplet.
Assuming that the polymer chains are in equilibrium at the beginning of the simulations, we set

ψ̂0
h(x,q) := ω0

h(x) which corresponds to ψ0
h(x,q) := Mh(q)ω0

h(x). (6.2)

We restrict the polymers to the droplet by an appropriate β-function which interpolates between β(−1) = 5
and β(1) = 1. Concerning the double-well potential, we stick to the prototype (3.2) with δ′ = 4 · 10−3 and
approximate its derivatives using

W ′h(a, b) := 1
4

(
a3 + a2b+ ab2 + b3

)
− 1

2 (a+ b) + 1
δ′

d
ds

∣∣
s=a

max {|s| − 1, 0}2 . (6.3)

The remaining parameters are chosen according to Table 1.
The elliptical shaped droplet tries to attain its energetically optimal, circular shape and starts to contract

giving rise to a velocity field. We are interested in the arising non-Newtonian effects – i.e. in the arising changes in
the polymer configuration and the resulting additional stresses – and in their impact on the rheological behaviour
of the droplet. Figure 1 shows the evolution of the non-Newtonian droplet. To illustrate occuring additional
stresses, we computed the Kramers tensor

∫
D
Mh∇qψ̂ ⊗ q and, if its eigenvalues are real, its eigenvectors and

eigenvalues on each κx ∈ T x
h . The eigenvectors to the largest eigenvalue of these tensors are depicted in Figure 1

as yellow and green lines. While the droplet oscillates, the polymer chains build up stresses in mainly vertical
direction. To analyze the impact of those stresses, we measure the x1- and x2-semiaxis of the droplet and
compare them to the ones of a Newtonian droplet.

Figure 2 shows that the oscillation is damped in both cases. Comparing the evolution of the length of the
semiaxes, we notice that the oscillation of the non-Newtonian droplet is damped asymmetrically: While the
elongation of the x2-axis (and the contraction of the x1-axis) of the droplet is significantly more damped
in the non-Newtonian case, the amplitudes of the second oscillation are almost identical. This phenomenon
can be explained as follows. As the polymer chains are initially in equilibrium, i.e. the distribution of their
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(a) t = 0.00 (b) t = 0.10

(c) t = 0.20 (d) t = 0.30

(e) t = 0.45 (f) t = 0.60

Figure 6.5. Rotationally symmetric, oscillating droplet.
Figure 5. Rotationally symmetric, oscillating droplet.
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Figure 6.6. Comparison of the length of the semiaxis of oscillating
droplets (vertical lines corresponding to shnapshots in Figure 6.5).

we infer

1−
ˆ
D

Iqh
{
M̂
}

dq ≤
∣∣∣∣ˆ

D

Iqh
{
M̂
}

dq− 1

∣∣∣∣ =

∣∣∣∣ˆ
D

(
Iqh
{
M̂
}
− M̂

)
dq

∣∣∣∣
≤ C

∥∥∥Iqh{M̂}− M̂∥∥∥
L∞(D)

≤ Chq

∣∣∣M̂ ∣∣∣
W 1,∞(D)

≤ Chq , (A.2)

which implies chq ≤ 1
1−Chq ≤ C for hq small enough. Computing

∥∥∥Mh − M̂
∥∥∥
L∞(D)

=
∥∥∥chqIqh{M̂}− M̂∥∥∥

L∞(D)

≤ chq

∥∥∥Iqh{M̂}− M̂∥∥∥
L∞(D)

+
∥∥∥M̂∥∥∥

L∞(D)
chq

∣∣∣c−1
hq
− 1
∣∣∣

≤ chq

∥∥∥Iqh{M̂}− M̂∥∥∥
L∞(D)

+
∥∥∥M̂∥∥∥

L∞(D)
chq

∣∣∣∣ˆ
D

(
Iqh
{
M̂
}
− M̂

)∣∣∣∣ . (A.3)

and applying (A.2) completes the proof. �

Proof of Lemma 2.3. As θ̂h, θ̃h ∈ X̂h, ∇qθ̂h and ∇qθ̃h are constant on κx × κq with re-
spect to q and ∇xθ̂h and ∇xθ̃h are constant on κx × κq with respect to x. We use

Figure 6. Comparison of the length of the semiaxis of oscillating droplets (vertical lines
corresponding to shnapshots in Fig. 5).

configurational density is aligned to the Maxwellian, the first oscillation stretches the polymer chains in x2-
direction (i.e. vertically). This deflection from equilibrium slows down the oscillation. When swinging back, the
oscillation is supported by the polymer chains as it reduces their deviation from their preferred state.

