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FULLY DISCRETE FINITE ELEMENT DATA ASSIMILATION

METHOD FOR THE HEAT EQUATION

Erik Burman1,*, Jonathan Ish-Horowicz2 and Lauri Oksanen3

Abstract. We consider a finite element discretization for the reconstruction of the final state of the
heat equation, when the initial data is unknown, but additional data is given in a sub domain in
the space time. For the discretization in space we consider standard continuous affine finite element
approximation, and the time derivative is discretized using a backward differentiation. We regularize
the discrete system by adding a penalty on the H1-semi-norm of the initial data, scaled with the
mesh-parameter. The analysis of the method uses techniques developed in E. Burman and L. Oksanen
[Numer. Math. 139 (2018) 505–528], combining discrete stability of the numerical method with sharp
Carleman estimates for the physical problem, to derive optimal error estimates for the approximate
solution. For the natural space time energy norm, away from t = 0, the convergence is the same as
for the classical problem with known initial data, but contrary to the classical case, we do not obtain
faster convergence for the L2-norm at the final time.
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1. Introduction

Time discretization of parabolic problems, discretized in space using finite element methods, is a well studied
topic, see for example the monograph by Thomée [34]. The analysis for all such methods relies on the satisfaction
of the hypothesis of the Lions theorem [26], stating the existence, uniqueness and stability properties of the
problem.

The classical problem can be cast in the abstract form, find u ∈ V such that

(∂tu, v)H + a(u, v) = 〈f, v〉V ′,V , (1.1)

u(0) = u0 ∈ H, (1.2)

where V, H are some Hilbert spaces, with V dense in H and imbedded with continuous identity, 〈·, ·〉V ′,V denotes
the duality pairing between V and its dual, and a(u, v) : V × V 7→ R a symmetric bilinear form representing
the weak form of a second order differential operator. A key ingredient of the theory is that the spatial operator
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satisfies the the G̊arding’s inequality, there are α > 0 and β ≥ 0 such that for all v ∈ V there holds

a(v, v) ≥ α‖v‖2V − β‖v‖2H . (1.3)

In many situations for instance in environmental science and meteorology the initial data is not available,
instead some other data in the space time domain have been collected through measurements. This leads to a
data assimilation problem, that is, a problem to incorporate the observations of the physical system into the
state of a computational model of the system. Computations can not be based on the classical theory, since the
equation (1.2) can not be enforced when u0 is not known.

It is then an interesting problem in computational mathematics what quantities can be approximated and
what is the effect of measurement errors on such an approximation. The approximation methods need to take
into account the fact that these data assimilation problems are ill-posed in the sense that a necessary condition
for them to be solvable is that the observations indeed come from the system. That is, the theory of these
problems concerns uniqueness and stability, but not existence of solutions. From computational point of view,
discretization causes already a perturbation in the exact solution and the stability of the data assimilation
problem is our main concern. In particular, we want to show that an approximate, discrete solution to the
problem converges to the exact one at an optimal rate. We will also discuss the case of noisy data.

In [7], we studied finite element methods for two data assimilation problems with unknown u0. The two
problems differ in the sense that the lateral boundary data for u is either known or unknown. In the first case
(1.3) holds, whereas unknown lateral boundary data leads to a failure of (1.3). This again gives rise to very
different stability properties. When the lateral boundary data is known, the data assimilation problem to recover
u in (δ, T ) × Ω, with δ > 0, is Lipschitz stable in suitable spaces, but the optimal stability is of conditional
Hölder type when no information is given on the lateral boundary. The recovery of the initial condition u(0, ·) is
exponentially unstable in both cases [21]. Here we restrict our attention to the case with known lateral boundary
data, and extend the corresponding results of [7] to a fully discrete method. In [7] discretization only in space
was considered.

The fully discrete analysis does not reduce straightforwardly to the semi-discrete case, as demonstrated by
the fact that, in order to achieve the optimal convergence rate with respect to the size of the time step, an
additional regularization term is needed, see Theorem 3.3 below. There we consider two different asymptotic
rates, τ = O(h) and τ = O(h2), between the size of the finite element mesh h and the time step τ , and the
analysis under the less restrictive rate τ = O(h) is valid only when additional regularization is present (the case
γ1 > 0 in the theorem). In Section 4, we give a computational example showing that the additional regularization
is necessary.

To keep the exposition simple, we assume that the physical system is modelled by the heat equation

∂tu−∆u = f in (0, T )×Ω, (1.4)

with u = 0 on the boundary ∂Ω. Here Ω ⊂ Rd is a connected polyhedral domain. Of course, in the absence of
additional information, the equation (1.4) does not have a unique solution. We assume that measurements of
u, denoted by q, are available in the space time domain (0, T )× ω, where ω is a non-empty, open subset of Ω.
We want to solve (1.4) under the additional constraint that

u = q in (0, T )× ω. (1.5)

It is known that if there exists a solution u to the equations (1.4) and (1.5), then the solution is unique.
A convenient way of solving the problem (1.4)–(1.5) is through optimization. Methods where the distance to

the measured data in some norm over a space-time domain, plus some regularizing term, are minimised under
the constraint of the partial differential equation are commonly referred to as 4DVAR. The abbreviation refers to
the four dimensional character (time plus three space dimensions) of the variational problem. Such methods are
important in data assimilation for meteorology and environmental science and we refer to [1, 14, 25, 29, 31–33]
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for some formulations and results in the applied sciences. Although these methods are widely used and popular
tools, there appears to be no rigorous numerical analysis assessing discretisation errors for them. One objective
of the present publication is to start filling this gap. To make the presentation as accessible as possible we only
consider space discretization using piecewise affine H1-conforming finite elements and time discretization using
the backward Euler method, the approach however generalizes to higher order scheme drawing on the ideas
from [6].

