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CONVERGENCE OF A SEMI-DISCRETE NUMERICAL METHOD
FOR A CLASS OF NONLOCAL NONLINEAR WAVE EQUATIONS

H.A. Erbay1,*, S. Erbay1 and A. Erkip2

Abstract. In this article, we prove the convergence of a semi-discrete numerical method applied to
a general class of nonlocal nonlinear wave equations where the nonlocality is introduced through the
convolution operator in space. The most important characteristic of the numerical method is that it
is directly applied to the nonlocal equation by introducing the discrete convolution operator. Starting
from the continuous Cauchy problem defined on the real line, we first construct the discrete Cauchy
problem on a uniform grid of the real line. Thus the semi-discretization in space of the continuous
problem gives rise to an infinite system of ordinary differential equations in time. We show that the
initial-value problem for this system is well-posed. We prove that solutions of the discrete problem
converge uniformly to those of the continuous one as the mesh size goes to zero and that they are second-
order convergent in space. We then consider a truncation of the infinite domain to a finite one. We
prove that the solution of the truncated problem approximates the solution of the continuous problem
when the truncated domain is sufficiently large. Finally, we present some numerical experiments that
confirm numerically both the expected convergence rate of the semi-discrete scheme and the ability of
the method to capture finite-time blow-up of solutions for various convolution kernels.
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1. Introduction

In this study, we are interested in approximating solutions of the following class of nonlocal nonlinear wave
equations

utt = (β ∗ f(u))xx , (1.1)

where the symbol ∗ is used to denote the convolution operation in the spatial domain

(β ∗ v)(x) =
∫
R
β(x− y)v(y)dy,
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and the kernel β is an even function with
∫
R β(x)dx = 1. For the initial-value problem of (1.1), we present a

second-order semi-discrete scheme based on a uniform spatial discretization and prove its convergence.
Equation (1.1) was proposed in [11] as a model for the propagation of strain waves in a one-dimensional,

homogeneous, nonlinearly and nonlocally elastic infinite medium. In the same paper, some local existence, global
existence and blow-up results were established for the initial-value problem of (1.1). The class (1.1) covers a
variety of equations from integro-differential equations to differential-difference equations that arise in lattice
models [11]. Equation (1.1) includes some well-known nonlinear wave equations as a particular case. For instance,
with the exponential kernel β(x) = 1

2e−|x| and f(u) = u+ g(u), (1.1) reduces to the improved Boussinesq (IB)
equation

utt − uxx − uxxtt = (g(u))xx, (1.2)

that has been widely investigated in the literature. If β is the Green’s function for the differential operator
1 − L(D2

x) where Dx represents the partial derivative with respect to x, (1.1) reduces to the higher-order
IB-type equation

utt − uxx − L(D2
x)utt = g(u)xx. (1.3)

We note that, in a more general case, L corresponding to β will be a pseudo-differential operator.
For the IB equation and its higher-order versions, several numerical schemes have been developed in the

literature. They include finite difference schemes [8, 19, 20] and spectral methods [6, 17] among many others.
Clearly, the schemes that replace derivatives by finite-differences will not work for (1.3) in the case where L is
a general pseudo-differential operator. In order to solve (1.1) for a general arbitrary kernel function, there has
been one recent attempt [7] in which a pseudospectral Fourier method in space has been developed. In [7] the
authors have proved the convergence of the semi-discrete pseudospectral Fourier method and they have tested
their method on two problems: propagation of a single solitary wave and finite time blow-up of solutions. For
both of the problems they have observed a good agreement between the numerical and analytical results. From
a practical point of view, we remark that the method proposed in [7] can be used if the Fourier transform of
the kernel function is known. This is the main drawback for the numerical method since, in the most cases, the
kernel function is given in physical space rather than Fourier space. Because of the mathematical difficulties
associated with the convolution integrals involving a general arbitrary kernel function, the direct numerical
approximation of the nonlocal equation (1.1) is a difficult task and is highly demanding from applications’
standpoint. Additionally, to the best of our knowledge, no efforts have been made yet to solve numerically
the initial-value problem of (1.1) with a general arbitrary kernel function using spatial discretization methods.
These motivate us to develop a convergent semi-discrete scheme that can be directly applied to (1.1). Several
numerical studies where some other nonlocal evolution problems are solved by direct computation are available
in the literature (see, among the others, [10, 12, 13, 15, 21] for a linear peridynamic model of elasticity and
[2, 3, 18] for nonlinear nonlocal parabolic models).

In the present study, we first construct a discrete initial-value problem of (1.1) on a uniform grid of the real
line. This is achieved by transferring the spatial derivatives to β and then discretizing the convolution integral.
We note that our semi-discretization does not involve any spatial discrete derivative of u. The semi-discrete
problem is in fact an infinite dimensional system of ordinary differential equations in time, where the mesh
size appears as a parameter. We consider the semi-discrete system corresponding to the continuous initial-value
problem for which the solution exists on some time interval. For sufficiently small mesh sizes, we prove that
the discretized solutions exist on the same time interval and converge to the continuous solution at mesh
points as the mesh size goes to zero. Moreover, the error in the approximation is quadratic with respect to
the mesh size. Even though both the continuous problem and the discrete problem are of infinite extent, the
computations based on the semi-discrete scheme must be done in a finite domain. To resolve this issue, we
consider a truncated problem on a finite interval and obtain the corresponding finite dimensional system of
ordinary differential equations. As expected, the error involved in this truncation is related to the dimension of
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the final system. We prove that the error resulting from the truncation turns out to depend on the decay behavior
of the original solution of the continuous problem. We then illustrate these issues in two cases; propagation of
the solitary wave for the IB equation and finite-time blow-up of solutions for (1.1) with various kernels. In the
numerical examples, we observe both the quadratic rate of convergence with respect to the mesh size and the
effect of the size of the computational domain on the error.

Several points are worth noting. First, even for the IB equation or its higher order versions, our method may be
more efficient than finite-difference methods since it involves discretization of integrals rather than discretization
of derivatives. Second, if L in (1.3) is a pseudo-differential operator, the finite-difference methods may not be
suitable. Third, one of the issues resolved by our method is the computational complexity resulting from the
fact that the discrete system is also nonlocal as in the continuous problem. Fourth, the method developed in [7]
needs the Fourier transform of the kernel, and numerical computation for the Fourier transform of the kernel
leads to further errors. Fifth, as our approach does not utilize discretizations of spatial derivatives, a further
time discretization will not involve any stability issues regarding spatial mesh size. We therefore prefer to stop
at the semi-discrete level.

We also want to note that our approach can be adopted to unidirectional nonlocal wave equations of the
form

ut = (β ∗ f(u))x ,

which generalize the Benjamin–Bona–Mahony (BBM) equation [4]. A numerical scheme based on the discretiza-
tion of an integral representation of the solution was used in [5] to solve the BBM equation. The starting point
of our numerical method is similar to that in [5]. Also, our remark about the stability issue regarding time
discretization was already observed in [5].

The rest of the paper is organized as follows. In Section 2, we briefly describe the main features of discretization
and present some preliminary lemmas. In Section 3, we introduce the infinite-dimensional semi-discrete problem
and establish the local well-posedness of the related initial-value problem. In Section 4, we prove the convergence
of solutions of the semi-discrete problem to the solutions of the continuous one with second-order accuracy in
space. By truncating the semi-discrete problem, a finite-dimensional system of ordinary differential equations
is introduced in Section 5, and it is shown that the solution of the truncated system approximates the solution
of the continuous problem. In Section 6, some numerical experiments are conducted to verify our theoretical
findings.

