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UNIFORM REGULARITY IN THE RANDOM SPACE AND

SPECTRAL ACCURACY OF THE STOCHASTIC GALERKIN

METHOD FOR A KINETIC-FLUID TWO-PHASE FLOW MODEL

WITH RANDOM INITIAL INPUTS IN THE LIGHT PARTICLE

REGIMEI

Ruiwen Shu1 and Shi Jin2,*

Abstract. We consider a kinetic-fluid model with random initial inputs which describes disperse two-
phase flows. In the light particle regime, using energy estimates, we prove the uniform regularity in the
random space of the model for random initial data near the global equilibrium in some suitable Sobolev
spaces, with the randomness in the initial particle distribution and fluid velocity. By hypocoercivity
arguments, we prove that the energy decays exponentially in time, which means that the long time
behavior of the solution is insensitive to such randomness in the initial data. Then we consider the
generalized polynomial chaos stochastic Galerkin method (gPC-sG) for the same model. For initial
data near the global equilibrium and smooth enough in the physical and random spaces, we prove that
the gPC-sG method has spectral accuracy, uniformly in time and the Knudsen number, and the error
decays exponentially in time.
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1. Introduction

In this paper we consider a kinetic-fluid model for disperse two-phase flows, known as the Navier-Stokes-
Vlasov-Fokker-Planck system, first proposed in [9, 10]. Similar two-phase flow models appear in combustion
theory [5, 8, 29], the dynamic of sprays [14, 15, 27] and granular flow [1, 7], to name a few. The model we
consider describes a mixture of two types of material, called the primary phase and the secondary phase. They
are assumed to satisfy the following physical assumptions:

(1) The primary phase is liquid or dilute gas, and therefore modeled by the incompressible Navier-Stokes
equations.
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(2) The secondary phase is small particles (or droplets, bubbles), scattered in the fluid, and it is modeled by
a kinetic equation.

(3) The interaction between the two phases is assumed to be the Stokes drag force, i.e., a particle is subject
to a force proportional to the relative velocity between it and the fluid.

(4) The particles are assumed to be subject to the Brownian motions.

There are two scalings that are physically important: one is the light particle regime [9], which assumes:

(1) The velocity of the fluid is small compared to the typical molecular velocity of the particles.
(2) The particles are light, and thus its effect on the fluid is small.
(3) The relaxation time is much smaller than the typical time scale.

Another one is the fine particle regime [10], which assumes:

(1) The particle size is small compared to the typical length scale.
(2) The density of the fluid and particles are of the same order.
(3) The relaxation time is much smaller than the typical time scale.

In this paper we focus on the light particle regime. For simplicity the space is taken as T3 = [−π, π]3 with
periodic boundary condition. The equations for the model are given by

ut + u · ∇xu+∇xp−∆xu =
1

ε

∫
(v − εu)F dv,

∇x · u = 0,

Ft +
1

ε
v · ∇xF =

1

ε2
∇v · (∇vF + (v − εu)F ),

(1.1)

with initial data

u|t=0 = u0, ∇x · u0 = 0, F |t=0 = F0, (1.2)

where t ∈ R+ is the time variable, x ∈ T3 is the space variable, and v ∈ R3 is the velocity variable. u = u(t, x)
is the velocity field of the fluid, and F = F (t, x, v) is the distribution function of the particles. ε is the Knudsen
number, which satisfies 0 < ε ≤ 1. ε = O(1) corresponds to the kinetic regime, while ε→ 0 corresponds to the
fluid regime.

This system satisfies the following conservation properties:

Mass conservation:
d

dt

∫ ∫
F dv dx = 0,

Momentum conservation:
d

dt

(∫
udx+ ε

∫ ∫
vF dv dx

)
= 0,

Energy/Entropy dissipation:
d

dt

(∫
|u|2

2
dx+

∫ ∫
(F lnF +

|v|2

2
F ) dv dx

)
+

1

ε2

∫ ∫
|(εu− v)F −∇vF |2

F
dv dx+

∫
|∇xu|2 dx = 0. (1.3)

As ε→ 0, it is shown in [9] that (1.1) has a hydrodynamic limit
ut + u · ∇xu+∇xp−∆xu = 0,

∇x · u = 0,

∂tρ+∇x · (uρ−∇xρ) = 0,

(1.4)
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with ρ(x) =
∫
F (x, v) dv being the particle density, which is self-consistent Navier-Stokes equations for u, and

a convection-diffusion equation for ρ with drift velocity u.
Goudon et al. [11] proved the first existence result of (1.1), in the case of kinetic regime (ε = O(1)) and initial

data near the global equilibrium, which means that F is close enough to the global Maxwellian