We will now discuss the previous mathematical literature on the problem (1.4)–(1.5). We focus on techniques
that work in dimensions 1 + d with d > 1, and refer to the papers [18, 35] and references therein for the 1 + 1-
dimensional case. Our finite element method builds on the stability estimate [15], and in a wider context, the
literature on continuum stability estimates for parabolic data assimilation (or unique continuation) problems is
reviewed in [17, 36].

Computational methods for the problem (1.4)–(1.5) go back to [24] where the quasi-reversibility method was
introduced. Variations of this method for parabolic problems were developed in [20, 23, 30] and in [2], and
we refer to [21, 22] for a review of the quasi-reversibility method outside the parabolic context. Although for
example the papers [2, 20] consider convergence with respect to a Tikhonov type regularization parameter, none
of the above papers prove convergence rates with respect to the refinement of a discretization. Proving such
a convergence rate is the main novelty of the present paper. Moreover, compared to the previous literature,
an attractive feature of our method is that no auxiliary Tikhonov type regularization parameters need to be
introduced, the only asymptotic parameters are the size of the finite element mesh in space and the size of the
time step.

Both the quasi-reversibility method and our method are based on Carleman estimates for the continuous
problem. In our case, the proof of the stability estimate in Theorem 3.2 below is based on the Carleman
estimate in [15]. An alternative approach is to derive Carleman estimates directly on the discrete level, see for
example [3] where such an approach was used for the closely related null controllability problem for the heat
equation.

The approach in the present paper has grown out of the study of stabilized finite element methods for unique
continuation problems for elliptic equations [4, 5, 8]. Another line of research that appears to be converging to
a similar optimization based approach originates from the numerical analysis of the exact controllability of the
wave equation [9, 11, 13]. The approach has been applied to stable unique continuation problems for the wave
equation [10, 12] and to the null controllability problem for the heat equation.

2. Discrete optimization problem

Following [7], we first discretize (1.4) in space only. Let Th be a conforming triangulation of the polyhedral
domain Ω. Let hK = diam(K) be the local mesh parameter and h = maxK∈Th hK the mesh size. We assume
that the family of triangulations {Th}h is quasi-uniform in the sense that there exists a constant c1 such that
for all K ∈ Th it holds that hK ≤ h ≤ c1hK . Let Vh be the standard space of piecewise affine continuous finite
elements satisfying the zero boundary condition,

Vh = {v ∈ H1
0 (Ω); v|K ∈ P1(K), ∀K ∈ Th}.

We may then write a semi-discrete finite element formulation of (1.4) as follows, find u ∈ C1(0, T ;Vh) such that

(∂tu, v) + a(u, v) = (f, v), v ∈ Vh, (2.1)

where

(u, v) =

∫
Ω

uv dx, a(u, v) =

∫
Ω

∇u · ∇v dx.
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The idea is then to minimize the distance to the data (1.5) under the constraint of this dynamical system.
In order to outline this idea, let us consider the following preliminary Lagrangian functional,

L0(u, z) :=
1

2
‖u− q‖2L2((0,T )×ω) +

∫ T

0

(∂tu, z) + a(u, z)− (f, z) dt, (2.2)

where u ∈ U = H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) and z ∈ Z = L2(0, T ;H1

0 (Ω)). Writing the Euler–Lagrange
equations for L0 we arrive to the following problem, find (u, z) ∈ U × Z such that

〈∂uL0(u, z), v〉 =

∫ T

0

(∂tv, z) + a(v, z) + (u− q, v)ω dt = 0,

〈∂zL0(u, z), w〉 =

∫ T

0

(∂tu,w) + a(u,w)− (f, w) dt = 0

for all (v, w) ∈ U × Z. Here (·, ·)ω is the inner product on L2(ω). Clearly, if z = 0 and u solves (2.1) with
u|(0,T )×ω = q, then these equations are satisfied, and hence they are consistent with the data assimilation
problem that we set. This leads to a first possible approach: discretize this system in time and find the stationary
points of the discrete system. A numerical analysis however shows that this approach is unlikely to be successful
as the term (u − q, v)ω does not seem to give enough stability for the problem to converge, and indeed, our
computational examples in Section 4 verify this. Instead we add certain regularization terms in the fully discrete
context that we will describe next.

Let N ∈ N and τ > 0 satisfy Nτ = T , and define tn = nτ . Furthermore, define for u = (un)Nn=0 ∈ V N+1
h ,

∂τu
n =

un − un−1

τ
, n = 1, . . . , N.

Consider the Lagrangian L : V N+1
h × V Nh → R defined by

L(u, z) =
1

2
γMτ

N∑
n=1

‖un − qn‖2ω +
1

2
γ0
∥∥h∇u0∥∥2 +

1

2
γ1τ

N∑
n=1

‖τ∇∂τun‖2

+ τ

N∑
n=1

((∂τu
n, zn) + a(un, zn)− (fn, zn)) , (2.3)

where, for fixed functions f ∈ C(0, T ;L2(Ω)) and q ∈ C(0, T ;L2(ω)),

fn = f(tn), qn = q(tn), n = 1, . . . , N,

and γM , γ0 and γ1 are fixed constants satisfying

γM , γ0 > 0 and γ1 ≥ 0. (2.4)

Observe that the first term in (2.3) is a discrete, rescaled version of the first term in (2.2), that is, the
data fitting term, and the sum on the second line is a discrete version of the integral in (2.2), that is, the
constraint term corresponding to the heat equation. The terms containing γj , j = 0, 1, correspond to additional
regularization.