Throughout the paper, we use the standard notation for function spaces. The notation ‖u‖Lp denotes the
Lp (1 ≤ p ≤ ∞) norm of u on R. The symbol 〈u, v〉 represents the inner product of u and v in L2. The
notation W k,p(R) = {u ∈ Lp(R) : Dju ∈ Lp(R), j ≤ k} denotes the Lp-based Sobolev space with the norm
‖u‖Wk,p =

∑
j≤k ‖Dju‖Lp , 1 ≤ p ≤ ∞. The symbol Hs is the usual Sobolev space of index s on R. We will

drop the symbol R in
∫
R. The symbol C will stand for a generic positive constant.

2. Discretization and preliminary lemmas

In this section, we will derive error estimates for discretizations of integrals and derivatives on an infinite
grid. On a finite interval these estimates are standard but usually depend on the length of the interval. As
we are dealing with the whole space R, we will need the estimates in terms of Lp norms. Below we state
several lemmas whose proofs follow more or less standard lines. For completeness, the proofs are given in
Appendix A.

We use bold letter for two-sided infinite sequences u = (ui)i=∞i=−∞ = (ui) where ui is the ith component of u.
For a fixed h > 0 and 1 ≤ p <∞, the space lph is defined as

lph = lph (Z) =

{
(ui) : ui ∈ R, ‖u‖plph =

∞∑
i=−∞

h|ui|p
}
.
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Clearly, l2h is a Hilbert space with inner product

〈u,v〉l2h =
∑
i

huivi

(here and henceforth, unless otherwise stated, the summation index i runs over the set Z of integers). Similarly,
l∞ denotes the Banach space l∞(Z) with the norm ‖u‖l∞ = sup

i∈Z
|ui|. For two sequences u and v we define the

discrete convolution as

(u ∗ v)i =
∑
j

hui−jvj . (2.1)

As in the continuous case, when u ∈ l1h,v ∈ l
p
h, 1 ≤ p <∞, we have Young’s inequality ‖u ∗ v‖lph ≤ ‖u‖l1h‖v‖lph .

For u ∈ l1h,v ∈ l∞, we also have ‖u ∗ v‖l∞ ≤ ‖u‖l1h‖v‖l∞ .
We now consider the grid points xi = ih, i ∈ Z with the mesh size h over R. We define the restriction

and extension operators between functions and sequences below [1]. For a function u on R the restriction
operator is Ru = (u(xi)). When there is no danger of confusion we will write u instead of Ru and use the
abbreviations u′ = Ru′, u′′ = Ru′′ and so on. For a sequence u we define the piecewise constant extension
operator P0(u)(x) = ui for xi ≤ x < xi+1, i ∈ Z and the piecewise linear extension operator

P1(u)(x) = ui +
ui+1 − ui

h
(x− xi) for xi ≤ x < xi+1, i ∈ Z.

The following lemma gives discretization errors for integrals on R.

Lemma 2.1. Suppose 1 ≤ p <∞, u ∈W 1,p(R) and u = Ru. Then u ∈ lph and

‖u− P0(u)‖Lp ≤ h‖u′‖Lp . (2.2)

Moreover, if u ∈W 2,p(R) then

‖u− P1(u)‖Lp ≤ h2‖u′′‖Lp . (2.3)

Remark 2.2. We want to emphasize that Lemma 2.1 fails without the smoothness assumption. The following
example can be given. Let

u(x) =
∞∑
n=1

χ(n− 1
n2 ,n+ 1

n2 )(x),

where χA denotes the characteristic function of the set A. Then ‖u‖l1h = ∞ for any rational h > 0 while
u ∈ L1(R).

Remark 2.3. Clearly the integrals
∫
P0(u)(x)dx and

∫
P1(u)(x)dx correspond respectively to the rectangular

and trapezoidal approximations of the integral
∫
u(x)dx on R. Yet we note that∫

P0(u)(x)dx =
∫
P1(u)(x)dx =

∑
i

hu(xi).

Thus (2.2) and (2.3) in Lemma 2.1 can be interpreted as the discrete estimates of the integral
∫
u(x)dx for the

rectangular and trapezoidal rules, respectively.
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Remark 2.4. For p = 1, the estimate (2.3) in Lemma 2.1 extends to the case u′′ = µ where µ is a finite measure
on R. In that case the estimate becomes

‖u− P1(u)‖L1 ≤ h2|µ|(R).

Combining Remark 2.3 with Remark 2.4 we get the following bounds on the discretization of the integral on R.

Corollary 2.5. Let u ∈W 1,1(R). Then∣∣∣∣∣
∫
u(x)dx−

∑
i

hu(xi)

∣∣∣∣∣ ≤ h‖u′‖L1 .

Moreover, if u′′ = µ is a finite measure on R, then∣∣∣∣∣
∫
u(x)dx−

∑
i

hu(xi)

∣∣∣∣∣ ≤ h2|µ|(R).

We note that Corollary 2.5 covers the regular case u ∈W 2,1(R) where dµ = u′′dx.
On lph we define the difference operators

(D+u)i =
1
h

(ui+1 − ui), (D−u)i =
1
h

(ui − ui−1), (2.4)

for which we have 〈D±u,v〉l2h = −〈u, D∓v〉l2h . Moreover, a direct computation shows that the discrete
convolution (2.1) commutes with the difference operators D±,

D±(u ∗ v) = (D±u) ∗ v = u ∗ (D±v).

The following two lemmas give l∞ estimates on the discrete derivatives.

Lemma 2.6. Let u ∈W 2,∞(R), u = Ru and u′ = Ru′. Then

‖D±u− u′‖l∞ ≤
h

2
‖u′′‖L∞ .

We next consider the second-order difference operator defined as

(
D+D−u

)
i

=
1
h2

(ui+1 − 2ui + ui−1) .

Clearly D+D− = D−D+.

Lemma 2.7. Let u ∈W 4,∞(R), u = Ru and u′′ = Ru′′. Then

‖D+D−u− u′′‖l∞ ≤
h2

12
‖u(4)‖L∞ .

From the above representations of the difference operators, we get similar estimates in the lph norms.
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Lemma 2.8. Let u ∈W 2,p(R), u = Ru and u′ = Ru′. Then

‖D±u− u′‖lph ≤ Ch‖u
′′‖LP .

Lemma 2.9. Let u ∈W 4,p(R), u = Ru and u′′ = Ru′′. Then

‖D+D−u− u′′‖lph ≤ Ch
2‖u(4)‖Lp .

3. The continuous and discrete cauchy problems

We will consider the Cauchy problem

utt = (β ∗ f(u))xx x ∈ R, t > 0 (3.1)
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) x ∈ R. (3.2)

We assume that f is sufficiently smooth with f(0) = 0 and that the kernel β satisfies the following:

1. β ∈W 1,1(R).
2. β′′ = µ is a finite Borel measure on R.

We note that Condition 2 above also includes the more regular case β ∈ W 2,1(R); i.e. β′′ ∈ L1(R) with
dµ = β′′dx. Moreover, these conditions imply that the Fourier transform of the kernel is of the form β̂(ξ) =
O
(
(1 + ξ2)−1

)
. This in turn suffices to show the local well-posedness of the Cauchy problem of (3.1)–(3.2). On

the other hand, for the typical kernel β(x) = 1
2e−|x| we have β′′ = β− δ with the Dirac measure δ. This explains

why we impose Condition 2 (see [11] for details).

Theorem 3.1. (Theorem 3.4 and Lemma 3.9 of [11]) Let f ∈ Cbsc+1(R) with f(0) = 0, s > 1
2 . For given

ϕ,ψ ∈ Hs(R), there is some T > 0 so that the initial-value problem (3.1)–(3.2) is locally well-posed with solution
u ∈ C2 ([0, T ], Hs(R)). Moreover, there is a global solution if and only if for any T <∞ we have

lim sup
t→T−

‖u (t)‖L∞ <∞ .