µ(v) =
1

(2π)3/2|T3|
e−|v|

2/2, (1.5)

and u is close to 0, in some suitable Sobolev spaces. In fact their method also works for small ε. They first write

F = µ+
√
µf. (1.6)

Then (1.1) becomes the following system for (u, f):
ut + u · ∇xu+∇xp−∆xu+ u+

∫
√
µuf dv − 1

ε

∫
v
√
µf dv = 0,

∇x · u = 0,

ft +
1

ε
v · ∇xf +

1

ε

(
∇v −

v

2

)
· (uf)− 1

ε
u · v√µ =

1

ε2

(
−|v|2

4
+

3

2
+ ∆v

)
f,

(1.7)

with initial data

u|t=0 = u0, f |t=0 = f0. (1.8)

They assume that (u0, f0), the perturbation of initial data, satisfies the conditions∫
u0 dx+

∫ ∫
v
√
µf0 dv dx = 0, ∇x · u0 = 0, (1.9)∫ ∫

√
µf0 dv dx = 0, (1.10)

which mean that the perturbation does not affect the total momentum and mass, and the perturbation of the
fluid velocity is divergence-free. Then, combining with a relation for the mean fluid velocity

ū(t) =
1

|T3|

∫
u(t, x) dx, (1.11)

ūt + 2ū+
1

|T3|

∫ ∫
√
µ(uf) dv dx = 0, (1.12)

which is a consequence of (1.9), using energy estimates, they proved the decay of an energy functional, defined
as the summation of some suitable Sobolev norms, under the assumption that it is small enough initially. Then,
by using hypocoercivity arguments, they proved that the L2 norms of u and f decay exponentially in time,
under some smoothness assumptions.

On the numerical aspect, an Asymptotic-Preserving (AP) scheme was developed by Goudon et al. [12] for
the model with the fine particle regime. The AP property, first introduced by Jin [16] for time-dependent
kinetic problems, means that a numerical scheme for a kinetic model, as the Knudsen number ε goes to zero,
automatically becomes a numerical scheme for the hydrodynamic limit of the kinetic model, with a numerical
stability independent of ε. The AP property enables one to capture the hydrodynamic limit without resolving
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the small Knudsen number. Simply speaking, the AP scheme for this model uses a combination of the projection
method for the Navier-Stokes equations and an implicit treatment of the stiff Fokker-Planck operator.

Most of the works on kinetic-fluid two-phase flow models are deterministic. However, there are many sources of
uncertainties in these models. For example, the initial data and boundary data usually come from experiments,
and thus have measurement error. Uncertainty could also arise from the modeling of drag forces, particle
diffusions, etc. It is important to quantify these uncertainties, because such quantification can help us understand
how the uncertainties affect the solution, and therefore make reliable predictions.

For simplicity, for the model (1.1) we only consider the uncertainty from initial data. To model the uncertainty,
we use the same equations, but let the functions u = u(t, x, z) and F = F (t, x, v, z) depend on a random variable
z, which lives in the random space Iz with probability distribution π(z) dz. Then the uncertainty from initial
data is described by letting the initial data u0 and F0 depend on z. We will assume the random space Iz is
one-dimensional, for simplicity of notation. Our results can be extend to the case multi-dimensional random
spaces. See more discussions at the end of Section 2.

We summarize some popular numerical methods for uncertainty quantification (UQ) [6, 13, 24, 30, 31]:
the first one is Monte-Carlo (MC) methods [25], which take random samples in Iz, solve the deterministic
problem on these samples, and then get the statistical moments by taking the average on these samples. MC
methods are half-order accurate for any dimensional random spaces, and thus they are not accurate enough for
low dimensional random spaces, but very efficient for high-dimensional random spaces. The second method is
stochastic collocation (sC) methods [3, 4, 26, 32], which take sample points on a well-designed grid (quadrature
points, sparse grids, or by some optimization procedure), compute the deterministic solutions on the samples,
and then reconstruct the solution in the whole random domain by some interpolation rules. SC methods can
achieve good accuracy in low dimensional random spaces, but the efficiency drops as the dimension becomes
high. The third method is stochastic Galerkin (sG) methods [2, 4, 33], which takes an orthonormal basis in
the random domain, approximate the functions by a truncated Fourier series, and then obtain a deterministic
system of equations on the Fourier coefficients via the Galerkin projection. SG methods are as accurate as
sC methods for low dimensional random spaces, and behave better than sC for moderately high dimensional
random spaces if one wants to achieve high accuracy [4].

