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HIGH-FREQUENCY BEHAVIOUR OF CORNER SINGULARITIES IN

HELMHOLTZ PROBLEMSI

T. Chaumont-Frelet1,* and S. Nicaise2

Abstract. We analyze the singular behaviour of the Helmholtz equation set in a non-convex polygon.
Classically, the solution of the problem is split into a regular part and one singular function for each
re-entrant corner. The originality of our work is that the “amplitude” of the singular parts is bounded
explicitly in terms of frequency. We show that for high frequency problems, the “dominant” part of
the solution is the regular part. As an application, we derive sharp error estimates for finite element
discretizations. These error estimates show that the “pollution effect” is not changed by the presence
of singularities. Furthermore, a consequence of our theory is that locally refined meshes are not needed
for high-frequency problems, unless a very accurate solution is required. These results are illustrated
with numerical examples that are in accordance with the developed theory.

Mathematics Subject Classification. 35J05, 35J75, 65N30, 78A45

Received February 23, 2017. Accepted April 30, 2018.

1. Introduction

Time-harmonic waves are used in a wide range of applications including resource prospection, noise scattering,
radar, cloaking and medical imaging [11, 13]. Consequently, many efforts have been made to develop efficient
discretization techniques to approximate the solutions to such problems in an accurate and robust fashion.
Popular approaches to carry out such a discretization include the finite difference method (FDM) [40], the finite
element method (FEM) [12, 25] and the boundary element method (BEM) [14, 36].

For instance, wave propagation problems arising in scattering applications are set in the exterior of the scat-
terer. An inhomogeneous Dirichlet, Neumann or Robin-type boundary condition is prescribed on the boundary of
the scatterer to model the illuminating wave, while the Sommerfeld condition is imposed “at infinity” to prevent
non-physical ingoing waves (alternatively absorbing boundary conditions or perfectly matched layers are used
to approximate the Sommerfeld condition on the exterior boundary of a surrounding domain Ω0 [7, 16, 19]) and
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close the problem [13]. Scattering wave propagation problems thus naturally take place in non-convex domains.
As a result, when the scatterer is not smooth, the solution is singular close to its corners.

Motivated by these examples, we carefully analyze the singular behaviour of the solution around the vertices
of the boundary (for instance the vertices of a polygonal scatterer). This study is especially important, as the
presence of singularities strongly impact the performance of numerical methods. Indeed, in the general case,
the lack of regularity of the solution is numerically translated by a decreased convergence rate, unless especially
refined (graded) meshes are used [5, 33].

Here we focus on acoustic 2D Helmholtz operator −ω2/V 2 −∆, with varying wavespeed V (corresponding
to heterogeneous media). Then, the singularities of the Helmholtz problem have the same form as the ones
of the Laplace operator −∆. It allows us to use the vast literature on the subject (see for instance [22, 32]).
However, though the theory of singularities is very well established for the Laplace operator, an essential feature
is missing: the behaviour of the singularities with respect to the frequency ω.

Indeed, numerical methods are very sensitive to the frequency. In particular, solving high frequency problems
accurately is a very computationally expensive task. This is linked to the fact that as the frequency increases, the
Helmholtz operator has additional negative eigenvalues, so that it is challenging to ensure the stability of discrete
numerical schemes. Intuitively, the solution is more oscillatory at higher frequencies, and these oscillations are
difficult to capture numerically.

In this paper, we focus on FEM discretizations. In this context, the difficulty to solve at high frequencies is
usually called the “pollution effect”: for high frequency problems, unless the mesh is heavily refined, there is
a gap between the interpolation error, and the error of the finite element solution. It means that the solution
obtained by the finite-element procedure is much less accurate than the best representation of the continuous
solution in the finite element space.

The “gap” between the interpolation and finite element errors is called the pollution error. On Cartesian grid
based meshes, the pollution error can be computed thanks to a dispersion analysis [3, 28]. Furthermore, there
exists an asymptotic range h ≤ h0 in which this gap disappears, and the finite element solution is almost as
accurate as the interpolant. The behaviour of h0 = h0(ω) with respect to the frequency is thus a key to analyze
the performance of the finite element method. When the domain is smooth, this analysis has been carried out
for Lagrange finite elements of arbitrary order p [30, 31], and it is known that h0 ' ω−1−1/p.

Of course, the regularity of the solution and the dependence of the Sobolev norms of the solution on ω
play a central role in the above-mentioned analysis. As a result, it is not obvious how the singularities of the
solution can affect the pollution effect, in a domain with corners. For instance, a scattering problem with re-
entrant corners is discretized using a “plane wave” method in [4]. Therein, the authors propose a convergence
analysis, and characterize the asymptotic range h ≤ h0(ω) in which the pollution effect vanishes. Because of the
singularities and the use of uniform meshes, they obtain the condition that h . ω−5/2, which is more restrictive
than the condition h . ω−2 known for P1 elements in smooth domains [30, 31].

Under minimal assumptions (namely the validity of a stability estimate and constant coefficients near the
corner points) and following [22, 32], we here propose a splitting of the solution into a regular part in H2(Ω)
and one singular function for each re-entrant corner. Our main achievement is a precise description of the
“amplitude” of the singularities depending on the frequency. We also show that the regular part of the solution
behaves as the solution of a Helmholtz problem in a smooth domain. These results are derived using slight
modifications of arguments used in an other context in [23]. Similar results have been obtained in [8, 9, 26]
using slightly different techniques in the context of BEM. However, our analysis allows us to treat more general
data and provide sharper estimates (we provide more details in the end of Sect. 3). In the context FEM, prior
works taking into account the singularities of the solution include [4, 20]. To the best of our knowledge, our
results are new, and we prove that our bounds are sharp.

Furthermore, we take advantage of the above-mentioned splitting to derive sharp error estimates for P1 finite
element discretizations of the problem. In particular, we prove that the asymptotic range (and thus the pollution
effect) is not affected by the presence of singularities. The newly introduced splitting is the key to improve the
error estimates given in [4].
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We illustrate these results with numerical experiments. For P1 elements, the numerical results are in
agreement with the theory. Furthermore, we numerically investigate higher order discretizations. Our main
observation is that, for high frequencies, the singularities only have a small impact on the numerical schemes.
In particular, unless a very accurate solution is needed, the use of graded meshes is not required.

Finally in order to show the large applicability of our assumptions, we check that the stability estimate holds
for various choices of domains and wave speeds V .

Our work is outlined as follow. In Section 2, we precisely state the problem we consider and state our basic
assumptions (in particular a stability estimate in the H1(Ω) norm). Sections 3 and 4 are dedicated to the
analysis of the singularities of the problem. The particular case of a disc sector featuring one singular corner
at the origin is first analyzed in Section 3. This result is then applied, by localization, to analyze the case of
a general polygonal domain in Section 4. We provide stability conditions and error estimates for finite element
discretizations in Section 5, and Section 6 is devoted to numerical experiments. In the appendices, we collect
some useful properties of Bessel functions and prove the stability estimate in some particular cases.

2. The setting

In this work, we consider wave propagation problems modelized by the Helmholtz equation in a domain Ω:
− ω

2

V 2
u−∆u = f in Ω,

∇u · n− iω

V
u = 0 on ΓDiss,

u = 0 on ΓDir,

(2.1)

where f : Ω → C is a given source term, and ΓDir and ΓDiss are two disjoint open subsets of the boundary ∂Ω
of Ω such that ΓDir ∪ΓDiss = ∂Ω. In addition, ω > 0 is the angular frequency, and V : Ω → R is the wavespeed.
We assume that V ∈ C1(Ω̄) satisfies 0 < Vmin ≤ V ≤ Vmax < +∞ for two constants Vmin,Vmax.

Classically, assuming that f ∈ L2(Ω), we recast (2.1) into the variational problem that consists in looking
for u ∈ H1

ΓDir
(Ω) solution to

B(u, v) = (f, v), ∀v ∈ H1
ΓDir

(Ω), (2.2)

where

B(u, v) = −ω2(V −2u, v)− iω〈V −1u, v〉ΓDiss
+ (∇u,∇v),

and

H1
ΓDir

(Ω) = {v ∈ H1(Ω) : γ0v = 0 on ΓDir},

γ0 being the trace operator from H1(Ω) to H
1
2 (∂Ω).

In most applications, the boundary ΓDir is imposed, and represents an obstacle or the basis of a cavity. On
the other hand, the boundary ΓDiss is artificially designed to approximate the Sommerfeld condition. The aim of
our work is to analyze the singularities that can arise due to corners of the boundary ΓDir. We do not consider
singularities due to ΓDiss, since one can usually design this artificial boundary to avoid reentrant corners and
thus, singularities.

The key technical assumptions required by our analysis are that close to each reentrant corner of ΓDir,
the boundary is polygonal, and V is constant. A part from these technical assumptions, general domains and
velocity parameters can be treated, as long as some stability estimate on ‖u‖1,Ω is available. In the following,
we rigorously summarize our main assumptions.
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Figure 1. Example of domains satisfying Assumptions 2.1 and 2.2.

Assumption 2.1. We assume that there exist two non negative constants σ and ω0 (independent of ω) such
that for all f ∈ L2(Ω) and ω ≥ ω0, problem (2.2) admits a unique solution u ∈ H1

ΓDir
(Ω). Furthermore, we

assume that

ω‖u‖0,Ω + |u|1,Ω ≤ C(Ω,ω0,V )ωσ‖f‖0,Ω , (2.3)

for some positive constant C(Ω,ω0,V ) that may depend on Ω, ω0, V , but neither on ω nor on f .

Assumption 2.2. The curves ΓDiss and ΓDir are piecewise C1. If y is a point at which ΓDiss is not C1, then
the angle formed by ΓDiss around y is less than or equal to π. Furthermore, there exists a set of points {xj}Nj=1

and a real number ` > 0 such that, for each point y at which ΓDir is not C1, either (a) the angle formed by
ΓDir around y is less than or equal to π, or (b) y = xj for some j ∈ {1, . . . , N}, and ΓDir is polygonal and V
is constant over B(xj , `). Finally, we assume that either ΓDir ∩ ΓDiss = ∅, or that the angle formed by ΓDir and
ΓDiss is less than or equal to π/2 each time they meet.

Assumption 2.1 is satisfied in a number of applications, as illustrated by Figure 1. For the cavity problem,
we have adapted the proof from [18] in Appendix B.1 to the case of parameters V such that ∂x2V ≤ 0. The
proof for the non-trapping obstacle is classical when V is constant. In Appendix B.2, we show that the result
is still valid as long as ∇V · x ≤ (1− δ)V for some δ ∈ (0, 1). Finally, we show that Assumption 2.1 holds for
some trapping obstacles by adapting arguments from [10].

Assumption 2.2 ensures that the singularities only take place on the corners of ΓDir, which is reasonable in
most applications, since the boundary ΓDiss is artificially placed. On the other hand, the assumptions that ΓDir

is polygonal and that V is constant in a neighborhood of such corners is only technical, but mandatory for our
analysis. The domains presented in Figure 1 also satisfy Assumption 2.2.

Scattering of a plane wave by an obstacle immersed in a homogeneous medium is an important particular
case. In this scenario, one considers an obstacle K and a domain Ω0 ⊃ K. Then, the domain of interest is
Ω = Ω0 \K with ΓDir = ∂K and ΓDiss = ∂Ω0. We look for v solution to −ω2v −∆v = 0 in Ω,

∇v · n− iωv = 0 on ΓDiss,
v = g on ΓDir,

(2.4)

where g(x) = eiωx·d for some unitary vector d that represents the direction of the plane wave. While our
assumptions do not directly cover (2.4), we can introduce the function η(x) = eiωx·dχ(x), where χ ∈ C∞(Ω) is
a cutoff function such that χ = 1 in a neighborhood of ΓDir and χ = 0 in a neighborhood of ΓDiss. Then, the
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Figure 2. The disc sector Dψ,R.

function u = v − η is solution to (2.1) with the source term

f(x) = eiωx·d∆χ(x) + 2iωeiωx·dd · ∇χ(x).

We note that such a function f belongs to L2(Ω) with

‖f‖0,Ω ≤ C(Ω)ω. (2.5)

Since η ∈ C∞(Ω), u and v have the same singularities. As a result, our analysis also holds for plane wave
scattering problems satisfying Assumptions 2.1 and 2.2 if one uses (2.5) in the right-hand-side of the estimates.

When the domain Ω is convex, or smooth, one easily obtains a bound for the H2(Ω) norm of the solution
from (2.3) by applying a shift theorem for the Laplace operator. However, the domain we consider do not have
such shifting properties. The analysis of higher order derivatives of the solution must therefore be carried out
carefully, by explicitly analyzing the corner singularities.

3. The case of a disc sector

We consider a disc sector Dψ,R ⊂ R2 of radius R and opening ψ. Its boundary is split into two parts ΓDiss

and ΓDir corresponding respectively to the circular and straight portions of ∂Dψ,R, see Figure 2. Hence, the
domain is defined by

Dψ,R = {(r cos θ, r sin θ) | 0 < r < R, 0 < θ < ψ},

and the boundary is specified as ΓDiss = Sψ,R and ΓDir = I0,R ∪ Iψ,R, where

Sψ,R = {(R cos θ,R sin θ) | 0 < θ < ψ},

and

I0,R = {(r, 0) | 0 < r < R} , Iψ,R = {(r cosψ, r sinψ) | 0 < r < R} .