Remark 3.2. The proof of Theorem 3.1 relies on two main ingredients; the Hs-valued ODE character of
(3.1) and local Lipschitz estimates for the nonlinear term. We want to emphasize the second assertion of the
theorem; it implies that if blow-up occurs it should be observed in ‖u (t)‖L∞ . Hence, one cannot have higher
order singularities if the amplitude stays finite. This is due to the L∞ control of the nonlinear term, given in
the following lemma [9, 16].

Lemma 3.3. Let s ≥ 0, f ∈ C [s]+1(R) with f(0) = 0. Then for any u ∈ Hs ∩ L∞, we have f(u) ∈ Hs ∩ L∞.
Moreover there is some constant C(M) depending on M such that for all u ∈ Hs ∩ L∞ with ‖u‖L∞ ≤M

‖f(u)‖Hs ≤ C(M)‖u‖Hs .

In order to define the related semi-discrete problem, we fix h > 0 and discretize (3.1) as follows:

d2v
dt2

= D+D−
(
βh ∗ f(v)

)
, (3.3)

where f(v) = (f(vi)) and βh = Rβ is the restriction (hence discretization) of the kernel β.
Noting that D+D−(βh ∗ f(v)) = (D+D−βh) ∗ f(v), we first estimate D+D−βh.
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Lemma 3.4. D+D−βh ∈ l1h and ‖D+D−βh‖l1h ≤ 2|µ|(R).

Proof. First we assume that β′′ ∈ L1. Then

h2(D+D−βh)i = β(xi+1)− 2β(xi) + β(xi−1)

=
∫ xi+1

xi

β′(s)ds−
∫ xi

xi−1

β′(s)ds

=
∫ xi

xi−1

(
β′(s+ h)− β′(s)

)
ds

=
∫ xi

xi−1

∫ s+h

s

β′′(r)drds.

As xi−1 ≤ s ≤ s+ h ≤ xi+1

∣∣h(D+D−βh)i
∣∣ ≤ 1

h

∫ xi

xi−1

∫ xi+1

xi−1

|β′′(r)|drds =
∫ xi+1

xi−1

|β′′(r)|dr,

‖D+D−βh‖l1h =
∑
i

h
∣∣(D+D−βh)i

∣∣ ≤∑
i

∫ xi+1

xi−1

|β′′(r)|dr ≤ 2‖β′′‖L1 .

When β′′ = µ is a finite measure, this estimate becomes ‖D+D−βh‖l1h ≤ 2|µ|(R).

Theorem 3.5. Let f be a locally Lipschitz function with f(0) = 0. Then the initial-value problem for (3.3) is
locally well-posed for initial data v(0), v′(0) in l∞. Moreover there exists some maximal time Th > 0 so that the
problem has unique solution v ∈ C2([0, Th), l∞). The maximal time Th, if finite, is determined by the blow-up
condition

lim sup
t→T−h

‖v(t)‖l∞ =∞. (3.4)

Proof. We will consider (3.3) as an l∞-valued ordinary differential equation and apply Picard’s theorem on
Banach spaces. To that end we first note that if ‖v‖l∞ ≤M and ‖w‖l∞ ≤M , then

‖f(v)− f(w)‖l∞ ≤ LM‖v −w‖l∞ , (3.5)

where LM is the Lipschitz constant of f on [−M,M ]. By Young’s inequality and Lemma 3.4 we have

‖D+D−
(
βh ∗ f(v)

)
−D+D−

(
βh ∗ f(w)

)
‖l∞ ≤ ‖D+D−βh‖l1h‖f(v)− f(w)‖l∞

≤ 2 |µ| (R)LM‖v −w‖l∞ . (3.6)

Hence the map

v −→ D+D−
(
βh ∗ f(v)

)
,
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is locally Lipschitz on l∞. By Picard’s theorem on Banach spaces, this implies the local well-posedness of the
initial-value problem for (3.3). Standard theory of ordinary differential equations gives the blow-up condition as

lim sup
t→T−h

(‖v(t)‖l∞ + ‖v′(t)‖l∞) =∞. (3.7)

To complete the proof we have to show that ‖v′(t)‖l∞ will not blow-up unless ‖v(t)‖l∞ does so. For that,
suppose lim supt→T−h ‖v(t)‖l∞ = M <∞. Then, integrating (3.3) we have

v′(t) = v′(0) +
∫ t

0

D+D−
(
βh ∗ f(v(s))

)
ds,

so that by Lemma 3.4 for t < Th,

‖v′(t)‖l∞ ≤ ‖v′(0)‖l∞ + 2 |µ| (R)LM
∫ t

0

‖v(s)‖l∞ds

≤ ‖v′(0)‖l∞ + 2 |µ| (R)LMMTh <∞. (3.8)

Remark 3.6. Theorem 3.5 is on the local well-posedness of the Cauchy problem for (3.3) with a fixed value
of h. In the next section, when we consider the family of discretized problems corresponding to the continuous
problem (3.1)–(3.2), Theorem 4.1 will provide a uniform bound on Th.

4. Discretization error

In this section, our aim is to prove that the discrete solution will approximate the continuous one when
the discrete initial data are taken as the discretization of the continuous data. To be precise, we start with
the solution u ∈ C2 ([0, T ], Hs(R)) of (3.1)–(3.2) with sufficiently large s. We denote the discretizations of the
continuous initial data ϕ,ψ by ϕh = Rϕ, ψh = Rψ. Let uh ∈ C2 ([0, Th), l∞) be the solution of (3.3) with the
initial data ϕh,ψh. Our aim is to prove the following theorem:

Theorem 4.1. Let s > 9
2 , f ∈ Cbsc+1(R) with f(0) = 0, ϕ, ψ ∈ Hs(R), and let u ∈ C2 ([0, T ], Hs(R)) be the

solution of the initial-value problem (3.1)–(3.2). Let uh ∈ C2 ([0, Th), l∞) be the solution of (3.3) with initial
data ϕh,ψh. Let u(t) = Ru(t) = (u(xi, t)). Then there is some h0 so that for h ≤ h0, the maximal existence
time Th of uh is at least T and

‖u(t)− uh(t)‖l∞ + ‖ut(t)− u′h(t)‖l∞ = O(h2), (4.1)

for all t ∈ [0, T ].

Proof. We first let M = max
0≤t≤T

‖u(t)‖L∞ . Since ‖ϕh‖l∞ ≤ ‖ϕ‖L∞ ≤ M , by continuity there is some maximal

time th ≤ T such that ‖uh(t)‖l∞ ≤ 2M for all t ∈ [0, th]. Moreover, by the maximality condition either th = T
or ‖uh(th)‖l∞ = 2M . At the point x = xi, (3.1) becomes

utt(xi, t) =
(
β ∗ f(u)

)
xx

(xi, t).
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Recalling that u(t) = Ru(t), this becomes u′′(t) = R
(
β ∗ f(u)

)
xx

(t). A residual term Fh arises from the
discretization of the right-hand side of (3.1):

d2u
dt2

= D+D−
(
βh ∗ f(u)

)
+ Fh, (4.2)

where

Fh= R
(
β ∗ f(u)

)
xx
−D+D−

(
βh ∗ f(u)

)
.

The ith entry satisfies

(Fh)i =
(
β ∗ f(u)

)
xx

(xi)−D+D−
(
βh ∗ f(u)

)
i

=
((
β ∗ f(u)xx

)
(xi)−

(
βh ∗Rf(u)xx

)
i

)
+
((
βh ∗Rf(u)xx

)
i
−
(
βh ∗D+D−f(u)

)
i

)
= (F 1

h )i + (F 2
h )i,

where the variable t is suppressed for brevity. We start with the term (F 1
h )i. Replacing f(u) by g for convenience,

we have

(F 1
h )i = (β ∗ g′′)(xi)− (βh ∗ g′′)i =

∫
β(xi − y)g′′(y)dy −

∑
j

hβ(xi − xj)g′′(xj).

