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OUTGOING WAVE CONDITIONS IN PHOTONIC CRYSTALS AND

TRANSMISSION PROPERTIES AT INTERFACES

A. Lamacz and B. Schweizer*

Abstract. We analyze the propagation of waves in unbounded photonic crystals. Waves are described
by a Helmholtz equation with x-dependent coefficients, the scattering problem must be completed with
a radiation condition at infinity. We develop an outgoing wave condition with the help of a Bloch
wave expansion. Our radiation condition admits a uniqueness result, formulated in terms of the Bloch
measure of solutions. We use the new radiation condition to analyze the transmission problem where,
at fixed frequency, a wave hits the interface between free space and a photonic crystal. We show that
the vertical wave number of the incident wave is a conserved quantity. Together with the frequency
condition for the transmitted wave, this condition leads (for appropriate photonic crystals) to the effect
of negative refraction at the interface.
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1. Introduction

Photonic crystals are optical devices that allow to mold the propagation properties of light. They usually have
a periodic structure and are operated with light at a fixed frequency ω. Due to their spectral properties (band
gap structure), light of certain frequencies can travel in the photonic crystal, but, at other frequencies, the crystal
is opaque. A large body of literature is available on this aspect of photonic crystals. Most contributions study a
periodic medium, possibly with a compactly supported perturbation of the periodic structure. In contrast, we
are interested in the interface between a photonic crystal and free space.

An interesting effect of such an interface is negative refraction. A recent discussion in the physical literature
concerns the following question: Is negative refraction always the result of a negative index of the photonic
crystal, or can negative refraction also occur at the interface between air and a photonic crystal with positive
index? Our mathematical results confirm the latter: The conservation of the transversal wave number can lead to
negative refraction between two materials with positive index, as suggested in [27]. For a numerical confirmation
see [11].

In mathematical terms, the light intensity is determined by the Helmholtz equation

−∇ · (a(x)∇u(x)) = ω2 u(x) , (1.1)
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transmission problem, negative refraction.
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Figure 1. The geometry of the transmission problem for K = 10 (number of cells in vertical
direction). An incoming wave hits the boundary of a photonic crystal. We are interested in the
waves that are generated in the photonic crystal.

which must be solved for u in a domain Ω, u = u(x), x = (x1, x2) ∈ Ω. Here, we restrict our analysis to an
unbounded rectangle Ω := R × (0, h) ⊂ R2, but note that our methods can also be used in higher dimension,
e.g. for Ω := R× (0, h2)× (0, h3) ⊂ R3. In (1.1), ω > 0 is a prescribed frequency and a = a(x) is the inverse per-
mittivity of the medium. In an x3-independent geometry and with polarized light, the time-harmonic Maxwell’s
equations reduce to (1.1) and u = u(x) is the out-of-plane component of the magnetic field.

The coefficient a = a(x) describes the medium. We assume that the right half space {x = (x1, x2) ∈ Ω|x1 > 0}
is occupied by a periodic photonic crystal with periodicity length ε > 0. Using the unit cube Y = (0, 1)2 and
the scaled cube Yε = εY = (0, ε)2, we therefore assume that the coefficient a = aε is Yε-periodic for x1 > 0.
We make the assumption that an integer number K of cells fits vertically in the domain, i.e.K = h/ε ∈ N. On
the left half space {x = (x1, x2) ∈ Ω|x1 < 0}, we set a = aε ≡ 1. With a = aε and ω given, problem (1.1) is an
equation for u, but it must be accompanied by boundary conditions (Fig. 1).

We impose periodic boundary conditions in the vertical direction, i.e. we identify the lower boundary {x =
(x1, x2)|x2 = 0} with the upper boundary {x = (x1, x2)|x2 = h}. In order to analyze scattering properties of
the interface, we assume that the interface is lit by a planar wave. We consider, for a fixed wave-vector k ∈ R2,
the incident wave

Uinc(x) = e2πik·x/ε . (1.2)

To guarantee that Uinc is a solution to (1.1) on the left, we assume ω2 = 4π2|k|2/ε2. We think of time-dependent
solutions of the form Ûinc(x, t) = Uinc(x)e−iωt = exp(i[2πk ·x/ε−ωt]). We always consider k1 > 0 such that Uinc

represents a right-going wave. To satisfy the periodicity condition in vertical direction, we demand e2πik2h/ε = 1
or, equivalently, k2h ∈ εZ.

For a given incident wave Uinc we seek for solutions u of (1.1) such that u satisfies a radiation condition as
x1 →∞, and u− Uinc satisfies a radiation condition for x1 → −∞.

Question 1: How can we prescribe radiation conditions in periodic media?

The answer to Question 1 requires a detailed study. We will use Bloch expansions and Bloch projections to
formulate our new outgoing wave condition in Definition 3.3. Our choice is further motivated in the next section.

We now turn to the transmission problem. When an incident wave Uinc lights the interface, it creates waves
inside the photonic crystal. These waves are described by u on {x1 > 0}, our aim is to characterize this solution.
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Question 2: Let u be the solution of the transmission problem for the incoming wave Uinc. Does
the Bloch expansion of u on the right contain only waves that correspond to the frequency ω and to
the vertical wave number k2?

A positive answer to Question 2 provides information on the negative refraction phenomenon: They support
the line of argument of [27] which explains negative refraction without referring to a negative index material
(note that a quite different interpretation is given in [12]).

This article attempts to provide answers to the above Questions 1 and 2, which turn out to be more delicate
than one might expect at first sight (see next two sections). We provide a radiation condition in Definition 3.3
and show that it is a reasonable condition by proving a (weak) uniqueness result in Theorem 1.3. Question 2
is answered with Theorem 1.6: If u is a solution of the transmission problem, then the Bloch measure of u is
concentrated on waves that correspond to ω and k2. The mathematical description of our results is given in
Section 1.3.

1.1. Outgoing wave conditions

The Helmholtz equation (1.1) has been studied already by Euler and Lagrange, but Helmholtz was the first
who expressed solutions in bounded domains with a representation formula [18]. Regarding the unbounded
domain R3, Sommerfeld was the first to introduce a radiation condition in [35], today named after him:

|x|(n−1)/2(∂|x|u− iωu)(x)→ 0 as |x| → ∞ . (1.3)

The condition can be understood by considering the two fundamental solutions of the Helmholtz equation in
R3,

uout(x) :=
1

|x|
eiω|x| and uinc(x) :=

1

|x|
e−iω|x| . (1.4)

With the time-dependence e−iωt, uout represents an outgoing wave and uinc an incoming wave. And, indeed,
uout satisfies (1.3) and is therefore admissible, uinc does not satisfy (1.3) and is not accepted as a solution.
Sommerfeld justified his radiation condition with a uniqueness proof: Prescribing boundary data on an obstacle
(the scatterer) and the radiation condition (1.3) at infinity, the Helmholtz equation has at most one solution.
Actually, Sommerfeld demanded two further properties to guarantee uniqueness, but the results of Rellich
(today known as “Rellich Lemma”) showed that the additional assumptions are not necessary [32], see [33] for
the historical background.

We cannot use the Sommerfeld radiation condition in the periodic wave guide. One reason is that we consider
x-dependent coefficients a. The second is that we study a vertically periodic situation such that our situation
is neither one- nor two-dimensional. Our aim is therefore to design a radiation condition for wave guides which
implies a uniqueness result. The underlying idea is simple: We demand that the Bloch-expansion of solutions
contains only outgoing waves as |x1| → ∞. This has a strong resemblance to the classical approach where one
demands that solutions are superpositions of the outgoing waves of (1.4), compare [10].

1.1.1. On radiation in waveguides and photonic crystals

An important contribution is the recent work of Fliss and Joly [16], which is also concerned with outgoing
wave conditions and the existence and the uniqueness of solutions for periodic wave-guides. Essentially, the
outgoing wave condition of [16] for x1 → +∞ reads

u(x) =
∑

λ∈N(ω)

α+
λU

+
λ (x) + w+(x) , (1.5)
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where N(ω) is a finite index set, α+
λ are real coefficients, U+

λ are right-going Bloch waves and w+(x) is expo-
nentially small for x1 → +∞. The setting of the problem differs in one important point from ours: [16] studies
a medium which is identical at the far left and at the far right, which allows to use global Floquet–Bloch trans-
formations; this is not possible in our setting. Below we give a more detailed comparison of our results to those
of [16].

Another radiation condition in a waveguide is the “modal radiation condition”, formulated in Definition 2.4
of [6]. The modal radiation condition is expressed with a Fourier transform and it is restricted to media that
have variations only in transversal direction. The radiation of waves in a photonic crystal (including an interface
with free space) is investigated also in [5], but there the frequency ω is assumed to lie in a band-gap of the
photonic crystal.

For numerical calculations, one is interested in replacing the unbounded domain by a bounded domain.
In this case, one asks for appropriate boundary conditions that must be imposed on the boundary of the
bounded domain. This point of view leads to the construction of Dirichlet-to-Neumann maps or similar ideas
[14, 15, 17, 21]. Other key-words are perfectly matched layers [23] or transparent boundary conditions, but these
approaches are not suited for periodic media.

1.2. Uniqueness properties

It is an essential feature of the Helmholtz equation that, even without source terms and with homogeneous
boundary conditions, solutions may be nontrivial. The bounded domain Ω = (0, 1) ⊂ R1 with u(x) = sin(πx)
for ω = π provides an example. A more relevant example in higher space dimension is the Helmholtz resonator,
compare [34]. A positive result is that, for regular exterior domains, the Sommerfeld condition implies uniqueness,
but this result concerns only the operator with constant coefficients. Neglecting radiation conditions, we observe:
In full space, the problem with periodic coefficients admits multiple solutions whenever the frequency ω is not
in a band-gap.

In our case of non-constant and (looking globally) non-periodic coefficients, there can be nontrivial solutions
to the homogeneous Helmholtz equation satisfying also a radiation condition, e.g. in the form of localized modes.
An example are standing waves in a photonic crystals with a point defect, compare e.g. Chapter 5 in [22]. In the
case of a line defect (or in our situation of an interface between free space and photonic crystal), one expects
nontrivial solutions travelling along the interface, see e.g. [28, 29]. Concerning the mathematical analysis of
defects in a photonic crystal and the possibility that they support modes (and hence act as a waveguide) see
[4, 13]. On the other hand, for the vertically periodic setting it was shown in [20] that a line defect cannot
support bounded modes.

The strong uniqueness result of [16] fits in the picture: In a situation where the surrounding medium is
perfectly periodic, a radiation condition implies uniqueness for non-singular frequencies. Transversal waves in
the crystal are excluded by the non-singularity assumption, waves along a line defect and localized waves are
excluded by the absence of defects.

In contrast, we cannot expect uniqueness in the standard sense in our situation: The interface can support
nontrivial solutions. Our uniqueness result states: Imposing the new radiation condition, for non-singular fre-
quencies every homogeneous solution has a vanishing Bloch measure. Loosely speaking: the solution vanishes far
away from the interface. For general frequencies, the radiating solution may contain vertical waves. See Theorem
1.3 for both results.

Bloch measures (see e.g. [1], p. 182) must be used in the limit analysis for the following reason: A periodic
Bloch expansion of the solution uses a discrete set of frequencies j. In general, not even the elementary fre-
quency condition µ0(j) = ω2 (the Bloch wave frequency coincides with ω) can be satisfied in the discrete set
of frequencies j. For this reason, we cannot expect that the Bloch expansion of u (at a finite distance) satisfies
conditions such as µ0(j) = ω2. Instead, we must introduce a limiting object (the Bloch measure) that describes
the solution u for large |x|. Our results describe this limiting object.
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Regarding other mathematical approaches to related problems, we mention [2, 3], where the authors inves-
tigate diffraction effects in time-dependent equations. In [1], the spectrum of an elliptic operator in a periodic
medium is investigated; we use methods of this contribution, the Bloch measure and the pre-Bloch expansion.

This work was motivated by the effect of negative refraction, which can be a consequence of a negative index,
see [30] for the effect and [7, 8, 26] for rigorous results, obtained with the tools of homogenization theory. In [12],
negative refraction is explained with a negative index. But negative refraction can also occur without a negative
index material, see [27], which analyzes the same material as [12]. With the work at hand we support the line of
argument of [27]. In [11] we furthermore demonstrate with numerical results that the negative refraction effect
(for that specific material) is only a result of the conservation of the vertical wave number. The numerics of [11]
are based on the methods developed here and demonstrate the applicability of the approach.