For the sake of simplicity, we assume that π < ψ < 2π, and V = 1, so that a singularity occurs at the
origin for the solution of problem (2.1) in Dψ,R with the previous choice of ΓDiss and ΓDir. We observe that
because the two angles where ΓDiss and ΓDir meet are π/2, the solution to the problem lies in H1+α−ε(Ω) with
α = π/ψ > 1/2 and any ε > 0 (see below). Furthermore, since x · n = 0 on ΓDir and x · n = |x| on ΓDiss, we can
apply Theorem B.2, and we see that Assumption 2.1 is satisfied with σ = 0.
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When the domain Ω is regular, it can further be shown that u ∈ H2(Ω) and the semi-norm |u|2,Ω is explicitly
controlled in terms of ω. Here, we consider a domain Dψ,R with a re-entrant corner, so that in general, the
solution presents a singularity at the origin. Indeed, as mentioned before the solution belongs to H1+α−ε(Dψ,R)
for any ε > 0, but not to H1+α(Dψ,R). In particular this solution does not belong to H2(Dψ,R) since α ∈ ( 1

2 , 1).
Hereafter, we propose a splitting of the solution u into a regular part belonging to ũR ∈ H2(Dψ,R) and a

singular part S ∈ H1+α−ε(Dψ,R). We show that |ũR|2,Dψ,R behaves as |u|2,Dψ,R when the domain is regular.
Furthermore, we provide a novel estimate for the semi-norm |S|1+α−ε.

In this section, we require some properties linked to Bessel functions that are established in Appendix A and
listed below.

Proposition 3.1. For all α ∈ (1/2, 1), there exists ω0 > 0 large enough such that the following properties hold

∫ R

0

|Jα(ωr)|2rdr ≤ C(α,R, ω0)ω−1, (3.1)∫ R

0

|H(2)
α (ωr)|2rdr = C(α,R, ω0)ω−1 +O

(
ω−3

)
, (3.2)

Y ′α(ωR) + iYα(ωR)

J ′α(ωR) + iJα(ωR)
= −i+O

(
(ωR)−3/2

)
, (3.3)

Jα(εω)Y ′α(εω)− J ′α(εω)Yα(εω) =
2

επω
, (3.4)

for all ω ≥ ω0 and ε > 0.

3.1. Splitting of the solution

We propose a splitting of the solution u into a regular part ũR ∈ H2(Dψ,R) and a singular part in
H1+α−ε(Dψ,R). The singular properties of the Helmholtz operator are strongly linked to the ones of the
Laplacian. Hence, our analysis heavily relies on the theory developed by Grisvard [22]. More precisely, we
can state that the solution u of (2.1) in Dψ,R (with V = 1 and the previous choice of ΓDir and ΓDiss) can be
decomposed as

u = ũR + c̃ω(f)χ(r)rα sin(αθ), (3.5)

where ũR ∈ H2(Dψ,R) is the regular part, rα sin(αθ) ∈ H1+α−ε(Dψ,R) represents the singularity of the solution,
c̃ω(f) ∈ C is a constant depending on the data of the problem, and χ is a C∞ cutoff function that equals 1 in
a neighborhood of the origin and 0 close to ΓDiss.

Decomposition (3.5) is especially useful when analyzing Laplace problems, as rα sin(αθ) is a harmonic func-
tion. Also, this decomposition will be useful when analyzing the approximation properties of finite element
spaces. However, it is tricky to directly estimate the constant c̃ω(f). As a result, we will use the decomposition

u = uR + cω(f)Jα(ωr) sin(αθ), (3.6)

with uR ∈ H2(Dψ,R) and Jα(ωr) sin(αθ) represents the singularity.
As we detail later, Jα(ωr) and rα have the same behaviour close to the origin, so that both functions can be

used to describe the singularity. The advantage of decomposition (3.6) over (3.5) is that the representation of
the singularity satisfies

(−ω2 −∆) (Jα(ωr) sin(αθ)) = 0.



HIGH-FREQUENCY BEHAVIOUR OF CORNER SINGULARITIES IN HELMHOLTZ PROBLEMS 1809

As a result, decomposition (3.6) is easier to handle, and we shall use it to estimate cω(f). We easily recover an
estimate for c̃ω(f) in a “post-processing” fashion.

In Theorem 3.2, we show that the solution u can be decomposed according to (3.5) or (3.6). Furthermore,
we give a relation between the constants cω(f) and c̃ω(f). Also, in order to simplify the notations, we introduce

s(x) = Jα(ωr) sin(αθ), s̃(x) = χ(r)rα sin(αθ). (3.7)

Theorem 3.2. For all ω ≥ ω0 and f ∈ L2(Dψ,R), if u ∈ H1
ΓDir

(Dψ,R) is solution to (2.2), there exist a function
ũR ∈ H1

ΓDir
(Dψ,R) ∩H2(Dψ,R) and a constant c̃ω(f) ∈ C such that u = ũR + c̃ω(f)s̃.

Furthermore, there exists a function uR ∈ H1
ΓDir

(Dψ,R) ∩H2(Dψ,R) such that u = uR + cω(f)s, where

cω(f) = 2αΓ (α+ 1)ω−αc̃ω(f). (3.8)

Proof. The existence and uniqueness of u ∈ H1
ΓDir

(Dψ,R) being established, we can look at u as a solution to −∆u = f̃ in Ω,
u = 0 on ΓDir,

∇u · n = g on ΓDiss,

where f̃ = f + ω2u ∈ L2(Dψ,R), g = iωu ∈ H̃1/2(ΓDiss).
1

As g belongs to H̃1/2(ΓDiss), by Theorem 1.5.2.8 of [22], there exists an element η ∈ H2(Dψ,R) such that

γ0η = 0, γ0 (∇η · n) = g̃ = iωu on Γ, (3.9)

with the estimate

‖η‖2,Ω ≤ C(ψ,R)‖g̃‖
H

1
2 (ΓDiss)

= C(ψ,R)ω‖u‖
H

1
2 (ΓDiss)

,

for some positive constant C(ψ,R) that depends only on ψ and R. Hence by a trace theorem and estimate (2.3),
we deduce that

‖η‖2,Dψ,R ≤ C(ψ,R, ω0)ω‖f‖0,Dψ,R . (3.10)

Since γ0η = 0, it is also clear that we have η ∈ H1
0 (Dψ,R) ⊂ H1

ΓDir
(Dψ,R).

As a result, we see that v = u− η ∈ H1
ΓDir

(Dψ,R) is solution to −∆v = h in Dψ,R

v = 0 on ΓDir,
∇v · n = 0 on ΓDiss,

where h = f + ω2u + ∆η ∈ L2(Dψ,R). This allows us to apply Theorem 4.4.3.7 of [22], stating that v ∈
span

{
H2(Dψ,R), s̃

}
. Hence, there exist a function vR ∈ H1

ΓDir
(Dψ,R) ∩ H2(Dψ,R) and a constant c̃ω(f) ∈ C

such that v = vR + c̃ω(f)s̃. Obviously, we obtain (3.5) by setting uR = vR + η.
Once (3.5) is established, (3.6) and (3.8) directly follow from a careful inspection of the definition of Jα.

Indeed, if we isolate the first term in the development of Jα, we see that

Jα(ωr) sin(αθ) =
ωα

2αΓ (α+ 1)
rα sin(αθ) + φ,

1As usual, for s > 0, a function g belongs to H̃s(ΓDiss) if g̃, its extension by zero outside ΓDiss, belongs to Hs(∂Dψ,R).
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with φ ∈ H1
ΓDir

(Dψ,R) ∩H2(Dψ,R).

3.2. Estimation of cω(f)

For each ω ≥ ω0, it is clear that the mapping cω : L2(Dψ,R)→ C is continuous, and linear. Then, the Riesz
representation theorem implies the existence of a unique wω ∈ L2(Dψ,R) such that

cω(f) = (f, wω), ∀f ∈ L2(Dψ,R). (3.11)

Lemma 3.3. For all ω ≥ ω0, wω can be characterized as the unique element of L2(Dψ,R) satisfying the following
conditions:

−ω2wω −∆wω = 0 in D′(Dψ,R), (3.12)

∇wω · n + iωwω = 0 in (H̃
3
2 (ΓDiss))

′, (3.13)

wω = 0 in (H̃
1
2 (ΓDir \ {(0, 0)}))′, (3.14)(

−ω2ηs−∆(ηs), wω
)

= 1, (3.15)

where η ∈ C∞(Dψ,R) is any function such that η = 1 in a neighborhood of the origin and η = 0 in a neighborhood

of ΓDiss. Further, here and below H̃
1
2 (ΓDir \ {(0, 0)}) is the set of functions g ∈ H 1

2 (ΓDir) such that its restriction

g0 (resp. gψ) to I0,R (resp. Iψ,,R) belongs to H̃
1
2 (I0,R) (resp. H̃

1
2 (Iψ,R)).

Proof. First, let us prove that the function wω ∈ L2(Dψ,R) defined in (3.11) satisfies conditions (3.12)–(3.15).
To prove (3.12), consider φ ∈ D(Dψ,R), and define f = −ω2φ − ∆φ. By definition of f , it is clear that

φ = φR + cω(f)s with φR ∈ H2(Dψ,R). But since φ ∈ D(Dψ,R), we must have cω(f) = 0. As a result,

cω(−ω2φ−∆φ) = (−ω2φ−∆φ,wω) = 0

for all φ ∈ D(Dψ,R), which is precisely (3.12).
To analyse the boundary conditions satisfied by wω, we pick up an arbitrary function φ ∈ C∞(Dψ,R) such

that φ = 0 in a neighborhood of the origin, ∇φ · n− iωφ = 0 on ΓDiss and φ = 0 on ΓDir. Because φ is regular
near the origin, for the same reason as above, we have

cω(−ω2φ−∆φ) = (−ω2φ−∆φ,wω) = 0. (3.16)

The pair (wω, φ) satisfies the assumptions of Corollary 1.38 of [32]; this corollary yields∫
Dψ,R

(wω∆φ−∆wωφ) dx = 〈∇φ · n, wω〉ΓDiss
+ 〈∇φ · n, wω〉ΓDir

− 〈φ,∇wω · n〉ΓDiss
− 〈φ,∇wω · n〉ΓDir

.

Then, by (3.12), we obtain

0 = (−ω2φ−∆φ,wω)

= 〈∇φ · n, wω〉 − 〈φ,∇wω · n〉
= 〈∇φ · n, wω〉ΓDiss + 〈∇φ · n, wω〉ΓDir − 〈φ,∇wω · n〉ΓDiss − 〈φ,∇wω · n〉ΓDir

= iω〈φ,wω〉ΓDiss + 〈∇φ · n, wω〉ΓDir − 〈φ,∇wω · n〉ΓDiss

= 〈∇φ · n, wω〉ΓDir − 〈φ,∇wω · n + iωwω〉ΓDiss ,



HIGH-FREQUENCY BEHAVIOUR OF CORNER SINGULARITIES IN HELMHOLTZ PROBLEMS 1811

for all φ ∈ C∞(Dψ,R) such that φ = 0 in a neighborhood of the origin and satisfying the boundary conditions of

Helmholtz problem (2.1). Since the traces of v = φ|ΓDiss and z = ∇φ ·n|ΓDir runs in a dense subset of H̃
3
2 (ΓDiss)

and H̃
1
2 (ΓDir \ {(0, 0)}), we deduce that

〈z, wω〉ΓDir = 0, ∀z ∈ H̃ 1
2 (ΓDir \ {(0, 0)}),

and

〈v,∇wω · n + iωwω〉ΓDiss
= 0, ∀v ∈ H̃ 3

2 (ΓDiss).

By duality, we obtain (3.13) and (3.14).
Let η ∈ C∞(Dψ,R) be a cutoff function like in (3.15). Clearly, because η = 1 near the origin, we have

ηs = uR + s,

with uR ∈ H2(Dψ,R). Also, ∆(ηs) ∈ L2(Dψ,R) and ηs satisfies the boundary conditions of problem (2.1). As a
result, it is clear that

cω
(
−ω2(ηs)−∆(ηs)

)
= 1,

and (3.15) follows by definition (3.11) of wω.
We now prove the opposite statement that a function vω satisfying (3.12)–(3.15) is the function wω defined

by (3.11). Indeed if u ∈ H1
ΓDir

(Dψ,R) is the unique solution of (2.2), then the splitting (3.6) is equivalent to

u = u∗R + cω(f)ηs,

with u∗R ∈ H2(Dψ,R) ∩H1
ΓDir

(Dψ,R). This splitting and condition (3.15) satisfied by vω directly yield

−(f, vω) = ((∆+ ω2)u, vω)

= ((∆+ ω2)u∗R, vω)− cω(f).