We first assume that β ∈W 2,1(R). By Corollary 2.5 we have∣∣(F 1
h )i
∣∣ ≤ h2‖r′′‖L1 ,

where r(y) = β(xi − y)g′′(y). Then

r′′(y) = β′′(xi − y)g′′(y)− 2β′(xi − y)g′′′(y) + β(xi − y)g(4)(y).

By Lemma 3.3 we have

‖g‖Hs = ‖f(u)‖Hs ≤ C(M)‖u‖Hs .

For s > 9
2 we observe that g′′, g′′′ and g(4) are bounded, so that r′′ ∈ L1(R). In case β′′ = µ is a finite measure,

then r′′ = µ̃ will be a measure with

|µ̃|(R) ≤ C
(
|µ|(R) + 2‖β‖W 1,1

)
‖u‖Hs ,

so that

|(F 1
h )i| ≤ h2|µ̃|(R).

For the second term (F 2
h )i, again with g = f(u) and s > 9

2 we have∣∣(F 2
h )i
∣∣ =

∣∣(βh ∗ (Rg′′ −D+D−g)
)
i

∣∣ ≤ ‖βh‖l1h‖g′′ −D+D−g‖l∞

≤ h2‖g(4)‖L∞ ≤ h2‖f(u)‖W 4,∞ ≤ Ch2‖f(u)‖Hs

≤ C(M)h2‖u‖Hs ,
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where Lemmas 2.7 and 3.3 are used. Combining the estimates for |(F 1
h )i| and |(F 2

h )i|, we obtain

‖Fh(t)‖l∞ ≤ Ch2‖u(t)‖Hs ,

where C = C(β,M) depends on the bounds on β and M = sup0≤t≤T ‖u(t)‖L∞ . We now let e(t) = u(t)− uh(t)
be the error term. Then, from (3.3) and (4.2) we have

d2e(t)
dt2

= D+D−βh ∗
(
f(u)− f(uh)

)
+ Fh

e(0) = 0, e′(0) = 0.

This implies

e(t) =
∫ t

0

(t− τ)
(
D+D−βh ∗

(
f(u)− f(uh)

)
+ Fh

)
dτ, (4.3)

e′(t) =
∫ t

0

(
D+D−βh ∗

(
f(u)− f(uh)

)
+ Fh

)
dτ. (4.4)

But ‖f(u)− f(uh)‖l∞ ≤ L2M‖u− uh‖l∞ , so that for t ≤ th ≤ T,

‖e(t)‖l∞ + ‖e′(t)‖l∞ ≤ (1 + T )
(
CTh2 + L2M‖D+D−βh‖l1h

∫ t

0

‖e(τ)‖l∞dτ
)
,

≤ C(β,M)(1 + T )
(

sup
0≤t≤T

‖u(t)‖HsTh2 +
∫ t

0

‖e(τ)‖l∞dτ
)
,

≤ C(β,M)(1 + T )
(

sup
0≤t≤T

‖u(t)‖HsTh2 +
∫ t

0

(
‖e(τ)‖l∞ + ‖e′(τ)‖l∞

)
dτ
)
, (4.5)

where the second inequality follows from the bound for D+D−βh in Lemma 3.4. Then, by Gronwall’s inequality,

‖e(t)‖l∞ + ‖e′(t)‖l∞ ≤ Ch2(1 + T )T sup
0≤t≤T

‖u(t)‖HseC(1+T )t

with C = C(β,M). This, in particular, implies that ‖e(th)‖l∞ < M for sufficiently small h. Then we have
‖uh(th)‖l∞ < 2M showing that th = Th = T . From the above estimate we get (4.1).

Remark 4.2. The proof above gives the estimate

‖u(t)− uh(t)‖
l∞

+
∥∥ut(t)− u′h(t)

∥∥
l∞
≤ Ch2(1 + T )T sup

0≤t≤T
‖u(t)‖HseC(1+T )t,

where C = C(β,M). Obviously, C depends on the estimates of the kernel β, the solution u, and the nonlinear
term f(u). Noting that the nonlinear bound depends on u, T that are determined from the initial data (3.2) by
Theorem 3.1, we can say that

‖u(t)− uh(t)‖
l∞

+
∥∥ut(t)− u′h(t)

∥∥
l∞
≤ C(β, u, f, T )h2.

Remark 4.3. The usual approach in obtaining error estimates for the discretized problem is via the use of
a suitable energy identity or energy inequality. Nevertheless, defining a reasonable energy may be difficult for
nonlocal problems. In our case, for the continuous problem (3.1)–(3.2), one can define a conserved energy by
inverting the convolution operator β ∗ (.). Yet, this requires further assumptions on β and is not easy to carry
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over the same approach to the discrete case; because it necessitates the inversion of the matrix B = (bij) with
bij = β(xi − xj), i, j ∈ Z. This is why we follow the above direct approach.

5. The truncated problem

In this sectionis we investigate the truncated finite dimensional system

d2vNi
dt2

=
N∑

j=−N
hD+D−β(xi − xj)f(vNj ), −N ≤ i ≤ N, (5.1)

which is obtained by considering the first 2N + 1 rows and columns of (3.3). We express (5.1) as

d2vN

dt2
= BNf(vN ),

where BN is the (2N + 1) × (2N + 1) matrix with the entries bNij = hD+D−β(xi − xj). We note that due to
our formulation no boundary terms appear. By Lemma 3.4 we have

‖BNw‖l∞ ≤ 2|µ|(R)‖w‖l∞ ,

where we use the norm ‖w‖l∞ = max
−N≤i≤N

|wi| for vectors in R2N+1. It follows from the smoothness of f that the

initial-value problem defined for the above system of ordinary differential equations has a solution on [0, TN ].
Moreover, the argument in the proof of Theorem 3.5 shows that the blow-up condition is

lim sup
t→(TN )−

‖vN (t)‖l∞ =∞. (5.2)

In this section, we will show that, for sufficiently large N , the solution vN = (vNi ) of (5.1) approximates
the solution v of the semi-discrete problem defined for (3.3) and hence it approximates the solution u of
the continuous problem (3.1)–(3.2). We define a truncation operator T N : l∞ → R2N+1 as the projection
T Nv = (v−N , v−N+1, . . . , v0, . . . , vN−1, vN ).

Theorem 5.1. Let v ∈ C2 ([0, T ], l∞) be the solution of (3.3) with initial values v(0), v′(0) and let

δ = sup
{
|vi(t)| : t ∈ [0, T ] , |i| > N

}
and ε(δ) = max

|z|≤δ
|f(z)| .

Then for sufficiently small ε(δ), the solution vN of (5.1) with initial values vN (0) = T Nv(0), (vN )′(0) =
T Nv′(0) exists for times t ∈ [0, T ] and

∣∣vNi (t)− vi(t)
∣∣+
∣∣(vNi )′(t)− (vi)′(t)

∣∣ ≤ Cε(δ), t ∈ [0, T ],

for all −N ≤ i ≤ N .
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Proof. We follow the approach in the proof of Theorem 4.1. Taking the components with −N ≤ i ≤ N of (3.3)
we have

d2vi
dt2

=
∞∑

j=−∞
hD+D−β(xi − xj)f(vj)

=
N∑

j=−N
hD+D−β(xi − xj)f(vj) + FNi ,

with the residual term

FNi =
∑
|j|>N

hD+D−β(xi − xj)f(vj).

