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A MULTISCALE METHOD FOR SEMI-LINEAR ELLIPTIC

EQUATIONS WITH LOCALIZED UNCERTAINTIES AND

NON-LINEARITIESI

Anthony Nouy1,* and Florent Pled2

Abstract. A multiscale numerical method is proposed for the solution of semi-linear elliptic stochas-
tic partial differential equations with localized uncertainties and non-linearities, the uncertainties being
modeled by a set of random parameters. It relies on a domain decomposition method which introduces
several subdomains of interest (called patches) containing the different sources of uncertainties and
non-linearities. An iterative algorithm is then introduced, which requires the solution of a sequence of
linear global problems (with deterministic operators and uncertain right-hand sides), and non-linear
local problems (with uncertain operators and/or right-hand sides) over the patches. Non-linear local
problems are solved using an adaptive sampling-based least-squares method for the construction of
sparse polynomial approximations of local solutions as functions of the random parameters. Con-
sistency, convergence and robustness of the algorithm are proved under general assumptions on the
semi-linear elliptic operator. A convergence acceleration technique (Aitken’s dynamic relaxation) is also
introduced to speed up the convergence of the algorithm. The performances of the proposed method
are illustrated through numerical experiments carried out on a stationary non-linear diffusion-reaction
problem.

Mathematics Subject Classification. 35R60, 60H15, 65N30, 65N55, 65D15

Received February 13, 2017. Accepted April 16, 2018.

Uncertainty quantification has become a topical issue in computational sciences and engineering. Numer-
ous methods have been proposed to propagate uncertainties through models governed by partial differential
equations (see e.g. [52, 61, 81]). While these methods have reached a certain degree of maturity and become
nowadays widespread, a major concern has emerged for multiscale models where uncertainties occur at various
scales.

Several numerical methods dedicated to deterministic multiscale models have been extended to the stochastic
framework. For multiscale problems with global sources of uncertainties, spectral stochastic methods have been
combined with deterministic multiscale methods, e.g. the multiscale finite element method (FEM) [41], the
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variational multiscale method [43] or the heterogeneous multiscale method [78], leading to the so-called multiscale
stochastic FEM [83] and its variants [3, 21, 26, 27, 31, 51, 59, 84]. These methods are well adapted to global
uncertainties and are proved to be efficient when assuming small random fluctuations and scale separation.
Meanwhile, traditional substructuring and domain decomposition methods have been introduced for stochastic
monoscale models [45, 70, 85] and recently extended to multiscale models [28, 79] in order to benefit from
scalable parallel algorithms available in the deterministic framework. These methods are also well adapted to
problems where the uncertainties are scattered in the whole domain.

The present work focuses on non-linear stochastic multiscale models where localized sources of uncertainties
and non-linearities may occur in some regions of interest. Concurrent approaches, initially developed in the
deterministic framework, have been proposed to couple numerical models. First of all, mono-model approaches
currently rely on adaptive remeshing strategies [73, 77] or enrichment techniques (e.g. the eXtended FEM
[7, 58] or the Generalized FEM [74]) and generally require high computational resources or specific (intrusive)
implementations. Conversely, multi-model approaches based on patches have a high potential to manage complex
multiscale problems by operating a separation of scales. The separation of scales allows to capture the local
features of multiscale solutions at a micro scale (local level) while keeping a simplified global description at a
macro scale (global level). Several multiscale coupling methods have been developed within the deterministic
framework and some have been extended to the stochastic framework. They distinguish themselves by the way of
defining and constructing the coupling operator between global and local models. First, superposition methods,
such as the method of finite element patches [34, 53] and the method of harmonic patches [38], consist in adding
a fine local correction to a coarse global solution. Second, surface coupling methods include the Chimera-Schwarz
method [11, 72], the Semi-Schwarz method [66], the Semi-Schwarz-Lagrange method [29, 30, 36, 55] and the
local multigrid method [35, 64, 65, 67]. Both multiscale superposition and surface coupling methods are based on
global–local iterative algorithms originally developed for domain decomposition methods or multigrid methods.
Nevertheless, the former can be interpreted as a local model refinement technique, while the latter can be seen
as a local model substitution technique. Third, volume coupling methods, such as the Arlequin method [20],
belong to the class of overlapping domain decomposition methods and require the definition of a coupling zone
between the different models. Among all these multi-model approaches, few have been explored in the stochastic
framework. The Arlequin (volume coupling) method has been applied to deterministic-stochastic coupling in
[14, 19] for homogenization purposes. Besides, the Semi-Schwarz-Lagrange (surface coupling) method has been
recently extended to linear stochastic multiscale models with localized sources of uncertainties in [16].

This work extends [16] to a class of non-linear stochastic multiscale models. Alternative multiscale approaches
have been recently proposed to handle non-linear elliptic problems. For semi-linear elliptic equations, we refer to
the variational multiscale method proposed in [40], while for other non-linear elliptic equations, we refer to the
multiscale FEM presented in [24, 25], the variational multiscale method developed in [60] or the heterogeneous
multiscale method proposed in [39]. In the present work, a dedicated multiscale method based on a domain
decomposition is proposed to exploit the localized side of uncertainties and non-linearities. It relies on a global–
local iterative algorithm which requires the solution of a sequence of linear global problems (with deterministic
operators and uncertain right-hand sides) at a macro scale and non-linear local problems (with uncertain
operators and right-hand sides) at a micro scale (over patches). Appropriate approximation spaces and solvers
can be considered to solve both types of problems efficiently. This multiscale approach then appears to be
flexible and non-intrusive in the sense that it requires no modification of both global and local models and
solvers, which makes possible the use of stand-alone codes. The main motivation is the deployment and transfer
of methods towards complex large-scale industrial applications [1]. Besides, different types of uncertainties can
be considered in the non-linear local models. They may be associated with some variabilities of the operator
but also of the geometry, the source terms or the boundary conditions.

The remainder of the paper is structured as follows. Section 1 introduces the initial formulation of the
semi-linear elliptic stochastic partial differential equation with localized uncertainties and non-linearities and
states suitable assumptions. Section 2 presents the global–local (two-scale) formulation with patches containing
localized variabilities and non-linearities. A global–local iterative algorithm is then introduced and analyzed in
Section 3. Consistency, convergence and robustness properties are deduced from the assumptions introduced
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in Section 1. Subsequently, the computational aspects associated with the solution of both global and local
problems are detailed in Section 4. In particular, the stochastic local problems are solved using sampling-based
(non-intrusive) approaches and working sets algorithms proposed in [17] for the adaptive construction of sparse
polynomial approximations of local solutions. Finally, the proposed method is illustrated through numerical
examples in Section 5.

1. Problem statement

Let ξ denote a set of real-valued random variables modeling the different sources of uncertainties (on the
operator, geometry, source terms and boundary conditions). We assume that ξ takes values in a set Ξ and we let
µ be the probability law of ξ. We consider the following semi-linear second-order stochastic partial differential
equation

−∇ ·B(u,∇u;x, ξ) + C(u,∇u;x, ξ) = f(x, ξ) for x ∈ Ω(ξ), (1.1a)

where Ω(ξ) is an uncertain domain of Rd with sufficiently smooth (e.g. Lipschitz) boundary ∂Ω(ξ). Here
B(·, ·;x, ξ) : R×Rd → Rd and C(·, ·;x, ξ) : R×Rd → R, and f(·, ξ) : Ω(ξ) → R is a given source term. For a
given value of ξ, the solution u(·, ξ) is a function from Ω(ξ) to R. We supply equation (1.1a) with the following
Dirichlet and Neumann boundary conditions

u = 0 on ΓD(ξ), (1.1b)

B(u,∇u;x, ξ) · n = g(x, ξ) on ΓN (ξ), (1.1c)

where ΓD(ξ) and ΓN (ξ) are disjoint and complementary parts of ∂Ω(ξ) such that ΓD(ξ) ∪ ΓN (ξ) = ∂Ω(ξ) and
ΓD(ξ) ∩ ΓN (ξ) = ∅, and meas(ΓD(ξ)) 6= 0. g(·, ξ) : ΓN (ξ) → R is a prescribed normal flux on ΓN (ξ), and n is
the unit outward normal to ΓN (ξ).

Example 1.1 (Non-linear diffusion-reaction equation). As a model example, we consider a non-linear diffusion-
reaction equation (1.1a) in dimension d 6 3, with

B(u,∇u;x, ξ) = K(x, ξ)∇u and C(u,∇u;x, ξ) = R(x, ξ)u3,

where K and R are respectively the diffusion and reaction coefficients. This example will serve as a guide-
line. Such a semi-linear second-order stochastic partial differential equation describes transport phenomena
at equilibrium such as steady-state diffusion-reaction processes arising from mathematical models in popula-
tion dynamics [2, 6, 10] as well as in chemical kinetics (kinetics/dynamics of autocatalytic chemical reactions)
[23, 37, 42, 46, 48, 50, 69, 71].

1.1. Localized uncertainties and non-linearities

We consider that non-linearities and uncertainties on operator and geometry only affect a given subdomain
of interest Λ? ⊂ Ω. For the sake of simplicity, we also consider that uncertainties on the right-hand side are
localized in Λ?.

First, the subdomain Λ? may depend on ξ while the complementary subdomain Ω \Λ? is supposed indepen-
dent of ξ, which means that geometrical uncertainties are contained in Λ?. The boundary ∂Λ? of Λ? contains
the possible uncertainties of the boundary ∂Ω of domain Ω.

Also, B and C are supposed linear and independent of ξ outside Λ?. More precisely, we suppose that B can
be split into a linear part BL (such that u 7→ BL(u,∇u;x, ξ) is linear) and a non-linear part BN , such that
B = BL +BN . The same decomposition is introduced for C = CL + CN . Then, we consider that B and C are
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such that

BL(·, ·;x, ξ) = BL(·, ·;x) and CL(·, ·;x, ξ) = CL(·, ·;x) for x ∈ Ω \ Λ?, (1.2)

and

BN (·, ·;x, ξ) = CN (·, ·;x, ξ) = 0 for x ∈ Ω \ Λ?. (1.3)

Also, the prescribed source term f and normal flux g are such that

f(x, ξ) = f(x) and g(x, ξ) = g(x) for x ∈ Ω \ Λ?. (1.4)

Example 1.2. In Example 1.1, we consider that diffusion coefficient K and reaction parameter R are such that
K(x, ξ) = K(x) and R(x, ξ) = 0 for x ∈ Ω \ Λ?. A practical application is the chlorite-thiosulfate autocatalytic
reaction [48] or the iodate-arsenous acid autocatalytic reaction [23, 37, 42, 50, 69, 71] described by a third-
order reaction-diffusion equation for the iodide concentration u in the absence of convection, with localized and
random molecular diffusion coefficient K and reaction rate kinetic coefficient R.

In the following, a function v(x, ξ) of two variables defined for ξ ∈ Ξ and x ∈ D(ξ), with D(ξ) a parametrized
domain of Rd, will be equivalently considered as a function v(ξ) defined on D(ξ). For the sake of readability, we
will often omit the dependence on ξ for geometrical domains and for function spaces defined on these domains.

1.2. Assumptions

Here O denotes a subset of Ω. For a function v ∈ H1(O), we denote

|v|H1(O) = ‖∇v‖L2(O) and ‖v‖2H1(O) = |v|2H1(O) + ‖v‖2L2(O).

1.2.1. Assumptions on the source terms

For a function v defined on O, we introduce the linear form

`O(v; ξ) =

∫
O
f(·, ξ)v +

∫
ΓN∩∂O

g(·, ξ)v, (1.5)

and we assume that f and g are such that the following assumption holds.

Assumption 1.3 (Properties of linear form `O). We assume that the linear form `O(·; ξ) : H1(O)→ R is almost
surely continuous, that means there exists a random variable κ(ξ) > 0 such that it holds

|`O(v; ξ)| 6 κ(ξ)‖v‖H1(O) ∀v ∈ H1(O), (1.6)

and we further assume that κ ∈ Lpµ(Ξ) for some 2 6 p 6 +∞.

1.2.2. Assumptions on the differential operator

For functions u, v defined on O, we introduce the semi-linear form

dO(u, v; ξ) =

∫
O
B(u,∇u; ·, ξ) · ∇v +

∫
O
C(u,∇u; ·, ξ)v, (1.7)
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which can be written as

dO(u, v; ξ) = aO(u, v; ξ) + nO(u, v; ξ),

where aO(·, ·; ξ) is a bilinear form and nO(·, ·; ξ) is a semi-linear form, respectively defined by

aO(u, v; ξ) =

∫
O
BL(u,∇u; ·, ξ) · ∇v +

∫
O
CL(u,∇u; ·, ξ)v,

nO(u, v; ξ) =

∫
O
BN (u,∇u; ·, ξ) · ∇v +

∫
O
CN (u,∇u; ·, ξ)v.

We make the following assumptions.

Assumption 1.4 (Properties of bilinear form aO). We assume that the bilinear form aO(·, ·; ξ) : H1(O)×
H1(O)→ R is such that there exist constants 0 < αa 6 βa < +∞ such that it holds almost surely

aO(v, v; ξ) > αa|v|2H1(O) ∀v ∈ H1(O), (1.8)

|aO(u, v; ξ)| 6 βa‖u‖H1(O)‖v‖H1(O) ∀u, v ∈ H1(O), (1.9)

and we further assume that αa and βa are independent of ξ and O.

Assumption 1.5 (Properties of semi-linear form nO). We assume that the semi-linear form nO(·, ·; ξ) : H1(O)×
H1(O)→ R is almost surely continuous with respect to the second variable and radially continuous with respect
to the first variable, that means for all u, v ∈ H1(O), the map t 7→ nO(u+ tv, v; ξ) is almost surely continuous.
We also assume that nO(·, ·; ξ) is almost surely monotone in the first variable, that means

nO(u, u− v; ξ)− nO(v, u− v; ξ) > 0 ∀u, v ∈ H1(O) (1.10)

holds almost surely. Finally, we assume that nO(·, ·; ξ) satisfies almost surely

nO(0, v; ξ) = 0 ∀v ∈ H1(O). (1.11)

Example 1.6. Concerning Example 1.1, Assumption 1.4 on aO is satisfied if the diffusion coefficient K is such
that 0 < Kinf |ζ|2 6 K(x, ξ)ζ · ζ 6 Ksup|ζ|2 < +∞ for all ζ ∈ Rd holds almost surely and almost everywhere
on O, where Kinf and Ksup are some strictly positive constants independent of ξ and independent of the
considered subdomain O ⊂ Ω. Also, Assumption 1.5 on nO is satisfied if the reaction coefficient R is such that
0 6 R(x, ξ) 6 Rsup < +∞ holds almost surely and almost everywhere on O, where Rsup is a strictly positive
constant independent of ξ and independent of the considered subdomain O ⊂ Ω. That means Assumptions 1.4
and 1.5 on aO and nO are satisfied if the diffusion coefficient K is almost surely uniformly bounded and elliptic
and the reaction parameter R is almost surely non negative and uniformly bounded.

1.2.3. Assumption on the geometry

We suppose that the considered domains have sufficiently smooth boundary (e.g. Lipschitz). For a subset
E ⊂ ∂O with non zero measure, we denote by H1/2(E) the space of traces on E of functions in H1(O). We recall
that we have

‖v‖H1(O) 6 CO,E
(
|v|H1(O) + ‖v‖H1/2(E)

)
, (1.12)

for all v ∈ H1(O), with a constant CO,E depending only on O and E (see [4], Thm. 7.3.13).
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Assumption 1.7. For any considered domains O and E ⊂ ∂O, we assume that the constant CO,E involved in
(1.12) is independent of ξ.