Then the conclusion follows if we can show that

((∆+ ω2)u∗R, vω) = 0. (3.17)

But it is not difficult to show that H3(Dψ,R) ∩H1
ΓDir

(Dψ,R) is dense in H2(Dψ,R) ∩H1
ΓDir

(Dψ,R), hence (3.17)
holds if and only if

((∆+ ω2)w, vω) =

∫
ΓDir

(∇w · nvω − w∇vω · n) ,∀w ∈ H3(Dψ,R) ∩H1
ΓDir

(Dψ,R). (3.18)

But for w ∈ H3(Dψ,R) ∩H1
ΓDir

(Dψ,R), for a cut-off function η as before, we clearly have

ηw ∈W 2,p(Dψ,R),

for any p > 2 and furthermore ηw and ∇(ηw) is zero at the origin. Since vω ∈ Lq(Dψ,R) and ∆vω ∈ Lq(Dψ,R)
with 1 < q < 2 such that 1/p+ 1/q = 1, we can apply Corollary 1.38 of [32] and find that

((∆+ ω2)(ηw), vω) = 0.
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On the other hand, since the angle between ΓDiss and ΓDir is equal to π/2, vω belongs to H2 far from the origin
and consequently by standard Green’s formula, we have

((∆+ ω2)((1− η)w), vω) =

∫
ΓDir

(∇w · nvω − w∇vω · n) .

The sum of these two last identities proves (3.18).

As we consider a simple geometry, the analytical expression of wω is available, as shown in the following
theorem.

Theorem 3.4. We have

wω(x) = −α
{
Yα(ωr)− Y ′α(ωR) + iYα(ωR)

J ′α(ωR) + iJα(ωR)
Jα(ωr)

}
sin(αθ).

Proof. We are going to show that the function wω defined above satisfies conditions (3.12)–(3.15). For the sake
of simplicity, let us write

s?(x) = Yα(ωr) sin(αθ),

so that

wω = −α
(
s? − Y ′α(ωR) + iYα(ωR)

J ′α(ωR) + iJα(ωR)
s

)
.

We observe that by construction, both s and s? satisfy the Helmholtz PDE, as a result,

−ω2wω −∆wω = 0,

and (3.12) is satisfied. As wω clearly belongs to L2(Dψ,R), we deduce that wω belongs to

D(∆,L2(Dψ,R)) = {v ∈ L2(Dψ,R) : ∆v ∈ L2(Dψ,R)},

hence Theorem 1.37 of [32] gives a meaning of its trace on ΓDir as element of (H̃
1
2 (ΓDir \{(0, 0)}))′. Furthermore,

since wω ∈ C∞(R2 \ (0, 0)), it is clear that wω = 0 on ΓDir \ (0, 0), and (3.14) holds.
Boundary condition (3.13) is also satisfied by construction. Indeed, if x = (R cos θ,R sin θ) ∈ ΓDiss, we have

(∇s · n + iωs)(x) = ω(J ′α(ωR) + iJα(ωR)) sin(αθ),

and

(∇s? · n + iωs?)(x) = ω(Y ′α(ωR) + iYα(ωR)) sin(αθ),

so that ∇wω · n + iωwω = 0 on ΓDiss.
Hence it remains to show that (3.15) holds. We have

− 1

α

(
−ω2ηs−∆(ηs), wω

)
=
(
−ω2ηs−∆(ηs), s?

)
+
Y ′α(ωR) + iYα(ωR)

J ′α(ωR) + iJα(ωR)

(
−ω2(ηs)−∆(ηs), s

)
.
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We are going to show that

(
−ω2(ηs)−∆(ηs), s

)
= 0, (3.19)

and

(
−ω2(ηs)−∆(ηs), s?

)
= − 1

α
, (3.20)

which will conclude the proof. In spirit, the proof relies on simple integration by parts techniques. However,
because we manipulate functions with low regularity close to the origin, these integrations by parts have to be
done carefully.

The technique is then to subtract the ball B(0, ε) from Dψ,R, so that all manipulated functions are C∞ on
Dψ,R,ε = Dψ,R \ B(0, ε). Then, integration by parts is allowed on Dψ,R,ε and the desired inner products are
recovered by letting ε→ 0.

The beginning of the proof of (3.19) and (3.20) is the same. Thus, let us set µ = s or s?. Because s, µ ∈
C∞(Dψ,R,ε), and −ω2µ−∆µ = 0, double integration by parts yields

∫
Dψ,R,ε

(
−ω2ηs−∆(ηs)

)
µ =

∫
∂Dψ,R,ε

(∇(ηs) · nµ− ηs∇µ · n) .

Since ηs = ∇(ηs) · n = 0 on ΓDiss, s = µ = 0 on ΓDir \Bε, and η = 1 on B1/2, we have

∫
Dψ,R,ε

(
−ω2ηs−∆(ηs)

)
µ =

∫
∂Bε

(∇(ηs) · nµ− ηs∇µ · n)

=

∫
|x|=ε,0<θ<ψ

(∇s · nµ− s∇µ · n) . (3.21)

Obviously, when µ = s, the right-hand-side of (3.21) vanishes, so that

∫
Dψ,R,ε

(
−ω2ηs−∆(ηs)

)
s = 0,

and (3.19) follows since

(
−ω2(ηs)−∆(ηs), s

)
=

∫
Dψ,R

(
−ω2ηs−∆(ηs)

)
s

=

∫
Dψ,R

(
−ω2ηs−∆(ηs)

)
s

= lim
ε→0

∫
Dψ,R,ε

(
−ω2ηs−∆(ηs)

)
s.

On the other hand, to prove (3.20), since

∇s · n = ωJ ′α(εω) sin(αθ), ∇s? · n = ωY ′α(εω) sin(αθ), on ∂Bε,
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by (3.21) with µ = s?, we have

∫
Dψ,R,ε

(
−ω2(ηs)−∆(ηs)

)
s? = εω (J ′α(εω)Yα(εω)− Jα(εω)Y ′α(εω))

∫ ψ

0

sin2(αθ)dθ

Direct computations show that ∫ ψ

0

sin2(αθ) =
π

2α
.

Furthermore, recalling (3.4) from Proposition 3.1 we have

J ′α(εω)Yα(εω)− Jα(εω)Y ′α(εω) = − 2

επω
,

and we obtain ∫
Dψ,R,ε

(
−ω2s−∆s

)
s? = − 1

α
.

Then, (3.20) holds by letting ε→ 0.

Corollary 3.5. We have

|wω(x) + iαH(2)
α (ωr) sin(αθ)| ≤ C(ψ,R, ω0)ω−3/2|Jα(ωr)| sin(αθ), (3.22)

and

‖wω‖0,Dψ,R = C(ψ,R, ω0)
(
ω−1/2 +O

(
ω−3/2

))
. (3.23)

Proof. First, recalling (3.3) from Proposition 3.1, we have

Y ′α(ωR) + iωYα(ωR)

J ′α(ωR) + iωJα(ωR)
= i+O

(
(ωR)−3/2

)
,

from which (3.22) follows.
Then, because of (3.22), we have

‖wω‖20,Dψ,R = C(ψ,R, ω0)

(∫ R

0

|H(2)
α (ωr)|2rdr +O

(
ω−3

) ∫ R

0

|Jα(ωr)|2rdr

)
.

Then, from (3.1) and (3.2), we have

‖wω‖20,Dψ,R = C(ψ,R, ω0)
(
ω−1 +O

(
ω−3

))
,

and (3.23) follows.

We are now ready to establish the main result of this section.
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Theorem 3.6. The estimate

|cω(f)| ≤ C(ψ,R, ω0)ω−1/2‖f‖0,Dψ,R , (3.24)

holds for all ω ≥ ω0 and f ∈ L2(Dψ,R).
Furthermore, estimate (3.24) is optimal in the sense that for all ω ≥ ω0, there exists an f ∈ L2(Dψ,R) such

that

|cω(f)| ≥ C(ψ,R, ω0)ω−1/2‖f‖0,Dψ,R . (3.25)

Proof. By definition, for all ω ≥ ω0 and f ∈ L2(Dψ,R), we have

|cω(f)| = |(f, wω)| ≤ ‖f‖0,Dψ,R‖wω‖0,Dψ,R ,

and

|cω(wω)| = |(wω, wω)| = ‖wω‖20,Dψ,R .

But, Corollary 3.5 shows that

C1(ψ,R, ω0)ω−1/2 ≤ ‖wω‖0,Dψ,R ≤ C2(ψ,R, ω0)ω−1/2, ∀ω ≥ ω0,

assuming that ω0 is large enough. As a result, we have (3.24), and (3.25) follows by taking f = wω.

3.3. Behaviour of the regular part

So far, we have isolated the singular part of the solution u and described its behaviour with respect to the
frequency. To complete the analysis, we now investigate the regular part ũR ∈ H2(Dψ,R).

Theorem 3.7. For all ω ≥ ω0 and f ∈ L2(Dψ,R), if u ∈ H1
ΓDir

(Dψ,R) is solution to (2.2), there exist a function
ũR ∈ H2(Dψ,R) and a constant c̃ω(f) ∈ C such that

u = ũR + c̃ω(f)s̃,

and it holds that

‖ũR‖2,Dψ,R ≤ C(ψ,R, ω0)ω‖f‖0,Dψ,R .

Proof. We proceed as in Theorem 3.2 and use the lifting η ∈ H1
ΓDir

(Dψ,R) ∩H2(Dψ,R) satisfying (3.9). Then,
we let v = u− η so that  −∆v = h in Dψ,R,

∇v · n = 0 on ΓDiss,
v = 0 on ΓDir,

with h = ∆u−∆η = f + ω2u−∆η.
But, v = vR + c̃ω(f)s̃ with vR ∈ H2(Dψ,R) satisfies −∆vR = h̃ in Dψ,R,

∇vR · n = 0 on ΓDiss,
vR = 0 on ΓDir,
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with h̃ = f +ω2u−∆η− c̃ω(f)∆s̃ ∈ L2(Dψ,R). Then we see that vR is solution to a Laplace problem with mixed
boundary condition. Furthermore, since we have vR ∈ H2(Dψ,R), we can apply the a priori bound derived by
Grisvard in Theorem 4.3.1.4 of [22]:

‖vR‖2,Dψ,R ≤ C(ψ,R)
(
‖h̃‖0,Dψ,R + ‖vR‖0,Dψ,R

)
.

By applying the Poincaré inequality, we further see that

‖vR‖2,Dψ,R ≤ C(ψ,R)
(
‖h̃‖0,Dψ,R + |vR|1,Dψ,R

)
≤ C(ψ,R)‖h̃‖0,Dψ,R ,

and it only remains to estimate the L2(Dψ,R)-norm of h̃. But, we have

‖h̃‖0,Dψ,R ≤ ‖f‖0,Dψ,R + ω2‖u‖0,Dψ,R + ‖∆η‖0,Dψ,R + |c̃ω(f)|‖∆s̃‖0,Dψ,R .

Also, one trivially has

‖∆s̃‖0,Dψ,R ≤ C(ψ,R),

further by (2.3) and (3.10), one deduces that

‖u‖0,Dψ,R ≤ C(ψ,R, ω0)ω−1‖f‖0,Dψ,R , ‖∆η‖0,Dψ,R ≤ C(ψ,R, ω0)ω‖f‖0,Dψ,R .

Hence, by (3.24), we finally get

‖h̃‖0,Dψ,R ≤ C(ψ,R, ω0)
(

1 + ωα−1/2 + ω
)
‖f‖0,Dψ,R ,

and the result follows. Indeed, since α < 1, we have 1 + ωα−1/2 + ω ≤ C(ω0)ω.

As a conclusion, we summarize the key features of the presented splitting. First, the regular part ũR ∈
H2(Dψ,R) has the standard behaviour of the Helmholtz solution in the sense that |ũR|2,Dψ,R ≤ Cω. Second, we
are able to isolate the singularity of u, that is represented by the function S = cω(f)s̃ which only belongs to
H1+α−ε(Dψ,R) (for all ε > 0). Furthermore, the behaviour of S is controlled as |S|1+α−ε ≤ Cωα−1/2|s̃|1+α−ε =
Cωα−1/2.

The crucial observation is that the norm of the regular part grows faster for increasing frequencies than
the one of the singular part. As a result, we can expect the regular part to be “dominant” in some sense for
high frequency problems. In Section 5, we show that this observation has important consequences on numerical
methods. Roughly speaking, the singular part (and the low convergence rate) is “invisible” until an asymptotic
regime (for small mesh size) is reached. A particularly important consequence is that the “pollution effect”,
which is the main source of numerical error, is not affected by the singularity.

We finally mention that in the context of the integral formulation of problem (2.4), similar results have been
obtained for the singular behaviour of the solution close to corners [8, 9, 26]. Specifically, in Theorem 2.3 of [9],
a representation of the solution u as a series of Bessel functions is employed, whose first term corresponds to
our singularity function s. In fact, it is shown that the singular coefficient behaves as

cω '
∫ ψ

0

u(R, θ) sin(αθ)dθ,
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where u is the solution to the Helmholtz problem and R is a fixed radius, so that

|cω| ≤ C sup
Ω
|u|,

where C is a constant independent of ω. It is further mentioned in [9] that the estimate

sup
Ω
|u| ≤ C,

is probably valid (as numerically observed), but that the sharpest available estimate is

sup
Ω
|u| ≤ Cω1/2 ln1/2 ω,

so that the authors end up with the estimation |cω| ≤ Cω1/2 ln1/2 ω for the scattering Problem (2.4).
Though the singular decomposition we use is somehow similar to [9], our analysis exhibits the following

improvements:
To the best of our understanding, the Bessel series employed to represent the solution in [9] is only valid if u

satisfies the homogeneous Helmholtz equation inside Ω (with inhomogeneous boundary conditions), or at least
if the load term vanishes in a neighborhood of the corner. While this assumption is satisfactory for scattering
problems, our analysis handles arbitrary load terms, that are important in other applications.