We emphasize that the constants γM , γ0 and γ1 are not Tikhonov type regularization parameters, since they
do not converge to zero. The only asymptotic parameters in this paper are the spatial and temporal mesh sizes
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h and τ . For theoretical purposes, we could simply take γM = γ1 = γ0 = 1, however, from the point of view
of practical computations the size of these constants matters. This is discussed further in Section 4.3 below.
Moreover, the choice γ1 = 0 gives a method that converges with a slower rate, see Theorem 3.3 and Figure 1
below.

Defining the bilinear forms

A1(u,w) = τ

N∑
n=1

((∂τu
n, wn) + a(un, wn)) ,

A2((u, z), v) = γMτ

N∑
n=1

(un, vn)ω + γ0(h∇u0, h∇v0) + γ1τ

N∑
n=1

(τ∇∂τun, τ∇∂τvn)

+ τ

N∑
n=1

((∂τv
n, zn) + a(vn, zn)) ,

the Euler–Lagrange equations for L are

A1(u,w) = τ

N∑
n=1

(fn, wn), A2((u, z), v) = γMτ

N∑
n=1

(qn, vn)ω. (2.5)

We define the seminorms

|‖u‖|2R = γMτ

N∑
n=1

‖un‖2ω + γ0
∥∥h∇u0∥∥2 + γ1τ

N∑
n=1

‖τ∇∂τun‖2 ,

|‖u, z‖|2D =
∥∥z1∥∥2 +

∥∥zN∥∥2 + τ2
N∑
n=2

‖∂τzn‖2 + τ

N∑
n=1

‖∇zn‖2

+
∥∥h∇uN∥∥2 + h2τ

N∑
n=1

‖∂τun‖2 + h2
N∑
n=1

‖τ∇∂τun‖2 ,

|‖v, w‖|2C = |‖v‖|2R + τ

N∑
n=1

‖wn‖2 .

Note that |‖ · ‖|D is, in fact, a norm on V 2N+1
h . Also, if γ1 > 0 then |‖ · ‖|R and |‖ · ‖|C are norms on V N+1

h and

V 2N+1
h , respectively. The system (2.5) has the following coercivity property.

Proposition 2.1. There is C > 0 such that for all N ∈ N, h > 0 and (u, z) in V 2N+1
h there is (v, w) in V 2N+1

h

satisfying

|‖u‖|2R + |‖u, z‖|2D ≤ C (A1(u,w) +A2((u, z), v)) , |‖v, w‖|C ≤ C|‖u‖|R + C|‖u, z‖|D.

Proof. We will show first that there is α > 0 such that for all (u, z) ∈ V 2N+1
h

1

2

(
|‖u‖|2R + α|‖u, z‖|2D

)
≤ A1(u,−z + αh2∂τu) +A2((u, z), u+ αẑ), (2.6)
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where ∂τu = (∂τu
n)Nn=1 ∈ V Nh and ẑ = (ẑn)Nn=0 ∈ V N+1

h is defined by ẑ0 = 0 and ẑn = zn, n = 1, . . . , N .
Observe that

|‖u‖|2R = A1(u,−z) +A2((u, z), u).

The identity

τ

N∑
n=1

(∂τu
n, un) =

1

2

(∥∥uN∥∥2 − ∥∥u0∥∥2)+
τ2

2

N∑
n=1

‖∂τun‖2 (2.7)

is the discrete analogue of

∫ T

0

(∂tu, u) dt =
1

2

(
‖u(T )‖2 − ‖u(0)‖2

)
.

To derive (2.7) we employ the polarization identity

τ(∂τu
n, un) = ‖un‖2 − (un−1, un) = ‖un‖2 − 1

2

(
‖un‖2 +

∥∥un−1∥∥2 − ∥∥un − un−1∥∥2) ,
and observe that there is a telescoping type cancellation. Using the identity (2.7) with the bilinear form (·, ·)
replaced by a(·, ·), we have

A1(u, ∂τu) = τ

N∑
n=1

(
‖∂τun‖2 + a(un, ∂τu

n)
)

= τ

N∑
n=1

‖∂τun‖2 +
1

2

(∥∥∇uN∥∥2 − ∥∥∇u0∥∥2)+
τ2

2

N∑
n=1

‖∇∂τun‖2 .

Observe that if α ≤ γ0 then −αh2
∥∥∇u0∥∥2 /2 is absorbed by |‖u‖|2R.

We have

A2((u, z), ẑ) = γMτ

N∑
n=1

(un, zn)ω + γ1τ

N∑
n=1

(τ∇∂τun, τ∇∂τ ẑn)

+ τ

N∑
n=1

(
(∂τ ẑ

n, zn) + ‖∇zn‖2
)
.

The identity (2.7) gives

τ

N∑
n=1

(∂τ ẑ
n, zn) =

1

2

∥∥zN∥∥2 +
τ2

2

N∑
n=1

‖∂τ ẑn‖2 =
1

2

∥∥zN∥∥2 +
1

2

∥∥z1∥∥2 +
τ2

2

N∑
n=2

‖∂τzn‖2 .