For sG methods for kinetic equations with a hydrodynamic limit, it is important to have a property called
“stochastic asymptotic-preserving” (s-AP), first proposed by Jin et al. [20]. The s-AP property means that
as the small parameter ε goes to zero, the sG method for the kinetic equation automatically becomes an sG
method for the limiting hydrodynamic system. Similar to the AP property, the s-AP property enables one to
choose all numerical parameters, including the number of basis functions K in polynomial chaos approximations,
independent of ε. In [18] the authors proposed an s-AP method for the model with the fine particle regime.
We followed the idea of the AP scheme in [12], and overcame the difficulty of the implicit treatment of the
vectorized Fokker-Planck operator by proving a structure theorem of this operator.

In order to analyze the accuracy of the sC and sG methods, it is very important to analyze the regularity of
the exact solution in the random space. In fact, in order to achieve a high accuracy order for the interpolations
in sC, and the truncated series approximations in sG, one usually needs such regularity. For the sG methods,
it is not straightforward to prove accuracy from the z-regularity, due to the Galerkin projection error. Instead,
one has to derive the evolution equations for the error, and then conduct estimates based on the z-regularity of
the exact solution. Recently there have been several attempts to prove the uniform-in-ε random space regularity
for kinetic equations, including Jin et al. [21] for linear transport equations, Jin–Zhu [19] for the Vlasov–
Poisson–Fokker–Planck equation, Jin–Liu [17] and Liu [23] for the linear semiconductor Boltzmann equation,
and Li–Wang [22] for general linear kinetic equations that conserve mass. [17, 21, 23] also proves the spectral
accuracy for the sG method.

In this paper, we first analyze the z-regularity of (1.7) for random initial data near the global equilibrium
in some suitable Sobolev spaces (with derivatives with respect to x and z). We use energy estimates and
hypocoercivity arguments similar to [11] on the z-derivatives of u and f . Our result implies that for near
equilibrium initial data with regular dependence on x and z, the solution depends regularly on z for all time,
and is insensitive to random perturbations on the initial data for large time. Then for the sG method, we consider
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the most popular choice of basis functions, the generalized polynomial chaos (gPC) [33], i.e., the orthonormal
polynomials with respect to π(z) dz. We write the equations for the gPC coefficients and do energy estimates,
in which we manage to make this estimate independent of K, the number of basis functions. This difficulty will
be explained in detail in the next paragraph. Finally we write the equations for the error of the gPC-sG method
and do energy and hypocoercivity estimates. Our result implies that if the random initial data (u0, f0) is small
enough in some suitable Sobolev spaces, then the gPC-sG method has spectral accuracy, uniformly in time and
ε, and captures the exponential decay in time of the exact solution. An important feature of our results is that
all the constants involved are independent of ε.

As mentioned in the previous paragraph, the biggest difficulty is that a naive energy estimates for the gPC
coefficients require a small initial data condition depending on K, the number of basis functions, since the
nonlinear terms in (1.7) produce a large number (K3) of terms in the equations of the gPC coefficients. But it
is desirable to have a small initial data condition independent of the numerical parameter K, which means that
the accuracy results are true for this set of initial data, for all K. To overcome this difficulty, we introduce a
weighted sum of the Sobolev norm of the gPC coefficients (Lem. 5.1), which enables us to combine some of the
terms together as part of a convergent series, and control the nonlinear terms with an estimate independent of
K.

This paper is organized as follows: in Section 2, we introduce some notations and state the main results; in
Section 3 we prove the energy estimates for the z-derivatives of u and f ; in Section 4 we use hypocoercivity
arguments to prove the exponential decay of these derivatives; in Section 5 we prove the spectral accuracy of
the sG method; in Section 6 we conclude the paper.

2. Notations and statements of main results

2.1. Notations

Due to the extra variable z (compared to [11]), our notation is slightly different from that in [11]. All the
norms or inner products with a single bound (like | · |, 〈·, ·〉) are only integrated in x, v and pointwise in z
(thus the result is a function in z). All the norms or inner products with a double bound (like ‖ · ‖, 〈〈·, ·〉〉) are
integrated in all variables, thus the result is a number.