The analysis of the authors from [9] is based on a bound of sup |u|, which is not always available or sharp.
On the other hand, we require a bound in the L2(Ω)-norm of the solution. As depicted in Appendix B, sharp
L2(Ω) estimates are available for a wide range of problems.

For the case of the scattering problem (2.4), we obtain the estimate |cω| ≤ Cω1/2, which is sharper than the
one obtained in [9]. We note that, however, this result is not fully satisfactory, in the sense that it is expected
that the optimal result for (2.4) is |cω| ≤ C. Nevertheless, our analysis applies to a wider range of load terms,
and we provide example for which our bound is sharp. As a result, though our analysis is sharp for the general
set of problems we consider, it is not clear whether or not our result is optimal for the scattering problem (2.4).

4. The general case

We now consider the general case of Helmholtz problems that satisfies Assumptions 2.1 and 2.2.
As previously mentioned, singularities can happen at the vertices of ΓDir, and the solution does not belong

to H2(Ω). However, we will prove that it admits a splitting

u = uR +

N∑
j=1

Sj ,

where uR ∈ H2(Ω), N is the number of non-convex vertices of ΓDir and Sj is a singular function associated with
the corner xj of ΓDir. Furthermore, we estimate the norms of uR and Sj in the same fashion than in Section 3.

In contrast to the case of a disc sector which features one singular point, each vertex xj of ΓDir for which
the interior angle ψj is > π (also called a non-convex vertex) is a singular point in the case consider here. From
the analysis point of view, the main difference is that here, one must localize the functions representing the
singularities (see the definition of s̃j below (4.1)). In addition, we now consider the general stability estimate in
O(ωσ).
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4.1. Notations

In the following, we denote by χ ∈ C∞(R) a cutoff function so that χ(ρ) = 1 if ρ < `/3 and χ(ρ) = 0 if
ρ > 2`/3.

To each corner xj , we associate the singular function s̃j defined by

s̃j(x) = χj(x)r
αj
j sin(αjθj), (4.1)

where χj(x) = χ(rj(x)), rj(x) is the distance from x to xj and αj = π/ψj .
We further write Dj = Ω ∩ B(xj , `). One sees that Dj is a disc sector centered at xj , of opening ψj and

radius `. As a result, Dj is obtained from D(ψj , `) by rotation and translation. Hence, we are able to apply
results from Section 2 when localizing the analysis in Dj .

4.2. Splitting of the solution

By a localization argument, we give a splitting of the solution into a regular part in H2(Ω) and N singular
functions, associated with each non-convex corner of ΓDir.

Theorem 4.1. For all ω ≥ ω0 and f ∈ L2(Ω), if u ∈ H1
ΓDir

(Ω) is solution to (2.2), there exist a function

ũR ∈ H1
ΓDir

(Ω) ∩H2(Ω) and constants cjω(f) ∈ C such that

u = ũR +

N∑
j=1

c̃jω(f)s̃j ,

and it holds that

|c̃jω(f)| ≤ C(Ω,ω0,V )ωσ+αj−1/2‖f‖0,Ω , (4.2)

for all j = 1, . . . , N , while

|ũR|2,Ω ≤ C(Ω,ω0,V )ωσ+1‖f‖0,Ω . (4.3)

Proof. The proof heavily relies on a localization argument and the results of the previous section. Indeed for all
j = 1, . . . , N , we set

uj = χju.

Up to an isometric change of coordinates, we see that uj belongs to H1
ΓDir

(Dψj ,L), and is the variational solution
of the problem (2.2) in Dψj ,L with data fj = χjf − 2∇χj · ∇u− u∆χj , namely

−ω2
juj −∆uj = fj in Dψj ,`,

∇uj · n− iωjuj = 0 on Sψj ,`,
uj = 0 on I0,` ∪ Iψj ,`,

(4.4)

with ωj = ω/Vj , where Vj is the constant value of V over B(xj , `). First let us notice that the estimate (2.3)
yields

‖fj‖0,Dj ≤ C(Ω,ω0)ωσ‖f‖0,Ω . (4.5)
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Hence applying Theorem 3.2 to problem (4.4) one gets the splitting

uj = ũR,j + c̃jωj (fj)s̃j , (4.6)

with ũR,j ∈ H2(Ωj) and c̃jω(fj) ∈ C. Furthermore with the help of Theorems 3.6 and 3.7 (and the estimate
(4.5)), one has

|c̃jωj (fj)| ≤ C(ψj , `, ω0)ω
αj−1/2
j ‖fj‖0,Ωj ≤ C(Ω,ω0,V )ωσ+αj−1/2‖f‖0,Ω , (4.7)

and

‖ũR,j‖2,Ωj ≤ C(ψj , `, ω0)ω‖fj‖0,Ωj ≤ C(Ω,ω0)ωσ+1‖f‖0,Ω . (4.8)

Finally setting χ = 1−
∑N
j=1 χj , we define U = χu. It is clear that we have

‖U‖0,Ω ≤ ‖u‖0,Ω ≤ ωσ−1‖f‖0,Ω , (4.9)

and

|U |1,Ω ≤ |χ|1,∞‖u‖0,Ω + |u|1,Ω ≤ C(Ω,ω0,V )ωσ‖f‖0,Ω . (4.10)

We can also look at U as the solution of (2.2) in O with data F = χf − 2∇χ ·∇u−u∆χ, where O is a smooth
domain corresponding to Ω where we have rounded the non-convex corners xj of Ω (without loss of generality,
we can assume that the boundary of O has two connected components Γ sDir and ΓDiss and that O ⊂ Ω), namely

− ω
2

V 2
U −∆U = F in O,

∇U · n− iω

V
U = 0 on ΓDiss

U = 0 on Γ sDir.

(4.11)

We note that since U = 0 in a neighborhood of each xj , we have

‖U‖0,O = ‖U‖0,Ω , ‖U‖1,O = ‖U‖1,Ω ,

and thus

‖F‖0,O ≤ C(Ω,ω0)ωσ‖f‖0,Ω

from estimates (4.9) and (4.10).
By standard regularity results in O, one has U ∈ H2(O) with

‖U‖2,O ≤ C(O)
(
‖U‖1,O + ‖∆U‖0,O + ω‖U‖ 1

2 ,ΓDiss

)
.

Hence using a trace theorem, we find that

‖U‖2,O ≤ C(O,V )
(
(1 + ω)‖U‖1,Ω + ω2‖U‖0,O + ‖F‖0,O

)
.
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By the estimates (4.9) and (4.10), we conclude that

‖U‖2,O ≤ C(Ω,V )ωσ+1‖f‖0,Ω . (4.12)

Since u = U +
∑N
j=1 uj , the conclusion follows from splitting (4.6), the regularity U ∈ H2(O) and estimates

(4.7)–(4.12).

For the sake of completeness, we provide an additional result for the case of velocity parameters V that are
not constant close to the re-entrant corners of ΓDir. We state this result separately, since we do not believe it is
optimal: a factor ω1/2 is added in the estimate of the singular coefficient.

Theorem 4.2. We assume that ΓDir and ΓDiss satisfy Assumption 2.2 but we allow V to be a general C1(Ω)
function such that 0 < Vmin ≤ V ≤ Vmax < +∞ for two fixed values Vmin and Vmax. Then, for all ω ≥ ω0 > 1/`2

and f ∈ L2(Ω), if u ∈ H1
ΓDir

(Ω) is solution to (2.2), there exist a function ũR ∈ H1
ΓDir

(Ω)∩H2(Ω) and constants

cjω(f) ∈ C such that

u = ũR +

N∑
j=1

c̃jω(f)s̃j ,

and it holds that

|c̃jω(f)| ≤ C(Ω,ω0,V )ωσ+αj‖f‖0,Ω , (4.13)

for all j = 1, . . . , N , while

|ũR|2,Ω ≤ C(Ω,ω0,V )ωσ+1‖f‖0,Ω . (4.14)

Proof. Since the proof is similar to the one of the previous theorem, we only highlight the differences.
For each corner xj , we define a cutoff function ρj such that ρj(x) = 1 in a neighborhood of xj and ρj(x) = 0

if |x− xj | ≥ ω−1/2 (remark that ω−1/2 ≤ ω−1/20 ≤ `). We note that we can construct ρj in such a way that

|ρj |0,∞,Ω ≤ 1, |ρj |1,∞,Ω ≤ C(ψj)ω
1/2, |ρj |2,∞,Ω ≤ C(ψj)ω.

Then for j = 1, . . . , N , we set uj = ρju, Vj = V (xj), and ωj = ω/Vj . As in the previous theorem, we see
that (up to an isometry) uj is solution to

−ω2
juj −∆uj = fj in Dψj ,`,

∇uj · n− iωjuj = 0 on Sψj ,`,
uj = 0 on I0,` ∪ Iψj ,`,

where

fj = ρjf − 2∇ρj · ∇u− u∆ρj − ω2
(
V (xj)

−2 − V −2
)
ρju.

Since V −2 belongs to C1(Ω), we can apply Taylor expansion, and find∣∣V (xj)
−2 − V −2(x)

∣∣ ≤ |x− xj ||V −2|1,∞,Ω ≤ 2V −3min|x− xj ||V |1,∞,Ω = C(V )|x− xj |.
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Since in addition ρj(x) = 0 if |x− xj | ≥ ω−1/2, and |ρj |0,∞,Ω ≤ 1, we see that∣∣(V (xj)
−2 − V −2

)
ρj
∣∣ ≤ C(V )ω−1/2.

Then, we recall that by Assumption 2.1, we have

‖u‖0,Ω ≤ C(Ω,ω0,V )ωσ−1‖f‖0,Ω , |u|1,Ω ≤ C(Ω,ω0,V )ωσ‖f‖0,Ω ,

so that

‖fj‖0,Ω ≤ ωσ+1/2‖f‖0,Ω ,

and (4.13) follows from Theorem 3.2.
We use the same arguments than in the previous theorem to show (4.14).

5. Frequency explicit stability of finite element discretizations

5.1. The finite element space

In this section, we investigate the discretization of problem (2.2) by linear finite elements. For the sake of
simplicity, we assume that ΓDir and ΓDiss are polygonal. We consider meshes Th of Ω made of triangles K
satisfying

diam(K) ≤ h, diam(K) ≤ γρ(K),

where γ is a constant independent of h, and

diam(K) = sup
x,y∈K

|x− y|, ρ(K) = sup {r > 0 | ∃x ∈ K; B(x, r) ⊂ K } .

The solution u ∈ H1
ΓDir

(Ω) to problem (2.2) is then approximated by a function uh ∈ Vh satisfying

B(uh, vh) = (f, vh), ∀vh ∈ Vh, (5.1)

where

Vh =
{
vh ∈ H1

ΓDir
(Ω) | vh|K ∈ P1(K); ∀K ∈ Th

}
is the space of Lagrange linear elements build on Th. For more detail on the construction of Vh and its properties,
we refer the reader to [12].

In this section, we will consider meshes such that

ωh ≤ 1. (5.2)

This assumption is natural and means that the number of elements per wavelength is bounded from below. As
we shall see, more restrictive conditions on h must be imposed to ensure that the finite element error remains
bounded independently of ω, so that we can assume (5.2) without loss of generality.

In order to simplify notations, we introduce the ω−dependent norm

|||v|||2 = ω2‖v‖20,Ω + |v|21,Ω , ∀v ∈ H1
ΓDir

(Ω).
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The ||| · ||| norm is equivalent to the standard H1(Ω) norm (with a constant obviously depending on ω). This
norm turns out to be the “natural” one to analyze the problem, since in view of stability estimate (2.3), the L2

and H1 terms of |||u||| are “balanced” when u is a solution of the Helmholtz problem.
In the following, we denote by Ih the “quasi-interpolation” operator of Scott & Zhang [38]. We have Ih :

H1
ΓDir

(Ω)→ Vh, and it holds that (see Thm. 4.1 of [38])

|v − Ihv|l,Ω ≤ C(Ω, γ)h1−l|v|1,Ω (l = 0, 1). (5.3)

Furthermore, if v ∈ H1
ΓDir

(Ω) ∩H2(Ω), it holds that

|v − Ihv|l,Ω ≤ C(Ω, γ)h2−l|v|2,Ω (l = 0, 1). (5.4)

5.2. Preliminary discussion

It is well known that the main source of error in numerical discretizations of high frequency problems is
numerical dispersion. This is known as the “pollution effect”: unless the mesh is heavily refined, the finite-element
solution is not quasi-optimal, it is “polluted”.