Let us now consider the cross terms. The Poincaré inequality gives

(un, zn)ω ≤ (4δ)−1 ‖un‖2ω + Cδ ‖∇zn‖2 ,
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and the second term can be absorbed by ‖∇zn‖2 for small δ > 0. The first term is absorbed by |‖u‖|2R for small
α > 0. For the second cross term,

τ

N∑
n=1

(τ∇∂τun, τ∇∂τ ẑn) ≤ (2δ)−1τ

N∑
n=1

‖τ∇∂τun‖2 + δτ

N∑
n=1

‖∇zn‖2 ,

and we see that these two terms are absorbed analogously with the above. This finishes the proof of (2.6).
It remains to show that

|‖v, w‖|C ≤ C|‖u‖|R + C|‖u, z‖|D.

when v = u+ αẑ and w = −z + αh2∂τu. We have

|‖ẑ‖|2R = γMτ

N∑
n=1

‖zn‖2ω + γ1τ

N∑
n=1

‖τ∇∂τ ẑn‖2 ≤ Cτ
N∑
n=1

‖∇zn‖2 ≤ C|‖0, z‖|2D,

where the Poincaré inequality and the triangle inequality was used for the first and the second term, respectively.
Using the Poincaré inequality again, we have

τ

N∑
n=1

‖zn‖2 ≤ C|‖0, z‖|2D.

The bounds for the terms containing u are trivial.

Denote by Nh the dimension of Vh. Equations (2.5) define a square linear system of (2N + 1)Nh unknowns,
and taking fn = 0 and qn = 0, n = 1, . . . , N , it follows from Proposition 2.1 that (u, z) = 0 is the only solution
of the corresponding homogeneous system. Thus (2.5) has a unique solution.

3. A PRIORI error estimates

Proposition 3.1. Suppose that Ω is a convex polyhedral domain and that u is in

H1(0, T ;H1
0 (Ω)) ∩H2(0, T ;L2(Ω)). (3.1)

Denote by ‖·‖∗ the norm in (3.1). Let (uh, zh) ∈ V 2N+1
h be the solution of (2.5) with f = ∂tu −∆u and q =

u|(0,T )×ω, and suppose that f ∈ C(0, T ;L2(Ω)). Then

|‖πhu− uh‖|R + |‖πhu− uh, zh‖|D ≤ C(h+ τ) ‖u‖∗ ,

where πhu is the orthogonal projection defined by

a(πhu,w) = a(u,w), w ∈ Vh. (3.2)

Proof. We use the shorthand notation ξh = πhu− uh. By Proposition 2.1 it is enough to show that

A1(ξh, w) +A2((ξh, zh), v) ≤ C(h+ τ)|‖v, w‖|C ‖u‖∗ , (v, w) ∈ V 2N+1
h .
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The point values un = u(tn) satisfy

(∂tu
n, φ) + a(un, φ) = (fn, φ), n = 1, . . . , N, φ ∈ H1

0 (Ω).

This implies the following consistency relation

A1(u− uh, w) = τ

N∑
n=1

((∂τu
n, wn) + a(un, wn))− τ

N∑
n=1

(fn, wn)

= τ

N∑
n=1

(∂τu
n − ∂tun, wn), ∀w ∈ V N+1

h . (3.3)

Using also the orthogonality (3.2), we get

A1(ξh, w) = A1(πhu− u,w) +A1(u− uh, w)

= τ

N∑
n=1

((πh − 1)∂τu
n, wn) + τ

N∑
n=1

(∂τu
n − ∂tun, wn).

The Cauchy–Schwarz inequality implies that A1(ξh, w) ≤ 2(I1 + I2)1/2|‖0, w‖|C where

I1 = τ

N∑
n=1

‖(πh − 1)∂τu
n‖2 , I2 = τ

N∑
n=1

‖∂τun − ∂tun‖2 .

We estimate I1 by using the approximation properties of πh, see e.g. Theorems 3.16 and 3.18 of [16],

I1 = τ−1
N∑
n=1

∥∥∥∥∥
∫ tn

tn−1

(πh − 1)∂tudt

∥∥∥∥∥
2

≤
N∑
n=1

∫ tn

tn−1

‖(πh − 1)∂tudt‖2

≤ Ch2
∫ T

0

‖∇∂tu‖2 dt.

For I2 we use Taylor’s theorem with the integral form of the remainder,

I2 = τ−1
N∑
n=1

∥∥∥∥∥
∫ tn

tn−1

tn − t
2

∂2t udt

∥∥∥∥∥
2

≤ τ−1
N∑
n=1

∫ tn

tn−1

(tn − t)2 dt

∫ tn

tn−1

∥∥∂2t u∥∥2 dt

≤ τ2
∫ T

0

∥∥∂2t u∥∥2 dt.

Let us now turn to the second bilinear form. We have

A2((ξh, zh), v) = γMτ

N∑
n=1

(πhu
n − un, vn)ω + γ0(h∇πhu0, h∇v0)

+ γ1τ

N∑
n=1

(τ∇∂τπhun, τ∇∂τvn), ∀v ∈ V Nh . (3.4)
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Thus A2((ξh, zh), v) ≤ C(I3 + I4 + I5)1/2|‖v, 0‖|C , where

I3 = τ

N∑
n=1

‖πhun − un‖2ω ≤ h
2τ

N∑
n=1

‖∇un‖2 ≤ Ch2 ‖∇u‖2H1(0,T ;L2(Ω)) ,

I4 =
∥∥h∇πhu0∥∥2 ≤ Ch2 ‖∇u‖2H1(0,T ;L2(Ω)) ,

I5 = τ

N∑
n=1

‖∇πhτ∂τun‖2 = τ

N∑
n=1

∥∥∥∥∥
∫ tn

tn−1

∇πh∂tudt

∥∥∥∥∥
2

≤ τ2
∫ T

0

‖∇∂tu‖2 dt. (3.5)

Here we used the trace inequality in time and the continuity of πh.

We recall the following variation of a stability estimate from [15] that was proven in [7].