Let α = (α1, α2, α3) be a multi-index. Then define

∂α = ∂α1
x1
∂α2
x2
∂α3
x3
. (2.1)

The z-derivative of order γ of a function f is denoted by

fγ = ∂γz f. (2.2)

There will not be any Sobelev norm with v-derivatives, so we do not give a short notation for them.
For function u = u(x), f = f(x, v), define the Sobolev norm (with x-derivatives)

‖u‖2s =
∑
|α|≤s

‖∂αu‖2L2
x
, ‖f‖2s =

∑
|α|≤s

‖∂αf‖2L2
x,v
. (2.3)

In particular, ‖u‖0 denote the L2
x norm of u. For function u = u(x, z), f = f(x, v, z), define the sum of Sobolev

norms

|u|2s,r =
∑
|γ|≤r

‖uγ(·, z)‖2s, |f |2s,r =
∑
|γ|≤r

‖fγ(·, ·, z)‖2s, (2.4)
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where |u|s,r and |f |s,r are functions of z. Then define the expected value of the total Sobolev norm by

‖u‖2s,r =

∫
|u|2s,rπ(z) dz, ‖f‖2s,r =

∫
|f |2s,rπ(z) dz. (2.5)

For function ū = ū(z), define the sum of derivatives and the Sobolev norm by

|ū|2r =
∑
|γ|≤r

|ūγ |2, ‖ū‖2r =

∫
|ū|2rπ(z) dz. (2.6)

In all these notations, the sub-index r is omitted when r = 0.
The L2 inner product of functions defined on x-space of x, v-space will be denoted by 〈·, ·〉, i.e.,

〈f, g〉 =

∫
fg dx, or 〈f, g〉 =

∫ ∫
fg dv dx. (2.7)

In case the inputs also depend on z, 〈f, g〉 only integrates in x or (x, v), and the result is a function in z. For
example,

〈f, g〉(z) =

∫
f(x, z)g(x, z) dx. (2.8)

Then we introduce the inner products related to the hypocoercivity arguments. Define

K = ∇v +
v

2
, P = v · ∇x, Si = [Ki,P] = KiP − PKi = ∂xi , K∗ = −∇v +

v

2
, (2.9)

where K∗ is the adjoint operator of K, in the sense that 〈Kf, g〉 = 〈f,K∗ · g〉, where f has one component and
g has three components.

For functions f = f(x, v), g = g(x, v), define

(f, g) = 2〈Kf,Kg〉+ ε〈Kf,Sg〉+ ε〈Sf,Kg〉+ ε2〈Sf,Sg〉,
[f, g] = 〈Kf,Kg〉+ ε2〈Sf,Sg〉+ 〈K2f,K2g〉+ ε2〈KSf,KSg〉, (2.10)

where we denote 〈KSf,KSg〉 :=
∑3
i,j=1〈KiSjf,KiSjg〉.

For functions f = f(x, v, z), g = g(x, v, z), define

(f, g)s,r =
∑
|γ|≤r

∑
|α|≤s

(∂αfγ(·, ·, z), ∂αgγ(·, ·, z)), (2.11)

where (f, g)s,r is a function of z. Similarly define [f, g]s,r.
Then we introduce the inner product in the (x, v, z) space:

〈〈f, g〉〉 =

∫
〈f, g〉π(z) dz, (2.12)
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and similarly define ((f, g)), ((f, g))s,r, [[f, g]], [[f, g]]s,r as the corresponding inner products integrated in z. We
also define the following norms in the (x, v, z) space:

‖u‖W s,∞ = max
|α|≤s

‖∂αu‖L∞x,z ,

‖f‖W s,∞ = max
|α|≤s

‖∂αf‖L∞x,z(L2
v)
. (2.13)

2.2. Regularity in the random space

Now we focus on the system (1.7) with the random variable z. In all of our results, the constants involved
are independent of ε.

Both results in this subsection can be viewed as generalization of those in [11]. Our first main result is the
following energy estimate assuming near equilibrium initial data:

Theorem 2.1. Assume (u, f) solves (1.7) with initial data verifying (1.9). Fix a point z. Define the energy

E(t; z) = Es,r(t; z) = |u|2Hs,r + |f |2s,r + |ū|2r, (2.14)

with integers s ≥ 2 and r ≥ 0. Then there exists a constant c1 = c1(s, r) > 0, such that E(0; z) ≤ c1 implies that
E(t; z) is non-increasing in t.

This theorem is proved by an energy estimate on ∂αfγ . This theorem means that for initial data near the
global equilibrium, in the sense that E(0; z) is small, the solution depends regularly in z for all time and all ε,
and the z-derivatives are bounded uniformly in t and ε.