Assumption 1.7 is obviously satisfied if the domains O and E are independent of ξ. In the case of uncertain
domains O(ξ) and E(ξ), Assumption 1.7 implies some restrictions on the dependence of the geometry on the
parameters ξ. Let us describe a typical situation where the uncertain domain is described through a parametrized
mapping defined on a fixed domain. Assume that there exist domains O0 and E0 ⊂ ∂O0 independent of ξ, and
a parametrized diffeomorphism φ(·; ξ) : O0 → O(ξ) such that φ(O0; ξ) = O(ξ) and φ(E0; ξ) = E(ξ). Then it can
be proved that Assumption 1.7 is satisfied if the mapping φ(·; ξ) satisfies almost surely

αφ|ζ| 6 |∇φ(x0; ξ)ζ| 6 βφ|ζ| ∀ζ ∈ Rd, ∀x0 ∈ O0,

with constants αφ and βφ independent of ξ. That means Assumption 1.7 on the geometry is satisfied if we
consider a fixed (deterministic) domain O0 and a random geometrical transformation φ(·; ξ) mapping the fixed
domain O0 to the parameter-dependent domain O(ξ) such that the singular values of the Jacobian matrix
∇φ(·; ξ) are almost surely uniformly bounded (from above and from below).

2. Global–local formulation with patch

2.1. Domain decomposition: introduction of a patch

We introduce a subdomain Λ ⊂ Ω, hereafter called a patch, such that Λ? ⊂ Λ, and such that Ω \ Λ is
independent of ξ. This yields the following partition of domain Ω(ξ):

Ω(ξ) = (Ω \ Λ) ∪ Λ(ξ).

The patch Λ is chosen such that

dist(Λ?,Ω \ Λ) > δ, (2.1)

that means uncertainties on operator, geometry and right-hand side affect a region in Λ whose distance to Ω \Λ
is greater than δ. We assume that the patch Λ has a sufficiently smooth boundary (e.g. Lipschitz). We denote
by

Γ = ∂Λ ∩ ∂(Ω \ Λ)

the deterministic interface between the patch Λ and the exterior subdomain Ω \ Λ (see Fig. 1).
We denote by U(ξ) and w(ξ) the restrictions of u(ξ) to subdomains Ω \ Λ and Λ, respectively. For U(ξ) ∈

H1(Ω \ Λ) and w(ξ) ∈ H1(Λ), we denote by U(ξ)|Γ and w(ξ)|Γ in H1/2(Γ) the traces on Γ of U(ξ) and w(ξ),
respectively. A weak continuity condition is enforced on interface Γ by imposing

bΓ(δλ, U(ξ)|Γ) = bΓ(δλ, w(ξ)|Γ) ∀δλ ∈ H1/2(Γ)∗, (2.2)

Figure 1. Representation of interface Γ between patch Λ and complementary subdomain Ω\Λ.
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where bΓ denotes the duality pairing between H1/2(Γ) and its topological dual H1/2(Γ)∗. In the following,
we denote by M = H1/2(Γ)∗ and ‖ · ‖M = ‖ · ‖H1/2(Γ)∗ . We use the same notation bΓ for the bilinear form

bΓ : M×H1/2(Γ) → R and its extension to M×H1(Ω \ Λ) (resp. M×H1(Λ)) defined using the trace operator
from H1(Ω \ Λ) (resp. H1(Λ)) to H1/2(Γ).

Remark 2.1. The proposed multiscale approach can be naturally extended to the case where the sources of
uncertainties and possible non-linearities are localized in several non-overlapping local subdomains of interest
(or patches). The patch Λ and the interface Γ can then be respectively interpreted as the disjoint union of Q

patches {Λq}Qq=1 and Q interfaces {Γq}Qq=1, where Γq = ∂Λq ∩ ∂(Ω \ Λ) is the deterministic interface between
the patch Λq and the exterior subdomain Ω \ Λ.

2.1.1. Weak formulation

We introduce the Hilbert spaces

U = {U ∈ H1(Ω \ Λ) : U = 0 on ΓD ∩ ∂(Ω \ Λ)},
W = {w ∈ H1(Λ) : w = 0 on ΓD ∩ ∂Λ},

equipped with norms ‖ · ‖U = ‖ · ‖H1(Ω\Λ) and ‖ · ‖W = ‖ · ‖H1(Λ), respectively. Also, we introduce the Hilbert
space

V̂ = {u : Ω→ R : u|Ω\Λ ∈ U and u|Λ ∈ W}

equipped with the norm ‖ · ‖V defined by

‖u‖2V = ‖u|Ω\Λ‖2H1(Ω\Λ) + ‖u|Λ‖2H1(Λ),

and the closed linear subspace

V = {u ∈ V̂ : bΓ(δλ, u|Ω\Λ) = bΓ(δλ, u|Λ) for all δλ ∈M},

which is a Hilbert space when equipped with norm ‖ · ‖V .

Lemma 2.2. There exists a constant CV such that |v|V 6 ‖v‖V 6 CV |v|V ∀v ∈ V, with

|v|2V = |v|Ω\Λ|2H1(Ω\Λ) + |v|Λ|2H1(Λ).

Under Assumption 1.7, CV is independent of ξ.

Proof. See Section A.3 in Appendix A.

In the following, for a given Hilbert space H (possibly dependent on ξ) equipped with a norm ‖ · ‖H , we
denote by HΞ the space HΞ := {v : ξ ∈ Ξ 7→ v(ξ) ∈ H(ξ)}, and we identify functions in HΞ that are equal
almost surely. We denote by Lpµ(Ξ;H) = {v ∈ HΞ : E(‖v(ξ)‖pH(ξ)) < +∞}, where E denotes the mathematical

expectation defined by E(a(ξ)) =
∫

Ξ
a(ξ)µ(dξ).

We consider the following weak formulation of the problem: find u ∈ VΞ such that it holds almost surely

dΩ(u(ξ), δu; ξ) = `Ω(δu; ξ) ∀δu ∈ V. (2.3)

Theorem 2.3. Under Assumptions 1.3, 1.4 and 1.5, problem (2.3) is well-posed, that means for almost all ξ ∈ Ξ,
it admits a unique solution u(ξ) ∈ V and the application that maps `Ω(·; ξ) to this solution u(ξ) is Lipschitz
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Figure 2. Representation of fictitious domain Ω̃, fictitious patch Λ̃, real patch Λ and
interface Γ.

continuous with Lipschitz constant C2
V/αa. Moreover, under Assumption 1.7, the solution u ∈ Lpµ(Ξ;V), with

exponent p defined in Assumption 1.3.

Proof. See Section A.4 in Appendix A.

2.1.2. Reformulation using a Lagrange multiplier

From (1.2) and (1.3), we have that

dΩ(u(ξ), δu; ξ) = aΩ\Λ(U(ξ), δU) + aΛ(w(ξ), δw; ξ) + nΛ(w(ξ), δw; ξ),

`Ω(δu; ξ) = `Ω\Λ(δU) + `Λ(δw; ξ),

for all δu : Ω → R such that δu|Ω\Λ = δU and δu|Λ = δw. A formulation equivalent to (2.3) can be written as
follows: find (U,w, λ) ∈ UΞ×WΞ×MΞ such that it satisfies almost surely

aΩ\Λ(U(ξ), δU) + bΓ(λ(ξ), δU) = `Ω\Λ(δU), (2.4a)

aΛ(w(ξ), δw; ξ) + nΛ(w(ξ), δw; ξ)− bΓ(λ(ξ), δw) = `Λ(δw; ξ), (2.4b)

bΓ(δλ, U(ξ))− bΓ(δλ, w(ξ)) = 0, (2.4c)

for all (δU, δw, δλ) ∈ U×W×M, where λ represents the Lagrange multiplier allowing to ensure the weak
continuity condition (2.2) of solution u across interface Γ.

Theorem 2.4. Under Assumptions 1.3, 1.4 and 1.5, problem (2.4) admits a unique solution (U(ξ), w(ξ), λ(ξ)) ∈
U×W×M for almost all ξ ∈ Ξ. Moreover, under Assumption 1.7, U ∈ Lpµ(Ξ;U), w ∈ Lpµ(Ξ;W) and λ ∈
Lpµ(Ξ;M), with exponent p defined in Assumption 1.3.

Proof. See Section A.5 in Appendix A.

2.2. Reformulation with extended domain: introduction of a fictitious patch

Let us now introduce a deterministic fictitious patch Λ̃ ⊃ Λ such that Γ ⊂ ∂Λ̃ and define the corresponding
deterministic fictitious domain Ω̃ ⊃ Ω such that Ω̃ = (Ω \ Λ) ∪ Λ̃ and Ω̃ \ Λ̃ = Ω \ Λ (see Fig. 2). Note that in
the case where the patch Λ does not contain any geometrical details (i.e. no internal boundary such as holes,

cracks, etc), we simply have Λ̃ = Λ and Ω̃ = Ω.

We now consider an extension of global solution U from subdomain Ω\Λ to fictitious domain Ω̃. We introduce

the new Hilbert space Ũ = {U ∈ H1(Ω̃) : U = 0 on ΓD ∩ ∂Ω̃} equipped with the norm ‖ · ‖Ũ = ‖ · ‖H1(Ω̃). We

then define a new bilinear form cΩ̃ : Ũ×Ũ → R as the following extension of aΩ\Λ : U×U → R to Ũ×Ũ : for all
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U, V ∈ Ũ ,

cΩ̃(U, V ) = aΩ\Λ(U, V ) + cΛ̃(U, V ), (2.5)

where, for a subdomain O ⊂ Ω̃, cO is a bilinear form defined by

cO(U, V ) =

∫
O
B̃L(U,∇U ; ·) · ∇V +

∫
O
C̃L(U,∇U ; ·)V,

where B̃L(·, ·;x, ξ) : R×Rd → Rd and C̃L(·, ·;x, ξ) : R×Rd → R are such that

B̃L(·, ·;x) = BL(·, ·;x) and C̃L(·, ·;x) = CL(·, ·;x) for x ∈ Ω \ Λ.

We make the following assumption. Here O denotes a subset of Ω̃.

Assumption 2.5 (Properties of bilinear form cO). We assume that the bilinear form cO : H1(O)×H1(O)→ R
is symmetric and such that there exist constants 0 < αc 6 βc < +∞ such that

cO(V, V ) > αc|V |2H1(O) ∀V ∈ H1(O), (2.6)

|cO(U, V )| 6 βc‖U‖H1(O)‖V ‖H1(O) ∀U, V ∈ H1(O), (2.7)

and we further assume that αc and βc are independent of ξ and O.

Example 2.6. In Example 1.1, B̃L and C̃L can be respectively defined by

B̃L(U,∇U ;x) = K̃(x)∇U and C̃L(U,∇U ;x) = 0,

where K̃ is a fictitious diffusion coefficient such that K̃(x) = K(x) for x ∈ Ω \ Λ. Assumption 2.5 on cΩ̃ is

satisfied if the fictitious diffusion coefficient K̃ is uniformly bounded and elliptic on Ω̃, that means condition
0 < K̃inf |ζ|2 6 K̃(x)ζ · ζ 6 K̃sup|ζ|2 < +∞ for all ζ ∈ Rd holds almost everywhere on Ω̃, where K̃inf and K̃sup

are some strictly positive constants.

Afterwards, a reformulation of the global–local problem (2.4) reads: find (U,w, λ) ∈ ŨΞ×WΞ×MΞ such that
it satisfies almost surely

cΩ̃(U(ξ), δU)− cΛ̃(U(ξ), δU) + bΓ(λ(ξ), δU) = `Ω\Λ(δU), (2.8a)

aΛ(w(ξ), δw; ξ) + nΛ(w(ξ), δw; ξ)− bΓ(λ(ξ), δw) = `Λ(δw; ξ), (2.8b)

bΓ(δλ, U(ξ))− bΓ(δλ, w(ξ)) = 0, (2.8c)

for all (δU, δw, δλ) ∈ Ũ ×W×M. Let us here mention that problem (2.8) admits infinitely many solutions

(U,w, λ) that only differ by the value of global solution U in fictitious patch Λ̃. A particular solution can be

uniquely defined by defining the value of U in Λ̃ as a particular extension of the value of U on interface Γ. The
global–local iterative algorithm presented in the next section will be proven to converge to a solution (U,w, λ)

in a subspace of ŨΞ×WΞ×MΞ corresponding to a particular definition of the extension.

3. Global–local iterative algorithm

We now introduce and analyze an iterative algorithm to solve problem (2.8).
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3.1. Description of the algorithm

We initialize the algorithm with U0 = w0 = λ0 = 0. Then, at iteration k > 1, (Uk, wk, λk) ∈ ŨΞ×WΞ×MΞ

is defined by three steps (global step, relaxation step and local step), described below.

3.1.1. Global step

We first define Ûk ∈ ŨΞ such that it satisfies almost surely

cΩ̃(Ûk(ξ), δU) = cΛ̃(Uk−1(ξ), δU)− bΓ(λk−1(ξ), δU) + `Ω\Λ(δU) (3.1)

for all δU ∈ Ũ . The computation of Ûk ∈ ŨΞ thus requires the solution of a linear problem defined on fictitious
domain Ω̃ with a deterministic operator and an uncertain right-hand side (involving Lagrange multiplier λk−1

on interface Γ and global iterate Uk−1 in fictitious patch Λ̃ at previous iteration k − 1).

Remark 3.1. Although B̃L and C̃L could a priori be chosen arbitrarily (uncertain or deterministic) on Λ̃, a con-

venient choice consists in taking for B̃L and C̃L parameter-independent functions, i.e. B̃L(·, ·;x, ξ) = B̃L(·, ·;x)

and C̃L(·, ·;x, ξ) = C̃L(·, ·;x) for x ∈ Λ̃, which allows to preserve a linear global problem with deterministic

linear operator throughout iterations. Also, a natural choice consists in taking for B̃L and C̃L over Λ̃ the
mean value of the corresponding linear functions BL and CL over Λ, i.e. B̃L(·, ·;x) = E (BL(·, ·;x, ξ)) and

C̃L(·, ·;x) = E (CL(·, ·;x, ξ)) for x ∈ Λ̃. Besides, choosing parameter-dependent functions B̃L and C̃L on Λ̃
could allow to accelerate the convergence of the algorithm (see Rem. 3.14). Another possible choice would con-

sist in taking for B̃L and C̃L over Λ̃ the tangent linear functions to the corresponding semi-linear functions
B = BL +BN and C = CL + CN over Λ.

Remark 3.2. Assume that ∂Λ̃ = Γ ∪ (∂Λ̃ ∩ ΓD). By using Green’s formula in the definition of cΛ̃, the global
problem (3.1) can be reformulated as

cΩ̃(Ûk(ξ), δU) = −bΓ(µk−1(ξ) + λk−1(ξ), δU) + `Ω\Λ(δU) + `Λ̃(δU ; ξ) (3.2)

for all δU ∈ Ũ , where µk−1(ξ) ∈M is defined by the following expression (interpreted in a weak sense): µk−1(ξ) =

−B̃L(Uk−1(ξ),∇Uk−1(ξ); ·) · n on Γ, with n the unit normal to Γ pointing outward Λ̃, and where `Λ̃(·; ξ) is

a linear form defined by `Λ̃(V ; ξ) = −
∫

Λ̃
∇ · B̃L(Uk−1(ξ),∇Uk−1(ξ); ·)V +

∫
Λ̃
C̃L(Uk−1(ξ),∇Uk−1(ξ); ·)V. The

quantity µk−1 + λk−1 is seen as a flux discontinuity on the interface Γ between global and local models. The
iterative algorithm can then be interpreted as a modified Newton method (with constant linear global operator)
formulated on the flux equilibrium over interface Γ (interpreted in a weak sense) [29, 30].

3.1.2. Relaxation step

We then define Uk ∈ ŨΞ by

Uk(ξ) = ρkÛ
k(ξ) + (1− ρk)Uk−1(ξ), (3.3)

where ρk > 0 is a relaxation parameter (possibly depending on ξ) chosen sufficiently small to ensure conver-
gence (see convergence analysis in Sect. 3.2.2). Relaxation parameter ρk may have a significant impact on the
convergence and stability properties of the algorithm. Practical choices for ρk will be discussed in Section 4.4.
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3.1.3. Local step

We finally define (wk, λk) ∈ WΞ×MΞ such that it satisfies almost surely

aΛ(wk(ξ), δw; ξ) + nΛ(wk(ξ), δw; ξ)− bΓ(λk(ξ), δw) = `Λ(δw; ξ), (3.4a)

bΓ(δλ, wk(ξ)) = bΓ(δλ, Uk(ξ)), (3.4b)

for all (δw, δλ) ∈ W×M. The computation of (wk, λk) ∈ WΞ×MΞ thus requires the solution of a non-linear
problem defined on patch Λ with uncertain operator and right-hand side (involving global iterate Uk at current
iteration k as a boundary data). The Lagrange multiplier λk allows to enforce the weak continuity conditions
on interface Γ between local iterate wk and global iterate Uk, which corresponds to non-homogeneous Dirichlet
boundary conditions imposed on an external boundary Γ of patch Λ in the local computation. Recall that,
contrary to the global step, the local step takes into account possible non-linearities and uncertainties in the
operator, as well as possible uncertainties in the geometry of the domain.