On the long run, both droplets seem to attain a stationary state. Nevertheless, the non-Newtonian one does
not attain a perfectly circular shape, but stays slightly elliptical. As Figure 1f shows, there remain still vertical
stresses inside of the droplet, which are not dissipated fast enough and therefore still influence the shape of the
droplet.

In the second scenario, we consider a non-Newtonian droplet surrounded by an also non-Newtonian fluid. To
underline the practicality of the presented scheme, we consider a three-dimensional, rotationally symmetric set-
up. We place an ellipsoidal shaped, rotationally symmetric droplet with barycenter at (0, 0, 0) in the rotationally
symmetric, cylindrical domain Ω := {x ∈ R3 : −1 < x2 < 1, x2

1 + x2
3 < 1}. The longest principal axis points in

x2-direction and has length 1.3. The other principal axes are of length 0.7. We parameterize the spatial domain
using cylindrical coordinates, i.e. it suffices to compute the spatial quantities on a two-dimensional domain
(0, 1) × (−1, 1) which we discretize using triangles with diameters between approximately 0.0471 and 0.0118.
Specifying Qmax = 10, we set D := (−10, 10)3. Adapting the triangulation of D to the values of the Maxwellian,
we end up with tetrahedrons with diameters between approximately 3.536 and 0.442. In contrast to the last
scenario, we consider a two-phase flow consisting of two dilute polymeric solutions. Assuming that the polymer
chains are equally soluble in both phases and that the polymer chains are initially in equilibrium, we set β ≡ 0
and ψ̂0

h ≡ 1. Similarly to the two-dimensional setting, we use the penalized, polynomial double-well potential
introduced in (3.2) with δ′ = 4 · 10−3 and approximate its derivatives using (6.3). The remaining parameters
are specified in Table 2.

Figure 5 shows the evolution of the droplet. Again, the eigenvectors and eigenvalues of the additional stress
tensor are computed. For better readability, we depict the eigenvectors to positive eigenvalues (white lines)
of the additional stress tensor only in a cross section of Ω. Although we assumed rotational symmetry, the
additional stresses still span a three-dimensional space. In particular, stresses perpendicular to the cross section
appear in Figures 5b and 5c on the inside of the droplet, as the radial component of the velocity field may
induce elongation of polymer chains in azimuthal direction (cf. Fig. 4).

Similar to the first scenario, we compare the evolution of the semiaxes for the case of dilute polymeric solutions
and pure Newtonian fluids. As depicted in Figure 6, the oscillation is more damped in the non-Newtonian case
than in the Newtonian one. As the Deborah number is chosen larger and the polymer concentration is chosen
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smaller than in the two-dimensional setting, the additional stresses caused by the polymer chains dissipate faster
and have less impact on the evolution of the droplet. Consequently, the damping is not as asymmetric as in the
first scenario.

Appendix A. Proofs of Section 2

Proof of Lemma 2.2. (P3) provides c3[dist (q, ∂D)]κ ≤M(q) ≤ c4[dist (q, ∂D)]κ on D with κ > 1 implying the
continuity of M̂ . Recalling the definition of the Maxwellian (see (1.3)), we compute for q-derivatives on D

|∂qiM | = C
∣∣∣exp (−U( 1

2 |q|
2))U ′( 1

2 |q|
2)qi

∣∣∣
≤ C

∣∣∣M(q)U ′( 1
2 |q|

2)
∣∣∣ ≤ C[dist (q, ∂D)]κ−1 → 0 (A.1)
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(
D
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with M̂
∣∣∣
∂D
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D
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D
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which implies chq ≤ 1
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and applying (A.2) completes the proof. �

Proof of Lemma 2.3. As θ̂h, θ̃h ∈ X̂h, ∇qθ̂h and ∇qθ̃h are constant on κx × κq with respect to q and ∇xθ̂h
and ∇xθ̃h are constant on κx × κq with respect to x. We use ‖Ixh{gx} − gx‖L∞(κx) ≤ Ch2

x |gx|W 2,∞(κx) for
gx ∈W 2,∞(κx) (cf. [9]) to compute∫

κx×κq

∣∣∣Mh(I − Ixh )
{
∇qθ̂h · ∇qθ̃h

}∣∣∣ dq dx
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Mh dq dx
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x
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Mh dq dx