Theorem 3.2. Let Ω ⊂ Rd be a convex polyhedron, let ω ⊂ Ω be open and non-empty, and let 0 < δ < T . Then
there is C > 0 such that for all u in the space

H1(0, T ;H−1(Ω)) ∩ L2(0, T ;H1
0 (Ω)), (3.6)

it holds that

‖u‖δ ≤ C(‖u‖L2((0,T )×ω) + ‖∂tu−∆u‖L2(0,T ;H−1(Ω))),

where ‖·‖δ is the norm in C(δ, T ;L2(Ω)) ∩ L2(δ, T ;H1(Ω)) ∩H1(δ, T ;H−1(Ω)).

For uh = (unh)Nn=0 ∈ V 2N+1
h we define the linear interpolation

ũh(t) = τ−1
(
(t− tn−1)unh + (tn − t)un−1h

)
, t ∈ [tn−1, tn], n = 1, . . . , N. (3.7)

Observe that ũh is in the space (3.6) and also in C(0, T ;H1
0 (Ω)). We are now ready to prove our main result

on the convergence of the stabilized finite element method.

Theorem 3.3. Let ω ⊂ Ω ⊂ Rd and δ > 0 be as in Theorem 3.2. Let u, f and (uh, zh) be as in Proposition 3.1
and define ũh by (3.7). Suppose that f ∈ H1(0, T ;L2(Ω)). Furthermore, in the case γ1 > 0 suppose that τ =
O(h), and in the case γ1 = 0 suppose that τ = O(h2). Then

‖u− ũh‖δ ≤ Ch
(
‖u‖∗ + ‖f‖H1(0,T ;L2(Ω))

)
.

Recall that ‖·‖∗ is the norm in the space (3.1).

Proof. Let e = u− ũh, and define the linear form

〈r, w〉 =

∫ T

0

(∂te, w) + a(e, w) dt, w ∈ L2(0, T ;H1
0 (Ω)).

By Theorem 3.2 it is enough to show the following two inequalities

‖e‖L2((0,T )×ω) ≤ Ch ‖u‖∗ , (3.8)

〈r, w〉 ≤ Ch
(
‖u‖∗ + ‖f‖L2((0,T )×Ω)

)
‖w‖L2(0,T ;H1

0 (Ω)) . (3.9)
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Let us begin with (3.8). We define the projection on the piecewise constant functions

π0v(t) = v(tn), t ∈ (tn−1, tn], n = 1, . . . , N.

Observe that

‖π0v − v‖L2(0,T ) ≤ τ ‖∂tv‖L2(0,T ) , v ∈ H1(0, T ).

We have

‖e‖2L2((0,T )×ω) ≤ C(h2 + τ2) ‖u‖2∗ +

∫ T

0

‖π0πhu− ũh‖2ω dt,

and

∫ T

0

‖π0πhu− ũh‖2ω dt ≤
∫ T

0

‖π0πhu− π0ũh‖2ω dt+

∫ T

0

‖π0ũh − ũh‖2ω dt

= τ

N∑
n=1

‖πhun − unh‖
2
ω +

N∑
n=1

∫ tn

tn−1

‖π0ũh − ũh‖2ω dt.

Here the first term is bounded by |‖πhu− uh‖|2R, and we use the identity

ũh = unh + (t− tn)∂τu
n
h (3.10)

to estimate the second one as follows

N∑
n=1

∫ tn

tn−1

‖π0ũh − ũh‖2 dt =

N∑
n=1

∫ tn

tn−1

‖(tn − t)∂τunh‖
2

dt ≤ τ
N∑
n=1

‖τ∂τunh‖
2

≤ τ
N∑
n=1

‖τ∂τ (πhu
n − unh)‖2 + τ

N∑
n=1

‖τ∂τπhun‖2 .

As τ = O(h), the first term above is bounded by |‖πhu− uh, 0‖|2D, and the second term is bounded by τ2 ‖u‖2∗.
The inequality (3.8) follows from Proposition 3.1.

We turn to (3.9), and define the piecewise constant function defined by local time averages

w(t) = τ−1
∫ tn

tn−1

w dt, t ∈ (tn−1, tn], n = 1, . . . , N.

We have

∫ T

0

(∂tu,w) + a(u,w) dt =

∫ T

0

(f, w) dt =

∫ T

0

(f − π0f, w) dt+ τ

N∑
n=1

(fn, w),
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and using the identity (3.10) and the orthogonality (3.2),

−
∫ T

0

(∂tũh, w) + a(ũh, w) dt = −τ
N∑
n=1

(∂τu
n
h, w)−

∫ T

0

a(ũh, πhw) dt

= −τ
N∑
n=1

(∂τu
n
h, w)− τ

N∑
n=1

a(unh, πhw)−
N∑
n=1

∫ tn

tn−1

(t− tn) a(∂τu
n
h, πhw) dt.

As uh satisfies (2.5), it holds that

〈r, w〉 =

∫ T

0

(f − π0f, w) dt+ τ

N∑
n=1

(fn, w − πhw)− τ
N∑
n=1

(∂τu
n
h, w − πhw)

−
N∑
n=1

∫ tn

tn−1

(t− tn) a(∂τu
n
h, πhw) dt. (3.11)

We have

∫ T

0

(f − π0f, w) dt ≤ τ ‖f‖H1(0,T ;L2(Ω)) ‖w‖L2((0,T )×Ω) ,

τ

N∑
n=1

(fn, w − πhw) ≤ Ch ‖f‖H1(0,T ;L2(Ω)) ‖w‖L2(0,T ;H1(Ω)) .