1.3. Main results

Throughout this article we consider the following parameters as fixed: The frequency ω > 0, the height h > 0
of the waveguide, the periodicity length ε > 0 with K = h/ε ∈ N, and the wave number k ∈ R2 of the incident
wave with k2h ∈ εZ, k1 > 0 and 4π2|k|2/ε2 = ω2. The underlying domain is Ω := R× (0, h) and the coefficient
field is a = aε : Ω → R. We assume 0 < a∗ ≤ a(x) ≤ a∗ < ∞ ∀x ∈ Ω and a ≡ 1 on {x1 < 0}, but the latter
assumption is not essential. We demand a ∈ C1 with ε-periodicity with respect to x1 and x2 on {x1 > 0}. This
requirement could be relaxed, but in our proof we need solutions of class H2 in order to apply Lemma 3.4 or
Lemma A.4.

We use Bloch expansions of the solution; the superscript “±” distinguishes right and left part, ±x1 > 0. The
Bloch expansion uses two indices, m ∈ N0 = {0, 1, 2, ...} numbers the eigenfunctions in the periodicity cell, the
Bloch number j ∈ Z := [0, 1]2 measures the phase shift along one periodicity cell. We collect the two indices in
one as λ := (j,m) ∈ I := Z × N0. To every λ ∈ I we associate a Poynting number P±λ ∈ R, see (3.1). For the
Bloch wave U±λ with index λ, the number P±λ is a measure for the flux of energy in positive x1-direction.

We introduce the outgoing wave condition (on the right)

−
∫
RYε

∣∣Π+
<0(u+R)

∣∣2 → 0 as R→∞ . (1.6)

Here u+R is, up to periodic extensions, the function u+R(x1, x2) = u(Rε+ x1, x2). The map Π+
<0 is a projection

onto those Bloch waves that correspond to an energy flux to the left (i.e. incoming waves, P+
λ < 0). The precise

description is given in Definition 3.3. The outgoing condition on the left is analogous.
Our results are formulated with the help of index sets. Waves with vertical energy flux (or without energy

flux) correspond to λ ∈ I := Z × N0 in

I±=0 :=
{
λ ∈ I |P±λ = 0

}
.

For fixed m ∈ N0, we also use the corresponding j-values,

J±=0,m :=
{
j ∈ Z |P±(j,m) = 0

}
=
{
j ∈ Z | (j,m) ∈ I±=0

}
.

The statements below are meaningful for general frequencies ω > 0. Unfortunately, we are only able to prove
theorems for moderate frequencies, as expressed in the following assumption. It demands that the frequency of
the wave is below the energy band corresponding to the index m = 1 (below the second band).

Assumption 1.1 (Smallness of the frequency). We assume on the coefficient a and the frequency ω that

ω2 < inf
j∈Z,m≥1

µ+
m(j) , (1.7)
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and ω2 < infj∈Z,m≥1 µ
−
m(j), where µ±m(j) are the Bloch-eigenvalues.

Our results concern solutions u of the transmission problem, specified as follows.

Problem 1.2 (Transmission problem). We say that u ∈ H1
loc(Ω) solves the scattering problem if it satisfies the

Helmholtz equation (1.1) in Ω = R× (0, h) with h = Kε and periodic boundary conditions in the x2-variable.
We furthermore assume that it is generated by the incoming wave Uinc of (1.2) in the following sense: u satisfies
the outgoing wave condition (3.6) on the right and the difference u− Uinc satisfies the outgoing wave condition
(3.7) on the left.

Our uniqueness result characterizes the Bloch measures ν±l,∞ of a difference of two solutions (the Bloch
measures are introduced in Def. 4.2). The theorem below yields that, for large values of |x1|, the difference of
two solutions does not contain Bloch waves with an eigenvalue index larger than 0. Furthermore, only those
waves can appear that satisfy all of the following three requirements: They correspond to the imposed frequency
ω, they correspond to vertically periodic waves, they transport energy in vertical direction.

Theorem 1.3 (Uniqueness). Let Assumption 1.1 on the frequency ω be satisfied. Let v be a solutions of the
transmission Problem 1.2 without incoming wave, Uinc ≡ 0. For l ∈ N0, let ν±l,∞ be the Bloch measures that are
generated by v. Then:

ν±l,∞ = 0 for l ≥ 1 , (1.8)

supp(ν±0,∞) ⊂
{
j ∈ Z |µ±0 (j) = ω2 , j2 ∈ Z/K

}
∩ J±=0,0 . (1.9)

An immediate consequence of Theorem 1.3 is the following result for frequencies ω that do not support
vertical waves.

Corollary 1.4 (Uniqueness for non-singular frequencies). Let the situation be as in Theorem 1.3 and let the
frequency ω be non-singular in the sense that

{
j ∈ Z|µ±0 (j) = ω2 , j2 ∈ Z/K

}
∩ J±=0,0 = ∅. Then the solution v

of the transmission Problem 1.2 without incident wave has a vanishing Bloch measure.

Theorem 1.3 implies the following uniqueness result for solutions to inhomogeneous Helmholtz equations.

Corollary 1.5 (Uniqueness for inhomogeneous equations). Let Assumption 1.1 be satisfied, let f ∈ L2(Ω) be a
source and let Uinc be an incoming wave. Let u and ũ be solutions to the transmission problem with right hand
side f , i.e.

−∇ · (a(x)∇u(x))− ω2 u(x) = f(x) .

holds for x ∈ Ω and the radiation conditions are satisfied. Then the Bloch measures ν±l,∞ that are generated by
the difference v := u− ũ satisfy (1.8) and (1.9).

Indeed, the difference v := u− ũ solves the homogeneous transmission problem without incoming wave and
thus Theorem 1.3 can be applied to v.

Our second main result shows that the transmission of an incoming wave occurs in such a way that two
quantities are conserved: The vertical wave number and the energy.

Theorem 1.6 (Transmission conditions). Let Assumption 1.1 be satisfied, let k be the wave vector of the
incoming wave Uinc. Let u be a solution of the transmission problem 1.2 and let ν±l,∞, with l ∈ N0, be the Bloch

measures that are generated by u. Then ν±l,∞ = 0 for l ≥ 1 and

supp(ν±0,∞) ⊂
{
j ∈ Z |µ±0 (j) = ω2 , j2 ∈ Z/K

}∩ ({j ∈ Z | j2 = k2} ∪ J±=0,0

)
. (1.10)
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As above, we have the following corollary for non-singular frequencies.

Corollary 1.7 (Transmission condition for non-singular frequencies). Let the situation be as in Theorem 1.6
and let the frequency ω be non-singular. Then the Bloch measure ν±0,∞ of u satisfies

supp(ν±0,∞) ⊂
{
j ∈ Z |µ±0 (j) = ω2 and j2 = k2

}
. (1.11)

1.4. Further comments on the main results

1.4.1. On the uniqueness result

We recall that we expect the existence of solutions that are supported on the interface between photonic
crystal and free space. For this reason, uniqueness results can only provide information “far away from the
interface”, i.e. information on the Bloch measure.

A weakness of our uniqueness results concerns Assumption 1.1: Our results are proven under the assump-
tion that the underlying frequency ω is in the first band (more precisely: below the second band). Our
conjecture is that our uniqueness result remains valid for arbitrary frequencies, stating that supp(ν±l,∞) ⊂{
j|µ±l (j) = ω2, j2 ∈ Z/K

}
∩ J±=0,l for every l ≥ 0. Due to a lack of orthogonality properties in the sesquilinear

form b (see Sect. 4), we must exploit the frequency assumption in our uniqueness proof.
Singular frequencies in Corollaries 1.4 and 1.7: A frequency ω is singular on the right (superscript “+”) if

there exists a wave vector j ∈ Z that satisfies three conditions, µ+
0 (j) = ω2, j2 ∈ Z/K, and P+

(j,0) = 0, i.e.: j has

the right frequency, the right vertical wave number, and a group velocity with vanishing horizontal component.
Such wave vectors j exist only for a discrete set of ω’s, see Theorem 5 in [16].

1.4.2. Relations to Fliss and Joly [16]

The contribution [16] contains strong results: (1) A uniqueness result in the classical form (due to the absence
of an interface that can support waves and due to the restriction to non-singular frequencies). (2) An existence
result, based on a limiting absorption principle. We note that also the existence result of [16] uses global Floquet–
Bloch transformations and is therefore not easily adaptable to our setting. We remark that our outgoing wave
condition is weaker than the one of [16], see Lemma 3.8. This means that, apart from the problems due to the
non-periodic geometry, an existence proof should be simpler for our outgoing wave condition.

We mention at this place that our outgoing wave condition differs in one point with all existing radiation
conditions: Our condition does not use explicitly the frequency ω. We regard this as an advantage: our condition
might be applicable also in time-dependent problems.

1.4.3. A possible scaling in ε > 0

In all our theorems we keep the length scale ε > 0 fixed. In other words: the wave-length 1/ω and the period-
icity length ε are both of order 1. It is very interesting to analyze the behavior of light in small micro-structures,
i.e. to analyze the limit ε → 0. The limit can be performed in two settings: In the classical homogenization
problem, one keeps ω (and hence the wave-length) fixed and analyzes the behavior of solutions u = uε as ε→ 0.
This approach was carried out e.g. in [7–9, 25, 26].

The second setting regards the limit ε → 0 in a situation where the wave-length of the incoming wave is
also of order ε. This is the scaling that is suggested by our notation in (1.2), which corresponds to a frequency
ω = ωε = ε−1ω∗. Loosely speaking, our Theorem 1.6 yields in this scaling: Solutions uε to the scattering problem
with incoming wave (1.2) for fixed k consist, at a fixed distance x1 > 0 from the interface and in the limit ε→ 0,
only of Bloch waves that correspond to the frequency ωε and to the wave number k2 (up to vertical waves).



1920 A. LAMACZ AND B. SCHWEIZER

1.4.4. Outline of this contribution

Bloch expansions are described in Section 2. In Section 3 we define energy flux numbers and corresponding
index sets; these are used to define the new outgoing wave condition. In Section 4 we define Bloch measures,
Theorems 1.3 and 1.6 are shown in Section 4.3.

2. Bloch expansions

2.1. Pre-Bloch expansions

We start our analysis with a discrete expansion. This discrete expansion is the first stage of a Bloch expan-
sion and closely related to the Floquet–Bloch transform. We apply it to the h-periodic function u(x1, ·). The
subsequent result appears as Lemma 4.9 in [1].

Lemma 2.1 (Vertical pre-Bloch expansion). Let K ∈ N be the number of periodicity cells and let h = εK be
the height of the strip R× (0, h). Let u ∈ L2

loc(R× (0, h);C) be a function. Then u can be expanded uniquely in
periodic functions with phase-shifts: With the finite index set QK := {0, 1

K ,
2
K , . . . ,

K−1
K } we find

u(x1, x2) =
∑

j2∈QK

Φj2(x1, x2) e2πij2x2/ε , (2.1)

where each function Φj2(x1, ·) is ε-periodic. The equality (2.1) holds in L2
loc(R× (0, h);C).

Sketch of proof. We sketch a proof (different from the one chosen in [1]), considering only u = u(x2) and h = 1.
Expanding u in a Fourier series, we may write

u(x2) =
∑
k2∈εZ

βk2 e
2πik2x2/ε . (2.2)

For every j2 ∈ εN0 with j2 < 1 (i.e. for every j2 ∈ QK) we set

Φj2(x2) :=
∑

k2∈j2+Z
βk2 e

2πi(k2−j2)x2/ε . (2.3)

With this choice, each Φj2 is ε-periodic and (2.1) is satisfied.

For the above pre-Bloch expansion we define the projection on a vertical wave number k2 as follows.

Definition 2.2 (Vertical pre-Bloch projection Πvert
k2

). Let u ∈ L2
loc(R × (0, h);C) with h = εK be a function

on a strip and let k2 ∈ QK be a vertical wave number. Then, expanding u as in (2.1), we set

Πvert
k2 u(x1, x2) := Φk2(x1, x2) e2πik2x2/ε . (2.4)

The projection is an orthogonal projection: For ε-periodic functions Φ and Φ̃ and indices k2 6= k̃2 there holds∫ h
0

Φ(x2)e−2πik̃2x2/εΦ̃(x2)e2πik2x2/ε dx2 = 0 by Lemma A.1.
We will later use the following fact: If u is a solution of the scattering problem with incident vertical wave

number k2, then also the projection Πvert
k2

u is a solution of the scattering problem. Together with a uniqueness
result for solutions, we can conclude from this fact that the vertical wave number is conserved in the photonic
crystal.