Then T Nv satisfies the system

d2T Nv
dt2

= BNf(T Nv) + FN ,

with the residual term FN = (FNi ). Estimating the residual term we get

∣∣FNi ∣∣ ≤ 2|µ|(R) sup
|j|>N

|f(vj)| ≤ Cε(δ).

As in the proof of Theorem 4.1 we set M = max
0≤t≤T

‖v(t)‖l∞ . Since ‖v(0)‖l∞ ≤M , by continuity of the solution

vN of the truncated problem there is some maximal time tN ≤ T such that we have ‖vN (t)‖l∞ ≤ 2M for
all t ∈ [0, tN ]. By the maximality condition either tN = T or ‖vN (tN )‖l∞ = 2M . We define the error term
ẽ = T Nv − vN . Then

d2ẽ(t)
dt2

= BN
(
f(T Nv)− f(vN )

)
+ FN ,

ẽ(0) = 0, ẽ′(0) = 0,

so

ẽ(t) =
∫ t

0

(t− τ)
(
BN
(
f(T Nv)− f(vN )

)
+ FN

)
dτ.

Then

‖ẽ(t)‖l∞ ≤ 2|µ|(R)
∫ t

0

(t− τ)
∥∥(f(T Nv)− f(vN )

)
(τ)
∥∥
l∞

dτ + Ct2ε(δ).

But

∥∥f(T Nv)− f(vN )
∥∥
l∞
≤ L2M

∥∥T Nv − vN
∥∥
l∞
,
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where L2M is the Lipschitz constant for f on [−2M, 2M ]. Putting together, we have

‖ẽ(t)‖l∞ ≤ CT 2ε+ CT

∫ t

0

‖ẽ(τ)‖l∞dτ,

and by Gronwall’s inequality,

‖ẽ(t)‖l∞ ≤ CT 2εeCT
2
.

This, in particular, implies that there is some ε0 such that for all ε(δ) ≤ ε0 we have ‖ẽ(tN )‖l∞ < M . Then we
have ‖vN (tN )‖l∞ < 2M showing that tN = T . The required estimate for ẽ′(t) follows from the identity

ẽ′(t) =
∫ t

0

(
BN
(
f(T Nv)− f(vN )

)
+ FN

)
dτ,

and this completes the proof.

Theorem 5.2. Let s > 9
2 , f ∈ Cbsc+1(R) with f(0) = 0, ϕ,ψ ∈ Hs(R), and let u ∈ C2 ([0, T ], Hs(R)) be the

solution of the initial-value problem (3.1)–(3.2). Then for sufficiently small h and ε > 0, there is an N so that
the solution uNh of (5.1) with initial values uNh (0) = T Nϕh, (uNh )′(0) = T Nψh exists for times t ∈ [0, T ] and∣∣∣u(ih, t)−

(
uNh
)
i
(t)
∣∣∣+
∣∣∣ut(ih, t)− (uNh )′i (t)

∣∣∣ = O
(
h2 + ε

)
, t ∈ [0, T ] (5.3)

for all −N ≤ i ≤ N .

The proof follows from putting together the results of Theorems 4.1 and 5.1. Let u ∈ C2 ([0, T ], Hs(R)) be
the solution of (3.1)–(3.2). Then, by Theorem 4.1, the solution uh ∈ C2 ([0, T ], l∞) of the semi-discrete problem
(3.3) with initial data uh(0) = ϕh, (uh)′ (0) = ψh satisfies

‖u(t)− uh(t)‖l∞ + ‖ut(t)− (uh)′(t)‖l∞ = O
(
h2
)
,

for all t ∈ [0, T ]. This means

|u(ih, t)− (uh)i(t)|+ |ut(ih, t)− (uh)′i(t)| ≤ Ch2, i ∈ Z (5.4)

for all t ∈ [0, T ] and for sufficiently small h.
The next step is to approximate uh by the solution uNh of the truncated problem defined by (5.1) and the

initial values

uNh (0) = T N uh(0) = T Nϕh,
(
uNh
)′

(0) = T N (uh)′(0) = T Nψh.

To apply Theorem 5.1 for a given ε > 0, we should choose the appropriate value of N . This value will be
determined from the condition ε = ε(δ) = max

|z|≤δ
|f(z)| where

δ = sup
{ ∣∣(uh)i(t)∣∣ : t ∈ [0, T ] , |i| > N

}
.

To that end we will use the following observation.

Proposition 5.3. Suppose w is continuous on R × [0, T ]. If lim|x|→∞ w(x, t) = 0 for all t ∈ [0, T ], then
lim|x|→∞ w(x, t) = 0 uniformly on [0, T ] .
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Proof. Assuming the contrary, there is some ν > 0, and a sequence (xn, tn) such that |xn| → ∞ and
|w(xn, tn)| ≥ ν. Since tn ∈ [0, T ], there is a subsequence (tnk) that converges to some t0 ∈ [0, T ]. But then
|w(xnk , t0)| ≥ ν

2 > 0 for sufficiently large nk contradicting lim|x|→∞ w(x, t0) = 0.

We are now ready to complete the proof of Theorem 5.2. Let ε > 0 be given. Since f(0) = 0, by continuity
there is some δ > 0 so that ε = ε(δ) = max|z|≤δ |f(z)|. Moreover we can assume that ε(δ) is sufficiently small
so that the conclusion of Theorem 5.1 holds (the proof of Thm. 5.1 shows that the bound ε0 for ε(δ) does
not depend on N). Next, since u ∈ C2 ([0, T ], Hs(R)) with s > 9

2 , u is continuous on R × [0, T ] and satisfies
lim|x|→∞ u(x, t) = 0 for all t ∈ [0, T ]. By Proposition 5.3, lim|x|→∞ u(x, t) = 0 uniformly on [0, T ]. Hence there
is some S > 0 so that |u(x, t)| ≤ δ

2 for all |x| ≥ S and t ∈ [0, T ]. Let N = 1
h (bSc). Then for |i| > N we have

|u (ih, t)| ≤ δ
2 . By the estimate (5.4), for sufficiently small h

|(uh)i(t)| ≤ |u (ih, t)|+ |u (ih, t)− (uh)i(t)| ≤
δ

2
+ Ch2 ≤ δ,

for all |i| > N. Now Theorem 5.1 applies to yield∣∣(uh)i(t)− (uNh )i(t)
∣∣+
∣∣(uh)′i(t)− (uNh )′i(t)

∣∣ ≤ Cε.
Combining this result with (5.4) gives (5.3). This completes the proof of Theorem 5.2.

Remark 5.4. The proof of Theorem 5.2 shows that for a given ε > 0, the truncation parameter N is determined
by the relation

ε = max
{
|f(u(x, t))| : |x| ≥ Nh, t ∈ [0, T ]

}
.

The existence of such N is guaranteed by Proposition 5.3. On the other hand, if one has further information
on the decay behavior of the solution u(x, t), this will in turn give a more explicit relation between N and ε. In
Appendix B, following the idea in [5] we give a general decay estimate which applies for certain kernels β.

Remark 5.5. Clearly, instead of the truncated system (5.1) in which −N ≤ i ≤ N , we could also consider the
truncation on any interval determined by N0 ≤ i ≤ N1. Likewise, if one a priori knows that the solution u is
concentrated on the interval [a, b]; namely that

sup
{
|u(x, t)| : t ∈ [0, T ] , x /∈ [a, b]

}
,

stays small, then Theorem 5.2 gives the same conclusion for the truncated system with N0 ≤ i ≤ N1 where the
integers N0 and N1 are given by N0 = b ahc − 1 and N1 = b bhc+ 1. The typical example for such a behavior is
when the solution u is a traveling wave that is localized in space, then it would suffice to consider an asymmetric
interval determined by N0 ≤ i ≤ N1.