Remark 3.3. The local problem (3.4) can be reformulated as a single-field problem by noting wk(ξ) =
w̃k(ξ) + zk(ξ), where w̃k(ξ) ∈ W is an extension of global iterate Uk(ξ) from interface Γ to patch Λ such
that bΓ(δλ, w̃k(ξ)) = bΓ(δλ, Uk(ξ)) for all δλ ∈ M, and zk(ξ) ∈ W0 = {z ∈ W : z = 0 on Γ}. Local problem
then consists in computing zk ∈ WΞ

0 such that it satisfies almost surely aΛ(w̃k(ξ) + zk(ξ), δz; ξ) + nΛ(w̃k(ξ) +
zk(ξ), δz; ξ) = `Λ(δz; ξ) for all δz ∈ W0. The Lagrange multiplier λk ∈MΞ is then determined a posteriori from
(3.4a).

Remark 3.4. When the patch Λ contains geometrical variabilities, the local stochastic problem (3.4) can be
reformulated on a fixed (deterministic) domain by using either a random mapping technique [76, 82] or a fic-
titious domain method [12, 16, 62, 63]. Both techniques do not require any remeshing procedure and allow to
handle complex geometries. The former approach consists in introducing a suitable random mapping between a
random domain and a reference deterministic domain, thus transforming a (deterministic or stochastic) partial
differential equation defined on a random domain into a stochastic partial differential equation (with uncertain
operator and right-hand side depending on the mapping and its derivatives) defined on a deterministic domain.
The latter approach consists in embedding a random domain into a deterministic fictitious domain and consid-
ering a prolongation of the solution on the fictitious domain. In the present context of multiscale problems with
localized geometrical variabilities, different fictitious domain formulations (depending on the type of boundary
conditions) have been proposed in [16].

Remark 3.5. Following Remark 2.1, in the case of Q non-overlapping patches {Λq}Qq=1, the local step consists
in solving Q independent non-linear local problems defined on each of the patches Λq. The solution of such
uncoupled problems can be performed independently on each patch Λq in a fully parallel way.

3.2. Analysis of the algorithm

3.2.1. Consistency

Let (U,w, λ) ∈ UΞ×WΞ×MΞ denote the solution of the initial problem (2.4). We now introduce the closed

linear subspace Ũ? of Ũ defined by

Ũ? = {V ∈ Ũ : cΛ̃(V, δU) = 0 for all δU ∈ H1
0(Λ̃)},

where H1
0(Λ̃) is considered as the subset of functions of Ũ which are zero on Ω̃ \ Λ̃. For any function V ∈ U ,

there exists a unique extension Ṽ ∈ Ũ? such that Ṽ = V on Ω \ Λ and the restriction of Ṽ to Λ̃ is uniquely

defined by the trace of V on the interface Γ. Then, we also denote by U(ξ) ∈ Ũ? the unique extension to Ω̃ of
the global solution U(ξ) ∈ U .
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Lemma 3.6. All global iterates Uk(ξ) belong to the subspace Ũ?.

Proof. Considering test functions δU ∈ H1
0(Λ̃) in global problem (3.1), we obtain that for all k > 1,

cΛ̃(Ûk(ξ), δU) = cΛ̃(Uk−1(ξ), δU) for all δU ∈ H1
0(Λ̃). Then, using (3.3), we have that cΛ̃(Uk(ξ), δU) =

cΛ̃(Uk−1(ξ), δU) for all δU ∈ H1
0(Λ̃). Since U0 = 0, we obtain by induction that all global iterates Uk(ξ) belong

to Ũ?.

We then derive the following consistency result.

Theorem 3.7 (Consistency). If the sequence {(Uk(ξ), wk(ξ), λk(ξ))}k∈N strongly converges to an element

(Ũ(ξ), w(ξ), λ(ξ)) in Ũ×W×M, then (Ũ(ξ)|Ω\Λ, w(ξ), λ(ξ)) ∈ U×W×M is the unique solution (U(ξ), w(ξ), λ(ξ))

of problem (2.4). Also, the limit Ũ(ξ) is the unique extension of U(ξ) to Ũ?.

Proof. Taking the limit with k in (3.1), (3.3) and (3.4), we obtain that (Ũ(ξ), w(ξ), λ(ξ)) satisfies problem (2.8),

and therefore (Ũ(ξ)|Ω\Λ, w(ξ), λ(ξ)) ∈ U×W×M is the unique solution of problem (2.4). Then, as all global

iterates Uk(ξ) belong to the closed linear subspace Ũ? of Ũ (see Lem. 3.6), the limit Ũ(ξ) also belongs to Ũ?.

Note that problem (2.8) is well-posed in Ũ?×W×M and admits (U(ξ), w(ξ), λ(ξ)) ∈ Ũ?×W×M as its unique

solution. The algorithm can then be analyzed in the subspace Ũ? of Ũ and we have the following useful result
which proves that ‖ · ‖Ũ defines a norm equivalent to ‖ · ‖U on Ũ?.

Lemma 3.8. The norms ‖ · ‖U and ‖ · ‖Ũ are equivalent on Ũ?, with ‖V ‖U 6 ‖V ‖Ũ 6 CŨ‖V ‖U for all V ∈ Ũ?,
with a constant CŨ independent of ξ.

Proof. See Section A.6 in Appendix A.

From Theorem 2.4 and Lemma 3.8, we directly deduce the following property.

Corollary 3.9. The extended global solution U is in Lpµ(Ξ; Ũ), with exponent p defined in Assumption 1.3.

3.2.2. Convergence

We now prove the convergence of the sequence {(Uk(ξ), wk(ξ), λk(ξ))}k∈N to the exact solution

(U(ξ), w(ξ), λ(ξ)) in Ũ?×W×M. The global problem (3.1) being linear, the solution Ûk ∈ ŨΞ can be written as

Ûk(ξ) = U + Υ(Uk−1(ξ)) + Φ(λk−1(ξ)),

where Υ: Ũ → Ũ and Φ: M→ Ũ are linear mappings. Mapping Υ is such that for V ∈ Ũ , Υ(V ) ∈ Ũ is the
unique solution of

cΩ̃(Υ(V ), δU) = cΛ̃(V, δU) ∀δU ∈ Ũ . (3.5a)

Similarly, mapping Φ is such that for β ∈M, Φ(β) ∈ Ũ is the unique solution of

cΩ̃(Φ(β), δU) = −bΓ(β, δU) ∀δU ∈ Ũ . (3.5b)

Lastly, U ∈ Ũ is the unique solution of

cΩ̃(U, δU) = `Ω\Λ(δU) ∀δU ∈ Ũ .
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The solution (wk, λk) ∈ WΞ×MΞ of the local problem (3.4) can be written as

wk(ξ) = Θ(Uk(ξ); ξ) and λk(ξ) = Ψ(Uk(ξ); ξ),

where Θ(·; ξ) : Ũ → W and Ψ(·; ξ) : Ũ → M are non-linear mappings. Mappings Θ and Ψ are such that for

V ∈ Ũ , (Θ(V ; ξ),Ψ(V ; ξ)) ∈ W×M is the solution of

aΛ(Θ(V ; ξ), δw; ξ) + nΛ(Θ(V ; ξ), δw; ξ)− bΓ(Ψ(V ; ξ), δw) = `Λ(δw; ξ) ∀δw ∈ W, (3.6a)

bΓ(δλ,Θ(V ; ξ)) = bΓ(δλ, V ) ∀δλ ∈M. (3.6b)

Consequently, the algorithm generates a sequence {(Uk, wk, λk)}k∈N by applying the following iterative scheme:

Uk(ξ) = ρk
(
U + Υ(Uk−1(ξ)) + Φ(λk−1(ξ))

)
+ (1− ρk)Uk−1(ξ), (3.7a)

wk(ξ) = Θ(Uk(ξ); ξ), (3.7b)

λk(ξ) = Ψ(Uk(ξ); ξ). (3.7c)

Lemma 3.10. The linear mappings Υ: Ũ → Ũ and Φ: M→ Ũ defined in (3.5) are continuous, with respective
continuity constants βΥ and βΦ independent of ξ.

Proof. See Section A.7 in Appendix A.

Lemma 3.11. The non-linear mappings Θ(·; ξ) : Ũ → W and Ψ(·; ξ) : Ũ → M defined in (3.6) are Lipschitz
continuous, with respective Lipschitz constants βΘ and βΨ independent of ξ.

Proof. See Section A.8 in Appendix A.

Let us now define the errors at a given iteration of the algorithm. At the global level, the error at iteration
k is

Ûk(ξ)− U(ξ) = Υ(Uk−1(ξ))−Υ(U(ξ)) + Φ(λk−1(ξ))− Φ(λ(ξ))

= Υ(Uk−1(ξ)− U(ξ)) + Φ(Ψ(Uk−1(ξ); ξ)−Ψ(U(ξ); ξ)),

= Uk−1(ξ)− U(ξ)− (A(Uk−1(ξ); ξ)−A(U(ξ); ξ)),

and

Uk(ξ)− U(ξ) = ρk(Ûk(ξ)− U(ξ)) + (1− ρk)(Uk−1(ξ)− U(ξ))

= Uk−1(ξ)− U(ξ)− ρk(A(Uk−1(ξ); ξ)−A(U(ξ); ξ)),

where A(·; ξ) : Ũ → Ũ is the non-linear mapping defined by

A(V ; ξ) = V −Υ(V )− Φ(Ψ(V ; ξ)). (3.8)

From the definitions of Υ(V ) ∈ Ũ and Φ(Ψ(V ; ξ)) ∈ Ũ and from (2.5), we deduce that mapping A is such that

for V ∈ Ũ , A(V ; ξ) ∈ Ũ is the solution of

cΩ̃(A(V ; ξ), δU) = aΩ\Λ(V, δU) + bΓ(Ψ(V ; ξ), δU) ∀δU ∈ Ũ . (3.9)
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Note that the non-linear nature of map A is inherited from that of map Ψ. At the local level, the error at
iteration k writes

wk(ξ)− w(ξ) = Θ(Uk(ξ); ξ)−Θ(U(ξ); ξ), (3.10a)

λk(ξ)− λ(ξ) = Ψ(Uk(ξ); ξ)−Ψ(U(ξ); ξ). (3.10b)

Given that non-linear map Θ(·; ξ) (resp. Ψ(·; ξ)) is Lipschitz continuous, the almost sure convergence of the
local sequence {wk(ξ)}k∈N (resp. {λk(ξ)}k∈N) to w(ξ) (resp. λ(ξ)) in W (resp. M) can be directly obtained

from that of the global sequence {Uk(ξ)}k∈N to U(ξ) in Ũ . Recalling that the exact global solution U(ξ) as well

as all global iterates Uk(ξ) belong to subspace Ũ? ⊂ Ũ , one can restrict the convergence analysis to that of the

sequence {Uk(ξ)}k∈N to U(ξ) in the subspace Ũ?. Let CΩ̃ : Ũ → Ũ be the linear map defined for all U, V ∈ Ũ by
〈CΩ̃(U), V 〉Ũ = cΩ̃(U, V ).

Lemma 3.12. The non-linear mapping D(·; ξ) : Ũ? → Ũ defined by D(·; ξ) = CΩ̃(A(·; ξ)) with A(·; ξ) defined
in (3.8), is Lipschitz continuous and strongly monotone, with Lipschitz constant βD and strong monotonicity
constant αD both independent of ξ.

Proof. See Section A.9 in Appendix A.

One iteration of the algorithm can be written as

Uk(ξ) = Bρk(Uk−1(ξ); ξ),

where Bρk(·; ξ) : Ũ → Ũ is the non-linear iteration map defined by Bρk(V ; ξ) = ρkU + V − ρkA(V ; ξ). We finally
derive the following convergence result.

Theorem 3.13 (Convergence). Assume that the sequence of relaxation parameters {ρk}k∈N is such that

0 < ρinf 6 ρk 6 ρsup < +∞, (3.11)

for some strictly positive constants ρinf and ρsup independent of ξ and k. Then, for ρsup sufficiently small, the
sequence {(Uk(ξ), wk(ξ), λk(ξ))}k∈N converges almost surely to the unique solution (U(ξ), w(ξ), λ(ξ)) of problem

(2.8) in Ũ?×W×M. Also, the sequence {Uk}k∈N (resp. {wk}k∈N and {λk}k∈N) converges to U (resp. w and λ)

in Lpµ(Ξ; Ũ) (resp. Lpµ(Ξ;W) and Lpµ(Ξ;M)).

Proof. See Section A.10 in Appendix A.

Remark 3.14. As long as (3.11) is satisfied, the algorithm converges to the exact solution whatever the choice
of relaxation parameter ρk (bounded from above by a sufficiently small ρsup and from below by any value ρinf > 0

to ensure the convergence) and fictitious operators B̃L and C̃L (satisfying Assumption 2.5 on cΩ̃). Nevertheless,

these choices may have a significant influence on the convergence properties of the algorithm. Note that B̃L and
C̃L play the role of preconditioners for the iterative algorithm.

Remark 3.15. If Λ = Λ̃ and if B = BL = B̃L and C = CL = C̃L, that means if nΛ = 0 and cΛ̃ = aΛ (i.e. in the

linear case with the same geometry and bilinear form over Λ and Λ̃), then A(·; ξ) is such that A(U ; ξ)−A(V ; ξ) =

U − V for all U, V ∈ Ũ? and Bρk(·; ξ) is such that Bρk(U ; ξ)− Bρk(V ; ξ) = (1 − ρk)(U − V ) for all U, V ∈ Ũ?,
so that the convergence of the algorithm is achieved if the condition 0 < ρinf 6 ρk 6 ρsup < 2 is fulfilled, with
a convergence in two iterations for a fixed relaxation parameter ρk = 1.
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3.2.3. Robustness with respect to approximations

Let us now consider that some approximations are introduced in the different steps of the global–local iterative
algorithm.

Such approximations arise when using finite element approximations of spatial functions (see Sect. 4.1),
approximations of parameter-dependent functions (see Sects. 4.2 and 4.3), or when resorting to the use of
unconverged iterative solvers for the approximate solution of either global or local problems with a certain
prescribed accuracy. For example, the solution of non-linear local problems may be performed by means of
classical non-linear solvers, such as Newton-type iterative solvers, leading to approximate local solutions.

We now analyze the sensitivity of the global–local iterative algorithm with respect to these approximations
at the different steps of the algorithm. Due to these approximations, the algorithm, initially defined by the
unperturbed iterative scheme (3.7), generates a sequence {(Ukε , wkε , λkε)}k∈N defined by the following perturbed
iterative scheme:

Ukε (ξ) = ρk
(
Uε + Υε(U

k−1
ε (ξ)) + Φε(λ

k−1
ε (ξ))

)
+ (1− ρk)Uk−1

ε (ξ), (3.12a)

wkε (ξ) = Θε(U
k
ε (ξ); ξ), λkε(ξ) = Ψε(U

k
ε (ξ); ξ), (3.12b)

where Υε and Φε (resp. Θε and Ψε) are approximations of linear maps Υ and Φ (resp. non-linear maps Θ
and Ψ). Similarly, Uε represents an approximation of U . At the global level, the unperturbed global iterate

Uk ∈ ŨΞ
? at iteration k satisfies Uk(ξ) = Bρk(Uk−1

ε (ξ); ξ). The approximate (or perturbed) global iterate Ukε
at iteration k is assumed to belong to ŨΞ

? and satisfies Ukε (ξ) = Bερk(Uk−1
ε (ξ); ξ), where Bερk(·; ξ) denotes an

approximation of iteration map Bρk(·; ξ) defined by Bερk(V ; ξ) = ρkUε + V − ρkAε(V ; ξ), with Aε(V ; ξ) = V −
Υε(V ; ξ)− Φε(Ψε(V ; ξ); ξ).