Below, we have to deal with the following situation: For a function u on a strip with height h, we can perform
a pre-Bloch expansion. We may also extend u periodically in the vertical direction and perform a pre-Bloch
expansion of the extended function on a wider strip. We find that both constructions yield the same result.
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Remark 2.3 (Vertical pre-Bloch expansion of a periodically extended function). Let K = h/ε ∈ N denote the
number of periodicity cells in vertical direction and let u ∈ L2

loc(R× (0, h)) be a function with vertical pre-Bloch
expansion

u(x1, x2) =
∑

j2∈QK

Φj2(x1, x2) e2πij2x2/ε.

Let R ∈ N be a multiple of K and let ũ be the periodic extension of u to the interval (0, εR) in x2-direction.
Then ũ ∈ L2

loc(R× (0, εR)) has the vertical pre-Bloch expansion

ũ(x1, x2) =
∑
j̃2∈QR

Φ̃j̃2(x1, x2) e2πij̃2x2/ε, (2.5)

where the coefficients according to the finer grid QR satisfy

Φ̃j̃2(x) =

{
0 if j̃2 6∈ QK ,
Φj̃2(x) if j̃2 ∈ QK .

The statement follows immediately from the uniqueness of the pre-Bloch expansion. Remark 2.3 explains our
choice concerning scalings: Given a sequence of functions uR, defined on a sequence of increasing domains, at
first sight, one might find it natural to rescale uR to a standard domain and to analyze the sequence of rescaled
functions. Instead, we work with the sequence uR on increasing domains. In this way, one index j ∈ Z always
refers to the same elementary wave, which allows to investigate the Bloch measure limit.

2.1.1. Pre-Bloch expansion in two variables

For a function u that is defined on a rectangle and that is periodic in both directions, the pre-Bloch expansion
in two variables can be defined by expanding first in one variable and then in the other.

For functions u on R× (0, h) the situation is more difficult, since u is not periodic in x1-direction. In order
to expand in both directions, we truncate u with a cut-off function η : R × [0, h] with compact support. For
convenience, we assume that the support of η is contained in the square [0, h]× [0, h].

The truncation of u is defined as w(x) := u(x) η(x). We expand w (on the square [0, h] × [0, h]) in both
directions in a pre-Bloch expansion, using the vector j = (j1, j2) ∈ QK ×QK and x = (x1, x2):

w(x) =
∑

j∈QK×QK

Φj(x) e2πij·x/ε . (2.6)

The functions Φj = Φ(j1,j2) are now ε-periodic in both variables. Due to orthogonality there holds (h = εK)

1

(εK)2
‖w‖2L2(KYε)

=
∑

j∈QK×QK

−
∫
Yε

|Φj |2 ,

where −
∫
Yε
|Φj |2 := 1

|Yε|
∫
Yε
|Φj |2 denotes the mean value.

2.2. Bloch expansion

With the help of the pre-Bloch expansion we construct now the Bloch expansion. This step consists in
developing each of the periodic functions Φj for j = (j1, j2) in terms of eigenfunctions of the operator

L+
j := − (∇+ 2πij/ε) · (aε(x) (∇+ 2πij/ε)) . (2.7)
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The operator L+
j acts on complex-valued functions on the cell Yε with periodic boundary conditions. It appears

in the analysis of (1.1) for the following reason: Let Ψ+
j be an eigenfunction of L+

j with eigenvalue µ+(j); then
there holds

−∇ ·
(
aε(x)∇[Ψ+

j e
2πij·x/ε]

)
= [L+

j Ψ+
j ]e2πij·x/ε = µ+(j) [Ψje

2πij·x/ε] .

We see that Ψ+
j e

2πij·x/ε is a solution of the Helmholtz equation on the right half-plane if and only if µ+(j) = ω2.

We have to distinguish between x1 > 0 and x1 < 0. On the right, the expansion is performed with L+
j as

above, with the periodic coefficient aε = aε(x). On the left, expansions are performed according to aε ≡ 1 with
the operator L−j := − (∇+ 2πij/ε) · (∇+ 2πij/ε). The result is a classical Fourier expansion of the solution.

Definition 2.4 (Bloch eigenfunctions). Let j ∈ [0, 1]2 be a fixed wave vector. We denote by
(
Ψ+
j,m

)
m∈N0

the

family of eigenfunctions of the operator L+
j of (2.7). The labelling is such that the corresponding eigenvalues

µ+
m(j) are ordered, µm+1(j) ≥ µm(j) for all m ∈ N0. Similarly,

(
Ψ−j,m

)
m∈N0

is the family of eigenfunctions of

the operator L−j and µ−m(j) are the corresponding eigenvalues. We normalize with −
∫
Yε
|Ψ±j,m|2 = 1.

A standard symmetry argument yields that, after an appropriate orthonormalization procedure for multiple
eigenvalues, all functions Ψ±j,m(x) e2πij·x/ε with j ∈ QK are orthonormal in the space L2

] (KYε;C) = L2(KYε;C)
(the sharp symbol is sometimes used to indicate that one thinks of periodic functions, but, of course, in the case
of L2, the periodicity does not alter the function space). On the left hand side (i.e. for x1 < 0, denoted with
the superscript “−”), the Bloch eigenfunctions are harmonic waves and the Bloch expansion coincides with a
Fourier expansion. We collect properties on the left half-domain in Remark 3.6.

Lemma 2.5 (Bloch expansion). Let K ∈ N be the number of cells in each direction, let u ∈ L2(KYε;C) be a
function on the square (0,Kε)× (0,Kε). Expanding u in a pre-Bloch expansion and then expanding each Φj in
eigenfunctions Ψ+

j,m we obtain, with coefficients α+
j,m ∈ C,

u(x) =
∑

j∈QK×QK

∞∑
m=0

α+
j,mΨ+

j,m(x) e2πij·x/ε ,

and similarly, for an expansion corresponding to constant coefficients aε ≡ 1,

u(x) =
∑

j∈QK×QK

∞∑
m=0

α−j,mΨ−j,m(x) e2πij·x/ε .

To shorten notation, we will use the multi-index λ = (j,m) in the index-set IK := {(j,m)|j ∈ QK ×QK , m ∈
N0} ⊂ I := Z × N0. Abbreviating additionally

U±λ (x) := Ψ±λ (x) e2πij·x/ε , (2.8)

we may write the formulas of Lemma 2.5 as

u(x) =
∑

λ=(j,m)∈IK

α±λ Ψ±λ (x) e2πij·x/ε =
∑
λ∈IK

α±λU
±
λ (x) . (2.9)
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The expansion holds for the basis functions U+
λ with coefficients α+

λ and for the basis functions U−λ with
coefficients α−λ . Moreover, due to L2-orthonormality of the functions U±λ , with h = εK and KYε = (0, h)× (0, h),

1

(εK)2
‖u‖2L2(KYε)

=
∑
λ∈IK

|α±λ |
2 . (2.10)

3. Outgoing wave condition

3.1. Poynting numbers and projections

Let λ = (j,m) ∈ I be an index and let U±λ be the corresponding Bloch function. Denoting by e1 = (1, 0) ∈ R2

the first unit vector, we connect to λ ∈ I the real numbers

P+
λ := Im−

∫
Yε

Ū+
λ (x) e1 ·

[
aε(x)∇U+

λ (x)
]

dx ,

P−λ := Im−
∫
Yε

Ū−λ (x) e1 · ∇U−λ (x) dx . (3.1)

The number P+
λ is related to the Poynting vector of the Bloch eigenfunction U+

λ . It corresponds (up to a positive
constant) to the horizontal group velocity of this eigenfunction and measures its energy flux in horizontal
direction: In the case P+

λ > 0, the energy of the wave is travelling to the right, in the case P+
λ < 0, the energy

of the wave is travelling to the left.
Let us point out the relation to Maxwell’s equations: If u denotes the out-of-plane magnetic field, i.e.H =

(0, 0, u), then the electric field is (E1, E2, 0) with E1 = (−iωε)−1∂2u and E2 = (iωε)−1∂1u where ε is the
permittivity of the medium. The complex Poynting vector is P = 1

2E × H̄, so the real part of its horizontal
component is Re(e1 · P ) = Re( 1

2H̄3E2) = (2ω)−1Re(−i ū ε−1∂1u) = (2ω)−1Im(ū a∂1u), where we used that the
coefficient a = ε−1 is the inverse permittivity. Our expression in (3.1) coincides up to the factor 2ω with an
integral of this expression. Since P represents a local energy flux, the physical quantity of a total energy flux is
a surface integral over P . In fact, for solutions Uλ of a Helmholtz equation, the surface integral is independent
of the position of the surface. Hence our volume integral in (3.1) indeed coincides with the physical quantity of
a surface integral.

The index set for λ: In our construction, we fix the height h > 0 of the domain and the periodicity length
ε = h/K, the Bloch expansion is performed in this fixed geometry. As a consequence, we consider only indices
λ = (j,m) ∈ IK , the frequency parameter j must lie in the discrete set QK ×QK ⊂ Z. On the other hand, for
arbitrary j ∈ Z, we can still consider the functions Ψ±j,m and U±λ . They do not depend on K, hence also the

values P±λ are independent of K.

Definition 3.1 (Index sets and projections). We define the set of indices corresponding to right-going waves
in x1 > 0 as

I+>0 :=
{
λ ∈ I | P+

λ > 0
}
. (3.2)

The index sets I−>0, I±<0, I±≥0, I±≤0, I±=0 are defined accordingly.

For K ∈ N we define the projections Π±>0 as follows: Let u ∈ L2(KYε;C) be a function with the discrete
Bloch expansion

u(x) =
∑
λ∈IK

α±λU
±
λ (x) .
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Then we set

Π±>0u(x) :=
∑

λ∈IK∩ I±>0

α±λU
±
λ (x) .

With this definition, Π±>0 are the projections onto right-going Bloch-waves. The projections Π±<0,Π
±
≥0, Π±≤0, and

Π±=0 are defined accordingly.
For k2 ∈ QK and l ∈ N0, the “vertical” projection Πvert,±

k2
and the “eigenvalue” projection Πev,±

l are defined
by

Πvert,±
k2

u(x) :=
∑

λ∈{(j,m)∈IK | j2=k2}

α±λU
±
λ (x) ,

Πev,±
l u(x) :=

∑
λ∈{(j,m)∈IK |m=l}

α±λU
±
λ (x) .

Note that the projections Πvert,±
k2

of the discrete Bloch expansion indeed coincide with the projection Πvert
k2

of the corresponding vertical pre-Bloch expansion of Definition 2.2. The vertical projection is independent of K
in the sense that a periodically extended u with a larger value of K has the same projection, compare Remark
2.3.

3.2. Bloch expansion at infinity and outgoing wave condition

We can now formulate the outgoing wave condition for a solution u of the Helmholtz equation (1.1). The
loose description of our outgoing wave condition (on the right) is: The Bloch expansion of u does not contain
Bloch waves that transport energy to the left.

For a rigorous definition we must deal with the problem that u is not necessarily periodic in x1-direction.
Our solution to this problem is to consider u on large domains (which reduces the effects of non-periodicity)
and to employ a truncation procedure. Furthermore, we want to formulate a condition that characterizes u for
large values of x1. For these two reasons, we consider u(x1, x2) for x1 ∈ (Rε, 2Rε) with a large natural number
R >> K.

In order to construct a function on a large domain, we consider the periodic extension of u in vertical direction
and restrict afterwards the function to a large rectangle. For convenience of notation, we restrict our analysis
to squares.

Definition 3.2 (Bloch expansion far away from the interface). Let u ∈ L2
loc(R × (0, h);C) be a function on

the infinite strip with height h = εK. Let R ∈ NK be a multiple of K. We define ũ : R2 → C as the h-periodic
extension of u in x2-direction. We furthermore define functions u±R : RYε → C by

u+R(x1, x2) := ũ(Rε+ x1, x2) , (3.3)

u−R(x1, x2) := ũ(−2Rε+ x1, x2) . (3.4)

We use the discrete Bloch expansions of the functions u±R ∈ L2
] (RYε;C),

u±R(x) =
∑
λ∈IR

α±λ,RU
±
λ (x) . (3.5)

The coefficients (α±λ,R)λ∈I encode the behavior of u for large values of |x1|.
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We are now in the position to define the outgoing wave condition for a solution u to the Helmholtz equation,
using the short notation −

∫
RYε

f := 1
|RYε|

∫
RYε

f for averages of functions.