Remark 5.6. Finally we want to consider the stability issue of our numerical scheme. Our approach does not
involve discretizations of spatial derivatives of u, instead the spatial derivatives act upon the kernel β. This
appears as the coefficient matrix BN in (5.1) and Lemma 3.4 shows that BN is uniformly bounded with respect
to the mesh size h. In other words, the factor h−2 that appears in the standard discretization of the second
derivatives is not effective in (5.1); it is already embedded in the uniform estimate of BN . So if we further apply
time discretization to (5.1) there will be no stability limitation regarding spatial mesh size. Roughly speaking,
a fully discrete version of our numerical scheme will be straightforward. This is the main reason why we prefer
to use an ODE solver rather than a fully discrete scheme in the numerical experiments performed in the next
section.
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Figure 1. Propagation of a right-moving solitary wave of speed c = 1.5 for the nonlocal
nonlinear wave equation (1.1) with β(x) = 1

2e−|x| and f(u) = u + u2. The initial profile, the
exact and the numerical solutions at tmax = 20 are shown with the dotted line, the solid line
and the dashed line, respectively. The numerical solution is almost indistinguishable from the
exact solution. For the numerical simulation the computational domain [−30, 30] and the mesh
size h = 0.125 are used.

6. Numerical experiments

In this section, we focus on two numerical examples for the semi-discrete scheme developed in the previous
sections. The first example is about the propagation of a single solitary wave and the second example is about
finite time blow-up of solutions. The numerical examples support both the expected properties of the semi-
discrete scheme and the theoretical findings for (1.1). For instance, we numerically observe that the semi-discrete
scheme (5.1) is second-order convergent in space and that (1.1) has finite time blow-up solutions.

To integrate the semi-discrete system (5.1) in time we use a standard fourth-order Runge–Kutta scheme. In
addition to this, instead of developing a fully discrete scheme for (5.1), we use, in all the experiments to be
described, the Matlab solver ode45 that performs a direct numerical integration of a set of ordinary differential
equations using the fourth-order Runge–Kutta method. To ensure that the dominant error in the solution
is not temporal we fix the relative and absolute tolerances for the solver ode45 to be RelTol = 10−10 and
AbsTol = 10−10, respectively.

6.1. Propagation of a single solitary wave

We illustrate the accuracy of our semi-discrete scheme by considering solitary wave solutions of the IB
equation, a member of the class (1.1), corresponding to the exponential kernel. The IB equation with quadratic
nonlinearity has the single solitary wave solution

u(x, t) = A sech2
(
B(x− ct− x0)

)
, (6.1)

with A = 3(c2 − 1)/2, B =
√
A/(
√

6c) and c2 > 1. Equation (6.1) represents the solitary wave centered at x0

initially and propagating in the positive direction of the x-axis with the constant wave speed c, the width B−1

and the amplitude A. We note that the amplitude and the width of the solitary wave are determined by the
wave speed. In (6.1), u is a smooth function which decays exponentially and approaches zero as |x| → ∞, so the
errors resulting from a suitable truncation of the domain are not expected to be significant. We perform time
marching of (5.1) for the initial data

u(x, 0) = A sech2
(
B(x+ 15)

)
, ut(x, 0) = 2AB c sech2

(
B(x+ 15)

)
tanh

(
B(x+ 15)

)
, (6.2)

with c = 1.5 up to time t = 20 over the computational domain [−30, 30]. With this empirical choice of the
computational domain, the truncation will yield negligible influence on the numerical results. This is due to
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Table 1. Variation of the l∞-error (ENh ) computed at time t = 20 with the mesh size (h) and
the corresponding convergence rates (ρ). Results are provided for the solitary wave problem of
the nonlocal nonlinear wave equation (1.1) with the wave speed c = 1.5, the kernel β(x) = 1

2e−|x|

and the quadratic nonlinearity f(u) = u+ u2 when the computational domain is [−30, 30].

h ENh Order

2.00000 1.37663752E+00 –
1.00000 5.40121525E−01 1.3497
0.50000 1.47892030E−01 1.8687
0.25000 3.75864211E−02 1.9762
0.12500 9.43402186E−03 1.9942
0.06250 2.36067921E−03 1.9986
0.03125 5.90372954E−04 1.9995

the exponential decay of the solution; then the proof of Theorem 5.2 shows that ε = O
(
e−CNh

)
. The right

and left boundaries are chosen so that the distance from the right boundary to the “crest” of the solitary wave
at t = 20 is equal to the distance from the left boundary to the “crest” of the solitary wave at t = 0. We
perform a discretization of the computational domain with equal spatial step size h in which 2N is the number
of subintervals. Figure 1 compares the exact and approximate solutions at t = 20 when h = 0.125 (N = 240). As
can be seen from the figure, the exact and approximate solutions are almost indistinguishable. This experiment
validates the ability of the semi-discrete scheme proposed to adequately capture the propagation of a single
solitary wave for (1.1).

We now perform numerical simulations with different values of h and N to illustrate the convergence rate in
space. In the first set of our numerical experiments, we fix the computational domain to [−30, 30] and change
the mesh size h. A summary of the results of these experiments is given in Table 1, where the l∞-error ENh at
time t = 20 and the convergence rate ρ are given. The l∞-error ENh at time t and the convergence rate ρ are
calculated as

ENh (t) =
∥∥u(t)− uNh (t)

∥∥
l∞

= max
−N≤i≤N

∣∣u(xi, t)− (uNh )i
∣∣ , (6.3)

and

ρ =
1

ln 2
ln
(
ENh (t)
E2N

2h (t)

)
, (6.4)

respectively. We observe that the errors decrease rapidly as the mesh size h decreases. We also observe that
numerical simulations validate the second-order accuracy in space, which is the convergence rate predicted by
Theorem 5.2.

In the second set of the numerical experiments, we carry out the same experiments as above for different
values of N but with a fixed mesh size h. Thus, the size of the computational domain is not the same for each
experiment and its length increases as N increases. A summary of the results of these experiments is given in
Table 2, where, for each experiment, the computational domain and the l∞-errors (ENh ) at times t = 5, 10, 15, 20
are presented. At each time in the table, we observe a similar monotonically decreasing behavior of l∞-error
with increasing N . Figure 2 displays, on a semi-logarithmic scale, both the variation of l∞-error at time t = 20
and the variation of the maximum of the l∞-errors at times t = 5, 10, 15, 20 with N for the fixed mesh size.
In the figure the two curves are almost indistinguishable. We again observe that the logarithms of the errors
decrease linearly as N increases up to a certain value of N (≈220). This is in complete agreement with our
previous observation that ENh = O

(
h2 + e−CNh

)
. Additionally we observe that above a certain value of N ,
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Table 2. Variation of the l∞-errors (ENh ) computed at times t = 5, 10, 15, 20 with the computa-
tional domain. The last column presents the maximum of the l∞-errors at times t = 5, 10, 15, 20.
Results are provided for the solitary wave problem of the nonlocal nonlinear wave equation (1.1)
with the wave speed c = 1.5, the kernel β(x) = 1

2e−|x| and the quadratic nonlinearity f(u) =
u+ u2 when the mesh size is h = 0.1.