We assume that approximations are controlled in a Lpµ-norm (typically p = 2 or p = ∞), that means the

approximation error at iteration k, Ukε (ξ)− Uk(ξ) = Bερk(Uk−1
ε (ξ); ξ)−Bρk(Uk−1

ε (ξ); ξ), should satisfy

‖Ukε − Uk‖Lpµ(Ξ;Ũ) 6 ε‖U‖Lpµ(Ξ;Ũ) + ε∗‖Uk−1
ε − U‖Lpµ(Ξ;Ũ),

where ε conveys an absolute error with respect to the solution norm ‖U‖Lpµ(Ξ;Ũ), while ε∗ conveys an approx-

imation error controlled relatively to the solution error in Lpµ-norm ‖Uk−1
ε − U‖Lpµ(Ξ;Ũ) at previous iteration

k − 1. In practice, ε (resp. ε∗) is related to the user-specified tolerance (prescribed to the iterative solver)
for the precision of the residual norms associated with global problem (3.1) and local problem (3.4) for-
mulated on the current iterates Uk and (wk, λk) (resp. on the current increments δUk = Uk − Uk−1

ε and
(δwk, δλk) = (wk − wk−1

ε , λk − λk−1
ε )) (see [16], Sect. 3.5 for further details). We then provide for a robustness

result relative to both types of errors.

Theorem 3.16 (Robustness). Suppose that the set of iteration maps {Bρk(·; ξ)}k>1 is uniformly contractive

on Ũ?, that means

‖Bρk(V ; ξ)−Bρk(W ; ξ)‖Ũ 6 ρB‖V −W‖Ũ ,

for all V,W ∈ Ũ?, with a contractivity constant ρB < 1 independent of ξ. Further assume that the set of perturbed
iteration maps {Bερk(·; ξ)}k>1 is such that for all V in a δ-neighborhood Vδ of the exact global solution U , defined

by Vδ = {V ∈ Lpµ(Ξ; Ũ?) : ‖V − U‖Lpµ(Ξ;Ũ) < δ‖U‖Lpµ(Ξ;Ũ)}, we have

‖Bερk(V )−Bρk(V )‖Lpµ(Ξ;Ũ) 6 ε‖U‖Lpµ(Ξ;Ũ) + ε∗‖V − U‖Lpµ(Ξ;Ũ),
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for some given tolerances 0 6 ε∗ < 1− ρB and 0 6 ε 6 δ(1− ρB − ε∗). Then, if the initial iterate U0
ε = 0 ∈ Vδ,

the approximate sequence {Ukε }k∈N is such that

lim sup
k→+∞

‖Ukε − U‖Lpµ(Ξ;Ũ) 6 γ(ε, ε∗)‖U‖Lpµ(Ξ;Ũ), (3.13)

with γ(ε, ε∗) = ε
1−(ρB+ε∗) → 0 as ε→ 0, and tends to a neighborhood of U in Lpµ(Ξ; Ũ) whose size is proportional

to γ(ε, ε∗).

Proof. See Section A.11 in Appendix A.

Finally, the approximate sequence {Ukε }k∈N (resp. {wkε}k∈N and {λkε}k∈N) generated by the perturbed iterative

scheme (3.12) converges in Lpµ(Ξ; Ũ) (resp. Lpµ(Ξ;W) and Lpµ(Ξ;M)) to a neighborhood of the exact solution
U (resp. w and λ). Therefore, the proposed global–local iterative algorithm exhibits robustness properties with
respect to possible perturbations such as numerical approximations, either controlled with relative precision ε∗

or absolute precision ε, which is an essential feature from a numerical point of view.

Remark 3.17. The convergence rate of the perturbed algorithm (3.12), which is ρB + ε∗ (see the proof of
Thm. 3.16 in Sect. A.11, Appendix A), depends on the perturbations with controlled relative precision ε∗ but
not on perturbations with controlled absolute precision ε.

Remark 3.18. Under the more restrictive assumption that the set of perturbed iteration maps {Bερk(·; ξ)}k>1

is such that for all V in a δ-neighborhood Vδ(ξ) of the exact global solution U(ξ), defined by

Vδ(ξ) = {V ∈ Ũ? : ‖V − U(ξ)‖Ũ < δ‖U(ξ)‖Ũ}, we have almost surely

‖Bερk(V ; ξ)−Bρk(V ; ξ)‖Ũ 6 ε‖U(ξ)‖Ũ + ε∗‖V − U(ξ)‖Ũ ,

with 0 6 ε∗ < 1 − ρB and 0 6 ε 6 δ(1 − ρB − ε∗), then we can prove that the approximate sequence
{(Ukε (ξ), wkε (ξ), λkε(ξ)}k∈N) generated by the perturbed iterative scheme (3.12) converges almost surely to a
neighborhood of the exact solution (U(ξ), w(ξ), λ(ξ)).

4. Computational aspects

In this section, we address computational aspects related to the proposed global–local iterative algorithm.

4.1. Finite element approximations at spatial level

At the spatial level, we employ a standard Galerkin finite element method by introducing finite-dimensional
approximation spaces ŨH ⊂ Ũ and Wh ⊂ W with dimensions nU and nw, respectively. We denote by TH(Ω̃)

(resp. Th(Λ)) the finite element mesh of fictitious domain Ω̃ (resp. patch Λ) composed of elements of maximum
size H (resp. h). For the sake of simplicity, we further make the following assumptions:

– domain Ω̃ and patch Λ are exactly covered by global mesh TH(Ω̃) and local mesh Th(Λ), respectively;

– global mesh TH(Ω̃) is partitioned into two submeshes TH(Ω \ Λ) and TH(Λ̃) (associated with subdomain

Ω \ Λ and fictitious patch Λ̃, respectively) such that TH(Ω̃) = TH(Ω \ Λ) ∪ TH(Λ̃), that means interface Γ

coincides with the intersection of boundaries of both submeshes TH(Ω \Λ) and TH(Λ̃) and therefore does

not cut any element of global mesh TH(Ω̃).

Both meshes TH(Ω̃) and Th(Λ) are a priori not compatible at interface Γ, that means they may not match

on interface Γ. Note that interface Γ is part of the boundary of meshes Th(Λ), TH(Ω \ Λ) and TH(Λ̃). We now
introduce an approximation space Mh ⊂ M with dimension nλ. In the general case of non-matching meshes
and geometries, where both meshes TH(Ω̃) and Th(Λ) do not match and even do not share a common interface Γ,
one should pay attention to the construction of a suitable approximation spaceMh of Lagrange multipliers. The
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interested reader can refer to [8, 47, 80] for further information on the construction of appropriate Lagrange
multiplier spaces using mortar (non-conforming) finite elements. In our particular case where both meshes
TH(Ω \Λ) and Th(Λ) share a common interface Γ, a natural choice consists in taking forMh a finite-dimensional
subspace of trace space H1/2(Γ), so thatMh ⊂ H1/2(Γ) ⊂ L2(Γ) ⊂ H1/2(Γ)∗ =M. If interface Γ does not present
any boundary, a convenient choice consists in taking the trace ofWh on interface Γ for the practical construction
ofMh. Otherwise, if interface Γ has a boundary, an alternative choice consists in taking a subspace of the trace
of Wh on interface Γ (see [47, 80]). The interested reader can refer to [8, 36, 80] for details about the properties
of trace spaces and mortar projection operators.

For a given Hilbert space H (possibly dependent on ξ), we denote by Hn a finite element approximation
subspace of H spanned by basis functions {ϕi}i∈I and with dimension n = #I. A function v ∈ Hn can then
be identified with a vector v = (vi)i∈I ∈ Rn such that v =

∑
i∈I viϕi. Similarly, an element v ∈ (Hn)Ξ can

be identified with a random vector v = (vi)i∈I ∈ (Rn)Ξ such that v(ξ) =
∑
i∈I vi(ξ)ϕi. For the bilinear forms

cO and aO, semi-linear form nO and linear form `O, we introduce the finite element matrices CO and AO(ξ),
discretized random non-linear map NO(·; ξ) and finite element random vector lO(ξ), respectively defined for a

subdomain O ⊂ Ω̃ by

cO(u, v) = uTCOv, aO(u, v; ξ) = uTAO(ξ)v,

nO(u, v; ξ) = uTNO(v; ξ), `O(v; ξ) = vT lO(ξ).

As the coupling bilinear form bΓ is defined on the two distinct subspacesMh×ŨH andMh×Wh, we introduce
two finite element matrices B̃Γ and BΓ defined by

bΓ(λ, v) = vT B̃Γλ for v ∈ ŨH , and bΓ(λ, v) = vTBΓλ for v ∈ Wh.

In the discrete setting, an approximation of global problem (3.1) reads: find Ûk ∈ ŨΞ
H satisfying (3.1) for all

δU ∈ ŨH . In an algebraic setting, it boils down to solving the following system of linear algebraic equations:

CΩ̃Ûk(ξ) = CΛ̃Uk−1(ξ)− B̃Γλ
k−1(ξ) + lΩ\Λ. (4.1)

An approximation of local problem (3.4) reads: find (wk, λk) ∈ WΞ
h ×MΞ

h such that it satisfies almost surely
(3.4) for all (δw, δλ) ∈ Wh×Mh. In an algebraic setting, it comes down to solving the following system of
non-linear algebraic equations:

AΛ(ξ)wk(ξ) + NΛ(wk(ξ); ξ)−BΓλ
k(ξ) = lΛ(ξ), (4.2a)

BT
Γwk(ξ) = B̃T

ΓUk(ξ). (4.2b)

Remark 4.1. The convergence properties of the algorithm may be affected by the choice of spatial approxima-
tion spaces. The discretization errors can be viewed as additional perturbations occurring at both global and
local steps of the algorithm. The impact of these perturbations on the behavior of the algorithm is addressed
through Theorem 3.16.

4.2. Approximations at stochastic level

At the stochastic level, we introduce a basis {ψα}α∈F of L2
µ(Ξ) (typically a polynomial basis) and we consider

approximation spaces SA = span{ψα}α∈A, where A is a finite subset of F = Nm which is a partially ordered
set such that for α, β ∈ F , α 6 β ⇐⇒ αi 6 βi for all i ∈ {1, . . . ,m}. Then a function v =

∑
α∈A vαψα ∈ SA is

identified with the vector of its coefficients (vα)α∈A ∈ R#A on the basis of SA.
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At the global level, suppose that finite element random vectors associated with Uk−1 and λk−1 are respectively
given by Uk−1(ξ) =

∑
α∈AUk−1

α ψα(ξ) and λk−1(ξ) =
∑
α∈A λ

k−1
α ψα(ξ). Then, finite element random vec-

tors associated with Ûk and Uk admit the expansions Ûk(ξ) =
∑
α∈A Ûk

αψα(ξ) and Uk(ξ) =
∑
α∈AUk

αψα(ξ),
respectively, with

Ûk
α = C−1

Ω̃

(
CΛ̃Uk−1

α − B̃Γλ
k−1
α + lΩ\ΛE(ψα(ξ))

)
and Uk

α = ρkÛ
k
α + (1− ρk)Uk−1

α .

It is worthy noticing that since B̃L and C̃L are chosen deterministic on Λ̃ (see Rem. 3.1), then CΩ̃ and CΛ̃ are

independent of ξ, and the set of expansion coefficients {Ûk
α}α∈A are simply obtained by solving a system of only

#A uncoupled linear algebraic equations with the same deterministic global finite element matrix CΩ̃, which
can be factorized only once for all at initialization of the iterative procedure. The solution of such uncoupled
global problems can be performed in parallel using traditional solvers available in standard deterministic finite
element codes.

Remark 4.2. Convergence acceleration techniques based on Quasi-Newton or Newton update formulas have
been proposed in [22, 29] within the deterministic framework and rely on successive corrections of the global
finite element matrix CΩ̃ at each global step of the iterative procedure in order to improve the convergence rate
of the algorithm. In the present stochastic framework, this would yield to a parameter-dependent matrix CΩ̃,
unless using deterministic approximations of the successive corrections of CΩ̃.

At the local level, approximations of finite element random vectors wk(ξ) and λk(ξ) associated with local iter-
ates wk and λk, respectively, are searched under the form wk(ξ) ≈

∑
α∈Awk

αψα(ξ) and λk(ξ) ≈
∑
α∈A λ

k
αψα(ξ).

The determination of these approximations through Galerkin projection methods [57, 61] requires the solution
of a large system of #A coupled non-linear algebraic equations whose computational cost and memory storage
requirements may be prohibitive and whose implementation may be cumbersome as it usually requires a modi-
fication (or at least an adaptation) of existing deterministic codes. Note however that non intrusive (or weakly
intrusive) implementations of Galerkin methods can be introduced [32, 33].

Here, for computing approximations of local iterates, we rather rely on an adaptive least-squares method
which uses evaluations of the solution of (3.4) at some samples {ξl}Nl=1 of random variables ξ. These evaluations
are obtained by N calls to an existing non-linear deterministic solver, i.e. without requiring any modification of
the underlying deterministic computer code. For computing the solution (wk(ξl),λk(ξl)) of (4.2) for ξ = ξl, we
employ a Newton-type iterative algorithm with some prescribed tolerance. Note that the resulting numerical
error can be viewed as an additional perturbation occurring at each local step of the iterative algorithm, whose
impact on the behavior of the algorithm is analyzed in Section 3.2.3. The adaptive least-squares method is
described in Section 4.3.

4.3. Adaptive least-squares method for sparse polynomial approximation

Here we describe an adaptive least-squares method for sparse approximation of a random vector u ∈
Rn ⊗ L2

µ(Ξ). We assume Ξ ⊂ Rm (m < ∞) and we consider an orthonormal tensor product basis {ψα(ξ) =∏m
i=1 ψ

(i)
αi (ξi)}α∈F of L2

µ(Ξ), where ψ
(i)
k is a univariate polynomial of degree k. For a given subset A ⊂ F , we

define the corresponding polynomial space SA = span{ψα}α∈A. A subset A is called monotone (or lower or
downward closed) if it is such that (β ∈ A and α 6 β) =⇒ α ∈ A. If A is monotone, the subspace SA coin-
cides with the polynomial space PA = span{ξα1

1 . . . ξαmm : α ∈ A} whatever the choice of univariate polynomial
bases. Note that univariate polynomial bases could be replaced by other hierarchical bases (such as wavelet
bases) with which we can expect accurate sparse approximations of the random vector.
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4.3.1. Approximation in a given subspace

For a given subset A, a least-squares approximation v of u in Rn ⊗ SA can be written as v(ξ) =∑
α∈A vαψα(ξ), where the set of coefficients V = (vα)α∈A ∈ Rn×#A is solution of

min
(vα)α∈A

N∑
l=1

‖u(ξl)−
∑
α∈A

vαψα(ξl)‖22. (4.3)

Assuming N > #A and ΨTΨ invertible, this yields VT = (ΨTΨ)−1ΨTY, where Ψ = (ψα(ξl))16l6N,α∈A ∈
RN×#A and Y = (u(ξl))16l6N ∈ RN×n. The stability of the least-squares approximation is related to the prop-

erties of the random matrix ΨTΨ. Some theoretical results can be found in [18] and the references therein. In
practice, for a given set A, the stability of the least-squares approximation can be improved by increasing the
number of samples.