Definition 3.3 (Outgoing wave condition). For K ∈ N, h = Kε, and R ∈ NK, we consider u ∈ L2
loc(R ×

(0, h);C). We say that u satisfies the outgoing wave condition on the right if the following two conditions are

satisfied:
∫ h
0

∫ L+1

L
|u|2 is bounded, independently of L ≥ 0, and

−
∫
RYε

∣∣Π+
<0(u+R)

∣∣2 → 0 as R→∞ . (3.6)

Accordingly, we say that u satisfies the outgoing wave condition on the left, if
∫ h
0

∫ L
L−1 |u|

2 is bounded,
independently of L ≤ 0, and if

−
∫
RYε

∣∣Π−>0(u−R)
∣∣2 → 0 as R→∞ . (3.7)

Let us repeat the idea of condition (3.6): The function u is considered at the far right by construcing u+R as
in Definition 3.2. This function is projected onto the space of left-going waves. We demand that the L2-averages
of the resulting functions Π+

<0(u+R) vanish in the limit R→∞.
With the expansion (3.5) we can write condition (3.6) equivalently as:∑

λ∈IR∩ I+<0

|α+
λ,R|

2 → 0 as R→∞ . (3.8)

Our aim is to show that this definition of an outgoing wave condition implies uniqueness properties for the
scattering problem.

We note that the uniform L2-bounds for large values of |L| imply, for solutions u of the Helmholtz equation,
also uniform bounds for gradients, see Lemma A.3 in Appendix A.

3.3. Truncations and m ≥ 1-projections

In the outgoing wave condition, we study the limit |x1| ∼ R → ∞ and the functions u±R on large squares
WR := RYε = (0, Rε)2 with |WR| = (εR)2. As a measure for typical values of a function v we use L2-averages
on WR and the corresponding scalar product,

〈v, w〉R := −
∫
WR

v · w̄ . (3.9)

In the following we denote by L0 = L+
0 = −∇ · (aε∇) the elliptic operator of (2.7). As above, we denote

cubes by WR = RYε and, by slight abuse of notation, we write WR−1 := ε(1, R − 1)2 for a smaller cube that
has the point ε(1, 1) as its bottom left corner and ε(R − 1, R − 1) as its top right corner. We use a family of
smooth cut-off functions η := ηR with the properties

ηR ∈ C∞(WR;R), ηR = 1 on WR−1, ‖∇ηR‖∞ ≤ C0, ‖∇2ηR‖∞ ≤ C0 (3.10)

for some R-independent constant C0 (ε > 0 is fixed), and with compact support in (0, Rε) × (0, Rε)], where
(0, Rε)] indicates the interval with identified end points. The latter requirement admits sequences η with compact
support in (0, Rε) × (0, Rε), but also sequences of vertically periodic functions η, in particular functions η =
η(x1). In the subsequent proofs we do not indicate the R-dependence of ηR and write only η. We furthermore
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omit the superscripts ±, the eigenvalue corresponding to λ = (j,m) is denoted by µλ = µm(j). Constants are
allowed to depend on ε > 0.

Lemma 3.4 (The effect of truncations). For R ∈ N let η = ηR be a family of cut-off functions satisfying (3.10).
Let vR and wR be sequences of functions in L2(WR;C) with vR ∈ H2(WR;C). We assume that certain averages
over boundary strips are bounded:

1

R

∫
WR\WR−1

|vR|2 + |∇vR|2 ≤ C0 ,
1

R

∫
WR\WR−1

|wR|2 ≤ C0 , (3.11)

with C0 independent of R. Then, with a constant C that is independent of R:

1. Application of L0 to a truncated function:

−
∫
WR

|L0(vR)η − L0(vRη)|2 = −
∫
WR

∣∣∣∣∣L0(vR)η −
∑
λ∈IR

µλ〈vRη, Uλ〉R Uλ

∣∣∣∣∣
2

≤ C

R
. (3.12)

2. If Π is one of the projections of Definition 3.1, then

−
∫
WR

|Π(wR)−Π(wR η)|2 ≤ −
∫
WR

|wR − wR η|2 ≤
C

R
. (3.13)

Proof. In the following, the letter C denotes different constants, possibly varying from one line to the next, but
always independent of R. To prove (3.12), we expand the L2-function L0(vR)η in Bloch-waves. The following
calculation uses several times integration by parts; due to the η-factor, no boundary integrals occur. In the first
equation we use that the coefficient αλ in the expansion of L0(vR)η is obtained by taking the scalar product
with Uλ (orthonormality of the Uλ).

L0(vR)η =
∑
λ∈IR

〈L0(vR)η, Uλ〉R Uλ =
∑
λ∈IR

〈vR,L0(ηUλ)〉R Uλ

=
∑
λ∈IR

(〈vRη,L0Uλ〉R + 〈vRL0(η), Uλ〉R − 2 〈vR aε∇η,∇Uλ〉R)Uλ

=
∑
λ∈IR

(µλ 〈vRη, Uλ〉R − 〈vRL0(η), Uλ〉R + 2 〈∇vR · aε∇η, Uλ〉R)Uλ

=

(∑
λ∈IR

µλ 〈vRη, Uλ〉R Uλ

)
− vRL0(η) + 2aε∇vR · ∇η ,

where in the third equality we exploited L0Uλ = µλUλ and µλ ∈ R. The contribution of the last two terms can
be estimated by

−
∫
WR

|vR L0(η)|2 + |2aε∇vR · ∇η|2

≤ ‖L0(η)‖2L∞(WR)−
∫
WR

|vR|21{supp(∇η)} + ‖2aε∇η‖2L∞(WR)−
∫
WR

|∇vR|21{supp(∇η)}

≤ C

R2

(∫
WR\WR−1

|vR|2 +

∫
WR\WR−1

|∇vR|2
)
≤ C

R
.
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In the second inequality we exploited supp(∇η) ⊂ (WR \WR−1), in the last inequality we used the uniform
bounds (3.11). This proves the inequality in (3.12).

Regarding the equality in (3.12) we have to verify that the formal equality L0w =
∑
λ µλ〈w,Uλ〉R Uλ holds

for functions w ∈ H2(WR) with vanishing boundary data. We find this from

〈L0w,Uλ〉
(!)
= 〈w,L0Uλ〉 = µλ〈w,Uλ〉 , (3.14)

where we used in the marked equality that boundary terms vanish.
Inequality (3.13) is a direct consequence of linearity and norm-boundedness of the projections:

−
∫
WR

|ΠwR −Π(wR η)|2 = −
∫
WR

|Π(wR(1− η))|2 ≤ −
∫
WR

|wR(1− η)|2 ≤ C

R2

∫
WR\WR−1

|wR|2 ≤
C

R
.

This concludes the proof.

3.3.1. A warning concerning the non-periodicity of truncated solutions

Let u be a vertically periodic solution of the Helmholtz equation on R × (0, h) and let u+R be defined as in
Definition 3.2. Then u+R is a solution of the Helmholtz equation on the open square WR = RYε. But u+R is not
a periodic solution on the square (since it is not periodic in horizontal direction).

This fact implies that certain formal calculations are wrong: Let u+R have the Bloch expansion u+R =∑
λ∈IR αλU

+
λ for some coefficients αλ (every L2-function possesses such an expansion). Then, in general, the

following identity fails to hold:

L0

∑
λ∈IR

αλU
+
λ

(?)
=
∑
λ∈IR

αλL0(U+
λ ).

To see this, let us assume that the relation (?) holds. Then the Helmholtz equation provides
∑
λ∈IR ω

2αλU
+
λ =

ω2u+R = L0u
+
R = L0

∑
λ∈IR αλU

+
λ

(?)
=
∑
λ∈IR αλL0(U+

λ ) =
∑
λ∈IR αλµ

+
λU

+
λ . Uniqueness of the Bloch expansion

implies αλ(ω2 − µ+
λ ) = 0 for every λ ∈ IR, hence αλ = 0 for every λ with µ+

λ 6= ω2. We conclude that the Bloch
expansion of u+R contains only contributions from those basis functions U+

λ with µ+
λ = ω2.

This is a contradiction for general solutions u: Let ω be a frequency such that ω2 is not contained in the
discrete set of (µ+

λ )λ∈IR . Let furthermore u be a non-vanishing Bloch wave for the frequency ω. Then the
expansion of u does not use only αλ = 0, a contradiction.

Lemma 3.5 (Contributions from energy levels m ≥ 1). Let ω satisfy the smallness condition (1.7) of
Assumption 1.1. Let u ∈ L2

loc(R× (0, h);C) be a vertically periodic solution of the Helmholtz equation L0u = ω2u
satisfying the uniform L2-bounds of Definition 3.3. Let η = ηR be a family of cut-off functions as in (3.10).
Then, with a constant C that is independent of R:

−
∫
WR

∣∣∣Πev,±
m≥1(u±R)

∣∣∣2 ≤ C

R
and −

∫
WR

∣∣∣Πev,±
m≥1(u±R η)

∣∣∣2 ≤ C

R
. (3.15)

Proof. We perform the proof for the superscript “+”. Relation (3.13) applied to u+R provides

−
∫
WR

∣∣∣Πev,+
m≥1(u+R)−Πev,+

m≥1(u+R η)
∣∣∣2 ≤ C

R
.



1928 A. LAMACZ AND B. SCHWEIZER

Indeed, by the uniform L2-bounds of u, the condition 1
R

∫
WR\WR−1

|u+R|2 ≤ C0 with C0 independent of R is

satisfied. The above inequality implies that it is sufficient to show only one of the two relations in (3.15), we
show the second.

We now exploit Assumption 1.1. Due to (1.7), there exists δ > 0 such that |ω2 − µλ|2 ≥ δ for all λ = (j,m)
with m ≥ 1. We therefore find

δ−
∫
WR

∣∣∣Πev,+
m≥1(u+R η)

∣∣∣2 = δ
∑

λ=(j,m)∈IR
m≥1

∣∣〈u+R η, Uλ〉R∣∣2 ≤ ∑
λ=(j,m)∈IR

m≥1

∣∣(ω2 − µλ)〈u+R η, Uλ〉R
∣∣2

≤
∑
λ∈IR

∣∣〈ω2u+R η, Uλ
〉
R
−
〈
µλu

+
R η, Uλ

〉
R

∣∣2 =
∑
λ∈IR

∣∣〈L0(u+R) η, Uλ
〉
R
−
〈
µλu

+
R η, Uλ

〉
R

∣∣2
= −
∫
WR

∣∣∣∣∣L0(u+R)η −
∑
λ∈IR

µλ〈u+Rη, Uλ〉R Uλ

∣∣∣∣∣
2

≤ C

R
.

In the second line we used that L0(u+R) = ω2u+R holds pointwise almost everywhere in WR. In the last inequality
we used (3.12), exploiting the uniform H1-bounds provided by Lemma A.3. This concludes the proof.

3.4. Other radiation conditions and the sesquilinear form b±R
In this section we discuss how our radiation condition simplifies in the case of a homogeneous medium. We

furthermore show that the radiation condition suggested by Fliss and Joly in [16] is formally stronger than our
condition: Every solution that satisfies the condition of [16] satisfies also our condition. Finally, we introduce
the sesquilinear form b±R, which plays a major role in our proofs. The form b±R can also be used to introduce an
even weaker form of the outgoing wave condition.

3.4.1. In free space, Bloch expansions are Fourier expansions

Let us study the outgoing wave condition in a homogeneous medium. This is our situation for x1 < 0,
indicated with the superscript “−”. In a homogeneous medium, the Bloch waves are harmonic waves. This
allows to give explicit formulas for some quantities and, in particular, for the outgoing wave condition.

Remark 3.6 (Basis functions and Poynting numbers in a homogeneous medium). The functions Ψ−j,m are

ε-periodic eigenfunctions of the operator L−j = − (∇+ 2πij/ε) · (∇+ 2πij/ε). As such, for fixed j ∈ Z, they

are harmonic waves, {Ψ−j,m |m ∈ N0} = {e2πik·x/ε | k ∈ Z2}. More precisely, for every j ∈ Z and every m ∈ N,

there exists a wave-number k = k(j,m) ∈ Z2 such that

Ψ−j,m(x) = e2πik·x/ε , µ−m(j) = 4π2 |k + j|2

ε2
. (3.16)

Accordingly, for λ = (j,m), we have U−λ (x) = e2πi(k+j)·x/ε, and the Poynting number is

P−λ = Im−
∫
Yε

Ū−λ (x)e1 · ∇U−λ (x) dx =
2π

ε
(k1 + j1) .

In particular, for the first energy level, λ = (j, 0), we find

k = k(j, 0) ∈ argmin
k∈Z2

|k + j|2 ,
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and thus, for j = (j1, j2) with j1 6= 1
2 :

ε

2π
P−(j,0) = j1 + argmin

k1∈Z
|k1 + j1|2 =

{
j1 for j1 ∈ [0, 12 ),

j1 − 1 for j1 ∈ ( 1
2 , 1].