N Domain t = 5 t = 10 t = 15 t = 20 Maximum

160 [−16, 16] 5.696E−01 2.568E−01 2.771E−01 5.834E−01 5.834E−01
180 [−18, 18] 1.043E−01 7.893E−02 6.767E−02 1.127E−01 1.127E−01
200 [−20, 20] 2.369E−02 1.852E−02 1.606E−02 2.345E−02 2.369E−02
220 [−22, 22] 4.937E−03 4.203E−03 4.583E−03 6.038E−03 6.038E−03
240 [−24, 24] 1.702E−03 3.136E−03 4.586E−03 6.040E−03 6.040E−03
260 [−26, 26] 1.701E−03 3.136E−03 4.586E−03 6.040E−03 6.040E−03
280 [−28, 28] 1.701E−03 3.136E−03 4.586E−03 6.040E−03 6.040E−03

Figure 2. Variation of the l∞-error (ENh ) with N for the solitary wave problem of the nonlocal
nonlinear wave equation (1.1) with the wave speed c = 1.5, the kernel β(x) = 1

2e−|x| and the
quadratic nonlinearity f(u) = u+u2. The l∞-error at time t = 20 and the maximum of the l∞-
errors at times t = 5, 10, 15, 20 are shown with the solid line and the dashed line, respectively.
The two curves are almost indistinguishable. For all the numerical simulations the mesh size is
fixed at h = 0.1.

an increase in N does not affect substantially the accuracy of the results, which shows that cut-off errors are
negligible in comparison with discretization errors.

6.2. Blow-up

In [11], it was rigorously proved that the class (1.1) and its member (1.2) have finite time blow-up solutions
under appropriate initial conditions (see Thm. 5.2 in [11]). Moreover, as we stated in Remark 3.2, one cannot
have higher-order singularities if the amplitude stays finite. That is, if blow-up occurs it should be observed
in ‖u (t)‖L∞ . For this reason, in the following experiments checking the magnitude ‖u (t)‖l∞ suffices to show
blow-up.

It is clear that, because of the infinitely large spatial and temporal gradients that exist near the blow-up
time, the numerical simulation of (1.1) near the blow-up time and the numerical identification of the blow-up
time are challenging tasks. To see the semi-discrete method at work for finite time blow-up solutions we now
consider (1.1) with quadratic nonlinearity and the initial conditions

u(x, 0) = 4
(

2
3
x2 − 1

)
e−x

2/3, ut(x, 0) =
(
x2 − 1

)
e−x

2/2. (6.5)
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Figure 3. Numerical approximations to the blow-up solutions of the nonlocal nonlinear wave
equation (1.1) for the kernel functions βi(x) (i = 1, 2, 3, 4) and the quadratic nonlinearity
f(u) = u+ u2. Time evolution of ‖u(t)‖L∞ is estimated by the semi-discrete scheme using the
computational domain [−10, 10] and the mesh size h = 0.1. In the above plots, the critical times
when singularities develop are approximately as follows: (a) t∗ = 1.804484, (b) t∗ = 2.689993,
(c) t∗ = 4.396459 and (d) t∗ = 1.135569.

It is known that the solution of the initial-value problem (1.1) and (6.5) blows up in a finite time for the
exponential kernel (that is, for β1 given below) [14] and the blow-up time is about 1.8 [7]. Our first goal is to
validate the semi-discrete method for the blow-up solution corresponding to the exponential kernel and the above
initial data. Our next goal is to show that, for several other types of kernel functions, the solution corresponding
to the same initial data blows up in a finite time.

We conduct the numerical experiments using the following four different kernel functions:

(a) β1(x) =
1
2

e−|x|, (6.6)

(b) β2(x) =
1
π

1
1 + x2

, (6.7)

(c) β3(x) =
1

ex + e−x + 2
, (6.8)

(d) β4(x) =
{

1− |x|, if |x| ≤ 1
0, if |x| > 1. (6.9)

We note that for β4 (1.1) reduces to the difference-differential equation arising in lattice dynamics;

utt = f
(
u(x+ 1, t)

)
− 2f

(
u(x, t)

)
+ f

(
u(x− 1, t)

)
. (6.10)
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Figure 4. Convergence of the numerical approximations to the blow-up solution of the nonlocal
nonlinear wave equation (1.1) for the kernel function β(x) = 1

2e−|x| and the quadratic nonlin-
earity f(u) = u + u2 as the mesh size h decreases. Time evolution of ‖u(t)‖L∞ is estimated
by the semi-discrete scheme using the computational domain [−10, 10] and various mesh sizes.
Each curve corresponds to one of the different values of h(=10/N), decreasing from right to left.
In terms of N , the eight curves from right to left correspond to N = 2, 5, 10, 20, 40, 60, 80 and
100, respectively. The curves corresponding to N = 20, 40, 60, 80 and 100 are indistinguishable.
The blow-up time is estimated approximately t∗ = 1.804484.

All of the above kernels are symmetric and nonnegative functions of x. While β4 is a function with
compact support on [−1, 1], the kernels β2 and β1, β3 are C∞ smooth functions that decay algebraically
and exponentially, respectively. We also note that the second derivatives of β1 and β4 involve the delta
functions at x = 0 and at x = −1, 0, 1, respectively. So, the order of regularization will not be the
same for all these kernels and we may list the above kernel functions in increasing order of regular-
ization as β4, β1, β2 and β3. We expect that possible blow-up times increase with increasing effect of
regularization.

For each of the kernel functions in (6.6)–(6.9) we numerically integrate (1.1) under the initial condi-
tions (6.5) using the Matlab solver ode45 to solve the semi-discrete scheme (5.1). As in the previous
example, we verify that the relative and absolute tolerances for the Matlab solver ode45 are sufficiently
small so that the temporal discretization has no significant effect on the numerical results. In Figure 3,
we present the approximate numerical results obtained for ‖u(t)‖L∞ using the mesh size h = 0.1 and
the computational domain [−10, 10] (that is, we present

∥∥uNh (t)
∥∥
l∞

for N = 100). Figure 3 displays,
on a semi-logarithmic scale, the variation of ‖u(t)‖L∞ with time for the kernel functions introduced
above. For each of the kernel functions, we observe that the magnitude of ‖u(t)‖L∞ becomes arbitrar-
ily large as time approaches the blow-up time. From these numerical experiments, we conclude that
all of the kernel functions produce a blowing-up solution (of course, the solutions blow-up at different
times). We estimate the blow-up time t∗ to be approximately t∗ = 1.804484, t∗ = 2.689993, t∗ = 4.396459
and t∗ = 1.135569 for the kernel functions βi (i = 1, 2, 3, 4), respectively. We observe that the order of
these blow-up times are in complete agreement with the ordering based on regularization effects of the
kernels.

To investigate numerically the convergence of the semi-discrete scheme in terms of the mesh
size h we again consider (1.1) with the exponential kernel given in (6.6). We then solve the
equation under the initial conditions given by (6.5) for various values of h. Figure 4 dis-
plays, on a semi-logarithmic scale, the variation of ‖u(t)‖L∞ with time when h = 10/N with
N = 2, 5, 10, 20, 40, 80, 100 and the computational domain is [−10, 10]. In Figure 4, the eight curves
from right to left correspond to N = 2, 5, 10, 20, 40, 80 and 100, respectively, and the curves correspond-
ing to N = 20, 40, 60, 80 and 100 are indistinguishable. This shows that the blow-up times obtained
for various N converge rapidly to the blow-up time obtained for the finest grid (N = 100) as N
increases.
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Appendix A. Proofs of Lemmas 2.1, 2.6 and 2.7

In this appendix, for completeness, we present the technical proofs of Lemmas 2.1, 2.6 and 2.7 about
discretization errors for integrals on R and derivatives.

A.1 Proof of Lemma 2.1

Proof. We have

u(x)− ui =
∫ x

xi

u′(s)ds.