The approximation error can be estimated a posteriori using cross-validation techniques which are classical
statistical methods for computing error estimates based on a random partitioning of the available sample set into
two subsets, the training set (or learning set) and the test set (or validation set). In the k-fold cross-validation
procedure, the sample set ξ = {ξl}Nl=1 is randomly partitioned into k disjoint and complementary sample subsets
{ξs}ks=1 of nearly equal size. Each subset ξs is in turn retained as the test set, while the remaining k− 1 subsets
gathered in χs = ξ \ ξs are used as the training set. An approximation v is computed independently for each
training set χs and tested against the corresponding validation set ξs in order to assess its accuracy. The
cross-validation error is estimated for each of the k training sets χs and then averaged over the k sets. Such a
cross-validation technique requires k additional calls to the least-squares solver and thus may be computationally
demanding. In practice, the vector of cross-validation error estimates ε = (εi)i∈I can be directly obtained from
the approximate random vector v = (vi)i∈I (computed using the available sample set ξ = {ξl}Nl=1) using the
Bartlett matrix inversion formula [5] (a special case of well-known Sherman–Morrison–Woodbury formula)
without any additional call to the least-squares solver. The leave-one-out cross-validation procedure is a special
case of k-fold cross-validation procedure where the number of folds k is equal to the number of samples N . Note
that the k-fold cross-validation technique depends on the chosen partition, contrary to the leave-one-out cross-
validation technique. In the present work, we use the fast leave-one-out cross-validation procedure presented in
[13] and summarized in Algorithm A.1 (see Sect. A.1 in Appendix A) to assess the accuracy of v.

4.3.2. Working set strategy for adaptive approximation

Now, we introduce a working set strategy for the construction of a sequence of approximation spaces (SAj )j>1,
where (Aj)j>1 is an increasing sequence of monotone sets. Given Aj , we define Aj+1 = Aj ∪ Nj , where Nj is
selected in a set of candidate multi-indices in F \ Aj . A natural approach consists in choosing for Nj a subset
of the margin Mj =M(Aj) of Aj , where the margin of a monotone set A is defined by

M(A) = {α 6∈ A : ∃i ∈ {1, . . . ,m} such that αi 6= 0 =⇒ α− ei ∈ A},

where (ei)j = δij is the Kronecker delta for i, j ∈ N∗. A strategy for the selection of Nj (referred to as bulk search
strategy in [17]) consists in computing a least-squares approximation v(ξ) =

∑
α∈Aj∪Mj

vαψα(ξ) associated

with the augmented approximation space SAj∪Mj
, and then in selecting a subset Nj such that e(Nj) > θe(Mj),

where θ ∈ [0 , 1] is a parameter and where for a given setN , e(N ) =
∑
α∈N ‖vα‖22 corresponds to the contribution

of coefficients (vα)α∈N to the L2
µ-norm of v. Note that the construction of an optimal (smallest) monotone subset

Nj in the margin Mj of Aj by a fast algorithm is still an open question.
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Remark 4.3. A practical choice for constructing a monotone set Nj is to consider the smallest subset in the
margin Mj such that e(Nj) > θe(Mj) and which contains the multi-indices α corresponding to the largest
elements in the monotone envelope1 (vα)α∈Mj of the bounded sequence (‖vα‖2)α∈Mj .

Also, as the cardinality of the margin M(Aj) may become prohibitively large in high dimension m, an
alternative strategy consists in considering for Mj the reduced margin Mred(Aj) of Aj , where

Mred(A) = {α 6∈ A : ∀i ∈ {1, . . . ,m} such that αi 6= 0 =⇒ α− ei ∈ A}.

The additional set Nj is then defined as the smallest non-empty subset of the reduced margin Mj of Aj such
that e(Nj) > θe(Mj), which is a monotone set by construction. Therefore, Aj+1 = Aj ∪ Nj , as a union of
monotone sets, is a monotone set. For θ = 1, the selected subset Nj = {α ∈ Mj : ‖vα‖2 6= 0}. For θ = 0, Nj
is one arbitrary element of {α ∈ Mj : α = arg maxα∈Mj

‖vα‖2}, and the strategy corresponds to the largest
neighbor strategy proposed in [17]. In the numerical experiments, we will consider the strategy with a parameter
θ = 0.5.

4.3.3. Adaptive strategy

In order to reach a desired accuracy, we finally propose an algorithm with adaptive random sampling and an
adaptive selection of the approximation space SA with the working set strategy presented above. The algorithm
is summarized in Algorithm A.2 (see Sect. A.2 in Appendix A). The convergence, stagnation and overfitting
criteria in Algorithm A.2 are respectively defined by

‖ε‖2 6 εcv,
‖ε− εprev‖2
‖ε‖2

6 εstagn and
‖ε‖2
‖εprev‖2

> 1 + εoverfit,

where ε (resp. εprev) is the vector of cross-validation error estimates computed at current (resp. previous)
iteration, and εcv (resp. εstagn and εoverfit) is the convergence (resp. stagnation and overfitting) threshold.

For computing sparse approximations of the solution (wk(ξ),λk(ξ)) of non-linear local problem (4.2) at
iteration k of the algorithm, we apply the adaptive least-squares method to u(ξ) = (wk(ξ),λk(ξ)). In the
adaptive sparse least-squares solver presented in Algorithm A.2, the adaptive random sampling step is performed
by computing Nadd additional samples (wk(ξN+l),λk(ξN+l))16l6Nadd

of random vectors (wk(ξ),λk(ξ)) (thus
solving Nadd deterministic non-linear local problems) until the vectors of cross-validation error estimates εw

and ελ for both random vectors wk(ξ) and λk(ξ) satisfy a stagnation criterion. Then, the working set strategy
is applied to wk(ξ) and λk(ξ) separately to construct a sparse polynomial approximation space SA dedicated
to each random vector.

Remark 4.4. Following Remark 3.4, in the case of a patch Λ containing geometrical variabilities, remeshing
techniques could also be used in conjunction with sampling-based approaches. Indeed, the algorithm requires
the computation of local iterates λk (defined on a deterministic interface Γ) but not of local iterates wk (defined
on the uncertain domain Λ(ξ)). An approximation of λk can therefore be computed from samples of the local
iterate λk(ξ), where each new sample involves a specific mesh of Λ(ξ). After convergence of the algorithm (at
final iteration k), samples of the local solution wk(ξ) can be obtained by using remeshing techniques for each
sample, from which we can deduce samples of quantities of interest expressed as functionals of wk(ξ). An explicit
approximation of wk in terms of ξ can also be obtained by using approaches based on reformulations of the
local problem on a fixed deterministic domain (such as the random mapping techniques or the fictitious domain
approaches briefly described in Rem. 3.4).

1For a given set A, the monotone envelope (also called monotone majorant) (vα)α∈A of a bounded sequence (‖vα‖2)α∈A is
defined by vα = maxβ∈A,β>α‖vβ‖2 for α ∈ A.
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4.4. Relaxation step

The relaxation step may affect the convergence rate of the iterative algorithm as it can be interpreted as a
line-search step of a non-linear solver.

The simplest method is to choose a fixed relaxation parameter ρ throughout iterations. A large relaxation
parameter may speed up the convergence but can lead to a divergence of the algorithm, while a small relaxation
parameter ensures the convergence but triggers more iterations in return. The computation of an optimal
relaxation parameter leading to an optimal convergence rate of the algorithm is not obvious in the non-linear
framework. Even in the linear case, the optimal fixed value of relaxation parameter ρ is problem-dependent and
not known a priori .

The Aitken’s Delta-Squared method [44, 56] is a convergence acceleration technique which allows improving
the current solution by using information gained at two previous iterations. The current global iterate Uk is
then obtained from the two pairs (Ûk, Uk−1) and (Ûk−1, Uk−2) and defined as

Uk(ξ) = Ûk(ξ)−
〈δk(ξ)− δk−1(ξ), Ûk(ξ)− Ûk−1(ξ)〉Ũ

‖δk(ξ)− δk−1(ξ)‖2
Ũ

δk(ξ),

where δk(ξ) = Ûk(ξ) − Uk−1(ξ) is the difference between the current global solution Ûk(ξ) and the previous
global iterate Uk−1(ξ). Then, using (3.3), the relaxation parameter ρk is dynamically updated and defined by

ρk = −ρk−1

〈δk(ξ)− δk−1(ξ), δk−1(ξ)〉Ũ
‖δk(ξ)− δk−1(ξ)‖2

Ũ
. (4.4)

As the Aitken’s recursive formula (4.4) requires two iterations of the algorithm, the first two values ρ1 and ρ2

are commonly set to 1. For the subsequent iterations, the relaxation parameter ρk can de defined as

ρk = T[ρinf ,ρsup]

(
−ρk−1

〈δk(ξ)− δk−1(ξ), δk−1(ξ)〉Ũ
‖δk(ξ)− δk−1(ξ)‖2

Ũ

)

where T[ρinf ,ρsup](ρ) is the projection of ρ on the interval [ρinf , ρsup], which allows to ensure the convergence of
the algorithm (see convergence condition (3.11)).

Such a convergence acceleration technique is very simple to implement and computationally cheap. Also, the
Aitken’s acceleration method has been successfully applied to relaxation-based fixed-point algorithms in the
context of fluid–structure interaction [49] and multiscale coupling [22, 54] problems. It has been proved to be
particularly efficient with good convergence properties at low cost, compared with other relaxation methods
such as the steepest descent method.

5. Numerical results

In order to demonstrate the efficiency and the robustness of the proposed method, we present different numer-
ical experiments for a stationary non-linear diffusion-reaction equation defined on a deterministic rectangular
(two-dimensional) domain Ω = (0, 2)×(0, 16) ⊂ R2. This equation is complemented with deterministic homoge-
neous Dirichlet boundary conditions u = 0 applied on the entire boundary ΓD = ∂Ω. A deterministic volumetric
source term f = 1 is imposed on the whole domain Ω. The only sources of uncertainties come from diffusion
coefficient K(x, ξ) and reaction parameter R(x, ξ) which are input random fields depending on a set of random

variables ξ ∈ Ξ. The variabilities are assumed to be confined in Q = 8 patches {Λq}Qq=1 distributed along the y
(vertical) axis. Each patch Λq is a square subdomain Λq = (0.5, 1.5)×(2q − 1.5, 2q − 0.5). None of the patches

present geometrical details. Domain Ω and the set of Q patches {Λq}Qq=1 are illustrated in Figure 3a.
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Figure 3. (a) Domain Ω partitioned into Q = 8 patches {Λq}Qq=1 and the complementary

subdomain Ω \ Λ with Λ =
⋃Q
q=1 Λq, and (b) associated nested global and local finite element

meshes Th(Λ) and TH(Ω \ Λ) with (c) zoom around patch Λ1.

The solution u satisfies almost surely

−∇ · (K(x, ξ)∇u) +R(x, ξ)u3 = f on Ω, u = 0 on ΓD = ∂Ω,

where random diffusion coefficient K and random reaction parameter R are such that

K(x, ξ) =

{
K0 = 1 for x ∈ Ω \ Λ,

Kq(x, ξ2q−1) = 1 + γqξ2q−1χq(x) for x ∈ Λq, for all q ∈ {1, . . . , Q},

R(x, ξ) =

{
0 for x ∈ Ω \ Λ,

Rq(x, ξ2q) = γqξ2qχq(x) for x ∈ Λq, for all q ∈ {1, . . . , Q},

with χq(x) the indicator function of subdomain Λ?q = (0.75, 1.25)×(2q − 1.25, 2q − 0.75) ⊂ Λq for all q ∈
{1, . . . , Q}, and where the weights γq are real coefficients in (0, 1) whose values define a level of uncertainty
in the patch Λq. We consider two different situations: (i) an isotropic case, for which all weights γq = 1; (ii)
an anisotropic case, for which the weights γq = 1 − 0.1(q + 1). Random diffusion coefficient K and reaction
parameter R are parametrized by a set ξ = (ξi)

m
i=1 of m = 2Q = 16 real-valued random variables ξi assumed

to be mutually independent and uniformly distributed on (0, 1). The parameter space is then the hypercube
Ξ = (0, 1)m ⊂ Rm endowed with the uniform probability measure. Each patch Λq is characterized by a random
diffusion coefficient Kq (parametrized by ξ2q−1) and a random reaction parameter Rq (parametrized by ξ2q).
The material properties of patch Λq therefore depends on 2 real-valued random variables ξ2q−1 and ξ2q. The
ranges of variations of Kq and Rq in each patch Λq are respectively (1, 2) and (0, 1) for the isotropic case, and
(1, 1 + γq) and (0, γq) for the anisotropic case. In this example, all uncertain material parameters Kq and Rq
depend on the random variables ξ in an affine manner, so do the bilinear forms aΛq and semi-linear forms nΛq

for all q ∈ {1, . . . , Q}. As the Hilbert space V is assumed to be deterministic, the solution u ∈ Lpµ(Ξ;V) belongs
to the tensor product vector space V ⊗ Lpµ(Ξ). Given that Dirichlet boundary conditions are applied on the
whole boundary ∂Ω, and the source term f is deterministic on domain Ω, the linear form `Ω is independent of
ξ. Lastly, as domain Ω does not contain any geometrical defects, Ω̃ = Ω in this example.
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5.1. Approximation spaces

At the spatial level, we introduce nested finite element approximation spaces ŨH ⊂ Ũ and Wq
h ⊂ Wq for all

q ∈ {1, . . . , Q} (see Fig. 3b and c). The coarse global mesh TH(Ω̃) is a regular triangulation of fictitious domain

Ω̃ which is composed of 3-nodes linear triangular elements with uniform element size H = 0.1. It thus comprises
3381 nodes and 6400 elements. For every q ∈ {1, . . . , Q}, the fine local mesh Th(Λq) is a regular triangulation
of patch Λq which is composed of 3-nodes linear triangular elements with uniform element size hq = 0.05. It is
thus made of 441 nodes and 800 elements. Every fine local mesh Th(Λq) corresponds to a uniform refinement

of the corresponding coarse local mesh TH(Λ̃q). The resulting spatial approximation spaces ŨH and Wq
h for all

q ∈ {1, . . . , Q}, have dimensions nU = dim (ŨH) = 3381 and nwq = dim (Wq
h) = 441, respectively.

At the stochastic level, we adaptively build a multidimensional polynomial approximation space SA spanned
by generalized polynomial chaos basis {ψα}α∈A (multidimensional Legendre polynomials) by using the adaptive
sparse least-squares solver described in Algorithm A.2. At each iteration of the iterative algorithm, the linear
global problem (3.1) defined on fictitious domain Ω̃ is solved exactly (at the machine precision using a direct
solver) as it involves a deterministic operator, while the Q non-linear local problems (3.4) defined on the Q

patches {Λq}Qq=1 are solved using the adaptive sampling-based least-squares method described in Section 4.3.

For each patch Λq, the Nq deterministic non-linear local problems (4.2) associated with the Nq samples {ξl}Nql=1

are partially solved using a tangent-Newton iterative algorithm with a prescribed tolerance set to ε = 10−12.
In our application case, one deterministic non-linear local problem typically requires only few iterations (less
than 5) to reach this stopping criterion. All the local computations have been performed in parallel on 32

cores of a single computer node. The sample set {ξl}Nql=1 and the approximation spaces SAq are sequentially
enriched (independently for each patch) in order to control the accuracy of the local approximations (wkq , λ

k
q ).

The stagnation and overfitting thresholds in Algorithm A.2 are both set to εstagn = εoverfit = 10−1. An initial
sample set of size N = 1 is used with a sampling factor padd = 0.1 (percentage of additional samples) and a
parameter θ = 0.5 for a good trade-off between computational efficiency and stability of local solutions (wkq , λ

k
q ).

5.2. Convergence analysis

The accuracy of global approximations Uk is measured in L2
µ-norm with respect to a global reference solution

U ref using the relative error indicator εΞ,Ω\Λ defined as

εΞ,Ω\Λ(Uk;U ref) =
‖Uk − U ref‖L2

µ(Ξ;L2(Ω\Λ))

‖U ref‖L2
µ(Ξ;L2(Ω\Λ))

, with ‖U‖2L2
µ(Ξ;L2(Ω\Λ)) = E(‖U(ξ)‖2L2(Ω\Λ)).