To simplify the discussion, let us denote by

η =
|||u− Ihu|||
‖f‖0,Ω

,

the best approximation error. In a smooth domain, it is known [30, 31] that the parameter η is bounded as

η . ωσ+1h,

for linear Lagrange elements. Our main achievement is to establish that

η . ωσ−1/2(ωh)α + ωσ(ωh), (5.5)

in a domain presenting re-entrant corners.
For 1D problems, when σ = 0, the behaviour of the finite element solution and the pollution effect have been

precisely analysed, see for instance [27, 28]. It is shown that if there are sufficiently many discretization points
per wavelength (i.e. η = ωh is small enough), then

|||u− uh||| .
(
η + ωη2

)
‖f‖0,Ω '

(
ωh+ ω3h2

)
‖f‖0,Ω . (5.6)

The pollution effect is clearly visible in (5.6), where the pollution term ωη2 is added to the best approximation
error η. For large ω, the pollution term ω3h2 is dominant unless h is sufficiently small. This is called the
“pre-asymptotic range”, where the pollution error is the largest. On the other hand, the “asymptotic range” is
achieved when ωη ≤ C0 is small enough. Then, the finite element solution is quasi-optimal since ωη2 ≤ C0η.

If we insert bound (5.5) for non-convex domains into (5.6), we obtain

|||u− uh||| .
(
η + ωη2

)
‖f‖0,Ω

.
(
ω−1/2ωαhα + ωh+ ω2αh2α + ω3h2

)
‖f‖0,Ω .

.
(
ω−1/2ωαhα + ωh+ ω3h2

)
‖f‖0,Ω .

Hence, we see that the presence of singularities is reflected by the term ω−1/2ωαhα. It is crucial to observe that
this term is only significant in an asymptotic range where h is small. More precisely, the term ω−1/2ωαhα is
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dominant only when ω−1/2ωαhα ≤ ωh, which corresponds to h ≤ ω
α−3/2
1−α ≤ ω−2. Also, we see that the pollution

term ω3h2 is not affected by the presence of singularities. We thus conclude that the dispersive behaviour of the
finite element scheme remains unchanged in the presence of singularities. Furthermore, unless a highly accurate
solution is required, the problem can be solved without using special techniques to “resolve” the singularities.

Unfortunately, the authors are not aware of a proof of (5.6) for general meshes in 2D. Nevertheless, in the
following, we are able to give two interesting results.

First, we give asymptotic error estimates that are based on the so-called Schatz argument [37]. The method-
ology can be found, for instance, in [17] or [29]. Classically, if ωη is small enough, the finite element solution
is optimal and it holds that |||u− uh||| ≤ η‖f‖0,Ω . We show that the condition that ωη is small is satisfied as
soon as ωσ+2h is small. Hence, the presence of singularities does not change the asymptotic range.

Second, though we are not able to prove a general pre-asymptotic error estimate like in [27], we can derive
a weaker version thanks to a method recently introduced in [21]. The method relies on the introduction of a
special elliptic projection. When applied in a smooth domain, it implies that if ωhη is small enough, then (5.6)
holds. Hence, it provides the same error estimate, but the condition ωhη ≤ C is imposed on the mesh step.
When linear elements are consider, this condition is equivalent to ω3h2 ≤ C, so that we obtain an optimal bound
on the error. For higher p however, this condition is not optimal. Hereafter, we adapt this method to the case of
domains with singular points. Unfortunately, the elliptic projection used in [21] is affected by the singularities.
As a result, we can show that (5.6) holds, but only if ωhαη is small enough (which is more restrictive than the
original condition ωhη ≤ C for regular domains).

5.3. Interpolation of singularities

Before deriving our main results, we present an interpolation result for the singularity functions. The analysis
is subtle as sj ∈ H1+s(Ω) holds for s < α, but not in the limiting case s = α. As a result, direct approximation
results in Sobolev spaces do not provide interpolation error estimates in O(hα). We will use a regularity result
from [6] involving Besov spaces giving the desired estimates.

Lemma 5.1. For l = 0 or 1, we have

|s̃j − Ihs̃j |l,Ω ≤ C(Ω, γ)h1−l+αj . (5.7)

Proof. If we write sj(x) = r
αj
j sin(αjθj) and s̃j = χjsj , we see that ∆sj = 0. Since supp sj ⊂ Dj , we observe

that s̃j is solution to {
−∆s̃j = gj in Ω

s̃j = 0 on ∂Ω,
(5.8)

where

gj = −∇χ · ∇sj −∆χsj .

We observe that ∇χ and ∆χ are supported in B(xj , 2L/3) \ B(xj , L/3). Since sj is smooth on that set, we
clearly have gj ∈ L2(Ω) and ‖gj‖0,Dj ≤ C(Ω).

The main ingredient of the proof is then Theorem 4.1 of [6], which gives a regularity result for the solution
of Laplace problem (5.8) in the Besov space

B1+α = [H2(Ω) ∩H1
0 (Ω), H1

0 (Ω)]1−α,∞

obtained by real interpolation. In particular, we can state that

‖sj‖B1+α ≤ C(Ω)‖gj‖0,Dj .
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Since H1
0 (Ω) ⊂ H1

ΓDir
(Ω), (5.3) and (5.4) hold for all v ∈ H1

0 (Ω). Hence the linear operator T = (Id−Ih) is

linear and bounded from H1
0 (Ω) → H l(Ω) with norm M0 = C(Ω, γ)h1−l and from H2(Ω) ∩H1

0 (Ω) → H l(Ω)
with norm M1 = C(Ω, γ)h2−l. Since B1+α is an exact interpolation space (see, for instance [2]), we have that
T is bounded from B1+α to H l(Ω) with norm Mα = Mα

0 M
1−α
1 = C(Ω, γ)h1−l+αj . It follows that

‖v − Ihv‖l,Ω ≤ C(Ω, γ)h1−l+αj‖v‖B1+α ,

for all v ∈ B1+α, and the result follows by taking v = s̃j .

5.4. Asymptotic error estimate

We start by deriving an asymptotic error estimate. The first step consists in estimating the best approximation
error. The right-hand side of estimate (5.9) contains the quantity η introduced above and we conclude that here

η ≤ C(Ω,ω0,V , γ)
(
ωσ−1/2(ωh)α + ωσ(ωh)

)
.

Lemma 5.2. For φ ∈ L2(Ω), define uφ ∈ H1
ΓDir

(Ω) as the solution to

B(uφ, v) = (φ, v), ∀v ∈ H1
ΓDir

(Ω).

Then we have

|||uφ − Ihuφ||| ≤ C(Ω,ω0,V , γ)
(
ωσ−1/2(ωh)α + ωσ(ωh)

)
‖φ‖0,Ω . (5.9)

Furthermore, estimate (5.9) also holds for the function u?φ defined as the unique element of H1
ΓDir

(Ω) solution
to

B(v, u?φ) = (v, φ), ∀v ∈ H1
ΓDir

(Ω).

Proof. We recall that we have the decomposition

uφ = ũR +

N∑
j=1

c̃jω(φ)s̃j ,

where s̃j = χ(rj)r
αj sin(αjθj), ũR ∈ H2(Ω) ∩H1

ΓDir
(Ω). Hence, since

uφ − Ihuφ = (ũR − IhũR) +

N∑
j=1

c̃jω(φ) (s̃j − Ihs̃j) ,

we have

ω1−l|uφ − Ihuφ|l,Ω ≤ ω1−l

|ũR − IhũR|l,Ω +

N∑
j=1

|c̃jω(φ)||s̃j − Ihs̃j |l,Ω

 ,

for l = 0, 1. Recalling that ωh ≤ 1, we obtain from (5.4) and (4.3) that

ω1−l|ũR − IhũR|l,Ω ≤ C(Ω, γ)ωσ+1−lh2−l|ũR|2,Ω
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≤ C(Ω,ω0, γ)ωσ+2−lh2−l‖φ‖0,Ω
≤ C(Ω,ω0, γ)ωσ+1h‖φ‖0,Ω . (5.10)

On the other hand, recalling (4.2) and (5.7), we have

ω1−l
N∑
j=1

|c̃jω(φ)||s̃j − Ihs̃j |l,Ω ≤ C(Ω,ω0, γ)ω1−l
N∑
j=1

ωσ+αj−1/2h1−l+αj‖φ‖0,Ω

≤ C(Ω,ω0, γ)ωσ−1/2ω1−lh1−l
N∑
j=1

ωαjhαj‖φ‖0,Ω .

Since ωh ≤ 1, we have ω1−lh1−l ≤ 1 and ωαjhαj ≤ ωαhα for j = 1, . . . , N .

ω1−l
N∑
j=1

|c̃jω(φ)||s̃j − Ihs̃j |l,Ω ≤ C(Ω,ω0, γ)ωσ−1/2
N∑
j=1

ωαhα‖φ‖0,Ω

≤ C(Ω,ω0, γ)Nωσ−1/2ωαhα‖φ‖0,Ω
≤ C(Ω,ω0, γ)ωσ−1/2ωαhα‖φ‖0,Ω . (5.11)

Then (5.9) follows from (5.10) and (5.11).

Thanks to the estimates of the best approximation error derived in Lemma 5.2, we obtain an asymptotic
error estimate by applying the Schatz argument [17, 29, 37]. A crucial observation is that the asymptotic range
is defined by the condition that ωσ+2h is small enough. This condition is the same than in the case of a smooth
domain. Then, in error estimate (5.13), the term ωσ−1/2ωαhα is added in comparison to the case of a smooth
domain. As we discussed above, for high frequencies, this term is less important than the usual term ωh unless
h is very small.

We also compare our results to the literature. In [4], a “plane wave” numerical method is analyzed, for
domains satisfying Assumption 2.1 with σ = 0. The authors consider uniform meshes made of squares, so that
re-entrant corners of angle 3π/2 (α = 2/3) are allowed. The H5/3 norm of the continuous solution is estimated
without considering the singularities explicitly. As a result, the obtained asymptotic error estimate only holds
under the condition that ω5/2h is small enough. In contrast, our asymptotic error estimate holds under the
less restrictive condition that ω2h is small. We also mention [20], where the authors obtain an asymptotic error
estimate under the condition that ω2h is small, and that the mesh is geometrically refined close to singular
corners.

Theorem 5.3. Assume that ωσ+2h is small enough, then problem (5.1) admits a unique solution uh ∈ Vh.
Furthermore, the finite-element solution uh is quasi-optimal:

|||u− uh||| ≤ C(Ω,ω0,V , γ)|||u− Ihu|||, (5.12)

and the error estimate

|||u− uh||| ≤ C(Ω,ω0,V , γ)ωσ
(
ω−1/2ωαhα + ωh

)
‖f‖0,Ω (5.13)

holds.
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Proof. The proof uses the standard Schatz argument. Let uh ∈ Vh be any solution to (5.1). We introduce
ξ ∈ H1

ΓDir
(Ω) solution to B(v, ξ) = (v, u− uh), for all v ∈ H1

ΓDir
(Ω), so that

‖u− uh‖20,Ω = B(u− uh, ξ) = B(u− uh, ξ − Ihξ).

By definition of ξ, recalling (5.9), we have

|||ξ − Ihξ||| ≤ C(Ω,ω0,V , γ)
(
ωσ+1h+ ωσ−1/2ωαhα

)
‖u− uh‖0,Ω ,

and therefore

‖u− uh‖20,Ω = B(u− uh, ξ − Ihξ)
≤ C(Ω)|||u− uh||| · |||ξ − Ihξ|||

≤ C(Ω,ω0,V , γ)
(
ωσ+1h+ ωσ−1/2ωαhα

)
|||u− uh||| · ‖u− uh‖0,Ω .

It follows that

‖u− uh‖0,Ω ≤ C(Ω,ω0,V , γ)
(
ωσ+1h+ ωσ−1/2ωαhα

)
|||u− uh|||. (5.14)

Now, we write that

|||u− uh|||2 ≤ ReB(u− uh, u− uh) +
2ω2

V 2
min

‖u− uh‖20,Ω

= ReB(u− uh, u− Ihuh) +
2ω2

V 2
min

‖u− uh‖20,Ω

≤ C(Ω,ω0,V , γ)
{
|||u− uh||| · |||u− Ihu|||

+ ω2
(
ωσ+1h+ ωσ−1/2ωαhα

)2
|||u− uh|||2

}
,

and simplifying by |||u− uh|||, we obtain{
1− C(Ω,ω0,V , γ)

(
ωσ+2h+ ωσ+1/2ωαhα

)2}
|||u− uh||| ≤ C(Ω,ω0,V , γ)|||u− Ihu|||. (5.15)

Recalling that ωh ≤ 1, since α ≥ 1/2, we have ωσ+1/2ωαhα ≤ ωσ+2h. Hence, assuming that ωσ+2h is small
enough, we have

C(Ω,ω0,V , γ)
(
ωσ+2h+ ωσ+1/2ωαhα

)2
≤ 1

2
,

and (5.12) follows from (5.15). Finally, (5.13) follows from (5.12) and (5.9).
The uniqueness of uh is a direct consequence of (5.13), and existence follows, since uh is defined as the

solution of a finite-dimensional square linear system.

5.5. Pre-asymptotic error estimate

In the following, we derive a pre-asymptotic error estimate using the elliptic projection introduced in [21].
The projection Phu is introduced in Lemma 5.4 where we derived error estimates for u− Phu. We emphasize
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that because of the singularities, L2 error estimate (5.16) is different from the case of a smooth domain. This
is the reason why our pre-asymptotic error estimate is only valid under the condition that ωσ+3h1+α is small
enough.

Lemma 5.4. For u, v ∈ H1
ΓDir

(Ω), we define

a(u, v) = −iω〈V −1u, v〉ΓDiss + (∇u,∇v),

as well as

|u|? =
√
|a(u, u)|,

so that B(u, v) = −ω2(V −2u, v) + a(u, v). Then, we have

|a(u, v)| ≤ |u|?|v|?,∀u, v ∈ H1
ΓDir

(Ω).