(3.17)

The wave U−(j,0) is right-going in the sense of Definition 3.1 if and only if j1 ∈ [0, 12 ).

Remark 3.7 (Outgoing wave condition in a homogeneous medium). Let u−R be as in Definition 3.2. Remark 3.6
implies that, for every index λ = (j,m) ∈ IR, there exists an index k = k(λ) ∈ Z2 with U−λ (x) = e2πi(k+j)·x/ε =
e2πiR(k+j)·x/Rε. Using the shorthand notation l(λ) := R (k(λ) + j) ∈ Z2, the Bloch expansion of u−R can be
rewritten as a Fourier expansion,

u−R(x) =
∑
λ∈IR

α−λ,RU
−
λ (x) =

∑
λ∈IR

α−λ,R e
2πil(λ)·x/Rε .

By Remark 3.6, the basis function U−λ (x) is right-going in the sense of Definition 3.1 if and only if l1(λ) > 0.
This simplifies the radiation condition: The function u with the truncations u−R on the left satisfies the outgoing
wave condition (3.7) if and only if ∑

λ∈IR
l1(λ)>0

|α−λ,R|
2 → 0 as R→∞ . (3.18)

We emphasize that, in order to evaluate the radiation condition, the map l : IR → Z2 need not be evaluated
(we know that it is bijective). By expanding u−R in a classical Fourier series, u−R(x) =

∑
l∈Z2 β

−
l,R e

2πil·x/Rε with

some coefficients β−l,R, the outgoing wave condition (3.18) is equivalent to
∑

l∈Z2
l1>0

|β−l,R|2 → 0 as R→∞.

3.4.2. Comparison to the outgoing wave condition of Fliss and Joly [16]

We claim that the outgoing wave condition of Fliss and Joly is formally stronger than our condition. More
precisely: Every solution u that satisfies the radiation condition (1.5) of [16] satisfies also our radiation condition
(3.6) (we restrict the considerations here to the right side x1 → +∞). Indeed, let u be as in (1.5), i.e. a finite
sum of right-going Bloch-waves plus an exponentially decaying remainder w+(x). In order to check (3.6) for u,
it suffices to verify, for each of the finitely many terms, the smallness of its Π+

<0-projection. The smallness of the
projection of w+(x) is clear because of the exponential decay of w+(x) and the boundedness of the projection
operator. The smallness of the projection for each of the Bloch waves is shown in the subsequent lemma.

Since the expansion (1.5) contains only vertically periodic waves with frequency ω that are outgoing, we
restrict our analysis to such Bloch-waves U+

λ .

Lemma 3.8 (Right-going Bloch waves satisfy the radiation condition). Let K ∈ N denote the number of period-
icity cells in vertical direction and let U+

λ be a Bloch wave with λ = (j,m) ∈ Z×N0, j2 ∈ QK = {0, 1
K , ...,

K−1
K },

µ+
m(j) = ω2, and P+

λ > 0. We impose that the frequency ω satisfies Assumption 1.1 (hence m = 0). Then, as
NK 3 R→∞:

−
∫
RYε

∣∣Π+
<0((U+

λ )+R)
∣∣2 → 0 , (3.19)

−
∫
RYε

∣∣∣Π+
≥0((U+

λ )+R)
∣∣∣2 → 1 . (3.20)
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Proof.
Step 1: Equivalence of (3.19) and (3.20). By L2-orthogonality of the projections we can calculate

1 = −
∫
RYε

|(U+
λ )+R|

2 = −
∫
RYε

∣∣∣Π+
≥0((U+

λ )+R)
∣∣∣2 +−

∫
RYε

∣∣Π+
<0((U+

λ )+R)
∣∣2 ,

which yields the equivalence of (3.19) and (3.20).

Step 2: Proof of (3.19). Let λ = (j,m) = (j, 0) be as in the lemma. Arguing exactly as in Lemma 3.5 we
conclude that contributions from energy levels m ≥ 1 are negligible,

−
∫
RYε

∣∣∣Πev,+
m≥1((U+

λ )+R)
∣∣∣2 → 0 as R→∞.

Consequently, for the weighted L2-norm of Π+
<0((U+

λ )+R) we calculate

−
∫
RYε

∣∣Π+
<0((U+

λ )+R)
∣∣2 =

∑
λ̃∈IR∩I+<0

∣∣〈(U+
λ )+R, Uλ̃〉R

∣∣2 =
∑

λ̃∈IR∩I
+
<0

m̃=0

∣∣〈(U+
λ )+R, Uλ̃〉R

∣∣2 + o(1)

=
∑

λ̃∈IR∩I
+
<0

m̃=0, j̃2=j2

∣∣〈(U+
λ )+R, Uλ̃〉R

∣∣2 + o(1) as R→∞.

In the last line we exploited that due to j2 ∈ QR all scalar products with j̃2 6= j2 vanish. Next we show that
there exists a constant C = C(λ) > 0 such that

∣∣〈(U+
λ )+R, Uλ̃〉R

∣∣ ≤ C

R
(3.21)

for all λ̃ = (j̃, 0) ∈ IR ∩ I+<0 with j̃2 = j2. Indeed, a direct calculation analogous to that of Lemma A.1 yields

〈(U+
λ )+R, Uλ̃〉R = e−2πij1R

C(λ, λ̃)

R

1− e2πi(j̃1−j1)R

1− e2πi(j̃1−j1)

with C(λ, λ̃) := −
∫
(0,ε)2

Ψ+
λ Ψ̄+

λ̃
e2πi(j̃1−j1)y1/εdy . In particular |C(λ, λ̃)| ≤ 1 and therefore

∣∣〈(U+
λ )+R, Uλ̃〉R

∣∣ ≤ 1

R

∣∣∣∣∣1− e2πi(j̃1−j1)R1− e2πi(j̃1−j1)

∣∣∣∣∣ ≤ 1

R

2∣∣∣1− e2πi(j̃1−j1)∣∣∣ . (3.22)

We now exploit P+
λ > 0. The eigenvalue µ+

0 (j) is simple, hence the Poynting number P+
λ = P+

(j,0) is continuous

in the wave number j. One thus finds a positive constant δ = δ(λ) > 0 such that∣∣∣1− e2πi(j̃1−j1)∣∣∣ > δ

for all λ̃ = (j̃, 0) ∈ IR ∩ I+<0 with j̃2 = j2. Together with (3.22) this yields the claim (3.21) with C = 2
δ .
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With estimate (3.21) at hand we conclude

−
∫
RYε

∣∣Π+
<0((U+

λ )+R)
∣∣2 ≤ C2

R2

∣∣∣{λ̃ = (j̃, 0) ∈ IR ∩ I+<0 with j̃2 = j2

}∣∣∣+ o(1) ≤ C2

R
+ o(1)→ 0 as R→∞ ,

which was the claim.

3.4.3. The sesquilinear form b±R
Let η = ηR be a family of cut-off functions as in (3.10). In view of Relation (3.13) of Lemma 3.4, the

outgoing wave conditions (3.6) and (3.7) are equivalent to outgoing wave conditions for the truncated functions
u±R,η := u±R η. More precisely, they are equivalent to the conditions

−
∫
WR

∣∣∣Π+
<0(u+R,η)

∣∣∣2 → 0 and −
∫
WR

∣∣∣Π−>0(u−R,η)
∣∣∣2 → 0 as R→∞ . (3.23)

In the proof of our uniqueness result we will use (3.23) instead of the original conditions (3.6) and (3.7). In fact,
even a weaker form of the conditions is sufficient and we discuss this relaxation in the following.

Corresponding to the energy flux definition in (3.1), we associate to a function w ∈ H1(WR;C) on WR = RYε
the Poynting number

B+
R(w) := Im−

∫
WR

w̄(x)e1 · [aε(x)∇w(x)] dx . (3.24)

The quadratic expression B−R is defined analogously, with aε(x) replaced by 1.

Definition 3.9 (Weaker form of the outgoing wave condition). For K,R ∈ N with R ∈ KN we consider
u ∈ H1

loc(R× (0, εK);C) and u±R,η as in (3.23). We say that u satisfies the energetic outgoing wave condition on
the right, if

B+
R

(
Π+
<0Πev,+

m=0(u+R,η)
)
→ 0 as R→∞ . (3.25)

Accordingly, we say that u satisfies the energetic outgoing wave condition on the left, if

B−R

(
Π−>0Πev,−

m=0(u−R,η)
)
→ 0 as R→∞ . (3.26)

In two respects, the condition (3.25) is similar to the condition (3.23): the function u is considered at
the far right since only u+R,η is used. In view of Lemma 3.5, contributions from energy levels m ≥ 1 can be

neglected and we consider only Πev,+
m=0(u+R,η). Furthermore, this function is projected to left-going waves, i.e. only

Π+
<0Πev,+

m=0(u+R,η) is studied. The main difference between the two conditions is that, instead of looking at the

weighted L2-norm, one demands in (3.25) a decay property for the energy-flux quantity B+
R . At the end of

this section, we will see that condition (3.23) (together with the uniform L2-bounds and the solution property)
implies (3.25).



1932 A. LAMACZ AND B. SCHWEIZER

The definition of B+
R in (3.24) suggests to introduce additionally the (nonsymmetric) sesquilinear forms

b±R : L2(WR;C)×H1(WR;C)→ C,

b+R(u, v) := −
∫
WR

ū(x) e1 · [aε(x)∇v(x)] dx ,

b−R(u, v) := −
∫
WR

ū(x) e1 · ∇v(x) dx . (3.27)

The definition is tailored to calculate energy fluxes. The energy flux of the left-going contributions of u+R,η (in
the right half-plane) is quantified by

B+
R(Π+

<0u
+
R,η) = Im b+R

(
Π+
<0u

+
R,η,Π

+
<0u

+
R,η

)
= Im−

∫
WR

Π+
<0u

+
R,η(x)e1 ·

[
aε(x)∇(Π+

<0u
+
R,η)(x)

]
dx .

The connection to P±λ is given by

P±λ = B±R (U±λ ) = Im b±R
(
U±λ , U

±
λ

)
. (3.28)

Let us collect some properties of the sesquilinear forms b±R.

Lemma 3.10 (Properties of the sesquilinear form b±R). For R ∈ N, the following holds:

1. Orthogonality property of b±R. Let λ, λ̃ ∈ IR be such that λ = (j,m), λ̃ = (j̃, m̃) with j 6= j̃. Then U±λ , U
±
λ̃

of (2.8) satisfy

b±R(U±λ , U
±
λ̃

) = 0 . (3.29)

2. Convergence property of b±R. Let sequences uR ∈ L2(WR;C) and vR ∈ H1(WR;C) be such that

−
∫
WR

|uR|2 + |∇vR|2 ≤ C0 (3.30)

with C0 independent of R. Let either −
∫
WR
|uR|2 → 0 or −

∫
WR
|∇vR|2 → 0 as R→∞. Then there holds

b±R(uR, vR)→ 0 . (3.31)

Proof. 1. We prove (3.29) for U+
λ , U

+

λ̃
, the argument for U−λ , U

−
λ̃

is analogous. We have to show that

b+R(U+
λ , U

+

λ̃
) = −

∫
WR

U+
λ (x) e1 ·

[
aε(x)∇U+

λ̃
(x)
]

dx
!
= 0 .

By definition of U+
λ and U+

λ̃
there holds

U+
λ (x) = Ψ+

λ (x)e−i2πj·x/ε,

∇U+

λ̃
(x) =

[
∇Ψ+

λ̃
(x) + (i2πj̃/ε) Ψ+

λ̃
(x)
]
ei2πj̃·x/ε

with ε-periodic functions Ψ+
λ , Ψ+

λ̃
, and ∇Ψ+

λ̃
. Due to the ε-periodicity of aε and since j, j̃ ∈ QR satisfy j 6= j̃,

we can apply Lemma A.1 of Appendix A, which yields the claim.
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2. We show the claim for b+R, the argument for b−R is analogous. The Cauchy–Schwarz inequality allows to
calculate

∣∣b+R(uR, vR)
∣∣ =

∣∣∣∣−∫
WR

ūR(x) e1 · [aε(x)∇vR(x)] dx

∣∣∣∣ ≤ ‖aε‖∞(−∫
WR

|uR|2
)1/2(

−
∫
WR

|∇vR|2
)1/2

→ 0 as R→∞ ,

which concludes the proof.

Lemma 3.10 shows that the outgoing wave condition (3.23) together with the L2-bounds of Definition 3.3
imply (3.25). Indeed, by (3.23), there holds

−
∫
WR

∣∣∣Π+
<0Πev,+

m=0(u+R,η)
∣∣∣2 ≤ −∫

WR

∣∣∣Π+
<0(u+R,η)

∣∣∣2 → 0 as R→∞ .