The reference solution (U ref, wref, λref) is obtained by directly solving the full-scale coupled problem (2.4) using
the adaptive sparse least-squares method described in Section 4.3. Following Theorem 3.7, the global reference
solution U ref is the restriction to subdomain Ω \ Λ of the limit U of the sequence of global iterates Uk. At the
spatial level, the global (resp. local) reference solution U ref (resp. (wref

q , λref
q )) is discretized using the same finite

element mesh as the global (resp. local) approximations Uk (resp. (wkq , λ
k
q )). At the stochastic level, the number

of samples N ref and the approximation spaces SAref are controlled by using the leave-one-out cross-validation
procedure presented in Algorithm A.1. The prescribed tolerance for the convergence of Algorithm A.2 is set to
εref

cv = 10−6. The resulting sample size is N ref = 795 for the isotropic case and N ref = 491 for the anisotropic
case. The partial polynomial degrees pref

i (in each random variable ξi) and the dimension #Aref of approximation
spaces SAref for global and local reference solutions U ref and (wref

q , λref
q ) are reported in Table 1 for both isotropic

and anisotropic cases. The local reference solution (wref
q , λref

q ) mainly depends on the random variables ξ2q−1 and
ξ2q associated with the corresponding patch Λq, as well as on the random variables confined in the surrounding
patches. Note that, in the anisotropic setting, the stronger the variabilities in the material properties within a
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Table 1. Partial polynomial degrees pref
i (in each random variable ξi), i ∈ {1, . . . , 16}, and

dimension #Aref of approximation spaces SAref for global and local reference solutions U ref and
(wref

q , λref
q ), q ∈ {1, . . . , 8}, where values displayed in bold correspond to random variables ξ2q−1

and ξ2q associated with patch Λq.

pref
1 pref

2 pref
3 pref

4 pref
5 pref

6 pref
7 pref

8 pref
9 pref

10 pref
11 pref

12 pref
13 pref

14 pref
15 pref

16 #Aref

(A) Isotropic case

U ref 7 3 6 4 6 4 6 4 6 4 6 4 6 4 7 3 384
wref

1 7 3 5 3 3 2 2 2 1 1 0 0 0 0 0 0 85
λref

1 8 4 6 4 5 3 3 2 2 1 0 1 0 0 0 0 186
wref

2 6 3 7 4 5 3 3 2 2 2 1 1 0 0 0 0 142
λref

2 6 3 7 4 5 3 4 2 2 2 1 1 0 0 0 0 170
wref

3 4 2 5 3 7 4 5 3 3 2 2 1 1 1 0 0 150
λref

3 5 2 5 3 7 4 5 3 4 3 2 2 1 1 1 0 215
wref

4 3 1 3 2 5 3 7 4 5 3 3 2 2 2 1 1 168
λref

4 3 2 4 3 5 3 7 4 5 3 4 3 3 2 2 1 235
wref

5 1 1 2 1 3 2 5 3 7 4 5 3 3 2 3 1 167
λref

5 2 1 3 2 4 3 5 3 7 4 5 3 4 2 3 2 234
wref

6 1 0 1 1 2 1 3 2 5 3 7 3 5 3 4 2 149
λref

6 1 0 1 1 3 2 4 3 6 3 7 4 6 3 5 2 239
wref

7 0 0 0 0 0 1 2 2 3 2 5 3 8 4 5 3 164
λref

7 0 0 0 0 1 1 2 2 4 2 5 3 7 4 7 3 174
wref

8 0 0 0 0 0 1 1 1 2 1 3 2 5 3 8 3 91
λref

8 0 1 0 0 1 1 2 2 3 2 5 3 6 4 8 4 202

(B) Anisotropic case

U ref 6 3 5 3 5 3 4 3 4 3 4 3 3 2 3 2 173
wref

1 7 3 4 3 2 2 1 1 0 1 0 0 0 0 0 0 57
λref

1 7 3 5 3 4 2 2 2 1 1 0 0 0 0 0 0 129
wref

2 5 2 6 3 4 3 3 2 1 1 0 1 0 0 0 0 95
λref

2 5 3 6 3 4 3 3 2 2 1 1 1 0 0 0 0 115
wref

3 4 2 4 3 6 3 4 2 2 2 1 1 0 0 0 0 106
λref

3 4 2 5 3 6 3 4 3 3 2 1 1 0 1 0 0 127
wref

4 2 1 3 2 4 2 5 3 3 2 2 2 1 1 0 0 84
λref

4 3 1 3 2 4 3 5 3 4 3 2 2 1 1 1 0 112
wref

5 1 1 1 1 2 2 3 2 5 3 3 2 2 1 1 1 68
λref

5 2 1 2 1 3 2 4 3 5 3 3 2 2 2 1 1 94
wref

6 0 0 0 1 1 1 2 2 3 2 4 3 3 2 2 1 54
λref

6 0 0 1 1 2 2 3 2 4 3 5 3 3 2 2 1 84
wref

7 0 0 0 0 0 0 1 1 2 2 3 2 4 2 2 1 40
λref

7 0 0 0 0 1 1 2 1 3 2 3 2 4 3 3 2 55
wref

8 0 0 0 0 0 0 0 0 1 1 2 1 2 2 3 2 23
λref

8 0 0 0 0 0 0 1 1 2 1 3 2 3 2 3 2 41

patch Λq are, the more the reference local solution (wref
q , λref

q ) is sensitive to the random variables ξ2q−1 and ξ2q
associated with Λq.

We first consider a fixed cross-validation tolerance εcv = 10−3 in Algorithm A.2 for the accuracy of local
solutions (wkq , λ

k
q ) and we study the influence of relaxation parameter ρk on the convergence of the global–local
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Figure 4. Isotropic problem: evolution of error indicator εΞ,Ω\Λ with respect to iteration
number k for different fixed relaxation parameters ρ and for Aitken’s dynamic relaxation
parameter ρk.

iterative algorithm. Figure 4 represents the evolution of relative error indicator εΞ,Ω\Λ with respect to the
number of iterations k for different fixed values of relaxation parameter ρ ∈ {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8}
and for a relaxation parameter ρk dynamically updated through the Aitken’s Delta-Squared method presented in
Section 4.4 in the isotropic case. As expected, the relaxation parameter has a strong influence on the convergence
rate of the iterative algorithm. The Aitken’s Delta-Squared acceleration technique provides similar results as
those obtained with an optimal fixed relaxation parameter without any additional computational cost. The
relative error indicator decreases sharply (εΞ,Ω\Λ = 5×10−5 after only k = 3 iterations) and reaches a plateau
εΞ,Ω\Λ = 3×10−6 for k > 5. Similar results can be obtained for the anisotropic case.

We now use the Aitken’s dynamic relaxation and we investigate the influence of the prescribed tolerance
εcv for cross-validation in Algorithm A.2 on the performances of the global–local iterative algorithm in terms
of accuracy and computational efficiency. Figure 5 shows the evolution of relative error indicator εΞ,Ω\Λ and
computational cost per iteration as functions of the number of iterations k of the global–local iterative algorithm
for different cross-validation tolerances εcv ∈ {10−2, 10−3, 10−4, 10−5} for both problems. The iterative algorithm
converges quite fast until the relative error indicator εΞ,Ω\Λ stabilizes around a value smaller than the tolerance
εcv imposed to Algorithm A.2 for cross-validation. The cross-validation threshold εcv can then be seen as the level
of a perturbation occurring at each local step of the iterative algorithm and having an impact on its convergence
properties. The accuracy of multiscale solution u = (U,w1, . . . , wQ) obtained at convergence of the global–local
iterative algorithm is then controlled by the cross-validation tolerance εcv prescribed to Algorithm A.2 at each
local stage. Note that using a relatively high cross-validation tolerance εcv = 10−2 allows to reach a rather small
precision εΞ,Ω\Λ = 6×10−5 (resp. 4×10−5) after only k = 3 iterations for the isotropic (resp. anisotropic) case.
Figure 6 displays the evolution of Aitken’s dynamic relaxation parameter ρk with respect to iteration number k
for the aforementioned cross-validation tolerances εcv = 10−2, . . . , 10−5 for both isotropic and anisotropic cases.
As mentioned in [49], relaxation parameter ρk varies but does not seem to follow a definite pattern during
the iterations of the algorithm. In our numerical experiments, ρk varies slightly around the value 1 during the
first iterations, then decreases toward zero as soon as the relative error indicator εΞ,Ω\Λ stagnates around a
certain value depending on the prescribed tolerance εcv for cross-validation. Figure 7 shows the evolutions of
the sample size Nq and the dimension #Aq of the approximation space for local solution wkq and Lagrange

multiplier λkq within patch Λq, for q = 4, as functions of the number of iterations k for cross-validation threshold
values εcv varying from 10−2 to 10−5 for both isotropic and anisotropic cases. The number of samples Nq and
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Figure 5. Evolutions of (a and b) error indicator εΞ,Ω\Λ and (c and d) CPU time per iteration
with respect to iteration number k for different cross-validation tolerances εcv.

Figure 6. Evolutions of Aitken’s dynamic relaxation parameter ρk with respect to iteration
number k for different cross-validation tolerances εcv.
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Figure 7. Evolutions of (a and b) the number of samples N4 and (c and d) the dimension
#A4 of the approximation basis for local solution wk4 (solid lines) and Lagrange multiplier λk4
(dashed lines) within patch Λ4 with respect to iteration number k for different cross-validation
tolerances εcv.

the dimension #Aq of the polynomial spaces increase during the first iterations and then stagnate around a
certain value which is higher as the prescribed tolerance εcv for cross-validation is lower. The sample sizes and
the dimensions of approximation spaces are higher for the isotropic case than for the anisotropic case. Note that
the dimension of the approximation space obtained for Lagrange multiplier λq is higher than the one for local
solution wq.

In order to illustrate the capability of the adaptive least-squares solver given in Algorithm A.2 to capture
sparse high-dimensional polynomial approximations of local solutions, Table 2 shows the partial polynomial
degrees pi with respect to each random variable ξi, i ∈ {1, . . . ,m}, and the dimension #A of approxima-
tion spaces SA for global and local solutions U and (wq, λq), q ∈ {1, . . . , Q}, obtained at convergence of the
global–local iterative algorithm and using a fixed cross-validation tolerance εcv = 10−3 for the convergence of
Algorithm A.2. We observe that the use of the adaptive sparse least-squares solver allows to detect sparsity in
local solutions (wq, λq). Indeed, Algorithm A.2 gives local solutions (wq, λq) with a very low effective dimen-
sionality in so far as they are mainly dependent on only few random variables, especially the random variables
ξ2q−1 and ξ2q associated with patch Λq.
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Table 2. Partial polynomial degrees pi (in each random variable ξi), i ∈ {1, . . . , 16}, and
dimension #A of approximation spaces SA for global and local solutions U and (wq, λq),
q ∈ {1, . . . , 8}, where values displayed in bold correspond to random variables ξ2q−1 and ξ2q
associated with patch Λq.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 #A
(A) Isotropic case

U 5 2 4 3 4 2 4 3 4 3 4 3 4 2 5 2 192
w1 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 9
λ1 4 2 2 2 1 1 0 0 0 0 1 0 0 0 0 0 21
w2 2 1 3 2 1 1 0 0 0 0 0 0 0 0 0 0 13
λ2 3 1 3 2 2 2 0 1 0 0 0 0 0 0 0 0 19
w3 0 0 1 1 3 2 1 1 0 0 0 0 0 0 0 0 11
λ3 1 1 2 1 3 2 2 1 0 1 0 0 0 0 1 1 21
w4 0 0 0 0 1 1 3 2 1 1 0 0 0 0 0 0 11
λ4 0 0 0 1 2 2 4 2 2 1 1 1 0 1 1 0 25
w5 0 0 0 0 0 0 1 1 3 2 1 1 0 0 0 0 11
λ5 0 0 0 0 0 1 1 2 3 2 2 1 1 1 0 0 20
w6 0 0 0 0 0 0 0 0 1 1 3 2 1 1 0 0 11
λ6 0 0 1 0 0 0 1 1 2 2 4 2 2 2 1 1 28
w7 0 0 0 0 0 0 0 0 0 0 1 1 3 2 2 1 13
λ7 0 0 0 0 0 0 0 0 1 1 2 2 3 2 3 1 20
w8 0 1 1 0 0 0 0 0 1 0 1 0 1 1 3 1 12
λ8 0 1 1 0 0 0 0 0 1 1 1 1 3 2 5 2 26

(B) Anisotropic case

U 5 3 3 2 3 2 3 2 3 2 3 1 2 3 2 1 112
w1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 8
λ1 4 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 18
w2 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 9
λ2 2 1 3 2 1 1 0 1 0 0 0 0 0 0 0 0 15
w3 1 0 1 1 2 1 1 2 0 0 0 0 0 0 0 0 13
λ3 1 1 2 1 3 2 1 2 0 1 0 0 0 0 0 0 18
w4 0 0 0 0 1 1 2 1 1 1 0 0 0 0 0 0 8
λ4 0 0 0 1 1 1 2 2 1 2 0 1 0 0 1 0 16
w5 0 0 0 0 0 0 1 1 2 1 0 1 0 0 0 0 7
λ5 0 0 0 0 0 1 1 1 2 2 1 1 0 0 0 0 11
w6 0 0 0 0 0 0 0 0 1 1 2 1 0 1 0 0 7
λ6 0 0 0 0 0 0 0 0 1 1 2 1 1 1 0 0 8
w7 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 5
λ7 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 1 8
w8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4
λ8 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 7

5.3. Illustration of quantities of interest

We now look at the effect of input uncertainties in material properties, namely diffusion coefficient K and
reaction parameter R, on the variability of the solution. We apply the Aitken’s acceleration technique to the
relaxation step of the global–local iterative algorithm and we set the cross-validation tolerance to εcv = 10−3

in Algorithm A.2. We then consider the multiscale solution u = (U,w1, . . . , wQ) obtained at final iteration of
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Figure 8. Mean E and variance V of global solution U , local solutions wq and multiscale
solution u.

the algorithm. Figure 8a and b shows the mean and variance of global solution U and local solutions wq as
well as that of multiscale solution u, for isotropic and anisotropic cases, respectively. In the anisotropic case,
the variability in the material properties of patch Λq decreases with q due to the anisotropy introduced in the
weights γq. The highest spatial contributions to the variance V(u) of multiscale solution u are fully captured by
the local solution wq within every patch Λq and localized in the first patches in the anisotropic case.

In order to quantify the relative impact of each input random variable ξi on the variability of solution u, we
introduce the following global sensitivity indices:

S̃i(u) =
V(E(u(x, ξ)|ξi))

maxx∈Ω(V(u(x, ξ)))
,

where E(u(x, ξ)|ξi) is the conditional expectation of solution u with respect to random variable ξi. S̃i(u) is a
sensitivity index which reflects the zone of influence of a random variable ξi (associated with patch Λq for i ∈
{2q − 1, 2q}) on the variability of solution u. Note that global sensitivity indices S̃i(u) can be straightforwardly
computed from the expansion of u(x, ξ) on an orthonormal polynomial basis (see [75]). Figure 9 shows the spatial

distributions of sensitivity indices S̃i(u), computed at final iteration of the global–local iterative algorithm for
all i ∈ {1, . . . ,m}. We observe that random variables ξ2q−1 and ξ2q have only a local influence within the
corresponding patch Λq on the variance of solution u. In the anisotropic case, the magnitude of sensitivity

indices S̃i(u) again reflects the highest input variabilities in the material properties within the first patches.
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Figure 9. Sensitivity indices S̃i(u) of multiscale solution u with respect to each random vari-

able ξi, i ∈ {1, . . . , 16}, where the first row gathers the sensitivity indices S̃2q−1(u) associated
with random diffusion coefficient Kq (parameterized by ξ2q−1) and the second row gathers the

sensitivity indices S̃2q(u) associated with random reaction parameter Rq (parameterized by
ξ2q), q ∈ {1, . . . , 8}.