)∣∣∣∇qθ̂h · ∇qθ̃h
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x

(∫
κx×κq

Mh dq dx

)
d∑

i,j,k=1

∣∣∣∂xj∂qi θ̂h∂xk∂qi θ̃h∣∣∣ (A.4)
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as θ̂h, θ̃h ∈ X̂hand ∂xi∂xj θ̂h = ∂xi∂xj θ̃h = 0 (i, j = 1, . . . , d). Since ∂xj∂qi θ̂h and ∂xj∂qi θ̃h are constant on
κx × κq for i, j = 1, . . . , d, we obtain that the right-hand side of (A.4) is bounded by

Ch2
x

d∑
i,j,k=1

(∫
κx×κq

Mh

∣∣∣∂xj∂qi θ̂h∣∣∣2 dq dx

)1/2(∫
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)1/2

. (A.5)

We apply (2.13c) to the first integral in (A.5) and obtain
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Mh
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x

(∫
κx×κq

Mh
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∣∣∣2 dq dx

)1/2

, (A.6)

which yields (2.16a). Analogous computations provide a bound similar to (A.5) for the left-hand side of (2.16b)
with hx substituted by hq. We apply (A.6) to the first integral and use hq

hx
≤ C (cf. (2.1)) to complete the proof

of (2.16b).
To prove the last inequality, we use that the left-hand side of (2.16c) is bounded by

∫
κx×κq

∣∣∣Mh(I − Ixh )
{
θ̂hθ̃h

}∣∣∣ dq dx +
∫
κx×κq

∣∣∣Mh(I − Iqh )
{
Ixh
{
θ̂hθ̃h

}}∣∣∣ dq dx =: I + II . (A.7)

As before, we use that θ̂h and θ̃h are affine linear with respect to x on κx and compute

I ≤
∫
κx×κq

Mh

∥∥∥(I − Ixh )
{
θ̂hθ̃h

}∥∥∥
L∞(κx)

dq dx ≤ Ch2
x

∫
κx×κq

Mh

∣∣∣θ̂hθ̃h∣∣∣
W 2,∞(κx)

dq dx

≤ Ch2
x

∫
κx×κq

Mh

d∑
i,j=1

∣∣∣∂xi θ̂h∂xj θ̃h∣∣∣ dq dx

≤ Ch2
x

(∫
κx×κq

Mh

∣∣∣∇xθ̂h

∣∣∣2 dq dx

)1/2(∫
κx×κq

Mh

∣∣∣∇xθ̃h

∣∣∣2 dq dx

)1/2

(A.8)

and

II ≤

(∫
κx×κq

Mh dq dx

)∥∥∥(I − Iqh )
{
Ixh
{
θ̂hθ̃h

}}∥∥∥
L∞(κx×κq)

≤Ch2
q

(∫
κx×κq

Mh dq dx

)∥∥∥∇qθ̂h

∥∥∥
L∞(κx)

∥∥∥∇qθ̃h

∥∥∥
L∞(κx)

.

(A.9)



2406 S. METZGER

As ∇qθ̂h and ∇qθ̃h are affine linear with respect to x, they will attain their maximum in one of the vertices of
κx, which are denoted by {Pκx,i}i=0,...,d. Therefore, we may compute(∫

κx×κq

Mh dq dx

)∥∥∥∇qθ̂h

∥∥∥
L∞(κx)

∥∥∥∇qθ̃h

∥∥∥
L∞(κx)

≤
∫
κx×κq

Mh

d∑
i=0

∣∣∣∇qθ̂h(Pκx,i,q)
∣∣∣ d∑
j=0

∣∣∣∇qθ̃h(Pκx,j ,q)
∣∣∣ dq dx

≤

∫
κx×κq

Mh

(
d∑
i=0

∣∣∣∇qθ̂h(Pκx,i,q)
∣∣∣)2

dq dx

1/2

≤ C

(∫
κx×κq

Mh

∣∣∣∇qθ̂h

∣∣∣2 dq dx

)1/2(∫
κx×κq

Mh

∣∣∣∇qθ̃h

∣∣∣2 dq dx

)1/2

.

(A.10)

Combining (A.7)–(A.10) yields (2.16c). �

Appendix B. Miscellaneous

Lemma B.1. Let φ, ψ̂, and u satisfy (1.5) on a formal level. Then the energy E defined in (1.7) satisfies

E(φ, ψ̂,u)
∣∣∣
t=T

+
∫
ΩT×D

Mψ̂
∣∣∣∇qg

′(ψ̂)
∣∣∣2 +

∫
ΩT×D

Mψ̂
∣∣∣∇x

(
g′(ψ̂) + Jε{β(φ)}

)∣∣∣2
+
∫
ΩT

|∇xµφ|2 +
∫
ΩT

2η(φ) |Du|2 = E(φ, ψ̂,u)
∣∣∣
t=0

, (B.1)

for all T ≥ 0 In particular, we have E(φ, ψ̂,u)
∣∣∣
t=T
≤ E(φ, ψ̂,u)

∣∣∣
t=0

.