Moreover,

τ

N∑
n=1

(∂τu
n
h, w − πhw) ≤ Ch ‖u‖H2(0,T ;L2(Ω)) ‖w‖L2(0,T ;H1(Ω)) ,

where we used Proposition 3.1, after observing that

h2τ

N∑
n=1

‖∂τunh‖
2 ≤ |‖uh − πhu, 0‖|2D + h2 ‖u‖2∗ .

Finally,

N∑
n=1

∫ tn

tn−1

(t− tn) a(∂τu
n
h, πhw) dt ≤ τ

(
τ

N∑
n=1

‖∇∂τunh‖
2

) 1
2

‖w‖L2(0,T ;H1(Ω)) ,

and using the triangle inequality and (3.5),

τ

N∑
n=1

‖τ∇∂τunh‖
2 ≤ τ

N∑
n=1

‖τ∇∂τ (unh − πhun)‖2 + Cτ2
∫ T

0

‖∇∂tu‖2 dt.
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Observe that

τ

N∑
n=1

‖τ∇∂τ (unh − πhun)‖2 ≤ C

|‖uh − πhu‖|
2
R, γ1 > 0,

|‖uh − πhu, 0‖|2D, τ = O(h2).

The inequality (3.9) follows from Proposition 3.1.

If γ1 = 0 and τ = O(h) then Theorem 3.3 does not predict optimal convergence. Indeed, in this case the
bound in the last step becomes

τ

N∑
n=1

‖τ∇∂τ (unh − πhun)‖2 ≤ Ch−1|‖uh − πhu, 0‖|2D.

This then leads to a convergence of order O(h
1
2 + τ

1
2 ) using Proposition 3.1.

3.1. The case of perturbations in data

Thanks to the Lipschitz stability of Theorem 3.2 the extension of the above analysis to the case where the
data is perturbed is straightforward. Indeed, assume that instead of (qn, fn)Nn=1 in (2.3) we have at are disposal
the perturbed data (q̃n, f̃n)Nn=1,

q̃n = qn + enq , f̃n = fn + enf

with enq ∈ L2(ω) and enf ∈ H−1(Ω). Then augmenting the proofs of Proposition 3.1 and Theorem 3.3 with a
standard perturbation argument, we obtain the following result

Theorem 3.4. Let ω ⊂ Ω ⊂ Rd and δ > 0 be as in Theorem 3.2. Let u, f be as in Proposition 3.1, let
(uh, zh) be the solution to (2.5) with qn and fn replaced by q̃n and f̃n, and define ũh by (3.7). Suppose that
f ∈ H1(0, T ;L2(Ω)). Furthermore, in the case γ1 > 0 suppose that τ = O(h), and in the case γ1 = 0 suppose
that τ = O(h2). Then

‖u− ũh‖δ ≤ Ch
(
‖u‖∗ + ‖f‖H1(0,T ;L2(Ω))

)
+ Eq,f ,

where

Eq,f := C

(
τ

N∑
n=1

(
‖enq ‖2ω + ‖enf ‖2H−1(Ω)

)) 1
2

.

Proof. The proof follows from minor modifications of the proofs of Proposition 3.1 and Theorem 3.3. We will
only give some pointers to the modifications necessary to include the perturbations. First we note that the
perturbed data modifies the consistency in equations (3.3) and (3.4) to

A1(u− uh, w) = τ

N∑
n=1

((∂τu
n, wn) + a(un, wn))− τ

N∑
n=1

(fn + enf , w
n)

= τ

N∑
n=1

[
(∂τu

n − ∂tun, wn)− (enf , w
n)
]
, ∀w ∈ V N+1

h (3.12)
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and

A2((ξh, zh), v) = γMτ

N∑
n=1

(πhu
n − un − enq , vn)ω + γ0(h∇πhu0, h∇v0)

+ γ1τ

N∑
n=1

(τ∇∂τπhun, τ∇∂τvn), ∀v ∈ V Nh . (3.13)

The Cauchy–Schwarz inequality implies that

τ

N∑
n=1

(enf , w
n) + γMτ

N∑
n=1

(enq , v
n)ω ≤ Eq,f |‖v, w‖|C .

Proceeding as in Proposition 3.1 then leads to the bound

|‖πhu− uh‖|R + |‖πhu− uh, zh‖|D ≤ C(h+ τ) ‖u‖∗ + Eq,f . (3.14)

In Theorem 3.3 this leads to modifications of the bounds (3.8)–(3.9),

‖e‖L2((0,T )×ω) ≤ Ch ‖u‖∗ + Eq,f , (3.15)

〈r, w〉 ≤
(
Ch
(
‖u‖∗ + ‖f‖L2((0,T )×Ω)

)
+ Eq,f

)
‖w‖L2(0,T ;H1

0 (Ω)) . (3.16)

Inequality (3.15) is an immediate consequence of (3.14). For the residual bound (3.16) we must once again take
into account the lack of consistency, leading to a modification in equation (3.11),

〈r, w〉 =

∫ T

0

(f − π0f, w) dt+ τ

N∑
n=1

((fn, w − πhw)− (enf , πhw))

− τ
N∑
n=1

(∂τu
n
h, w − πhw)−

N∑
n=1

∫ tn

tn−1

(t− tn) a(∂τu
n
h, πhw) dt. (3.17)

We proceed using the Poincaré and Cauchy-Schwarz inequalities and stability of the projection in the
perturbation term,

τ

N∑
n=1

(enf , πhw) ≤ E0,f‖w‖L2(0,T ;H1(Ω)),

followed by an application of the perturbed bound (3.14). The claim follows by applying Theorem 3.2 to the
error and the associate perturbation equation, using (3.15) and (3.16).