Furthermore, for each u ∈ H1
ΓDir

(Ω), we define its projection Phu ∈ Vh as the unique solution to

a(vh,Phu) = a(vh, u), ∀vh ∈ Vh.

If uφ ∈ H1
ΓDir

(Ω) solves B(uφ, v) = (φ, v) for all v ∈ H1
ΓDir

(Ω) for some φ ∈ L2(Ω), then we have

ω2‖uφ − Phuφ‖0,Ω ≤ C(Ω,ω0,V , γ)
(
ωσ+3h1+α + ωσ+3/2+αh2α

)
‖φ‖0,Ω , (5.16)

and

|uφ − Phuφ|? ≤ C(Ω,ω0,V , γ)
(
ωσ−1/2ωαhα + ωσ+1h

)
‖φ‖0,Ω . (5.17)

Proof. By using Poincaré inequality, it is clear that the map

u→ |u|? =
√
|a(u, u)| =

√
ω|V −1/2u|20,ΓDiss

+ |u|21,Ω

is a norm on H1
ΓDir

(Ω), equivalent to the usual H1(Ω) norm (with a constant of equivalence depending on ω).
As a result, a is a coercive and continuous sesquilinear form, and the existence and uniqueness of Phu follow.

Furthermore, the multiplicative trace inequality shows that

|u|? ≤ C(Ω,V )|||u|||.

As a result, Céa’s Lemma gives

|uφ − Phuφ|? ≤ C(Ω,V )|||uφ − Ihuφ|||,

and we conclude that (5.17) holds with the help of (5.9).
We establish (5.16) using an Aubin-Nitsche trick. We introduce ξ ∈ H1

ΓDir
(Ω) solution to a(ξ, v) = (uφ −

phuφ, v) for all v ∈ H1
ΓDir

(Ω). The existence and uniqueness of ξ follows from the properties of a, and we have

‖uφ − Phuφ‖20,Ω = a(ξ, uφ − Phuφ, ξ)
= a(ξ − Phξ, uφ − Phuφ, ξ)
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≤ |ξ − Phξ|?|uφ − Phuφ|?
≤ C(Ω,V )|||ξ − Phξ||| · |uφ − Phuφ|?
≤ C(Ω,V )hα|uφ − Phuφ|0,Ω |uφ − Phuφ|?

so that

ω‖uφ − Phuφ‖0,Ω ≤ C(Ω,V )ωhα|uφ − Phuφ|? ≤ C(Ω,V )ωhα|||uφ − Ihuφ|||,

and (5.16) follows from (5.9).

The elliptic projection and its approximation properties being introduced in Lemma 5.4, we can follow [21]
to produce a preasymptotic error estimate in Theorem 5.5.

Theorem 5.5. Assume that ωσ+3h1+α is small enough, then there exists a unique solution uh ∈ Vh to problem
(5.1) and it holds that

|||u− uh||| ≤ C(Ω, k, γ)ωσ
(
ω−1/2ωαhα + ωh+ ω3h2

)
‖f‖0,Ω . (5.18)

Proof. The proof relies on an Aubin-Nitsche type argument. We thus introduce ξ ∈ H1
ΓDir

(Ω) solution to
B(v, ξ) = (v, u− uh) for all v ∈ H1

ΓDir
(Ω). Then, we have

‖u− uh‖20,Ω = B(u− uh, ξ) = B(u− uh, ξ − Phξ).

Thanks to the properties of Ph, we have

B(u− uh, ξ − Phξ) = −ω2(V −2(u− uh), ξ − Phξ) + a(u− uh, ξ − Phξ)
= −ω2(V −2(u− uh), ξ − Phξ) + a(u− Ihu, ξ − Phξ),

so that

‖u− uh‖20,Ω ≤
ω2

Vmin2

‖u− uh‖0,Ω‖ξ − Phξ‖0,Ω + |a(u− Ihu, ξ − Phξ)|

≤ ω2

Vmin2

‖u− uh‖0,Ω‖ξ − Phξ‖0,Ω + |u− Ihu|?|ξ − Phξ|?.

As Lemmas 5.2 and 5.4 yield

ω2‖ξ − Phξ‖0,Ω ≤ C(Ω,ω0,V , γ)ωσ
(
ω3h1+α + ω3/2+αh2α

)
‖u− uh‖0,Ω ,

|||ξ − Phξ||| ≤ C(Ω,ω0, γ)ωσ
(
ωh+ ω−1/2ωαhα

)
‖u− uh‖0,Ω ,

and

|u− Ihu|? ≤ C(Ω,V )|||u− Ihu||| ≤ C(Ω,ω0,V , γ)ωσ
(
ωh+ ω−1/2ωαhα

)
‖f‖0,Ω ,



HIGH-FREQUENCY BEHAVIOUR OF CORNER SINGULARITIES IN HELMHOLTZ PROBLEMS 1829

it follows that

‖u− uh‖20,Ω ≤ C(Ω,ω0,V , γ)ωσ
{(
ω3h1+α + ω3/2+αω2α

)
‖u− uh‖20,Ω

+
(
ωh+ ω−1/2ωαhα

)2
‖f‖0,Ω‖u− uh‖0,Ω

}
,

and {
1− C(Ω,ω0, γ)ωσ

(
ω3h1+α + (ω3+2αh4α)1/2

)}
‖u− uh‖0,Ω

≤ C(Ω,ω0, γ)ωσ
(
ωh+ ωα−1/2hα

)2
‖f‖0,Ω .

We see that

ω3+2αh4α = hβ
(
ω3h1+α

)(3+2α)/3
,

with

β =

(
12α

3 + 2α
− 1− α

)
3 + 2α

3
> 0,

for 1/2 ≤ α ≤ 1. Hence, assuming that ωσ+3h1+α is small enough, we have

C(Ω,ω0,V , γ)ωσ
(
ω3h1+α + (ω3+2αh4α)1/2

)
≤ 1

2
,

and the previous estimate yields

‖u− uh‖0,Ω ≤ C(Ω,ω0,V , γ)ωσ
(
ωh+ ω−1/2ωαhα

)2
‖f‖0,Ω .

Since

ω(ωh+ ω−1/2ωαhα)2 ≤ 2
(
ω3h2 + ω2αh2α

)
≤ 2

(
ω3h2 + ωh

)
,

we obtain

ω‖u− uh‖0,Ω ≤ C(Ω,ω0, γ)ωσ
(
ω3h2 + ωh

)
‖f‖0,Ω .

Finally, we have

|||u− uh|||2 ≤
2ω2

V 2
min

‖u− uh‖20,Ω + ReB(u− uh, u− uh)

=
2ω2

V 2
min

‖u− uh‖20,Ω + ReB(u− uh, u− Ihu)

≤ C(Ω,ω0,V )
(
ω2‖u− uh‖20,Ω + |||u− uh||| · |||u− Ihu|||

)
,

and using the algebraic inequality, we obtain

|||u− uh||| ≤ C(Ω,ω0,V ) (ω‖u− uh‖0,Ω + |||u− Ihu|||) .
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Then, the result follows since

|||u− Ihu||| ≤ C(Ω,ω0, γ)ωσ
(
ωh+ ω−1/2ωαhα

)
‖f‖0,Ω .

Error estimate (5.18) is called pre-asymptotic because it is valid in the range ωσ+3h1+α ≤ C which (in
general) is larger than the asymptotic range ωσ+2h ≤ C. In error estimate (5.18), we see that the pollution term
ωσ+3h2 is added to the best approximation error.

The validity range of (5.18) depends on α. The authors believe this is not sharp, and the dependence on
α is due to the particular proof techniques. Focusing on domains for which σ = 0, in the limit case α =
1/2, the condition ω3h1+α ≤ C is equivalent to ω2h ≤ C, so that the result is equivalent to asymptotic error
estimate of Theorem 5.3. On the other hand, in the limit case α = 1, ω3h1+α = ω3h2 and we recover the usual
validity condition of smooth domains [21]. In the general case where 1/2 < α < 1, we obtain a pre-asymptotic
error estimate valid under a condition less restrictive than the quasi-optimality condition ω2h ≤ C, but more
restrictive than the validity condition ω3h2 ≤ C of smooth domains.

6. Numerical examples

6.1. A model problem with an analytical solution

We first present a model problem that we will use below for which an analytical solution is available. The idea
is to consider a disc sector, as presented in Section 2. However, in order to avoid curved elements, we consider
a square with a re-entrant corner at the origin, namely the domain of computation is defined by

Ωα =
{

x = (r cos θ, r sin θ) ∈ R2 | |x1| ≤ 1, |x2| ≤ 1, 0 ≤ θ ≤ π

α

}
,

with 1
2 < α < 1. The boundary of Ωα is split up as

ΓDiss = {x ∈ ∂Ω | |x1| = 1 or |x2| = 1}, ΓDir =
{

(r cos θ, r sin θ) ∈ ∂Ω | θ = 0 or θ =
π

α

}
.

We consider this problem for three different values of α: 4/5, 4/6, 4/7. These values correspond to domains
that are easily meshed, so that we can used structured meshes to solve the problem, as shown in Figure 3.
These meshes are not refined near the singularity. We also point out that our definition of Ωα is consistent with
Assumption 2.2.

Figure 3. Structured meshes.
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Figure 4. Convergence curves for α = 4/5 with ω = 2π (left) and ω = 10π (right).

Furthermore, following Section 2, we will consider as analytical solutions slight variations of the function

ψω(x) = ω−1/2Jα(ωr) sin(αθ) = ω−1/2sω(x).

Note that ψω satisfies the homogeneous problem inside Ωα and exhibits a singularity near the origin.

6.2. Asymptotic error estimates

The aim of this first numerical experiment is to illustrate asymptotic error-estimate (5.13) developed in
Theorem 5.3. Specifically, we consider the case where σ = 0 and demonstrate that the asymptotic convergence
rate, and the “resolution condition” ω2h ≤ C are sharp.

We investigate the test-case presented above with the analytical solution

φω(x) = ψω(x)χ(|x|),

where χ ∈ C1(R) is a cut-off function such that χ = 1 if 0 ≤ |x| ≤ 0.2, χ = 0 if |x| > 0.9, and χ ∈ P3 if
0.2 ≤ |x| ≤ 0.9.

Then, we solve  −ω2u−∆u = f in Ωα,
∇u · n− iωu = 0 on ΓDiss,

u = 0 on ΓDir,

with f = 2∇χ · ∇ψω + ∆χψω. Because ‖Jα(ωr)‖1,Ωα ' ω1/2, we see that ‖f‖L2(Ωα) ' 1.
Figures 4 and 5 illustrate the convergence curves of the finite element error |||u − uh||| and of the best

approximation error |||u− wh|||, where the best approximation wh ∈ Vh is obtained as the solution to

ω2(wh, ξh) + (∇wh,∇ξh) = ω2(u, ξh) + (∇u,∇ξh), ∀ξh ∈ Vh.

As expected, we see that the asymptotic convergence rate is in O(hα). Moreover, we see that the asymptotic
convergence rate is achieved faster for lower frequencies. Also, Figures 4 and 5 clearly depict the pollution
effect: for large mesh sizes, there is a gap between the finite-element error and the best approximation error.
Furthermore, this gap is more important for higher frequencies.

Next, we validate that the condition ω2h ≤ C is necessary for the finite-element solution to be quasi-optimal.
To this end, we first compute convergence curves as in Figures 4 and 5 for different values of ω (ranging from
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Figure 5. Convergence curves for α = 4/7 with ω = 2π (left) and ω = 10π (right).

Figure 6. h?(ω) for α = 4/5 (left) and α = 4/7 (right).

2π to 20π). Next, for each convergence curve, we define the value h?(ω) as the largest value such that

|||u− uh||| ≤ 2|||u− wh|||, ∀h ≤ h?(ω). (6.1)

Equation (6.1) means that finite element solution is quasi-optimal (uniformly in frequency), with the arbitrary
constant 2. Theorem 5.3 shows that a sufficient condition for (6.1) to hold is ω2h ≤ C which would correspond
to h?(ω) ' ω−2.

Figure 6 depicts the dependence of h?(ω) on ω. We see that h?(ω) indeed behaves as ω−2. As a result, we
have numerically observed that the condition on ω2h to be sufficiently small is actually necessary for the finite
element solution to be quasi-optimal, and we conclude that Theorem 5.3 is sharp.

6.3. Pre-asymptotic error-estimates

We present two other experiments that focus on preasymptotic error estimates. Our aim is to investigate if
the condition

ω2p+1h2p ≤ C (6.2)

is sufficient to ensure that the hp−finite element error remains bounded independently of ω. This condition is
known to be optimal in the case of smooth non-trapping domains (σ = 0). A proof is available for 1D problems
[28], and 2D and 3D problems with Cartesian grids have been analyzed using dispersion analysis [3].

In the analysis presented above, we “almost” show that condition (6.2) is sufficient for the case of linear
elements. Indeed, error estimate (5.18) clearly shows that the finite element error is bounded independently
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Figure 7. Top left panel : P1 elements, ω3h2 = C. Top right panel : P2 elements, ω5h4 = C.
Bottom left panel : P6 elements, ω13h12 = C.

of ω as soon as ω3h2 is bounded. Unfortunately, we are only able to prove (5.18) under the more restrictive
condition that ω3h1+α is small enough.