Proof. Testing (1.5a) by µφ and (1.5b) by ∂tφ and integrating by parts yields∫
Ω

∂tφµφ −
∫
Ω

φu · ∇xµφ +
∫
Ω

|∇xµφ|2 = 0, (B.2)∫
Ω

∂tφµφ =
∫
Ω

1
2∂t |∇xφ|2 +

∫
Ω

∂tW (φ) +
∫
Ω×D

Jε{∂tβ(φ)}Mψ̂ . (B.3)

In the next step, we test (1.5c) by the chemical potential (g′(ψ̂) + Jε{β(φ)}). Using the identity ψ̂∇qg
′(ψ̂) =

∇qψ̂ and the fact that Jε{β(φ)} is independent of q, we obtain∫
Ω×D

M∂tg(ψ̂) +
∫
Ω×D

Jε{β(φ)}∂tψ̂ −
∫
Ω×D

Mψ̂∇x

(
g′(ψ̂) + Jε{β(φ)}

)
· u

−
∫
Ω×D

M(∇xJ ε{u} · q) · ∇qψ̂ +
∫
Ω×D

cqMψ̂
∣∣∣∇qg

′(ψ̂)
∣∣∣2 +

∫
Ω×D

cxMψ̂
∣∣∣∇x

(
g′(ψ̂) + Jε{β(φ)}

)∣∣∣2 = 0

. (B.4)

Testing (1.5d) by u and integrating by parts with respect to x, we obtain∫
Ω

1
2ρ(φ)∂t |u|2 +

∫
Ω

1
2ρ(φ)u · ∇x |u|2 −

∫
Ω

1
2ρ
′(φ)m(φ)∇xµφ · ∇x |u|2 +

∫
Ω

2η(φ) |Du|2

= −
∫
Ω

φ∇xµφ · u−
∫
Ω×D

Mψ̂∇x

(
g′(ψ̂) + Jε{β(φ)}

)
· u−

∫
Ω×D

M(∇xJ ε{u} · q) · ∇qψ̂ . (B.5)
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In order to get rid of the second and third term in (B.5), we additionally test (1.5a) by 1
2ρ
′(φ) |u|2. Using the

fact that ρ′ is constant and that the convection terms in (B.2) and (B.4) reappear on the right-hand side of
(B.5), we add the equations above and end up with∫

Ω×D
M∂tg(ψ̂) +

∫
Ω×D

M∂t

(
Jε{β(φ)}ψ̂

)
+
∫
Ω

1
2∂t |∇xφ|2 +

∫
Ω

∂tW (φ) +
∫
Ω

1
2∂t |u|

2

+
∫
Ω×D

Mψ̂
∣∣∣∇qg

′(ψ̂)
∣∣∣2 +

∫
Ω×D

Mψ̂
∣∣∣∇x

(
g′(ψ̂) + Jε{β(φ)}

)∣∣∣2 +
∫
Ω

|∇xµφ|2 +
∫
Ω

2η(φ) |Du|2 = 0

. (B.6)

As M is time-independent an integration with respect to time yields (B.1). �

For the reader’s convenience, we cite a compactness result by Azérad and Guillén (cf. [4]).

Lemma B.2. Let T > 0, and let the Banach spaces X
compact
↪→ B ↪→ Y. Let (fε)ε>0 be a family of functions of

Lp(0, T ; X), 1 ≤ p ≤ ∞, with the extra condition (fε)ε>0 ⊂ C(0, T ; Y) if p =∞, such that

• (fε)ε>0 is bounded in Lp(0, T ; X),
• ‖fε(·+ τ)− fε(·)‖Lp(0,T−τ ;Y) ≤ ϕ(τ) + ψ(ε) with limτ→0 ϕ(τ) = 0 = limε→0 ψ(ε).

Then the family (fε)ε>0 posses a cluster point in Lp(0, T ; B) and also in C(0, T ; B) if p =∞, as ε→ 0.
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[6] J.W. Barrett and E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers. I: Finitely
extensible nonlinear bead-spring chains. M3AS 21 (2011) 1211–1289.
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