Note that the patches Λq are sufficiently large to capture the main effects of the input uncertainties on local
solutions wq, q ∈ {1, . . . , Q}.
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6. Conclusion

A global–local iterative method has been proposed for the solution of non-linear stochastic multiscale problems
with localized sources of uncertainties and non-linearities. The proposed multiscale approach relies on a domain
decomposition method with patches. The iterative coupling strategy is performed by sequentially solving a linear
global problem (with deterministic operator and uncertain right-hand side) and a set of independent non-linear
local problems (with uncertain operators and right-hand sides) defined on patches. The global–local iterative
coupling algorithm is said non-intrusive in the sense that it does not require any modification of both models and
solvers during iterations. The local problems can thus be easily handled using dedicated approximation methods
and specific solvers. The consistency, convergence and robustness of the proposed algorithm have been analyzed.
Numerical results demonstrate the high potential and relevance of the stochastic global–local multiscale approach
for dealing with models involving localized uncertainties and possible non-linearities. Several perspectives could
be addressed in forthcoming works. First, the modularity of the multiscale approach and in particular its
solver coupling capabilities could be exploited in order to take advantage of both commercial software packages
available in the industry and in-house research codes, as it was done in recent works [1, 22, 29, 30]. Second,
the approach could be extended to more complex non-linear models at multiple scales (e.g. plasticity, damage
or fracture in solid mechanics). Also, in the context of heat and mass transfer in fluid mechanics, localized
input uncertainties may result in uncertainties in the solution that are scattered in the whole domain (and not
confined within patches) due to high convective terms (even in the linear setting), thus requiring an adaptation
of the size of the patches during iterations. Quantifying the effects of localized uncertainties in such multiscale
stochastic models is currently one of the appealing engineering and scientific challenges.

Appendix A.

The algorithms and the proofs of some technical results are collected in this appendix.

A.1. Leave-one-out cross-validation procedure

Algorithm A.1. Leave-one-out cross-validation procedure.

Input: Coefficients V = (vα)α∈A of the approximation v(ξ) =
∑
α∈A vαψα(ξ) of u(ξ), and matrices

Ψ = (ψα(ξl))16l6N,α∈A and YT = (u(ξl))16l6N containing the evaluations of (ψα(ξ))α∈A and
u(ξ) = (ui(ξ))i∈I

Output: Vector ε = (εi)i∈I , where εi is an estimation of the error E((ui(ξ)− vi(ξ))2)
1: for i = 1, . . . , n do
2: Compute the set of predicted residuals {∆i

l}Nl=1 associated with sample set {ξl}Nl=1 using
Sherman–Morrison–Woodbury formula: ∆i

l = rli
1−hl with rli the (l, i)th entry of matrix

R = ΨVT −Y, and hl the lth diagonal term in matrix H = Ψ(ΨTΨ)−1ΨT

3: Compute the leave-one-out error ei = Ei
m̂2(Yi)

, where Ei = 1
N

∑N
l=1(∆i

l)
2 and m̂2(Yi) is the

empirical second moment of the ith column Yi = (ui(ξ
l))Nl=1 of matrix Y

4: Compute the corrected leave-one-out error εi = ei×T (A, N), where

T (A, N) =
(

1− #A
N

)−1
(

1 +
tr (Ĉ−1)

N

)
is a correction factor allowing to reduce the sensitivity to

overfitting [9, 15] and where Ĉ = 1
NΨTΨ is the empirical covariance matrix of (ψα(ξ))α∈A

5: end for
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A.2. Adaptive sparse least-squares solver with random sampling and working set
strategy

Algorithm A.2. Adaptive sparse least-squares solver.

Input: Initial number of samples N > 1, sampling factor padd > 0, parameter θ ∈ [0 , 1]
Output: Monotone set A and coefficients V = (vα)α∈A of the least-squares approximation

v(ξ) =
∑
α∈A vαψα(ξ) of u(ξ)

1: Start with null initial set A = {0F}
2: Generate the initial sample set {ξl}Nl=1 randomly
3: Compute the matrices ΨA = (ψα(ξl))16l6N,α∈A and YT = (u(ξl))16l6N

4: while no convergence do
5: // Adaptive random sampling
6: while no convergence and no stagnation

7: Generate the additional sample set {ξN+l}Nadd

l=1 randomly, with Nadd = ceil(paddN)
8: Compute the matrices ΨA,add = (ψ(ξN+l))16l6Nadd,α∈A and YT

add = (u(ξN+l))16l6Nadd

9: Update the number of samples N ← N +Nadd and the matrices ΨT
A ← (ΨT

A,Ψ
T
A,add)

and YT ← (YT ,YT
add)

10: Compute the coefficients V = (vα)α∈A such that VT = (ΨT
AΨA)−1ΨT

AY
11: end while
12: // Working set strategy
13: while no convergence and no overfitting do
14: Compute the reduced margin M =Mred(A) of monotone set A and the set T = A ∪M
15: if #T > N then
16: break
17: end if
18: Compute the matrices ΨM = (ψα(ξl))16l6N,α∈M and ΨT = (ΨA,ΨM)

19: Compute the coefficients V = (vα)α∈T such that VT = (ΨT
TΨT )−1ΨT

TY
20: Compute the vector (‖vα‖2)α∈M
21: Define the smallest (monotone) subset N of M such that e(N ) > θe(M), with

e(N ) =
∑
α∈N ‖vα‖22 and e(M) =

∑
α∈M‖vα‖22

22: Update the multi-index set A ← A∪N and the matrix ΨA ← (ΨA,ΨN ), where
ΨN is the submatrix of ΨM whose columns correspond to multi-indices α ∈ N

23: Compute the coefficients V = (vα)α∈A such that VT = (ΨT
AΨA)−1ΨT

AY
24: end while
25: end while

A.3. Proof of Lemma 2.2

The first inequality |v|V 6 ‖v‖V is obvious. Using (1.12) with (O, E) = (Λ,Γ), we obtain ‖v|Λ‖H1(Λ) 6
CΛ,Γ(|v|Λ|H1(Λ) + ‖v|Λ‖H1/2(Γ)). Then, using the weak continuity of v on Γ, we have ‖v|Λ‖H1/2(Γ) =

‖v|Ω\Λ‖H1/2(Γ) 6 βτ‖v|Ω\Λ‖H1(Ω\Λ), where βτ is the norm of the trace operator τ : H1(Ω \ Λ) → H1/2(Γ).

Now, using (1.12) with (O, E) = (Ω \ Λ,ΓD ∩ ∂(Ω \ Λ)), we obtain ‖v|Ω\Λ‖H1(Ω\Λ) 6 Ĉ|v|Ω\Λ|H1(Ω\Λ), with

Ĉ = CΩ\Λ,ΓD∩∂(Ω\Λ). Then, we deduce that

‖v‖2V 6 Ĉ2|v|Ω\Λ|2H1(Ω\Λ) + C2
Λ,Γ(|v|Λ|H1(Λ) + βτ Ĉ|v|Ω\Λ|H1(Ω\Λ))

2

6 Ĉ2(1 + 2C2
Λ,Γβ

2
τ )|v|Ω\Λ|2H1(Ω\Λ) + 2C2

Λ,Γ|v|Λ|2H1(Λ) 6 C2
V |v|2V ,
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where C2
V = max{Ĉ2(1 + 2C2

Λ,Γβ
2
τ ), 2C2

Λ,Γ}. CV is independent of ξ since Ĉ and CΛ,Γ are independent of ξ
(Assumption 1.7) and βτ is independent of ξ.

A.4. Proof of Theorem 2.3

Let V∗ be the topological dual space to V and let 〈·, ·〉 denote the duality pairing between V and V∗. For
u ∈ V, v 7→ dΩ(u, v; ξ) is linear and continuous. Then, there exists a unique non-linear map D(ξ) : V → V∗ such
that dΩ(u, v; ξ) = 〈D(ξ)(u), v〉 for all u, v ∈ V. As `Ω(·; ξ) is linear and continuous on V, there exists a unique
L(ξ) ∈ V∗ such that `Ω(v; ξ) = 〈L(ξ), v〉 for all v ∈ V. Problem (2.3) can then be written as D(ξ)(u(ξ)) = L(ξ).
First, we have that for all u, v ∈ V, the map t 7→ 〈D(ξ)(u+ tv), v〉 = aΩ(u, v; ξ) + taΩ(v, v; ξ) + nΛ(u+ tv, v; ξ)
is continuous, which implies that D(ξ) is radially continuous. Then, assumption (1.8) on aΩ\Λ and aΛ and
assumption (1.10) on nΛ imply that for all u, v ∈ V,

〈D(ξ)(u)−D(ξ)(v), u− v〉 = aΩ\Λ(u− v, u− v) + aΛ(u− v, u− v) + nΛ(u, u− v)− nΛ(v, u− v)

> αa(|u− v|2H1(Ω\Λ) + |u− v|2H1(Λ)) = αa|u− v|2V >
αa
C2
V
‖u− v‖2V := αD‖u− v‖2V ,

where the last inequality comes from Lemma 2.2. Then D(ξ) is strongly monotone with monotonicity con-
stant αD = αa

C2
V

. Also, assumption (1.11) on nΛ implies D(ξ)(0) = 0. From this latter condition and from

the strong monotonicity of D(ξ), we obtain that 〈D(ξ)(u), u〉 > αD‖u‖2V for all u ∈ V, and therefore D(ξ)
is coercive. Accordingly, D(ξ) being radially continuous, monotone and coercive, the Browder-Minty theorem
([68], Thm. 2.18) ensures that D(ξ) is surjective, and therefore there exists a solution u(ξ) ∈ V to problem
(2.3). The strict monotonicity of D(ξ) ensures that this solution is unique, so that we can define an inverse
map D(ξ)−1 : V∗ → V. The strong monotonicity of D(ξ) then implies that D(ξ)−1 is Lipschitz continuous,
with ‖D(ξ)−1(L)−D(ξ)−1(L̃)‖V 6 1

αD
‖L− L̃‖V∗ for all L, L̃ ∈ V∗. Finally, from the strong monotonicity and

from Assumption 1.3, we have that ‖u(ξ)‖V 6 1
αD
‖D(ξ)(u(ξ))‖V∗ = 1

αD
‖L(ξ)‖V∗ = 1

αD
sup‖v‖V=1〈L(ξ), v〉 =

1
αD

sup‖v‖V=1 `Ω(v; ξ) 6 1
αD
κ(ξ), with κ ∈ Lpµ(Ξ). Since αa and CV are independent of ξ (see Lem. 2.2), αD is

independent of ξ and we deduce that u ∈ Lpµ(Ξ;V).

A.5. Proof of Theorem 2.4

Let u(ξ) ∈ V̂ such that u(ξ)|Ω\Λ = U(ξ) ∈ U and u(ξ)|Λ = w(ξ) ∈ W. Equation (2.4c) implies that u(ξ) ∈ V.
Then, considering a test function δu ∈ V and summing (2.4a) and (2.4b), we obtain that u(ξ) verifies (2.3). From
Theorem 2.3, we deduce that problem (2.4) admits a unique solution (U(ξ), w(ξ)) ∈ U×W which coincides with
the solution of (2.3). Moreover, since u ∈ Lpµ(Ξ;V), we deduce that U ∈ Lpµ(Ξ;U) and w ∈ Lpµ(Ξ;W). Then, let

R : H1/2(Γ)→ H1(Ω \ Λ) denote a linear continuous extension operator with continuity constant βR. Equation
(2.4a) yields

bΓ(λ(ξ), v) = bΓ(λ(ξ), R(v)) = `Ω\Λ(R(v))− aΩ\Λ(U(ξ), R(v))

for all v ∈ H1/2(Γ). The right-hand side being a continuous linear form on H1/2(Γ), we obtain the existence and
uniqueness of a solution λ(ξ) ∈ M. Also, ‖λ(ξ)‖M = sup‖v‖

H1/2(Γ)
=1 bΓ(λ(ξ), v) = sup‖v‖

H1/2(Γ)
=1 `Ω\Λ(R(v))−

aΩ\Λ(U(ξ), R(v)) 6 βR(κ(ξ) + βa‖U(ξ)‖U ). Since both κ(ξ) and ‖U(ξ)‖U belong to Lpµ(Ξ), λ belongs to
Lpµ(Ξ;M).

A.6. Proof of Lemma 3.8

Let τ : H1(Ω \Λ)→ H1/2(Γ) denote the trace operator which is linear and continuous with norm βτ indepen-

dent of ξ. Let R : H1/2(Γ) → H1(Λ̃) denote a linear continuous extension operator with norm βR independent
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of ξ. For V ∈ Ũ?, we write V|Λ̃ = R(V|Γ) + Z, where Z ∈ H1
0(Λ̃) is such that cΛ̃(R(V|Γ) + Z, δU) = 0 for all

δU ∈ H1
0(Λ̃). From Assumption 2.5 on cΛ̃ and using (1.12) with (O, E) = (Λ̃,Γ), we obtain that ‖Z‖2

H1(Λ̃)
6

C2
Λ̃,Γ
|Z|2

H1(Λ̃)
6

C2
Λ̃,Γ

αc
cΛ̃(Z,Z) =

C2
Λ̃,Γ

αc
cΛ̃(−R(V|Γ), Z) 6

C2
Λ̃,Γ

βc

αc
‖R(V|Γ)‖H1(Λ̃)‖Z‖H1(Λ̃). Then, from the conti-

nuity of τ and R, we deduce that ‖V ‖H1(Λ̃) 6

(
1 +

βcC
2
Λ̃,Γ

αc

)
βR‖V ‖H1/2(Γ) 6

(
1 +

βcC
2
Λ̃,Γ

αc

)
βRβτ‖V ‖H1(Ω\Λ).

Finally, since ‖V ‖2
Ũ

= ‖V ‖2U + ‖V ‖2
H1(Λ̃)

, we obtain that ‖V ‖U 6 ‖V ‖Ũ 6 CŨ‖V ‖U for all V ∈ Ũ?, with

CŨ =

(
1 +

(
1 +

βcC
2
Λ̃,Γ

αc

)2

β2
Rβ

2
τ

)1/2

independent of ξ.

A.7. Proof of Lemma 3.10

First, using property (2.6) for cΩ̃, property (2.7) for cΛ̃ and relation (1.12) for (O, E) = (Ω̃,ΓD ∩ ∂Ω̃) (with

constant C̃ = CΩ̃,ΓD∩∂Ω̃), we obtain that ‖Υ(V ; ξ)‖Ũ 6 βΥ‖V ‖Ũ for all V ∈ Ũ , with βΥ = βcC̃
2

αc
independent

of ξ. Then, using again property (2.6) for cΩ̃ and relation (1.12) for (O, E) = (Ω̃,ΓD ∩ ∂Ω̃), we have that

‖Φ(β; ξ)‖2
Ũ
6 C̃2

αc
|bΓ(β,Φ(β; ξ))| 6 C̃2

αc
‖β‖M‖Φ(β; ξ)|Γ‖H1/2(Γ) 6

βτ C̃
2

αc
‖β‖M‖Φ(β; ξ)‖Ũ , where βτ is the norm of

the trace operator τ : H1(Ω \Λ)→ H1/2(Γ). That proves ‖Φ(β; ξ)‖Ũ 6 βΦ‖β‖M for all β ∈M, with βΦ = βτ C̃
2

αc
independent of ξ.