This is a similar result as one would obtain for a well-posed problem. In particular, the mesh sizes h and τ
can be chosen independently of the size of the perturbations enq and enf , the constants γM , γ0 and γ1 do not
depend on the size of enq and enf , and the method converges to the exact solution u when the mesh sizes and
the perturbations converge to zero.

4. Computational examples

The main objectives of the computational examples are twofold.
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Table 1. Convergence with γM = γ0 = 1 and γ1 = 0 using the MINRES method. The error is∥∥u(T )− uNh
∥∥
L2(Ω)

. Left. Order 1 convergence in h with N = 16. Right. Order 1/2 convergence

in τ with Nh = 200.

h 0.02 0.01 0.005
Error 0.224 0.119 0.043

τ 0.004 0.002 0.001
Error 0.104 0.073 0.048

(1) First we verify that the predicted reduction in convergence order to O(h
1
2 + τ

1
2 ) for γ1 = 0 and τ = O(h)

indeed takes place, even in a simple model case.
(2) Then we confirm that the situation is rectified for γ1 > 0.

The Euler–Lagrange equation (2.5) form a non-singular, symmetric system of (2N + 1)Nh linear equations.
We emphasize that the system is not positive definite. In principle, it can be solved using off-the-shelf methods,
for example the MINRES method [28].

We implemented this straightforward strategy in the case that γ1 = 0, and verified that the convergence
order in space is that predicted by Theorem 3.3. For the convergence order in time we verify that failure to
meet the condition τ = O(h2) indeed leads to suboptimal convergence. We observe O(τ

1
2 ) convergence under

refinement of τ in the regime where τ = O(h). In all our computational examples Ω is the unit interval (0, 1),
ω = (a, 1− a), a = 0.2, and we use a regular mesh on Ω. Moreover, the function u is of the form

u(t, x) = e−π
2k2t sin(πkx), k = 1, 2. (4.1)

Computations for k = 2 and T = 0.02 are summarized in Table 1. We also verified that the computations
diverge when no regularization is introduced, that is, when γ0 = 0. In these computations we used the MINRES
implementation of SciPy with the default parameters [19], and the initial guess was set to zero. The convergence
is typically slow, requiring thousands of iterations.

The remaining examples will exploit the structure of (2.5) to reduce the memory requirements of the solution
algorithm. The classical steepest descent approach will be applied, using the adjoint to evaluate the gradient
(see for instance [33] for a discussion of the approach in the context of 4DVAR).

4.1. The Euler–Lagrange equations as a system of two coupled heat equations

An attractive feature of the regularization in (2.3) is that it acts only on the primal variable u. This leads
to the one-way coupling in (2.5), that is, the dual variable z does not appear in the equation involving A1. We
present next a method solving (2.5) that is based on the one-way coupling.

Note that the first equation in (2.5), that is,

τ

N∑
n=1

((∂τu
n, wn) + a(un, wn)) = τ

N∑
n=1

(fn, wn) (4.2)

is simply a discretization of the heat equation (1.4). Let us next interpret the second equation in (2.5) as a
discretization of a heat equation for z. Observe that, setting zN+1 = 0, we obtain

τ

N∑
n=1

(∂τv
n, zn) = −τ

N∑
n=1

(vn, ∂τz
n+1)− (v0, z1).
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Thus choosing v0 = 0 in (2.5) for the moment, we see that z satisfies

τ

N∑
n=1

(
−(vn, ∂τz

n+1) + a(vn, zn)
)

= γMτ

N∑
n=1

(qn − un, vn)ω − γ1τ
N∑
n=1

(τ∇∂τun, τ∇∂τvn), (4.3)

and this can be interpreted as a discretization of

−∂tz −∆z = γM (q − u)1ω.

Here 1ω is the indicator function of ω, that is, 1ω(x) = 1 if x ∈ ω and 1ω(x) = 0 otherwise. Note that, when

rescaled by τ−2, the second term on the right-hand side of (4.3) is a discretization of
∫ T
0

(∇∂tu,∇∂tv) dt. Taking
now vn = 0, n = 1, . . . , N , in (2.5) we get the additional constraint

γ0(h∇u0, h∇v0)− γ1τ(τ∇∂τu1,∇v0)− (z1, v0) = 0.

Define U(φ) to be the solution of (4.2) with u0 = φ, and Z(φ) the solution of (4.3) with zN+1 = 0 and
u = U(φ). Observe that these can be easily computed by using time stepping. Furthermore, define the function

C(φ, ψ) = γ0(h∇U0(φ), h∇ψ)− γ1τ(τ∇∂τU1(φ),∇ψ)− (Z1(φ), ψ), ψ ∈ Vh.

Then (u, z) = (U(φ), Z(φ)) solves (2.5) if and only if

C(φ, ψ) = 0, ψ ∈ Vh. (4.4)

We will use a gradient descent type method to solve (4.4). Starting from an initial guess φ0 ∈ Vh, we define
the iteration

(φm+1, ψ) = (φm, ψ)− αC(φm, ψ), ψ ∈ Vh, (4.5)

where α > 0 is a step size. The system (4.5) is a discretization of the differential equation

Φ(0) = φ0, (∂sΦ(s), ψ) = −C(Φ(s), ψ), ψ ∈ Vh, (4.6)

and its use to solve (4.4) is justified by the following lemma.

Lemma 4.1. Let φ0 ∈ Vh and define a one parameter family Φ(s), s ≥ 0, in Vh by (4.6). Let (uh, zh) be the
solution of (2.5). Then Φ(s) converges to u0h as s→∞.