From now on we will omit the dependence on z of E, in case there is no confusion.
Next, by a standard hypocoercivity argument, we strengthen the above theorem into the following one:

Theorem 2.2. Assume (u, f) solves (1.7) with initial data verifying (1.9) and (1.10). There exists a constant
c′1(s, r) such that, if we assume s ≥ 0, Es+3,r(0) ≤ c′1(s, r), and that Chs,r = (f, f)s,r|t=0 (defined by (2.11)) is
finite, then there exists a constant λ > 0 such that

Es,r(t) ≤ C(Es,r(0) + Chs,r)e
−λt, (2.15)

where C = C(s, r).

This theorem implies that as long as the random perturbation (u0, f0) on the initial data is small in suitable
Sobolev spaces and has vanishing total mass and momentum, the long-time behavior of the solution is not
sensitive to the random initial data. The smallness condition is independent of ε.

2.3. Error estimate for the gPC-sG method

We then introduce the gPC-sG method for the two-phase flow model (1.7). We start by taking the basis
functions {φk(z)}∞k=1 as the gPC basis, i.e., the set of polynomials defined on Iz, orthonormal with respect to
the given probability measure π(z) dz, with φk being a polynomial of degree k − 1.

We expand the functions u, f, p into

u(t, x, z) =

∞∑
k=1

uk(t, x)φk(z), f(t, x, v, z) =

∞∑
k=1

fk(t, x, v)φk(z), p(t, x, z) =

∞∑
k=1

pk(t, x)φk(z), (2.16)
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and approximate them by truncated series up to order K:

u ≈ uK =

K∑
k=1

ukφk(z), f ≈ fK =

K∑
k=1

fkφk(z), p ≈ pK =

K∑
k=1

pkφk(z). (2.17)

Then substitute into (1.7) and conduct the Galerkin projection, one gets the following deterministic system for
(uk, fk)Kk=1:


∂tuk + (u · ∇xu)k +∇xpk −∆xuk + uk +

∫
√
µ(uf)k dv −

∫
v
√
µfk dv = 0,

∇x · uk = 0,

∂tfk + v · ∇xfk + (∇v −
v

2
) · (uf)k − uk · v

√
µ = (

−|v|2

4
+

3

2
+ ∆v)fk,

(2.18)

with initial data

uk|t=0 = (u0)k =

∫
u0φk(z)π(z) dz, fk|t=0 = (f0)k. (2.19)

Here the gPC coefficient of a product is given by

(uw)k =

K∑
i,j=1

Sijkuiwj , (2.20)

where

Sijk =

∫
φiφjφkπ(z) dz, (2.21)

is the triple product coefficient.
The goal is to show that under smallness assumptions on the initial data, the gPC-sG method (2.18) has

uniform-in-ε spectral accuracy for all K. We start from an energy estimate for (2.18). Although being similar
to the original system (1.7), it indeed requires some new idea to obtain an estimate independent of K, i.e.,
the smallness requirement on the initial data is independent of K. The difficulty comes from the K2 nonlinear
terms appeared in the gPC product (2.20).

To overcome this difficulty, we introduce the technical condition (2.22), and introduce the weighted Sobolev

norm
∑K
k=1 ‖kquk‖2s (see the theorem below for detail). This idea originates from the analog between the gPC

series and Fourier series. If one takes a function Φ = Φ(y) defined on y ∈ [−1, 1], then ‖Φ‖2Hr =
∑
k |Φ̂k(1 +

|k|2)r/2|2 where Φ̂k denotes the k-th Fourier coefficient. Therefore our weighted Sobolev norm is almost a
Sobolev norm in both x and z spaces. With this viewpoint, it is natural to expect a nonlinear estimate with
this norm (Lem. 5.1, the key nonlinear estimate), being independent of K, similar to the nonlinear estimate
‖uw‖Hs ≤ C‖u‖Hs‖w‖Hs in the x-space. With the aid of this new technique, we prove

Theorem 2.3. Assume the technical condition

‖φk‖L∞ ≤ Ckp, ∀k, (2.22)
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with a parameter p > 0. Let q > p + 2 and s ≥ 2. Let (uk, fk), k = 1, . . . ,K, solve (2.18) with initial data
verifying (1.9), and define the energy EK by

EK(t) = EKs,q(t) =

K∑
k=1

(‖kquk‖2s + ‖kqfk‖2s + |kqūk|2). (2.23)

Then there exists a constant c2 = c2(s, q) > 0, independent of K, such that EK(0) ≤ c2 implies that EK(t) is
decreasing in t.