Moreover, Π+
<0Πev,+

m=0(u+R,η) satisfies −
∫
WR
|∇
(

Π+
<0Πev,+

m=0(u+R,η)
)
|2 ≤ C with C independent of R due to Lemma

A.3 and Lemma A.4 of Appendix A. Lemma 3.10 provides

B+
R

(
Π+
<0Πev,+

m=0(u+R,η)
)

= Im b+R

(
Π+
<0Πev,+

m=0(u+R,η),Π+
<0Πev,+

m=0(u+R,η)
)
→ 0 as R→∞ ,

and hence (3.25).

Remark 3.11 (On the sesquilinear form b±R). Another choice of a bilinear form is

b̃+R(u, v) :=
1

2
−
∫
WR

{
ū(x) e1 · [aε(x)∇v(x)]− v(x) e1 · [aε(x)∇ū(x)]

}
dx . (3.32)

With this choice, the energy flux B±R can be calculated as before, since Im b+R(u, u) = Im b̃+R(u, u) holds for
every u. The properties of Lemma 3.10 remain also unchanged, the only additional requirement would be an
H1-bound also for uR in (3.30).

The advantage of b̃+R(u, v) is that more orthogonality can be expected for b̃+R than for b+R. Essentially, the

bilinear form q of (27) in [16] coincides with b̃+R (up to a factor 2, our coefficient aε, and the fact that we use
a volume integral for the averaging). In Theorem 3 of [16], an orthogonality property is shown for q, which
resembles our orthogonality relation (3.29), stating that orthogonality holds also for λ = (j,m) and λ̃ = (j, m̃)
with m 6= m̃. Unfortunately, such an orthogonality is only true for basis functions corresponding to the same
frequency ω, while our analysis of an interface would require orthogonality independent of the frequency.

4. Bloch measures and uniqueness properties

Our aim is to show uniqueness properties of the transmission Problem 1.2 with incoming wave Uinc and
outgoing wave conditions. Following the standard procedure of uniqueness proofs, we consider two solutions u
and ũ of the problem. Due to linearity of the system, the difference v := u− ũ satisfies again (1.1). Furthermore,
it satisfies outgoing wave conditions on the left and on the right according to Definition 3.3, without any
incoming wave Uinc. At this point, we have exploited the triangle inequality: Certain projections of u and ũ tend
to zero in a weighted L2-norm, hence also the projections of v tend to zero. We can not show that v vanishes
(indeed, as explained in the introduction, we expect that there exist nontrivial solutions for vanishing Uinc).
But we can show that the functions v±R consist, in the limit R→∞, only of vertical waves. The right object to
study is the Bloch measure associated with v±R .

We recall that the frequency assumption (1.7) implies that, in the limit R→∞, the discrete Bloch expansions
of u±R contain only modes corresponding to λ = (j,m) with m = 0, see Lemma 3.5.
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4.1. Bloch measures

In the definition of Bloch measures we use the space of all Radon measures on the unit square Z, which
we denote as M(Z). It is the dual of the space of continuous functions on Z and accordingly equipped with
the topology of weak-∗ convergence. This means, in particular, that every bounded sequence in M(Z) has a
convergent subsequence.

Definition 4.1 (Discrete Bloch measure). Let uR ∈ L2(WR;C) be a sequence of functions with discrete Bloch-
expansions

uR(x) =
∑
λ∈IR

α±λU
±
λ (x) ,

where α±λ = α±λ (R) depend on R ∈ N. Given these coefficients, for fixed l ∈ N0, we define the l-th discrete
Bloch-measure ν±l,R ∈M(Z) by

ν±l,R :=
∑

λ=(j,l)∈IR

|α±λ |
2 δj , (4.1)

where δj denotes the Dirac measure at the frequency j ∈ Z.

For uR fixed, ν±l,R is a non-negative Radon measure on Z = [0, 1]2. There holds

∞∑
l=0

∫
Z

dν±l,R =
∑
λ∈IR

|α±λ |
2 = −

∫
WR

|uR|2 . (4.2)

Our aim is to study the limiting behavior R→∞ of the discrete Bloch measures ν±l,R.

Definition 4.2 (Bloch measure). For ε > 0, K ∈ N and h = Kε, let u be a function u ∈ L2
loc(R × (0, h);C).

We consider a sequence NK 3 R→∞. We extract u±R,η := u±R η according to Definition 3.2 with a sequence of

cut-off functions η = ηR as in (3.10). For l ∈ N0, let ν±l,R be the discrete Bloch measures associated with u±R,η.

We say that the measure ν±l,∞ ∈M(Z) is a Bloch measure generated by u if there holds, along a subsequence
R→∞, in the sense of measures (i.e. weak-∗),

ν±l,R → ν±l,∞ . (4.3)

Relation (4.3) is equivalent to the following: for every test-function φ ∈ C(Z) on Z = [0, 1]2 there holds

∑
λ=(j,l)∈IR

φ(j)|α±λ |
2 =

∫
Z

φdν±l,R →
∫
Z

φdν±l,∞ as R→∞ .

The methods of Section 4.3 force us to work with cut-off functions, i.e. with u±R,η and with ν±l,R. Nevertheless,

one may also study the discrete Bloch measures ν̃±l,R associated to u±R (without cut-off function). In the limit
R→∞, the two measures coincide,

ν±l,R − ν̃
±
l,R → 0

in the sense of measures. In particular, the Bloch measure generated by u±R,η is independent of the choice of η.
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4.2. Energy estimates and consequences for the Bloch measure

Up to this point (with the exception of Lem. 3.5), our considerations have been completely abstract in the
following sense: Given a function u ∈ L2

loc(R × (0, h);C), we have constructed restrictions of u to large boxes,
projections of these restrictions, and finally discrete and limiting Bloch measures corresponding to u. Except
for regularity properties, we have not exploited the Helmholtz equation. In this section, we will derive relations
that express a physical law: energy conservation. This will eventually lead us to the uniqueness properties which
are expressed with the Bloch measures.

The subsequent result states that, while left-going waves on the right vanish by the outgoing wave condition,
right-going waves vanish by energy conservation.

Proposition 4.3. Let Assumption 1.1 on ω > 0 be satisfied and let v be a solution to the scattering problem
(1.1), periodic in vertical direction, satisfying outgoing wave conditions on the left and on the right according
to Definition 3.3, without incoming wave, i.e. Uinc ≡ 0. For a sequence of cut-off functions η = ηR as in (3.10)
we consider v±R,η := v±R ηR =

∑
λ∈IR α

±
λ,RU

±
λ , c.f. Definition 3.2. Then, as NK 3 R→∞,∑

λ=(j,0)

λ∈IR∩I
−
≤0

|α−λ,R|
2 P−λ → 0 and

∑
λ=(j,0)

λ∈IR∩I
+
≥0

|α+
λ,R|

2 P+
λ → 0 . (4.4)

Proof.
Step 1: Energy flux equality. For h = εK and R ∈ NK, we consider the special cut-off function ϑ(x) = ϑR(x),
defined for x = (x1, x2) as

ϑ(x) :=


1 if |x1| ≤ εR ,
2− |x1|

εR if εR < |x1| < 2εR ,

0 if |x1| ≥ 2εR .

We multiply the Helmholtz equation (1.1) with coefficients a = aε and solution v by the test-function ϑ(x) v(x).
An integration over R× (0, h) and integration by parts yields (no boundary terms appear due to periodicity in
x2-direction and compact support):∫

R

∫ h

0

{
aε ϑ |∇v|2 + aε ∂x1ϑ v ∂x1v

}
= ω2

∫
R

∫ h

0

ϑ |v|2 .

Due to the special choice of ϑ and aε(x) = 1 for x1 < 0, this equation reads

−
∫ −Rε
−2Rε

∫ h

0

v ∂x1
v −−

∫ 2Rε

Rε

∫ h

0

v aε∂x1
v =

∫
R

∫ h

0

{
ω2ϑ |v|2 − aε ϑ |∇v|2

}
.

On the left-hand side, we recognize the sesquilinear forms b±R of (3.27). Because of periodicity in x2-direction,
we may write

h
[
b−R
(
v−R , v

−
R

)
− b+R

(
v+R , v

+
R

)]
=

∫
R

∫ h

0

{
ω2ϑ |v|2 − aε ϑ |∇v|2

}
. (4.5)

Since the right hand side is real, taking the imaginary part of (4.5) yields

Im b−R
(
v−R , v

−
R

)
− Im b+R

(
v+R , v

+
R

)
= 0 . (4.6)



1936 A. LAMACZ AND B. SCHWEIZER

Relation (4.6) is an energy conservation: The energy flux into the domain from the left must coincide with the
energy flux out of the domain at the right.

Step 2: Truncations and (m ≥ 1)-waves. We start this part of the proof with an observation regarding the
cut-off functions; we want to have them in the argument of the sesquilinear form. Due to Lemma A.3 and the
properties of the cut-off functions η = ηR we have

−
∫
WR

|v±R − v
±
R,η|

2 + |∇v±R −∇v
±
R,η|

2 ≤ C

R
, (4.7)

and therefore, by Lemma 3.10,

b±R
(
v±R , v

±
R

)
− b±R

(
v±R,η, v

±
R,η

)
= b±R

(
v±R − v

±
R,η, v

±
R

)
+ b±R

(
v±R,η, v

±
R − v

±
R,η

)
→ 0 as R→∞ .

The energy conservation (4.6) therefore implies that, as R→∞,

Im b−R

(
v−R,η, v

−
R,η

)
− Im b+R

(
v+R,η, v

+
R,η

)
→ 0 . (4.8)

We next decompose the sesquilinear forms b±R according to the projections of Definition 3.1, and suppress
the superscript “±” in the projection. We exploit sesquilinearity of b+R in both arguments and write

Im b+R

(
v+R,η, v

+
R,η

)
= Im b+R

(
Πev
m≥1

(
v+R,η

)
, v+R,η

)
+ Im b+R

(
Πev
m=0

(
v+R,η

)
,Πev

m≥1

(
v+R,η

))
+ Im b+R

(
Πev
m=0

(
v+R,η

)
,Πev

m=0

(
v+R,η

))
. (4.9)

We want to exploit the smallness of m ≥ 1-contributions of Lemma 3.5. The regularity result of Lemma A.3
together with the properties of the sesquilinear form b+R of Lemma 3.10 yield that the first term on the right
hand side of (4.9) vanishes in the limit as R→∞. For the second term we apply Lemma A.4, which provides

that also the gradient of Πev
m≥1

(
v+R,η

)
is small; Lemma 3.10 implies

b+R

(
Πev
m=0

(
v+R,η

)
,Πev

m≥1

(
v+R,η

))
→ 0 as R→∞ ,

i.e. also the second term on the right hand side of (4.9) vanishes in the limit. We find that, as R→∞,

Im b+R

(
v+R,η, v

+
R,η

)
= Im b+R

(
Πev
m=0

(
v+R,η

)
,Πev

m=0

(
v+R,η

))
+ o(1) . (4.10)

Step 3: Energy flux and outgoing wave conditions. In this step we decompose Im b+R

(
Πev
m=0

(
v+R,η

)
,Πev

m=0

(
v+R,η

))
as follows:

Im b+R

(
Πev
m=0

(
v+R,η

)
,Πev

m=0

(
v+R,η

))
= Im b+R

(
Π+
<0Πev

m=0

(
v+R,η

)
,Π+

<0Πev
m=0

(
v+R,η

))
+Im b+R

(
Π+
<0Πev

m=0

(
v+R,η

)
,Π+
≥0Πev

m=0

(
v+R,η

))
+ Im b+R

(
Π+
≥0Πev

m=0

(
v+R,η

)
,Π+
≥0Πev

m=0

(
v+R,η

))
+Im b+R

(
Π+
≥0Πev

m=0

(
v+R,η

)
,Π+

<0Πev
m=0

(
v+R,η

))
= Im b+R

(
Π+
<0Πev

m=0

(
v+R,η

)
,Π+

<0Πev
m=0

(
v+R,η

))
+Im b+R

(
Π+
≥0Πev

m=0

(
v+R,η

)
,Π+
≥0Πev

m=0

(
v+R,η

))
, (4.11)
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where the last equality holds, since for λ = (j,m = 0) ∈ I+<0 and λ̃ = (j̃,m = 0) ∈ I+≥0 one always has j 6= j̃ and
thus the mixed sesquilinear forms vanish due to orthogonality in the wave number, cf. Lemma 3.10. Exploiting
the outgoing wave condition (3.23) on the right or, better, the weaker expression (3.25), we find that the first
term on the right hand side of (4.11) vanishes in the limit R→∞. Hence