For each experiment, we start by selecting an initial frequency ω0. We empirically find a mesh size h0 so that
the relative L2 finite element error is about 5%, when solving problem (5.1) for the frequency ω0. Then, we
validate condition (6.2) by solving problem (5.1) for increasing values of ω, the mesh size h being constraint by
ω2p+1h2p = ω2p+1

0 h2p0 , and checking that the error remains bounded.
In the two experiments, the relative L2(Ω) error

‖u− uh‖0,Ω
‖u‖0,Ω

is measured.

6.3.1. Analytical solution

We investigate a test-case with an analytical solution, as depicted previously. We solve −ω2u−∆u = 0 in Ωα,
∇u · n− iωu = g on ΓDiss,

u = 0 on ΓDir,

with g = ∇ψω · n − iωψω, so that the exact solution is u = ψω. Because |Jα(ωr)| ≤ C(Ω,ω0)ω−1/2 on ΓDiss

when ω is large, we see that ‖g‖L2(ΓDiss) ≤ C(Ω,ω0) for all ω ≥ ω0.
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Figure 8. Zero-level sets of the real part of the solution of the scattering problem for ω = 10π
(left) and 20π (right).

Figure 9. Uniform (left) and refined (right) meshes for the scattering problem.

As we explained before, we solve the problem for different values of ω by starting with an initial guess (ω0, h0)
(fixed heuristically) and then impose the mesh size for higher values of ω so that ω2p+1h2p = ω2p+1

0 h2p0 . We
employ three different values of p: 1, 2 and 6 and for this experiment, the heuristically determined values of
(ω0, h0) are given by (3π, 1/50),(14π, 1/50) and (18π, 1/10) for p = 1, 2 and 6.

We present the dependence of the relative L2(Ω) error with respect to ω on Figure 7. As shown there, the
error is bounded independently of ω under the condition that ω2p+1h2p ≤ C. As observed above, for the case
p = 1, this is almost consistent with the pre-asymptotic error estimate derived in Theorem 5.5.

Figure 7 also shows that the error is more important for smaller values of α. This is not surprising, since in
this case the solution is more singular and furthermore, the domain of computation is wider. However, the error
is only increased by a constant factor that is about 3 between the largest and smallest considered values of α.
In particular, as predicted by our analysis for the linear case, the stability of the scheme is not affected by the
value of α.

6.3.2. Scattering by a triangle

The problem of scattering we consider reads −ω2u−∆u = 0 in Ω,
∇u · n− iωu = 0 on ΓDiss,

u = eφ on ΓDir,
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Figure 10. Top left panel : P1 elements, ω3h2 = C. Top right panel : P3 elements, ω576 = C.
Bottom left panel : P4 elements, ω9h8 = C.

where eφ(x) = exp (iων · x), with ν = (cosφ, sinφ) and φ = π/3. The numerical solutions obtained for different
frequencies are depicted on Figure 8.

Instead of computing a lifting for eφ, we weakly impose the inhomogeneous Dirichlet condition with a
penalization method [34, 35]. Hence, we modify the sesquilinear form B as

Bh(uh, vh) = B(uh, vh) +

∫
ΓDir

∇uh · nvh +

∫
ΓDir

uh∇vh · n +
p2

h

∫
ΓDir

uhvh,

and we solve

Bh(uh, vh) =
p2

h

∫
ΓDir

eφvh, ∀vh ∈ V ph . (6.3)

Though problem (6.3) is not directly covered by our analysis, similar error estimates can be obtained with
slight modifications of our arguments.

The domain of computations as well as the used meshes are depicted at Figure 9. The meshes are obtained
using the software triangle [39]. The mesh size is imposed as an area condition (|K| ≤ h2/2) and the meshes
satisfy a minimal angle condition of 33 degrees. We also produce “refined” meshes by forcing the mesh to include
three additional points. Each of the three points is placed at a distance h/1000 of one vertex of the triangle. In
that way, the local mesh size at the singular points is 1000 times finer than the global mesh size in refined meshes.

Following our methodology, we impose the condition that ω2p+1h2p = ω2p+1
0 h2p+1

0 . We use three different
values of p: 1, 3 and 4, and the associated couples (ω0, h0) are (4π, 1/50), (14π, 1/10) and (18π, 1/10). In order
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to evaluate the L2(Ω)-norm error a “reference solution” is computed with a p+ 1 finite element method on the
same mesh. Then, each solution is evaluated onto a 1024× 1024 grid, and the L2(Ω) error is computed as the
l2-norm of this discrete vector.

We present the results on Figure 10. The error is bounded independently of the frequency for both uniform
and refined meshes. For low frequency simulations, refined meshes improve the precision of the finite element
method (up to a factor 3). However, we see that this improvement is greatly reduced for higher frequencies.
This is in agreement with our analysis, where we pointed out that the singular part of the solution is “less
important” for high frequencies.

7. Conclusion

In this work, we have analyzed the acoustic Helmholtz problem set in domains Ω where a Dirichlet boundary
condition is imposed on a part ΓDir of its boundary and an absorbing boundary condition is prescribed on the
remaining part ΓDiss. Our main assumption on the domain is that the solution depends continuously on the
datum, with a stability constant that grows as O(ωσ) where ω is the frequency and σ is a fixed exponent. As we
have illustrated, our assumptions are rather general, and handle a number of applications, including scattering
by a sound-soft (trapping or not) obstacle, or by a cavity.

Since the boundary ΓDir can feature re-entrant corners, the solution might become singular. We have proposed
a splitting of the solution of the Helmholtz problem with a regular part in H2(Ω) and a singular function for
each corner of K. The regularity as well as the high frequency behaviour of each component of the splitting have
been rigorously analyzed. Our main conclusion is that in some sense, as the frequency increases, the “amplitude”
of the singularities vanishes before the amplitude of the regular part.

We have taken advantage of this splitting to derive sharp error estimates for finite element discretizations.
The different behaviours of the regular and singular parts in terms of frequency is visible in these error estimates.
The main conclusion is that if the frequency is high, numerical discretizations do not “see” the singularities
unless the mesh size is “small”.

Numerical experiments that focuses on non-trapping domains (σ = 0) have been presented to illustrate the
above-mentioned error estimates. First we have checked that our resolution condition ω2h ≤ C for a small
enough constant C is necessary for the quasi-optimality of the P1 finite element method. Secondly, in smooth
non-trapping domains, it is known that the condition ω2p+1h2p ≤ C is optimal to ensure that the finite element
error remains bounded independently of the frequency. We have numerically investigated if this condition is also
sufficient in our setting (in particular for the case of non convex domains with re-entrant corners). We conclude
that this condition is indeed sufficient. Furthermore, we have analyzed the dependence of the error with respect
to the singular exponent α, and we conclude that if the error does increase when α gets closer to 1/2, this
increase never exceeds one order of magnitude.

Future works will be guided towards edge and corner singularities of 3D scattering problems. Specifically,
corner singularities close to a conical point can be handled by replacing the singular function Jα(ωr) sin(αθ) by
r−1/2Jλ(ωr)ψ(ν) where r is the radial variable, ν = (θ, ψ) is the angular position and the couple (λ, ψ) is an
eigenpair of the Laplace-Beltrami operator on the cone [15, 22]. In addition, edge singularities can be analyzed
by combining the present analysis with Fourier transform in the direction tangential to the edge, as performed
in [23] for the Laplace operator. Finally, the analysis of other wave operators in 2D, like the time-harmonic
elastodynamic system (using the approach from [24]), would be considered.

Appendix A. Bessel functions

Here, ν ∈ (1/2, 1) is an arbitrary real number. Bessel functions of first and second kind are defined by

J±ν(ρ) =
(ρ

2

)±ν +∞∑
l=0

1

l!Γ (±ν + l + 1)

(
−ρ

2

4

)l
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and

Yν(ρ) =
Jν(ρ) cos(νπ)− J−ν(ρ)

sin(νπ)
.

Hereafter, we list well-known properties of Bessel functions that can be bound in Chapter 9 of [1].
For 0 < ρ ≤ 1, and ν > 0, it holds that

|Jν(ρ)| ≤ 1

Γ (ν + 1)

(ρ
2

)ν
,

|Yν(ρ)| ≤ 1

Γ (ν + 1)

(ρ
2

)−ν
.

The following expansions hold for large ρ

Jν(ρ) =

√
2

πρ
cos
(
ρ− νπ

2
− π

4

)
+O(ρ−3/2),

J ′ν(ρ) = −
√

2

πρ
sin
(
ρ− νπ

2
− π

4

)
+O(ρ−3/2),

Yν(ρ) =

√
2

πρ
sin
(
ρ− νπ

2
− π

4

)
+O(ρ−3/2),

Y ′ν(ρ) =

√
2

πρ
cos
(
ρ− νπ

2
− π

4

)
+O(ρ−3/2).

With the above properties, one easily shows:

Lemma A.1. For all ν ∈ (1/2, 1), there exists a constant C(ν) such that

|Jν(ρ)| ≤ C(ν)ρν , |Yν(ρ)| ≤ C(ν)ρ−ν ,

for all ρ ∈ (0, 1), and

|Jν(ρ)| ≤ C(ν)ρ−1/2, |Yν(ρ)| ≤ C(ν)ρ−1/2,

for all ρ ≥ 1.

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. From Lemma A.1, we have

ω2

∫ R

0

|Yα(ωr)|2rdr =

∫ ωR

0

|Yα(ρ)|2ρdρ

=

∫ 1

0

|Yα(ρ)|2ρdρ+

∫ ωR

1

|Yα(ρ)|2ρdρ
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≤ C(α)

(∫ 1

0

|ρ−α|2ρdρ+

∫ ωR

1

|ρ−1/2|2ρdρ

)

≤ C(α)

(
1

2− 2α
+ ωR− 1

)
≤ C(α)

{
R+

(
1

2− 2α
− 1

)
ω−10

}
ω.

The same estimate holds for Jα, since ρα ≤ ρ−α for ρ ≤ 1 and (3.1)–(3.2) directly follow. In order to establish
the lower bound, we first write that

∫ ωR

0

|H(2)
α (ρ)|2ρdρ ≥

∫ ωR

ωR/2

|H(2)
α (ρ)|2ρdρ.

Then, we have

H(2)
α (ρ) =

√
2

πρ
exp

{
−i
(
ρ− απ

2
− π

4

)}
+O

(
ρ−3/2

)
so that

|H(2)
α (ρ)|2 ≥ 2

πρ
−M(α,R, ω0)ρ−3,∀ρ ≥ ωR/2.

As a result, we have

∫ ωR

ωR/2

|H(2)
α (ρ)|2ρdρ ≥ 2

π

∫ ωR

ωR/2

dρ−M(α, ω0)

∫ ωR

ωR/2

ρ−2dρ

≥ ωR

π
−M(α, ω0)(ωR)−1

≥ C(α,R, ω0)ω,

assuming that ω0 is sufficiently large.
We now prove (3.3). We start by writing

κ = ρ− νπ

2
− π

4
,

so that

J ′ν(ρ) + iJν(ρ) =

√
2

πρ
(− sinκ+ i cosκ) +O

(
ρ−3/2

)
= i

√
2

πρ
(cosκ+ i sinκ) +O

(
ρ−3/2

)
= i

√
2

πρ
eiκ +O

(
ρ−3/2

)
,
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and

Y ′ν(ρ) + iYν(ρ) =

√
2

πρ
(cosκ+ i sinκ) +O

(
ρ−3/2

)
=

√
2

πρ
e−iκ +O

(
ρ−3/2

)
.

Then, we have

Y ′ν(ρ) + iYν(ρ)

J ′ν(ρ) + iJν(ρ)
=

1

i
+O

(
ρ−3/2

)
,

and the result follows.
Finally, (3.4) is just the Wronskian of Jα and Yα that is given by

Jν(ρ)Y ′ν(ρ)− J ′ν(ρ)Yν(ρ) =
2

πρ
,∀ρ > 0.

Appendix B. Checking the stability property

Before investigating some special configurations, we may notice that the variational formulation (2.2) directly
yields

Lemma B.1. We have

‖∇u‖20,Ω ≤
V 2
min

4ω2
‖f‖20,Ω +

2ω2

V 2
min

‖u‖20,Ω , (B.1)

and

ω

∫
ΓDiss

V −1|u|2 ≤ ‖f‖0,Ω‖u‖0,Ω . (B.2)

Indeed this follows by taking v = u as test function in (2.2), and using Cauchy-Schwarz’s inequality on the
real and imaginary part.

B.1 Trapping cavities

Here we consider a cavity. We assume that Ω ⊂ (0, 1) × (0,−L), where L denote the depth of the cavity.
The part of its boundary ΓDiss = (0, 1)× {0} represents the “entrance” of the cavity. Furthermore, we assume
that the remaining part of the boundary of the cavity ΓDir can be divided into two parts ΓhDir and Γ vDir that are
respectively made of horizontal and vertical segments. In addition, we assume that n2 = (0,−1) on ΓhDir, see
Figure 1 left for an illustration. Finally, we assume that

∂V

∂x2
≤ 0.