A.8. Proof of Lemma 3.11

Given the property (2.1) for the definition of the patch, we can introduce a partition Λ = Λi ∪ Λe with
Λi ∩ Λe = ∅ and dist(Λi,Γ) = δ, for which Λ? ⊂ Λi. That means Λe is a band of width δ around Γ where the
differential operator is linear. Let Γe = ∂Λe∩∂Λi and ΓDe = ∂Λe∩ΓD. The restriction we(ξ) of the local solution
w(ξ) = Θ(U(ξ); ξ) to Λe is such that we(ξ) ∈ H1(Λe), we(ξ)|Γ = U(ξ)|Γ, we(ξ)|Γe = w(ξ)|Γe , we(ξ)|ΓDe = 0 and

aΛe(we(ξ), δwe) = `Λe(δwe; ξ) (A.1)

for all δwe ∈ H1(Λe) such that δwe = 0 on Γ ∪ Γe ∪ ΓDe . Using the linearity of this problem and introducing
linear continuous extension operators from H1/2(Γ) and H1/2(Γe) to H1(Λe), it can be easily proved that we(ξ)
can be written as

we(ξ) = FΓ(U(ξ)|Γ) + FΓe(w(ξ)|Γe) + we(ξ), (A.2)

where we(ξ) = 0 on Γ ∪ Γe ∪ ΓDe , and where FΓ : H1/2(Γ) → H1(Λe) and FΓe : H1/2(Γe) → H1(Λe) are linear
continuous extension operators with respective norms ‖FΓ‖ and ‖FΓe‖ independent of ξ, such that FΓ(v) = v on
Γ, FΓ(v) = 0 on Γe ∪ ΓDe , FΓe(v) = v on Γe, and FΓe(v) = 0 on Γ ∪ ΓDe . From (A.1), we obtain that the normal
flux on Γe, denoted λe(ξ) = −BL(w(ξ),∇w(ξ); ·) ·n ∈ H1/2(Γe)

∗ (with n the unit normal to Γe pointing outward
Λe), is such that bΓe(λe(ξ), δwe|Γe) = `Λe(δwe; ξ)− aΛe(we(ξ), δwe) for all δwe ∈ H1(Λe) such that δwe = 0 on

∂Λe \ Γe, where bΓe denotes the duality pairing between H1/2(Γe) and H1/2(Γe)
∗. From (A.2), we deduce that

bΓe(λe(ξ), δv) = −gΓ(U(ξ)|Γ, δv)− gΓe(w(ξ)|Γe , δv) + bΓe(λe(ξ), δv)

for all δv ∈ H1/2(Γe), where gΓ : H1/2(Γ)×H1/2(Γe)→ R and gΓe : H1/2(Γe)×H1/2(Γe)→ R are continuous bilin-
ear forms with respective norms ‖gΓ‖ and ‖gΓe‖ independent of ξ, and λe(ξ) ∈ H1/2(Γe)

∗. By definition, gΓe is
such that gΓe(v, v) = aΛe(FΓe(v), δw) for all v ∈ H1/2(Γe) and δw ∈ H1(Λe) such that δw = v on Γe and δw = 0
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on Γ ∪ ΓDe . Choosing δw = FΓe(v) and using property (1.8) for aΛe and relation (1.12) for (O, E) = (Λe,Γ), we
obtain that for all v ∈ H1/2(Γe),

gΓe(v, v) = aΛe(FΓe(v), FΓe(v)) > αa|FΓe(v)|2H1(Λe)
>

αa
C2

Λe,Γ

‖FΓe(v)‖2H1(Λe)
>

αa
C2

Λe,Γ
β2
τΛe,Γe

‖v‖2H1/2(Γe),

where βτΛe,Γe is the norm of the trace operator from H1(Λe) to H1/2(Γe). Then, let ΓDi = ∂Λi ∩ ΓD. The
restriction wi(ξ) of the local solution w(ξ) = Θ(U(ξ); ξ) to Λi is such that wi(ξ) ∈ H1(Λi), wi(ξ)|Γe = w(ξ)|Γe ,
wi(ξ)|ΓDi = 0 and

dΛi(wi(ξ), δwi; ξ) = `Λi(δwi; ξ)− gΓ(U(ξ)|Γ, δwi|Γe) + bΓe(λe(ξ), δwi|Γe),

for all δwi ∈ H1(Λi) such that δwi = 0 on ΓDi , where dΛi(·, ·; ξ) is a semi-linear form defined by dΛi(u, v; ξ) =
aΛi(u, v; ξ) + nΛi(u, v; ξ) + gΓe(u|Γe , v|Γe) for u, v ∈ H1(Λi). Now, let 〈·, ·〉 denote the duality pairing between

H1(Λi) and H1(Λi)
∗. From properties of aΛi , nΛi and gΓe , we deduce that dΛi(u, v; ξ) = 〈D̂(ξ)(u), v〉 for all

u, v ∈ H1(Λi), where D̂(ξ) : H1(Λi) → H1(Λi)
∗ is a radially continuous, coercive and strongly monotone map

such that for all u, v ∈ H1(Λi),

〈D̂(ξ)(u)− D̂(ξ)(v), u− v〉 = aΛi(u− v, u− v) + nΛi(u, u− v)− nΛi(v, u− v) + gΓe(u|Γe − v|Γe , u|Γe − v|Γe)

> αa|u− v|2H1(Λi)
+

αa
C2

Λe,Γ
β2
τΛe,Γe

‖u− v‖2H1/2(Γe) > αD̂‖u− v‖
2
H1(Λi)

,

with αD̂ = αa
2C2

Λi,Γe

min

{
1, 1

C2
Λe,Γ

β2
τΛe,Γe

}
independent of ξ. Following the proof of Theorem 2.3 in Section A.4,

we obtain that the solution wi(ξ) is unique and can be written as wi(ξ) = G(U(ξ)|Γ; ξ)+wi(ξ), with wi(ξ) = 0 on

Γ∪ ΓDi , and where G(·; ξ) : H1/2(Γ)→ H1(Λi) is a Lipschitz continuous map with βG =
‖gΓ‖βτΛi,Γe

αD̂
independent

of ξ, where βτΛi,Γe is the norm of the trace operator from H1(Λi) to H1/2(Γe). Finally, we deduce that for all

U, V ∈ Ũ ,

‖Θ(U ; ξ)−Θ(V ; ξ)‖2W = ‖Θ(U ; ξ)|Λe −Θ(V ; ξ)|Λe‖
2
H1(Λe)

+ ‖Θ(U ; ξ)|Λi −Θ(V ; ξ)|Λi‖
2
H1(Λi)

= ‖FΓ(U|Γ − V|Γ)‖2H1(Λe)
+ ‖FΓe(Θ(U ; ξ)|Γe −Θ(V ; ξ)|Γe)‖

2
H1(Λe)

+ ‖G(U|Γ; ξ)−G(V|Γ; ξ)‖2H1(Λi)

6 (‖FΓ‖2 + β2
G)‖U − V ‖2H1/2(Γ) + ‖FΓe‖2‖Θ(U ; ξ)|Γe −Θ(V ; ξ)|Γe‖

2
H1/2(Γe)

6 (‖FΓ‖2 + β2
G + ‖FΓe‖2β2

τΛi,Γe
β2
G)‖U − V ‖2H1/2(Γ) 6 β2

Θ‖U − V ‖2Ũ ,

with β2
Θ = (‖FΓ‖2 + β2

G + ‖FΓe‖2β2
τΛi,Γe

β2
G)β2

τΩ\Λ,Γ
independent of ξ, where βτΩ\Λ,Γ is the norm of the trace

operator from H1(Ω \ Λ) to H1/2(Γ).
Using (3.6a) with test functions δw = 0 on Λi and introducing a linear continuous extension operator RΓ

from H1/2(Γ) to H1(Λe) (with norm ‖RΓ‖ independent of ξ) such that RΓ(v) = 0 on Γe ∪ ΓDe , we have that for

all V ∈ Ũ ,

bΓ(Ψ(V ; ξ), δwe) = aΛe(Θ(V ; ξ)|Λe , δwe)− `Λe(δwe; ξ)
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for all δwe ∈ H1(Λe) such that δwe = 0 on Γe ∪ ΓDe . Then, we obtain that for all U, V ∈ Ũ ,

‖Ψ(U ; ξ)−Ψ(V ; ξ)‖M = sup
v∈H1/2(Γ)
‖v‖

H1/2(Γ)
=1

bΓ(Ψ(U ; ξ)−Ψ(V ; ξ), v)

= sup
v∈H1/2(Γ)
‖v‖

H1/2(Γ)
=1

aΛe(Θ(U ; ξ)|Λe −Θ(V ; ξ)|Λe , RΓ(v))

6 βa‖Θ(U ; ξ)|Λe −Θ(V ; ξ)|Λe‖H1(Λe)‖RΓ‖ 6 βΨ‖U − V ‖Ũ ,

with βΨ = βaβΘ‖RΓ‖ independent of ξ.

A.9. Proof of Lemma 3.12

From the Lipschitz continuity of mappings Υ, Φ and Ψ (see Lems. 3.10 and 3.11) and from the continuity

of the linear map CΩ̃, we deduce the Lipschitz continuity of D(·; ξ) on Ũ and a fortiori on Ũ?, with Lipschitz

constant βD = βc(1 + βΥ + βΦβΨ) independent of ξ. From (3.9), we have that for all U, V ∈ Ũ ,

〈D(U ; ξ)−D(V ; ξ), U − V 〉Ũ = cΩ̃(A(U ; ξ)−A(V ; ξ), U − V )

= aΩ\Λ(U − V,U − V ) + bΓ(Ψ(U ; ξ)−Ψ(V ; ξ), U − V )

= aΩ\Λ(U − V,U − V ) + bΓ(Ψ(U ; ξ)−Ψ(V ; ξ),Θ(U ; ξ)−Θ(V ; ξ))

= aΩ\Λ(U − V,U − V ) + aΛ(Θ(U ; ξ)−Θ(V ; ξ),Θ(U ; ξ)−Θ(V ; ξ); ξ)

+ nΛ(Θ(U ; ξ),Θ(U ; ξ)−Θ(V ; ξ); ξ)− nΛ(Θ(V ; ξ),Θ(U ; ξ)−Θ(V ; ξ); ξ).

From Assumptions 1.4 and 1.5, we have aΛ(w,w; ξ) > 0 and nΛ(w,w − w′; ξ) − nΛ(w′, w − w′; ξ) > 0 for all
w,w′ ∈ W. Therefore, using property (1.8) for aΩ\Λ and relation (1.12) for (O, E) = (Ω \ Λ,ΓD ∩ ∂(Ω \ Λ)), we

have that for all U, V ∈ Ũ ,

〈D(U ; ξ)−D(V ; ξ), U − V 〉Ũ > aΩ\Λ(U − V,U − V ) > αa|U − V |2H1(Ω\Λ) >
αa

Ĉ2
‖U − V ‖2U ,

where Ĉ = CΩ\Λ,ΓD∩∂(Ω\Λ). Finally, using Lemma 3.8, we obtain that for all U, V ∈ Ũ?,

〈D(U ; ξ)−D(V ; ξ), U − V 〉Ũ > αD‖U − V ‖2Ũ ,

with αD = αa
Ĉ2C2

Ũ

independent of ξ. That proves the strong monotonicity of D(·; ξ) on Ũ?.

A.10. Proof of Theorem 3.13

First recall that the global solution U(ξ) and all global iterates Uk(ξ) are in Ũ? (see Lem. 3.6 and Thm. 3.7).

Using relation (1.12) for (O, E) = (Ω̃,ΓD ∩ ∂Ω̃), the symmetry and property (2.6) for cΩ̃, as well as the Lipschitz

continuity and the strong monotonicity of map D(·; ξ) on Ũ? (see Lem. 3.12), we obtain that for all U, V ∈ Ũ?,

‖Bρk(U ; ξ)−Bρk(V ; ξ)‖2Ũ 6 C̃2|Bρk(U ; ξ)−Bρk(V ; ξ)|2
H1(Ω̃)

6
C̃2

αc
cΩ̃(Bρk(U)−Bρk(V ; ξ), Bρk(U ; ξ)−Bρk(V ; ξ); ξ)
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=
C̃2

αc

(
cΩ̃(U − V,U − V )− 2ρkcΩ̃(A(U ; ξ)−A(V ; ξ), U − V ) + ρ2

kcΩ̃(A(U ; ξ)−A(V ; ξ), A(U ; ξ)−A(V ; ξ))
)

6
C̃2

αc

(
〈CΩ̃(U − V ), U − V 〉Ũ − 2ρk〈D(U ; ξ)−D(V ; ξ), U − V 〉Ũ + ρ2

k‖D(U ; ξ)−D(V ; ξ)‖Ũ‖A(U ; ξ)

−A(V ; ξ)‖Ũ
)

6
C̃2

αc

(
βc − 2ρkαD + ρ2

k

β2
D

βc

)
‖U − V ‖2Ũ ,

where C̃ = CΩ̃,ΓD∩∂Ω̃. If {ρk}k∈N satisfies (3.11) with ρsup < βc
β2
D

(
2αD − 1

ρinf

(
βc − αc

C̃2

))
:= ρ∗sup, then

the set of mappings {Bρk(·; ξ)}k∈N is uniformly contractive on Ũ?, with a contractivity constant ρB =(
C̃2

αc
(βc − ρinf(2αD − ρsup

β2
D

βc
))
)1/2

< 1 independent of ξ. Then, we obtain that

‖Uk(ξ)− U(ξ)‖Ũ = ‖Bρk(Uk−1(ξ); ξ)−Bρk(U(ξ); ξ)‖Ũ 6 ρkB‖U(ξ)− U0(ξ)‖Ũ ,

from which we deduce that the sequence {Uk(ξ)}k∈N converges almost surely to U(ξ) in Ũ?. Also, with U0 = 0,
we obtain that ‖Uk(ξ)−U(ξ)‖Ũ 6 ‖U(ξ)‖Ũ . Since ‖U(ξ)‖Ũ ∈ Lpµ(Ξ) (see Cor. 3.9), the dominated convergence

theorem gives that the sequence {Uk}k∈N converges to U in Lpµ(Ξ; Ũ). Finally, from (3.10) and using the Lipschitz

continuity of mappings Θ and Ψ (see Lem. 3.11), we directly obtain that the sequence {wk}k∈N converges to w
almost surely and in Lpµ(Ξ;W), and the sequence {λk}k∈N converges to λ almost surely and in Lpµ(Ξ;M).

A.11. Proof of Theorem 3.16

First, if initial guess U0
ε ∈ Vδ and if ε∗ < 1− ρB and ε 6 δ(1− ρB − ε∗), we can prove by induction that all

approximate global iterates Ukε belong to Vδ. Indeed, suppose that U jε ∈ Vδ for all j < k. Then, the error at
iteration k is such that

‖Ukε − U‖Lpµ(Ξ;Ũ) 6 ‖U
k
ε − Uk‖Lpµ(Ξ;Ũ) + ‖Uk − U‖Lpµ(Ξ;Ũ)

6 ‖Bερk(Uk−1
ε )−Bρk(Uk−1

ε )‖Lpµ(Ξ;Ũ) + ‖Bρk(Uk−1
ε )−Bρk(U)‖Lpµ(Ξ;Ũ)

6 ε‖U‖Lpµ(Ξ;Ũ) + (ρB + ε∗)‖Uk−1
ε − U‖Lpµ(Ξ;Ũ).

As Uk−1
ε ∈ Vδ and ε 6 δ(1 − ρB − ε∗), Ukε ∈ Vδ. By induction, we finally prove that Ukε ∈ Vδ for all k ∈ N. It

means that if initial global iterate U0
ε is contained in the open ball Vδ of radius δ‖U‖Lpµ(Ξ;Ũ) centered at the

exact global solution U , then all global iterates Ukε remain in this ball. Subsequently, we obtain that

‖Ukε − U‖Lpµ(Ξ;Ũ) 6 ε‖U‖Lpµ(Ξ;Ũ)

k−1∑
j=0

(ρB + ε∗)j + (ρB + ε∗)k‖U0
ε − U‖Lpµ(Ξ;Ũ)

6
ε
(
1− (ρB + ε∗)k

)
1− (ρB + ε∗)

‖U‖Lpµ(Ξ;Ũ) + (ρB + ε∗)k‖U0
ε − U‖Lpµ(Ξ;Ũ)

6
ε

1− (ρB + ε∗)
‖U‖Lpµ(Ξ;Ũ) + (ρB + ε∗)k‖U0

ε − U‖Lpµ(Ξ;Ũ)

and therefore, as 0 < ρB + ε∗ < 1, the approximate sequence {Ukε }k∈N satisfies (3.13), with γ(ε, ε∗) =
ε

1−(ρB+ε∗) → 0 as ε→ 0.
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[40] P. Henning, A. Målqvist and D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems.
ESAIM: M2AN 48 (2014) 1331–1349.

[41] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media.
J. Comput. Phys. 134 (1997) 169–189.

[42] J. Huang and B.F. Edwards, Pattern formation and evolution near autocatalytic reaction fronts in a narrow vertical slab.
Phys. Rev. E 54 (1996) 2620–2627.
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