Im b+R
(
Πev
m=0

(
v+R,η

)
,Πev

m=0

(
v+R,η

))
= Im b+R

(
Π+
≥0Πev

m=0

(
v+R,η

)
,Π+
≥0Πev

m=0

(
v+R,η

))
+ o(1) as R→∞ . (4.12)

We emphasize that we only used the energetic outgoing wave condition (3.25) in this calculation.
Combining (4.10) with (4.12) we finally obtain, as R→∞,

Im b+R
(
v+R,η, v

+
R,η

)
= Im b+R

(
Π+
≥0Πev

m=0

(
v+R,η

)
,Π+
≥0Πev

m=0

(
v+R,η

))
+ o(1) . (4.13)

Step 4: Consequences for outgoing waves. We analyze (4.13) further, exploiting the discrete Bloch expansion of v±R,η =∑
λ∈IR

α±λ,RU
±
λ :

Im b+R
(
Π+
≥0Πev

m=0

(
v+R,η

)
,Π+
≥0Πev

m=0

(
v+R,η

))
= Im

∑
λ=(j,0)∈IR∩I

+
≥0

∑
λ̃=(j̃,0)∈IR∩I

+
≥0

ᾱ+
λ,R α

+

λ̃,R
b+R
(
U+
λ , U

+

λ̃

)
=

∑
λ=(j,0)∈IR∩I

+
≥0

|α+
λ,R|

2 Im b+R
(
U+
λ , U

+
λ

)
=

∑
λ=(j,0)∈IR∩I

+
≥0

|α+
λ,R|

2 P+
λ .

In the last line we again exploited the orthogonality of the sesquilinear form b+R in the wave number j, see Lemma 3.10,
and the relation (3.28) for P±λ . We may therefore write (4.13) as

Im b+R
(
v+R,η, v

+
R,η

)
=

∑
λ=(j,0)∈IR∩I

+
≥0

|α+
λ,R|

2 P+
λ + o(1) .

On the left, we find similarly

Im b−R
(
v−R,η, v

−
R,η

)
=

∑
λ=(j,0)∈IR∩I

−
≤0

|α−λ,R|
2 P−λ + o(1) .

The energy relation (4.6) together with the sign properties P+
λ ≥ 0 for λ ∈ I+≥0 and P−λ ≤ 0 for λ ∈ I−≤0 allows to conclude

(4.4).

4.3. Proof of Theorems 1.3 and 1.6

We study solutions to the Helmholtz equation (1.1). In order to prove Theorems 1.3 and 1.6, we have to
check conditions that are satisfied by the support of Bloch measures of solutions. We recall the notation

J±=0,l = {j ∈ Z = [0, 1]2 |P±λ = 0 for λ = (j, l)}

for the index set corresponding to vertical waves.

Proof of Theorem 1.3. In the following, we consider solutions to the transmission Problem 1.2. We are interested
in a solution to the problem without incoming wave.

Proposition 4.4 (Solutions in absence of incoming waves). Let Assumption 1.1 on ω > 0 be satisfied and let v
be a solution to the scattering problem (1.1), periodic in vertical direction, satisfying outgoing wave conditions
on the left and on the right according to Definition 3.3, without incoming wave. Let ν±l,∞, with l ∈ N0, be Bloch
measures that are generated by v. Then

ν±l,∞ = 0 for l ≥ 1, (4.14)

supp(ν±0,∞) ⊂ J±=0,0 . (4.15)
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Proof. We only show the statement for the limiting Bloch measures ν+l,∞, the argument for ν−l,∞ is analogous.

Let v+R,η =
∑
λ∈IR α

+
λ,RU

+
λ be the expansion of the truncated solution. Then the corresponding discrete Bloch

measures are given by

ν+l,R =
∑

λ=(j,l)∈IR

|α+
λ,R|

2 δj .

The case l ≥ 1: From (3.15) we know that

−
∫
WR

∣∣∣Πev
m≥1(v+R,η)

∣∣∣2 =
∑

λ=(j,m)∈IR
m≥1

|α+
λ,R|

2 ≤ C

R
,

and hence ∫
Z

dν+l,R =
∑

λ=(j,l)∈IR

|α+
λ,R|

2 → 0 as R→∞ .

This shows ν+l,∞ = 0 for every l ≥ 1.

The case l = 0: We have to show supp(ν+0,∞) ⊂ J+
=0,0. To this end, we consider an arbitrary test function

φ ∈ C(Z) with

supp(φ) ⊂ {j ∈ Z |λ = (j, 0) ∈ I+<0 ∪ I
+
>0} .

The outgoing wave condition (3.6) and Proposition 4.3 yield, in the limit R→∞,∑
λ=(j,0)∈IR∩I+<0

|α+
λ,R|

2 → 0 and
∑

λ=(j,0)∈IR∩I+>0

|α+
λ,R|

2 P+
λ → 0 .

In the following we assume that supp(φ)∩ {j ∈ Z |λ = (j, 0) ∈ I+>0} 6= ∅, otherwise the proof simplifies. We find

c1 := inf
λ=(j,0)∈I+>0
j∈supp(φ)

P+
λ > 0 .

Without loss of generality, we assume φ ≥ 0 (otherwise we consider absolute values). For the limit R→∞ we
calculate ∫

Z

φdν+0,R =
∑

λ=(j,0)∈I+<0∩IR
j∈supp(φ)

|α+
λ,R|

2φ(j) +
∑

λ=(j,0)∈I+>0∩IR
j∈supp(φ)

|α+
λ,R|

2φ(j)

≤ ‖φ‖∞
∑

λ=(j,0)∈IR∩I+<0

|α+
λ,R|

2 + ‖φ‖∞
1

c1

∑
λ=(j,0)∈IR∩I+>0

|α+
λ,R|

2 P+
λ → 0 .

This shows (4.15) for “+”, since φ with support outside J+
=0,0 was arbitrary. The argument for “−” is analogous.

We next prove that, far away from the interface, solutions to the transmission problem contain only waves
that satisfy the frequency condition and the vertical periodicity.
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Proposition 4.5 (Bloch measures and frequency condition). Let Assumption 1.1 on ω > 0 be satisfied and let
v be a solution to the scattering problem (1.1), periodic in vertical direction, satisfying outgoing wave conditions
on the left and on the right according to Definition 3.3, with incoming wave Uinc or without incoming wave. Let
ν±0,∞ be the Bloch measure to l = 0 that is generated by v. Then

supp(ν±0,∞) ⊂
{
j ∈ Z|µ±0 (j) = ω2 , j2 ∈ Z/K

}
. (4.16)

Proof. Remark 2.3 implies that the discrete Bloch measures ν±l,R are supported on {j ∈ Z| j2 ∈ Z/K}. This

implies that also the limit measure ν±l,∞ are supported on this set.
In order to show (4.16), it remains to check the frequency condition; we proceed as in the last proof. Let

φ : Z → R be continuous and bounded with supp(φ) ∩ {j|µ0(j) = ω2} = ∅. Arguing with decompositions of the
domain of integration, we can consider separately a test-function φ ≥ 0 with the property φ(j) > 0⇒ µ0(j) > ω2

and a test-function φ̃ ≥ 0 with the property φ̃(j) > 0 ⇒ µ0(j) < ω2. The arguments are analogous and we
consider here only φ as above.

By continuity of φ we find some δ > 0 such that µ0(j)− ω2 ≥ δ for every j ∈ supp(φ). Our aim is to show
that

∫
Z
φdν+0,∞ = 0. By definition of the Bloch measure ν+0,∞ we have, as R→∞,

0 ≤ δ
∫
Z

φdν+0,∞ ← δ

∫
Z

φdν+0,R = δ
∑

λ=(j,0)∈IR

|α+
λ,R|

2φ(j) ≤
∑

λ=(j,0)∈IR

(µ0(j)− ω2)|α+
λ,R|

2φ(j) . (4.17)

The result
∫
Z
φdν+0,∞ = 0 is shown once we prove that the right hand side of (4.17) vanishes in the limit

R→∞. In order to show this fact, we recall that the coefficients α+
λ,R are obtained from a Bloch-expansion of

the solution at the far right, i.e. α+
λ,R = 〈u+R,η, U

+
λ 〉R. We calculate

∑
λ=(j,0)∈IR

(µ0(j)− ω2)|α+
λ,R|

2φ(j)
(1)
=

∑
λ=(j,0)∈IR

φ(j)α+
λ,R

[
〈u+R,η, µ0(j)U+

λ 〉R − 〈ω
2 u+R,η, U

+
λ 〉R

]
(2)
=

∑
λ=(j,0)∈IR

φ(j)α+
λ,R

[
〈u+R,η,L0U

+
λ 〉R − 〈ω

2 u+R,η, U
+
λ 〉R

]
(3)
=

∑
λ=(j,0)∈IR

φ(j)α+
λ,R 〈L0u

+
R,η − ω

2 u+R,η, U
+
λ 〉R

(4)

≤ ‖φ‖∞

 ∑
λ=(j,0)∈IR

|α+
λ,R|

2

1/2 ∑
λ=(j,0)∈IR

∣∣∣〈L0u
+
R,η − ω

2 u+R,η, U
+
λ 〉R

∣∣∣2
1/2

.

In this calculation we used the following: (1) formula for α+
λ,R, (2) the eigenvalue property of Uλ with eigenvalue

µλ = µm(j), (3) integration by parts without boundary terms due to the cut-off function η, (4) Cauchy–Schwarz
inequality. Using orthonormality of the basis functions U±λ we obtain

∑
λ=(j,0)∈IR

(µ0(j)− ω2)|α+
λ,R|

2φ(j) ≤ ‖φ‖∞
(
−
∫
WR

∣∣∣Πev
m=0u

+
R,η

∣∣∣2)1/2(
−
∫
WR

∣∣∣Πev
m=0

(
L0u

+
R,η − ω

2 u+R,η

)∣∣∣2)1/2

≤ ‖φ‖∞
(
−
∫
WR

∣∣∣u+R,η∣∣∣2)1/2(
−
∫
WR

∣∣∣L0u
+
R,η − ω

2 u+R,η

∣∣∣2)1/2

.

Since u+R,η satisfies uniform L2-bounds and since L0u
+
R,η = ω2 u+R,η holds up to a small L2-error, the right hand

side of (4.17) is small for large R > 0. This proves
∫
Z
φdν+0,∞ = 0 and hence (4.16) for “+”. The proof for “−”

is analogous.
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Proof of Theorem 1.3. Since a solution of the transmission problem without incoming wave satisfies the
assumptions of Propositions 4.4 and 4.5, Theorem 1.3 is an immediate consequence of these propositions.

Proof of Theorem 1.6. We now provide the proof of Theorem 1.6. We therefore assume that: Assumption 1.1
on ω > 0 is satisfied and u is a solution of the scattering problem with incoming wave Uinc, which has the wave
number k = (k1, k2). In particular, u is a vertically periodic solution of (1.1) such that u and u − Uinc satisfy
the outgoing wave conditions on the right and on the left.

Let ν±l,∞ be Bloch measures that are generated by the solution u. The frequency condition (1.7) is satisfied
and we can therefore use Lemma 3.5. As in Proposition 4.4, case l ≥ 1, we conclude from (3.15) (and the
analogous result for “−”) that ν±l,∞ = 0 holds for every l ≥ 1. Moreover, according to Proposition 4.5 we have

that supp(ν±0,∞) ⊂
{
j ∈ Z|µ±0 (j) = ω2 , j2 ∈ Z/K

}
.

Theorem 1.6 is shown once we verify the following property of the Bloch measure ν±0,∞:

supp(ν±0,∞) ⊂ {j ∈ Z|j2 = k2} ∪ J±=0,0 . (4.18)

Proof of (4.18). We consider the projection Πvert
k2

u of u. This function is again a solution of the scattering
problem. Indeed, by Lemma A.2 one has Πvert

k2
u ∈ H1

loc(R × (0, h);C) with periodicity in the x2-variable, and
for arbitrary test functions ϕ ∈ C∞c (R× (0, h)) there holds

∫
R

∫ h

0

∇ϕ · aε∇
(
Πvert
k2 u

)
=

∫
R

∫ h

0

∇ϕ · aε Πvert
k2 (∇u) =

∫
R

∫ h

0

Πvert
k2 (∇ϕ) · aε∇u

=

∫
R

∫ h

0

∇
(
Πvert
k2 ϕ

)
· aε∇u = ω2

∫
R

∫ h

0

Πvert
k2 ϕu = ω2

∫
R

∫ h

0

ϕΠvert
k2 u ,

where we exploited the orthogonality properties of Πvert
k2

from Lemma A.1 and the solution property of u.
As a consequence, the difference v := u − Πvert

k2
u is a solution of the scattering problem with vanishing

incoming wave. The statement of Proposition 4.4 implies: Bloch measures (for l = 0) that are generated by v
have their support in vertical waves, i.e. in J±=0,0.