Next we give a sufficient condition on the initial data, under which the assumption EK(0) ≤ c2 in Theorem 2.3
holds:

Proposition 2.4. With the same assumptions as Theorem 2.3, the condition EKs,q(0) ≤ c2(s, q) holds if

‖Es,r(0)‖L1
z
≤ Cc2(s, q) with r > q + 1

2 , and C = C(s, q, r).

Theorem 2.3 is proved by the same type of energy estimate as Theorem 2.1, with the aid of the nonlinear
estimate Lemma 5.1. Notice that c2 being independent of K is important, because it implies that the condition
EK(0) ≤ c2 is in fact, in view of Proposition 2.4, a consequence of a smoothness condition on (u0, f0), for all
K. This means for such initial data, the gPC-sG method is stable for all K.

We remark that (2.22) holds for gPC basis with respect to a large class of probability measures supported
on a finite interval. To be precise, we have

Proposition 2.5. Suppose Iz = [−R,R], R < +∞ with π(z) satisfying 1/π(z) ∈ Lp1 for some p1 > 0. Then
(2.22) holds with p = 1 + 1/p1.

This proposition gives (2.22) for the uniform distribution on [−1, 1] (with normalized Legendre polynomials as
gPC basis), the distribution π(z) = 2

π
√
1−z2 on [−1, 1] (with normalized Chebyshev polynomials as gPC basis),

and all piecewise polynomial probability distributions on a finite interval with isolated zeros. More details about
(2.22) can be found in Section 5.

Finally, by a combination of the above results, we obtain the spectral accuracy of the gPC-sG method,
uniformly in t and ε, with a small initial data assumption on (u0, f0), independent of K and ε:

Theorem 2.6. Assume (2.22) holds. Let (uk, fk), k = 1, . . . ,K, solve (2.18) with initial data verifying
(1.9)(1.10). There exists a constant c′′1(s, r) such that the following holds: Assume s ≥ 0, r > p + 5

2 ,
‖Es+3,r(0)‖L∞z ≤ c′′1(s, r), and Chs,r is finite. Then Ee, the energy of the gPC approximation error, defined
by

Ee = ‖ue‖2s + ‖fe‖2s + ‖ūe‖2, ue = u− uK , fe = f − fK , (2.24)

satisfies

Ee ≤ C

K2r
, (2.25)

for all time, i.e., the gPC-sG method has r-th order accuracy uniformly in time.

This theorem is proved by an energy estimate in the (x, v, z) space on (ue, fe) with the aid of the previous
theorems.

Finally we prove that the error also decays exponentially in time, by a hypocoercivity argument:

Theorem 2.7. Assume (2.22) holds. Let (uk, fk), k = 1, . . . ,K, solves (2.18) with initial data verifying
(1.9)(1.10). There exists a constant c′′2(s, r) such that the following holds: Assume s ≥ 0, r > p + 5

2 ,
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‖Es+6,r(0)‖L∞z ≤ c
′′
2(s, r), and Chs+3,r is finite. Then there exists a constant λe > 0 such that

Ee ≤ C

Kr−p−1/2 e
−λet. (2.26)

These theorems imply that for random initial data near the global equilibrium, in the sense that (u0, f0) is
small in some suitable Sobolev spaces, the gPC-sG method has spectral accuracy, uniformly in time and ε, and
it captures the long-time behavior of (1.7) with random initial data.

Remark 2.8. In cases where the random space Iz has dimension d > 1, the proof of Theorems 2.1 and 2.2
stays valid, but the results of other theorems may deteriorate due to:

(1) The spectral accuracy of gPC approximation deteriorates. To be precise, suppose one takes the multi-
dimensional gPC basis as the tensor product of one-dimensional ones, then the approximation error
becomes C

Kr/d , where K is the number of basis functions.
(2) The constant p in (2.22) will become pd in the case of tensor product basis.

To investigate how d affects the estimate for the gPC-sG method is left as our future work.

3. Basic energy estimate: proof of Theorem 2.1

We first state some lemmas on nonlinear estimates. Denote the space of functions with finite ‖ · ‖s norm as

Hs = {u(x) : ‖u‖s <∞}, H̃s = {f(x, v) : ‖f‖s <∞}. (3.1)

The following lemma is from [11]:

Lemma 3.1. Let u = u(x) ∈ Hs, w = w(x) ∈ Hs, f = f(x, v) ∈ H̃s. Then for s > 3/2,

‖uw‖s ≤ C‖u‖s‖w‖s, (3.2)

‖uf‖s ≤ C‖u‖s‖f‖s, (3.3)

where C = C(s).