Under these assumptions, we have the
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Theorem B.1. For all f ∈ L2(Ω) and ω > 0, there exists a unique solution u ∈ H1
ΓDir

(Ω) to (2.2). Furthermore,
we have

‖u‖0,Ω ≤
L2

2

(
3 +

ωL

Vmin

)
‖f‖0,Ω , (B.3)

∥∥∥∥ ∂u∂x1

∥∥∥∥
0,Ω

≤ L

{
1

2

(
3 +

ωL

Vmin

)
+
ω2L2

4V 2
min

(
3 +

ωL

Vmin

)2
}1/2

‖f‖0,Ω , (B.4)

and ∥∥∥∥ ∂u∂x2

∥∥∥∥
0,Ω

≤ L

2

(
3 +

ωL

Vmin

)
‖f‖0,Ω . (B.5)

In particular, Assumption 2.1 holds with σ = 2.

Proof. Using the identity 2 Reφ∂xjφ = ∂xj |φ|2 that holds for sufficiently smooth complex valued functions φ,
and integration by parts, we derive:

2 Re

∫
Ω

f

(
(x2 + L)

∂ū

∂x2
+

1

2
ū

)
= 2 Re

∫
Ω

(
− ω

2

V 2
u−∆u

)(
(x2 + L)

∂ū

∂x2
+

1

2
ū

)
= −2ω2

∫
Ω

(x2 + L)V −3
∂V

∂x2
|u|2 + 2

∫
Ω

∣∣∣∣ ∂u∂x2

∣∣∣∣2
+

∫
ΓhDir

(x2 + L)

∣∣∣∣ ∂u∂x2

∣∣∣∣2 − ω2L

∫
ΓDiss

V −2|u|2.

Then, since 0 ≤ x2 + L ≤ L and ∂x2
V ≤ 0, we have

2

∥∥∥∥ ∂u∂x2

∥∥∥∥2
0,Ω

≤ 2L‖f‖0,Ω
∥∥∥∥ ∂u∂x2

∥∥∥∥
0,Ω

+ ‖f‖0,Ω‖u‖0,Ω +
ω2L

Vmin

∫
ΓDiss

V −1|u|2,

and using (B.2), we obtain

2

∥∥∥∥ ∂u∂x2

∥∥∥∥2
0,Ω

≤ 2L‖f‖0,Ω
∥∥∥∥ ∂u∂x2

∥∥∥∥
0,Ω

+

(
1 +

ωL

Vmin

)
‖f‖0,Ω‖u‖0,Ω .

If we denote by ũ the extension of u by 0 to Ω̃ = (0, 1)× (0,−L), we have ũ ∈ H1(Ω̃) and ũ = 0 on (0, 1)×{−L}.
For such a ũ the Poincaré inequality

‖u‖0,Ω = ‖ũ‖0,Ω̃ ≤ L
∥∥∥∥ ∂ũ∂x2

∥∥∥∥
0,Ω̃

= L

∥∥∥∥ ∂u∂x2

∥∥∥∥
0,Ω

, (B.6)

holds, so that

2

∥∥∥∥ ∂u∂x2

∥∥∥∥2
0,Ω

≤ L
(

3 +
ωL

Vmin

)
‖f‖0,Ω

∥∥∥∥ ∂u∂x2

∥∥∥∥
0,Ω

,
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and (B.5) follows. In addition, (B.3) directly follows from (B.5) and (B.6). Finally, using (B.1), we have∥∥∥∥ ∂u∂x1

∥∥∥∥2 ≤ ‖∇u‖20,Ω ≤ ‖f‖0,Ω‖u‖0,Ω +
ω2

Vmin2

‖u‖20,Ω ,

and (B.4) follows from (B.3).

B.2 Non-trapping obstacles with smoothly decreasing wavenumber

Theorem B.2. Assume that ∇V · x ≤ (1− δ)V for a fixed δ ∈ (0, 1). Furthermore, assume that x · n ≤ 0 on
ΓDir and x · n ≥ γ|x| on ΓDiss, for some γ > 0. Then, Assumption 2.1 holds with σ = 0.

Proof. Using Green’s formula and Rellich’s identity, we derive:

2 Re

∫
Ω

fx · ∇ū = 2 Re

∫
Ω

(
− ω

2

V 2
u−∆u

)
x · ∇ū

= ω2

∫
Ω

∇ ·
(
V −2x

)
|u|2 +

∫
ΓDiss

|∇u|2x · n−
∫
ΓDir

|∇u · n|2x · n

−ω2

∫
ΓDiss

V −2|u|2x · n− 2 Re iω

∫
ΓDiss

V −1ux · ∇ū.

Then, we denote by

m = inf
x∈ΓDiss

|x|, M = sup
x∈Ω
|x|,

and we remark that m > 0. In addition, we have

∇ ·
(
V −2x

)
= 2V −3 (V −∇V · x) ≥ 2δV −2 ≥ 2δV −2max,

by assumption on V .
Recalling that x · n ≤ 0 on ΓDir and x · n ≥ γ|x| ≥ γm on ΓDiss, it follows

2δV −2maxω
2‖u‖20,Ω + γm‖∇u‖20,ΓDiss

≤ 2M‖f‖0,Ω |u|1,Ω +Mω2

∫
ΓDiss

V −2|u|2

+2Mω

∫
ΓDiss

V −1|u||∇u|.

We then employ Young’s inequality to get

2Mω

∫
ΓDiss

V −1|u||∇u| ≤ M2ω2

γm

∫
ΓDiss

V −2|u|2 + γm

∫
ΓDiss

|∇u|2,

so that

2δV −2maxω
2‖u‖20,Ω ≤ 2M‖f‖0,Ω |u|1,Ω +Mω2

(
1 +

M

γm

)∫
ΓDiss

V −2|u|2

≤ 2M‖f‖0,Ω |u|1,Ω +
Mω2

Vmin

(
1 +

M

γm

)∫
ΓDiss

V −1|u|2.
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≤ 2M‖f‖0,Ω |u|1,Ω +
Mω

Vmin

(
1 +

M

γm

)
‖f‖0,Ω‖u‖0,Ω ,

≤

(
M2

ε1
+
M2ω2

V 2
minε2

(
1 +

M

γm

)2
)
‖f‖20,Ω + ε1|u|21,Ω + ε2‖u‖20,Ω ,

for all ε1, ε2 > 0, where we have used (B.2) and again Young’s inequality. Furthermore, using (B.1), we have

2δV −2maxω
2‖u‖20,Ω ≤

(
ε1V 2

min

4ω2
+
M2

ε1
+
M2ω2

V 2
minε2

(
1 +

M

γm

)2
)
‖f‖20,Ω +

(
2ε1
ω2

V 2
min + ε2

)
‖u‖20,Ω ,

so that

2δV −2max

{
1− V 2

max

2δ

(
2ε1
ω2

V 2
min + ε2

)}
ω2‖u‖20,Ω ≤

(
ε1V 2

min

4ω2
+
M2

ε1
+
M2ω2

V 2
minε2

(
1 +

M

γm

)2
)
‖f‖20,Ω .

We select

ε1 =
ω2
0δ

4V 2
maxV

2
min

, ε2 =
δ

2V 2
max

,

so that

V 2
max

2δ

(
2ε1
ω2

V 2
min + ε2

)
≤ 1

2
,

and deduce that

ω‖u‖0,Ω ≤ C(Ω,ω0,V )‖f‖0,Ω ,

with

C(Ω,ω0,V ) =
Vmax√
δ

(
ε1V 2

min

4ω2
+
M2

ε1
+
M2ω2

V 2
minε2

(
1 +

M

γm

)2
)1/2

.

Then, it follows from (B.1) that

|u|21,Ω ≤ C(Ω,ω0,V )‖f‖20,Ω ,

and the result follows.

B.3 Parabolic trapping obstacles

Inspired from [10], we here consider the case where the part of the boundary where we impose Dirichlet
boundary condition corresponds to a parabolic trapping obstacles. More precisely, according to [10], Definition
1.1, for two fixed positive real numbers R0, R1 such that R0 < R1, we say that a domain Ω− of R2 with boundary
Γ is an (R0, R1) obstacle if

Z(x) · n−(x) ≥ 0, for almost all x ∈ ΓDir,
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where n− is the unit outward normal vector in Ω− along Γ and the multiplier Z is defined by

Z(x) = χ(r)(0, 1)>x2 + (1− χ(r))x, ∀x ∈ R2,

where r is the distance from x to 0 and χ is a C1,1 cut-off function defined by

χ(r) =
1

2

(
1 + ψ

(
2r − (R0 +R1)

R1 −R0)

))
, ∀r ≥ 0,

the function ψ being defined by

ψ(t) =

 (1− t)3 − 1 if 0 ≤ t ≤ 1,
−1 if t > 1,

−ψ(−t) if t < 0.

Examples of (R0, R1) obstacles from [10] are drawn in Figure 1.
In accordance with Theorem 1.7 of [10], we prove the next stability property.

Theorem B.3. Let Ω− be a (R0, R1) obstacle such that R1 ≥ 121R0 and fix R > R1 large enough such that
Ω̄− ⊂ B(0, R). Let O be any star-shaped domain (with respect to the origin) such that B(0, R) ⊂ O and consider
problem (2.1) in Ω = O \ Ω̄− with ΓDiss = ∂O \Γ , ΓDir = Γ , and V = 1. Then the stability estimate (2.3) holds
with σ = 2.

Proof. First, similarly to [10], Lemma 3.1, we use the Morawetz-type identity (see [10], Lem. 2.1) to the solution
u of problem (2.1) in Ω with

Zu = Z · ∇u− iωRu+ αu,

and

2α = ∇Z − 1

48
(1− χ(r)).

This yields (compare with the identity (3.6) from [10])

Re

∫
Ω

[
2∂iZj∂iu∂j ū+ 2ū∇α · ∇u− (2α−∇ · Z)(ω2|u|2 −∇u|2)

]
dx+

∫
Γ

(Z · n)|∂nu|2 dσ

= 2 Re

∫
Ω

Zufdx+ IDiss, (B.7)

where

IDiss =

∫
ΓDiss

[
(Z · n)(2ω2|u|2 − |∇Su|2) + 2ω2R|u|2 − 2 Re(Z · ∇S ū+ αū)iωu

]
dσ.

We now estimate the right-hand side of this identity. Indeed by our assumption on O, there exist four positive
constants C0, C1, C2 and C3 such that

IDiss ≤
∫
ΓDiss

[
(2ω2(R+ C0) + C1ω)|u|2 − C2|∇Su|2 + 2C3ω|∇Su||u|

]
dσ.
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Hence by Young’s inequality we find that

IDiss ≤
∫
ΓDiss

[
(2ω2(R+ C0) + C1ω)|u|2 − C2|∇Su|2 + εC3ω|∇Su|2 +

1

ε
C3ω|u|2

]
dσ,

for all ε > 0. Chosing ε such that εC3ω = C2, we obtain

IDiss ≤
∫
ΓDiss

[
2ω2(R+ C0) + C1ω +

C2
3ω

2

C2

]
|u|2 dσ.

Hence for ω large enough, we have proved that

IDiss ≤ C4ω
2

∫
ΓDiss

|u|2 dσ,

for some positive constant C4 independent of ω. Now the definition of Z leads to

2 Re

∫
0

Zuf dx ≤ C5‖f‖Ω(ω‖u‖Ω + |u|1,Ω), (B.8)

for some positive constant C5 independent of ω. Now exactly as in the proof of Lemma 3.4 of [10], we have

Re

∫
0

[
2∂iZj∂iu∂j ū+ 2ū∇α · ∇u− (2α−∇ · Z)(ω2|u|2 −∇u|2)

]
dx+

∫
Γ

(Z · n)|∂nu|2 dσ

≥ 1

96R2
0

∫
Ω

|u|2 dx,

for ω large enough. This estimate and (B.8) in (B.7) allow to obtain

‖u‖2Ω ≤ C6(ω‖u‖Ω + |u|1,Ω)‖f‖Ω ,

for some positive constant C6 independent of ω. By (B.1), the previous estimate becomes

‖u‖2Ω ≤ C7(ω‖u‖Ω + ‖f‖Ω)‖f‖Ω ,

for ω ≥ 1 and some positive constant C7 independent of ω. Young’s inequality then yields

1

2
‖u‖2Ω ≤

(
C7 +

C2
7ω

2

2

)
‖f‖2Ω .

This leads to the conclusion due to (B.1).
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Application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées. Ph.D. thesis, ENSTA ParisTech
(2005).

[17] J. Douglas, J.E. Santos, D. Sheen and L.S. Bennethum, Frequency domain treatment of one-dimensional scalar waves. Math.
Model. Methods Appl. Sci. 3 (1993) 171–194.

[18] K. Du, B. Li and W. Sun, A numerical study on the stability of a class of Helmholtz problems. J. Comput. Phys. 287 (2015)
46–59.

[19] B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. USA 74
(1977) 1765–1766.

[20] S. Esterhazy and J.M. Melenk, On stability of discretizations of the Helmholtz equation, Numerical Analysis of Multiscale
Problems. Vol. 83 of Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2012) 285–324.

[21] X. Feng and H. Wu, hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput.
80 (2011) 1997–2024.

[22] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985).

[23] P. Grisvard, Edge behaviour of the solution of an elliptic problem. Math. Nachr. 182 (1987) 281–299.
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