On the other hand, the Bloch measure of Πvert
k2

u is concentrated on waves with vertical wave number k2,
i.e. in {j ∈ Z|j2 = k2}. This follows immediately from the fact that all coefficients α(j,m) with j2 6= k2 in the
expansion of Πvert

k2
u vanish.

Since the Bloch measure of u can have its support only in the union of the supports corresponding to Πvert
k2

u
and u−Πvert

k2
u, the claim (4.18) follows.

Theorem 1.6 is shown.

5. Outlook and conclusions

5.1. Remarks on the existence of solutions

We give some remarks concerning the existence of solutions to the scattering problem. In the end, our
radiation condition is “the right one” only if, besides uniqueness, an existence result can be shown.

We formulate the following conjecture: Given a non-singular frequency ω > 0, given coefficients a = aε that
are equal to 1 in the left half plane and ε-periodic in the right half plane, strictly positive and bounded, given
finally an incoming wave Uinc as in (1.2) (possibly with a condition on k), there exists a solution u of the
transmission Problem 1.2.

The idea for an existence proof is the limiting absorption principle (see e.g. [19, 24, 31] for recent
contributions): For a positive artificial damping parameter δ > 0, we consider the equation
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−∇ · ((1− iδ)a(x)∇uδ(x)) = ω2uδ(x) (5.1)

for x ∈ Ω = R× (0, h). Due to the strictly negative imaginary part of the coefficient (1− iδ)a(x), this equation
admits a unique solution uδ in the Beppo-Levi space Ḣ1(Ω) as can be shown with the Lax-Milgram Lemma.

To proceed, two properties must be shown. The first is: The sequence uδ satisfies estimates in some function
space, uniformly in δ > 0. Once this is shown, one can consider the distributional limit u of the sequence uδ as
δ → 0. As a consequence of distributional convergence, the limit u is a solution of the Helmholtz equation with
coefficients a.

The other part of this approach is to show: The limit u satisfies the outgoing wave condition. We do not see
a straightforward argument that yields this condition.

5.2. Our outgoing wave condition in a numerical scheme

The radiation condition of Definition 3.3 can be used for numerical purposes: Instead of demanding that
limits R → ∞ vanish, we demand that, for some fixed distance R, the left hand side of (3.6) vanishes. In the
numerical scheme, this amounts to imposing that a finite number of projections to left-going waves vanishes.
Results with such a scheme are presented in [11].

5.3. Conclusions

We have investigated transmission properties at the boundary of a photonic crystal. Our theorems justify
the following: An incoming wave generates, inside the photonic crystal, only those Bloch waves, for which the
eigenvalue coincides with the (squared) frequency of the incoming wave. Furthermore, only those Bloch waves
can be generated that have the same vertical wave number as the incoming wave; this latter statement is true
up to vertical waves. Conservation of the vertical wave number is essential for negative refraction without a
negative index.

Our results rely on a new outgoing wave condition in photonic crystals. The new radiation condition is based
on Bloch expansions. It is accompanied by a (weak) uniqueness result, which is expressed with Bloch-measures.
The uniqueness result is the basis for the analysis of the transmission problem.

Appendix A. Orthogonality and regularity properties

Lemma A.1 (Orthogonality with periodic weight). Let f : R → C be ε-periodic and integrable, let R ∈ N be
an integer.

1. Orthogonality of exponentials. Let j, j̃ ∈ QR with j 6= j̃. Then∫ εR

0

f(y)e2πijy/εe−2πij̃y/ε dy = 0 . (A.1)

2. Orthogonality of the vertical pre-Bloch projection. Let u, v ∈ L2
loc(R× (0, εR);C) and let k2 ∈ QR. Then

there holds ∫ εR

0

f(y)u(x1, y) Πvert
k2

v(x1, y) dy =

∫ εR

0

f(y)Πvert
k2 u(x1, y) Πvert

k2
v(x1, y) dy . (A.2)
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Proof.

1. By dividing the interval (0, εR) into subintervals of length ε, we obtain

∫ εR

0

f(y)e2πijy/εe−2πij̃y/ε dy =

R−1∑
k=0

∫ (k+1)ε

kε

f(y)e2πi(j−j̃)y/ε dy

=

R−1∑
k=0

∫ ε

0

f(y + kε)e2πi(j−j̃)(y+kε)/ε dy =

R−1∑
k=0

e2πi(j−j̃)k
∫ ε

0

f(y)e2πi(j−j̃)y/ε dy ,

where in the last equality we exploited the periodicity of the weight f . By setting C(j, j̃) :=∫ ε
0
f(y)e2πi(j−j̃)y/ε dy we conclude

∫ εR

0

f(y)e2πijy/εe−2πij̃y/ε dy = C(j, j̃)

R−1∑
k=0

(
e2πi(j−j̃)

)k
= C(j, j̃)

1− e2πi(j−j̃)R

1− e2πi(j−j̃)
= 0 .

In the last step we used j, j̃ ∈ QR, which implies R(j − j̃) ∈ Z and j, j̃ < 1, and exploited j 6= j̃.
2. Let u, v have vertical pre-Bloch expansions

u(x1, x2) =
∑
j2∈QR

Φj2(x1, x2) e2πij2x2/ε , v(x1, x2) =
∑
j̃2∈QR

Φ̃j̃2(x1, x2) e2πij̃2x2/ε .

Then the left hand side of (A.2) reads

∫ εR

0

f(y)u(x1, y) Πvert
k2

v(x1, y) dy =
∑
j2∈QR

∫ εR

0

f(y)Φj2(x1, y) e2πij2y/ε Φ̃k2(x1, y) e−2πik2y/ε dy .

Since the function f(·)Φj2(x1, ·)Φ̃k2(x1, ·) is ε-periodic, we can apply the orthogonality (A.1) of Item 1.
The sum on the right hand side collapses to j2 = k2 and we find (A.2).

Lemma A.2 (Vertical pre-Bloch projection and gradients). Let K ∈ N, h = εK, and k2 ∈ QK . Let u ∈
H1

loc(R× (0, h);C) be periodic in the x2-variable. Then the function Πvert
k2

u ∈ H1
loc(R× (0, h);C) is periodic in

x2 and there holds

∇
(
Πvert
k2 u

)
= Πvert

k2 (∇u) . (A.3)

Proof. Let u have the pre-Bloch expansion u(x1, x2) =
∑
j2∈QK Φj2(x1, x2) e2πij2x2/ε. Due to the periodicity of

u in the x2-variable, each Φj2 in the above (finite) sum has H1-regularity, and thus

∇u(x1, x2) =
∑

j2∈QK

∇
(

Φj2(x1, x2) e2πij2x2/ε
)

=
∑

j2∈QK

[∇Φj2(x1, x2) + 2πij2/εΦj2(x1, x2)e2] e2πij2x2/ε ,
(A.4)



OUTGOING WAVE CONDITIONS AND TRANSMISSION AT INTERFACES OF PHOTONIC CRYSTALS 1943

where e2 = (0, 1) ∈ R2 denotes the second unit vector. Since the expression in the squared brackets is ε-periodic,
(A.4) is an expansion of ∇u; uniqueness of the pre-Bloch expansion implies

Πvert
k2 (∇u) (x1, x2) = (∇Φk2(x1, x2) + 2πik2/εΦk2(x1, x2)e2) e2πik2x2/ε

= ∇
(

Φk2(x1, x2) e2πik2x2/ε
)

= ∇
(
Πvert
k2 u

)
(x1, x2) ,

which proves (A.3).

Lemma A.3 (Caccioppoli estimate). Let u ∈ L2
loc(R× (0, h)) be a vertically periodic solution of the Helmholtz

equation L0u = ω2u. Let u satisfy the uniform L2-bounds of Definition 3.3. Then there holds

1

R

∫
WR\WR−1

|u±R|
2 + |∇u±R|

2 ≤ C and −
∫
WR

|u±R|
2 + |∇u±R|

2 ≤ C (A.5)

with C independent of R.

Proof. The proof is, up to translations and a summation, analogous to the proof of the standard Caccioppoli
estimate: On a rectangle (L− 1, L+ 2)× (0, h) we use a cut-off function θ with compact support that depends
only on x1 and which is identical 1 on (L,L+ 1)× (0, h). Testing the equation with θ2ū provides∫ L+2

L−1

∫ h

0

ω2|u|2θ2 =

∫ L+2

L−1

∫ h

0

L0u(θ2ū) =

∫ L+2

L−1

∫ h

0

{
aε|∇u|2θ2 + 2aε(∇uθ) · (∇θū)

}
.

The Cauchy–Schwarz inequality is used to treat the last term, the first factor is absorbed with Young’s inequality
in the gradient term, the other consists (up to bounded factors) only of the L2-norm of u. We conclude that a
bound for the L2-norm on (L − 1, L + 2) × (0, h) implies a bound for the L2-norm of the gradient on (L,L +
1)× (0, h). A summation over many squares yields the result.

Lemma A.4 (Regularity of eigenvalue projections Πev). Let (vR)R∈N be a sequence of functions with H2-
regularity and vanishing boundary data, i.e. vR ∈ H2

0 (WR;C). We assume that

−
∫
WR

|vR|2 + |∇vR|2 + |L0(vR)|2 ≤ C0 (A.6)

holds for L0 = −∇ · (aε∇) with some R-independent constant C0.

1. Let Π be any of the projections of Definition 3.1. Then there exists an R-independent constant C such
that

−
∫
WR

∣∣∇ (Πev,±
m=0vR

)∣∣2 +
∣∣∣∇(Πev,±

m≥1vR

)∣∣∣2 +
∣∣∇ (Π (Πev,±

m=0vR
))∣∣2 ≤ C . (A.7)

2. If, additionally, −
∫
WR

∣∣∣Πev,±
m≥1vR

∣∣∣2 → 0 as R→∞, then there holds

−
∫
WR

∣∣∣∇(Πev,±
m≥1vR

)∣∣∣2 → 0 as R→∞ . (A.8)



1944 A. LAMACZ AND B. SCHWEIZER

Proof.

1. We omit the superscripts ±. Concerning (A.7) we note that, because of Πev
m≥1vR = vR − Πev

m=0vR, the
estimate for Πev

m≥1vR follows directly from the estimate for Πev
m=0vR and Assumption (A.6).

Since Πev
m=0vR =

∑
λ=(j,0)∈IR αλUλ is a finite sum of periodic functions, we find that Πev

m=0vR is periodic
in WR. This allows to calculate, with 0 < a∗ ≤ inf aε,

a∗−
∫
WR

|∇ (Πev
m=0vR)|2 ≤ −

∫
WR

aε∇ (Πev
m=0vR) · ∇ (Πev

m=0vR)

(1)
= −
∫
WR

L0 (Πev
m=0vR) Πev

m=0vR
(2)
= −
∫
WR

Πev
m=0 (L0vR) Πev

m=0vR

≤
(
−
∫
WR

|Πev
m=0 (L0vR)|2

)1/2(
−
∫
WR

|Πev
m=0vR|

2

)1/2

≤
(
−
∫
WR

|L0vR|2
)1/2(

−
∫
WR

|vR|2
)1/2

≤ C0 .

In (1) we exploited the periodicity of Πev
m=0vR to perform integration by parts without boundary terms.

In (2), we used the periodicity of vR, which yields L0 (Πev
m=0vR) = Πev

m=0 (L0vR), as shown in (3.14).
In the last line we exploited the norm-boundedness of projections. The claim for Π (Πev

m=0vR) is shown
analogously, using again periodicity. This concludes the proof of Relation (A.7).

2. The proof of Relation (A.8) is similar and can be interpreted as an interpolation between function spaces.
Once more, we exploit that vR has vanishing (and thus periodic) boundary data and that Πev

m=0vR is
periodic as a finite sum (see Item 1.). Therefore also the difference Πev

m≥1vR = vR − Πev
m=0vR is periodic.

Arguing as above we obtain, as R→∞,

a∗−
∫
WR

∣∣∇ (Πev
m≥1vR

)∣∣2 ≤ (−∫
WR

|L0vR|2
)1/2(

−
∫
WR

∣∣Πev
m≥1vR

∣∣2)1/2

→ 0 . (A.9)

This shows (A.8) and concludes the proof.
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