Proof. For each s ≥ 0 it holds by definition that u(s) = U(Φ(s)) and z(s) = Z(Φ(s)) satisfy (4.2) and (4.3),
respectively. Hence

∂sL(u, z) = (∂uL, ∂su) + (∂zL, ∂sz) = C(Φ, ∂su0) = C(Φ, ∂sΦ) = −‖∂sΦ‖2 .

Equation (4.2) implies also that

L(u, z) =
1

2
γMτ

N∑
n=1

‖un − qn‖2ω +
1

2
γ0 ‖h∇Φ‖2 +

1

2
γ1τ

N∑
n=1

‖τ∇∂τun‖2 .
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Figure 1. The effect of regularization on the convergence in τ . The convergence is of order 1/2
(slope of dashed reference line) when γ1 = 0 (data with square markers) and of order 1 (slope
of dotted reference line) when γ1 = 1 (data with circle markers). Here γM = γ0 = 1, h = 10−2,
and the error is

∥∥u(T )− uNh
∥∥
L2(Ω)

.

As L is non-negative and decreasing along the family (u(s), z(s)), it follows that ∂sL(u, z)→ 0 as s→∞. Hence
also ∂sΦ→ 0 as s→∞, and the differential equation (4.6) implies that the limit φ∞ = lims→∞ Φ(s) exists and
satisfies (4.4). By the discussion preceding the proof, we have φ∞ = u0h.

We will use the above gradient descent method in the computational examples below and assume that the
initial guess φ0 is a small perturbation of u(0). Such an assumption can be relevant for many data assimilation
applications. Indeed, it is typical that new observations need to be incorporated into the state of the system,
and the current state can then be used as an initial guess.

4.2. The effect of regularization on the convergence in τ

We verified that the presence of the additional regularization in the case γ1 > 0 leads to the improved
convergence rate in τ as predicted by Theorem 3.3. Indeed, in the computations summarized in Figure 1, the
convergence is of order 1/2 when γ1 = 0 and of order 1 when γ1 = 1. Here γM = γ0 = 1, h = 10−2, u is of the
form (4.1) with k = 1, and T = 0.1. We used the gradient descent method with the initial guess φ0 = v + h
where v is the interpolation of u(0) on Vh. The step size in (4.5) was taken α = 0.1 and the iteration (4.5) was
terminated when

∥∥z1∥∥ started to increase.

4.3. Sensitivity to the choice of γ0 and γ1

In all the numerical experiments above we have taken the parameters γ0 and γ1 to be either one or zero.
This was to avoid special effects that can appear due to parameter tuning. In a final numerical experiment we
verified that the method is not sensitive to the particular choices of the constants γ0, γ1 > 0. The conclusion
of the study is that the method is robust for a wide range of choices of γ0 and γ1, including γ0 = γ1 = 1.
We observed that choosing both parameters large resulted in solutions that were over regularized and yielded



FULLY DISCRETE FINITE ELEMENT DATA ASSIMILATION METHOD FOR THE HEAT EQUATION 2081

Figure 2. The error for various choices of the constants γ0, γ1. Here γM = 1, h = τ = 10−2

and the error is
∥∥u(T )− uNh

∥∥
L2(Ω)

. For each 0.1 ≤ γ0 ≤ 1.2, the method is robust for a large

range in γ1. There also is an optimal value of γ1 for each such γ0. However, this is mesh
dependent and it is not clear if the phenomenon can be exploited in practice. (γ0 = 0.1 –
dotted line; γ0 = 0.2 – dashed line; γ0 = 0.6 – dash/dotted line; γ0 = 1.0 – dash/doubledotted
line; γ0 = 1.2 – doubledash/doubledotted line; γ0 = 1.5 – filled line.)

suboptimal accuracy compared to lower values of the parameters. See the filled line of Figure 2 for an example.
We also observed that there are certain “sweet spot” combinations of values of γ0 and γ1 for which the errors
are orders of magnitude smaller than for the neighbouring parameter combinations. These optimal parameter
combinations however did not appear to be stable under mesh refinement and it is unclear if this effect can be
of any use in practice. The computations are summarized in Figure 2, with particular focus on the parameter
interval where the optimal parameter choices appeared. Here h = τ = 10−2 and the other choices are as in the
previous example.
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Methods in Applied Sciences and Engineering, in Proc. Third Internat. Sympos., Versailles, 1977, II. Vol. 91 of Lecture Notes
in Physics. Springer, Berlin-New York (1979) 217–231.

[32] O. Talagrand, On the mathematics of data assimilation. Tellus 33 (1981) 321–339.
[33] O. Talagrand and P. Courtier, Variational assimilation of meteorological observations with the adjoint vorticity equation. i:

theory. Q. J. Royal Meteorol. Soc. 113 (1987) 1311–1328.
[34] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25 of Springer Series in Computational

Mathematics. Springer-Verlag, Berlin (1997).
[35] Y.B. Wang, J. Cheng, J. Nakagawa and M. Yamamoto. A numerical method for solving the inverse heat conduction problem

without initial value. Inverse Probl. Sci. Eng. 18 (2010) 655–671.
[36] M. Yamamoto, Carleman estimates for parabolic equations and applications. Inverse Probl. 25 123013 (2009).


	Fully discrete finite element data assimilation method for the heat equation
	1 Introduction
	2 Discrete optimization problem
	3 A PRIORI error estimates
	3.1 The case of perturbations in data

	4 Computational examples
	4.1 The Euler-Lagrange equations as a system of two coupled heat equations
	4.2 The effect of regularization on the convergence in 
	4.3 Sensitivity to the choice of 0 and 1


	References