By Holder’s inequality

|u(x)− P0(u)(x)|p =
∣∣∣∣∫ x

xi

u′(s)ds
∣∣∣∣p ≤ |x− xi| pq ∫ x

xi

|u′(s)|p ds,

where q is the dual exponent to p. Then

‖u− P0(u)‖pLp ≤ h
p
q

∑
i

∫ xi+1

xi

∫ x

xi

|u′(s)|pdsdx

≤ h
p
q+1

∑
i

∫ xi+1

xi

|u′(s)|pds

= hp‖u′‖pLp .

Furthermore, since ‖P0(u)‖Lp = ‖u‖lph , we get u ∈ lph. To prove (2.3) we start with the identity

u(x)− P1(u)(x) =
1
h

∫ x

xi

∫ xi+1

xi

∫ s

r

u′′(θ)dθdrds,

for xi ≤ x < xi+1. For xi ≤ x, r, s < xi+1 we have

|u(x)− P1(u)(x)| ≤ 1
h

∫ xi+1

xi

∫ xi+1

xi

∫ xi+1

xi

|u′′(θ)|dθdrds = h

∫ xi+1

xi

|u′′(θ)|dθ.

Consequently

|u(x)− P1(u)(x)|p ≤ hp(q+1)/q

∫ xi+1

xi

|u′′(θ)|p dθ,

and

‖u− P1(u)‖Lp ≤ h2‖u′′‖Lp .
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A.2 Proof of Lemma 2.6

Proof. We prove the lemma for D+, the proof for D− being similar. Since

(D+u)i − (u′)i =
1
h

∫ xi+1

xi

(xi+1 − s)u′′(s)ds,

then

∣∣(D+u)i − (u′)i
∣∣ ≤ 1

h

∫ xi+1

xi

(xi+1 − s) |u′′(s)|ds ≤
h

2
‖u′′‖L∞ .

A.3 Proof of Lemma 2.7

Proof. From the Taylor expansion we have

(
D+D−u

)
i
− (u′′)i =

1
h2

∫ xi+1

xi−1

Q(s)u(4)(s)ds,

where

Q(s) =


1
3! (s− xi−1)3, xi−1 ≤ s < xi,

1
3! (xi+1 − s)3, xi ≤ s < xi+1.

Then

∣∣(D+D−u
)
i
− (u′′)i

∣∣ ≤ 1
h2
‖u(4)‖L∞

∫ xi+1

xi−1

Q(s)ds ≤ h2

12
‖u(4)‖L∞ .

Appendix B. Decay estimates

As it was mentioned in Remark 5.4, for particular kernels it is possible to obtain decay estimates for the
solution. The next lemma provides such a decay estimate.

Lemma B.1. Let ω (x) be a positive function such that (|β′′| ∗ ω) (x) ≤ Cω(x) for all x ∈ R. Suppose that
ϕω−1, ψω−1 ∈ L∞ (R). The solution u ∈ C2 ([0, T ], Hs(R)) of (3.1)-(3.2) then satisfies the estimate

|u(x, t)| ≤ Cω (x) ,

for all x ∈ R, t ∈ [0, T ].

Proof. It will be convenient to express the nonlinear term as f(u) = k(u)u. Let M and KM be
M = max {|u(x, t)| : t ∈ [0, T ] , x ∈ R} and KM = max {|k(u)| : |u| ≤M}, respectively. Since u satisfies

u (x, t) = ϕ (x) + tψ (x) +
∫ t

0

(t− τ)
(
β′′ ∗

(
k(u)u

))
(x, τ)dτ, (B.1)
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letting v (x, t) = ω−1 (x)u (x, t), we get

v (x, t) = ϕ (x)ω−1 (x) + tψ (x)ω−1 (x) + ω−1 (x)
∫ t

0

(t− τ)
(
β′′ ∗

(
k(u)ωv

))
(x, τ)dτ.

This gives the estimate

‖v (t)‖L∞ ≤
∥∥ϕω−1

∥∥
L∞

+ t
∥∥ψω−1

∥∥
L∞

+ ω−1 (x)
∫ t

0

(t− τ)
∥∥β′′ ∗ (k(u)ωv

)
(τ)
∥∥
L∞

dτ. (B.2)

But (
β′′ ∗

(
k(u)ωv

))
(x, τ) =

∫
β′′ (y) k

(
u (x− y, τ)

)
ω (x− y) v (x− y, τ) dy,

so that ∣∣∣(β′′ ∗ (k(u)ωv
))

(x, τ)
∣∣∣ ≤ KM ‖v(τ)‖L∞

∫
|β′′(y)|ω(x− y)dy

= KM ‖v (τ)‖L∞ (|β′′| ∗ ω) (x)
≤ CKM ‖v(τ)‖L∞ ω(x).

We note that when β′′ = µ is a finite measure the convolution integral above should be interpreted as(
β′′ ∗

(
k(u)ωv

))
(x, τ) =

∫
k
(
u(x− y, τ)

)
ω(x− y)v(x− y, τ)dµ(y),

but the estimate afterwards remains valid. Replacing this estimate in (B.2), for t ∈ [0, T ] yields

‖v (t)‖L∞ ≤
∥∥ϕω−1

∥∥
L∞

+ t
∥∥ψω−1

∥∥
L∞

+ CKM

∫ t

0

(t− τ) ‖v(τ)‖L∞ dτ.

≤
∥∥ϕω−1

∥∥
L∞

+ T
∥∥ψω−1

∥∥
L∞

+ CKMT

∫ t

0

‖v(τ)‖L∞ dτ.

By Gronwall’s lemma we have

‖v(t)‖L∞ ≤
( ∥∥ϕω−1

∥∥
L∞

+ T
∥∥ψω−1

∥∥
L∞

)
eCKMTt,

which in turn implies

|u(x, t)| ≤ Cω(x),

for all t ∈ [0, T ].

We now give some examples for kernels β and weights ω satisfying the condition in Lemma B.1.

Example B.2 (The improved Boussinesq equation). The IB equation corresponds to the kernel β (x) = 1
2e−|x|.

Then β′′ = β − δ with the Dirac measure δ. Let ω (x) = e−r|x| with 0 < r < 1. Then

|β′′| ∗ ω = β ∗ ω + ω,
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and

(β ∗ ω) (x) =
1
2

∫
e−|x−y|e−r|y|dy =

1
2

∫
e−(1−r)|x−y|e−r(|x−y|+|y|)dy

≤ 1
2

e−r|x|
∫

e−(1−r)|x−y|dy =
1

1− r
e−r|x| =

1
1− r

ω(x),

so

(|β′′| ∗ ω) (x) ≤
(

1
1− r

+ 1
)
ω (x) .

Then, for initial data with ϕ (x) er|x|, ψ(x)er|x| ∈ L∞ (R), solutions of the IB equation satisfy the decay estimate

|u(x, t)| ≤ Ce−r|x|, 0 < r < 1

for all t ∈ [0, T ].

Example B.3 (The triangular kernel). Let β (x) = (1− |x|)χ[−1,1](x) where χ[−1,1] is the characteristic func-
tion of the interval [−1, 1]. Then β′′(x) = δ(x + 1) − 2δ(x) + δ(x − 1) with the shifted Dirac measures. Again
let ω (x) = e−r|x| with any r > 0. Then

(|β′′| ∗ ω) (x) = ω (x+ 1) + 2ω (x) + ω (x− 1)

= e−r|x+1| + 2e−r|x| + e−r|x−1| ≤ Ce−r|x|.

Then, for initial data satisfying ϕ (x) er|x|, ψ (x) er|x| ∈ L∞ (R), solutions of (3.1)–(3.2) will satisfy

|u(x, t)| ≤ Ce−r|x|, r > 0

for all t ∈ [0, T ]. We note that in this case the non-local equation (1.1) reduces to the difference-differential
equation (6.10) arising in lattice dynamics.
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