It follows that

Lemma 3.2. Let u = u(x, z) ∈ W r,∞
z (Hs), w = w(x, z) ∈ W r,∞

z (Hs), f = f(x, v, z) ∈ W r,∞
z (H̃s). Let |γ| ≤ r.

Then for s > 3/2 and all z,

|(uw)γ |s ≤ C|u|s,r|w|s,r, (3.4)

|(uf)γ |s ≤ C|u|s,r|f |s,r, (3.5)

where C = C(s, r).

Proof. By the Leibniz rule,

(uw)γ =

γ∑
β=0

(
γ

β

)
uβwγ−β . (3.6)

Then

|(uw)γ |s ≤
γ∑
β=0

(
γ

β

)
|uβwγ−β |s ≤ C(s)

γ∑
β=0

(
γ

β

)
|uβ |s|wγ−β |s ≤ C(s, r)|u|s,r|w|s,r, (3.7)
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where the second inequality uses (3.2). This finishes the proof of (3.4). The proof of (3.5) is similar, in view of
(3.3).

And then a bilinear version follows:

Lemma 3.3. Let u = u(x, z) ∈W r,∞
z (Hs), w = w(x, z) ∈W r,∞

z (Hs), y = y(x, z) ∈W r,∞
z (Hs), f = f(x, v, z) ∈

W r,∞
z (H̃s), g = g(x, v, z) ∈W r,∞

z (H̃s). Let |γ| ≤ r, |α| ≤ s. Then for s > 3/2 and all z,

|〈∂α(uw)γ , yγ〉| ≤ C(δ, s, r)|u|2s,r|w|2s,r + δ|y|20,r, (3.8)

|〈∂α(uf)γ , gγ〉| ≤ C(δ, s, r)|u|2s,r|f |2s,r + δ|g|20,r, (3.9)

where δ is any positive number.

Proof. To prove (3.8),

||〈∂α(uw)γ , yγ〉| ≤ 1

4δ
|∂α(uw)γ |2L2 + δ|yγ |2L2 ≤

1

4δ
|(uw)γ |2s + δ|y|20,r

≤ C(δ, s, r)|u|2s,r|w|2s,r + δ|y|20,r, (3.10)

where the first inequality uses Young’s inequality, and the last inequality uses (3.4). The proof of (3.9) is
similar.

Proof of Theorem 2.1. Taking z-derivative of order γ and x-derivative of order α of (1.7), and taking z-derivative
of order γ of (1.12) gives

∂t∂
αuγ + ∂α(u · ∇xu)γ +∇x∂αpγ−∆x∂

αuγ +∂αuγ︸ ︷︷ ︸+

∫
√
µ∂α(uf)γ dv−1

ε

∫
v
√
µ∂αfγ dv︸ ︷︷ ︸ = 0,

∇x · ∂αuγ = 0,

∂t∂
αfγ +

1

ε
v · ∇x∂αfγ +

1

ε
(∇v −

v

2
) · ∂α(uf)γ −1

ε
∂αuγ · v√µ︸ ︷︷ ︸ =

1

ε2
(
−|v|2

4
+

3

2
+ ∆v)∂

αfγ︸ ︷︷ ︸,
∂tū

γ+2ūγ +
1

|T3|

∫ ∫
√
µ(uf)γ dv dx = 0. (3.11)

Now do L2 estimate on each equation above (except the second one), i.e., multiply the first equation by ∂αuγ

and integrate in x; multiply the third equation by ∂αfγ and integrate in (v, x); multiply the fourth equation by
ūγ . And then add the results together and sum over |γ| ≤ r, |α| ≤ s. Then one gets the following equation (at
each z):

1

2
∂tE +G+B = 0, (3.12)

where the energy E is given by (2.14). The good terms G are given by

G = G1 + G2︸︷︷︸ =
∑
|γ|≤s

G1,γ +
∑
|γ|≤s

G2,γ , (3.13)
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with

G1,γ = |∇xuγ |2s + 2|ūγ |2 ≥ C|uγ |2s+1,

G2,γ =

∣∣∣∣uγ√µ− 1

ε
∇vfγ −

1

ε

v

2
fγ
∣∣∣∣2
s

, (3.14)

where the above inequality is by the Poincare-Wirtinger inequality. G1 and G2 come from the underlined terms
and the underbraced terms in (3.11), respectively. To verify the G2 term, we provide the following calculation:

〈∂αuγ , ∂αuγ〉 − 1

ε
〈v√µ∂αuγ , ∂αfγ〉 − 1

ε
〈∂αuγ · v√µ, ∂αfγ〉 − 1

ε2

〈(
−|v|2

4
+

3

2
+ ∆v

)
∂αfγ , ∂αfγ

〉
= 〈∂αuγ√µ, ∂αuγ√µ〉 − 2

1

ε
〈∂αuγ√µ, v

2
∂αfγ〉 − 2

1

ε
〈∂αuγ√µ,∇v∂αfγ〉

+
1

ε2
〈∇v∂αfγ +

v

2
∂αfγ ,∇v∂αfγ +

v

2
∂αfγ〉

= 〈A1, A1〉 − 2〈A1, A3〉 − 2〈A1, A2〉+ 〈A2 +A3, A2 +A3〉

= |A1 −A2 −A3|20 =

∣∣∣∣∂α(uγ√µ− 1

ε
∇vfγ −

1

ε

v

2
fγ
)∣∣∣∣2

0

, (3.15)

where we used integration by parts in v, ∇v
√
µ = −v2

√
µ, and the notations

A1 = ∂αuγ
√
µ, A2 =

1

ε
∇v∂αfγ , A3 =

1

ε

v

2
∂αfγ . (3.16)

The notation | · |0 is interpreted by (2.4) with s = r = 0, i.e., taking L2
x,v norm for a fixed z.

The bad terms B are given by

B = B1 +B2 +B3 =
∑

|γ|≤r,|α|≤s

B1,α,γ +
∑

|γ|≤r,|α|≤s

B2,α,γ +
∑
|γ|≤r

B3,γ , (3.17)

with

B1,α,γ = 〈∂α(u · ∇xu)γ , ∂αuγ〉,

B2,α,γ =

〈
∂α(uf)γ , ∂α

[
uγ
√
µ− 1

ε
∇vfγ −

1

ε

v

2
fγ
]〉

,

B3,γ =
1

|T3|
〈(uf)γ , ūγ

√
µ〉, (3.18)

coming from the nonlinear terms.
By using Lemma 3.3, the bad terms are controlled by

|B1,α,γ | ≤ C(δ)|u|2s+1,r|u|2s,r + δ|u|2s,r ≤ C(δ)EG1 + δG1,

|B2,α,γ | ≤ C(δ)|u|2s,r|f |2s,r + δ

∣∣∣∣uγ√µ− 1

ε
∇vfγ −

1

ε

v

2
fγ
∣∣∣∣
s

≤ C(δ)EG1 + δG2, (3.19)

|B3,γ | ≤ C(δ)|u|2s,r|f |2s,r + δ|ūγ |2 ≤ C(δ)EG1 + δG1. (3.20)
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In conclusion, we have the energy estimate

1

2
∂tE ≤ −(1− C(δ)E − Cδ)G. (3.21)

Take δ = 1
4C where C is the constant in (3.21), and c1(s, r) = 1

4C(δ) . Then we will show that E(t) ≤ c1 for all

t. In fact, let

T ∗ = sup{T̃ ≥ 0 : sup
0≤t<T̃

E(t) ≤ c1}. (3.22)

Then it follows that E(t) ≤ c1 for 0 ≤ t ≤ T ∗. Then by our choice of δ and c1,

1− C(δ)E − Cδ ≥ 1− 1

4
− 1

4
=

1

2
, (3.23)

and therefore (3.21) implies

∂tE +G ≤ 0, (3.24)

for 0 ≤ t ≤ T ∗. This prevents T ∗ from being finite. Thus we proved E(t) ≤ c1 for all t, and as a result, (3.24)
holds for all t. Thus E(t) is decreasing in t.

4. Hypocoercivity estimates: proof of Theorem 2.2

We will use the following lemma, which is Proposition 4.2 in [11]:

Lemma 4.1. There exisits a constant C > 0 such that for f(x, v) ∈ L2
x,v orthogonal to

√
µ, one has

‖f‖2L2 ≤ C(‖Kf‖2L2 + ‖Sf‖2L2). (4.1)

We begin by proving the following lemma, which is indeed a modification of part of the proof of Proposition
4.1 in [11]:

Lemma 4.2. For f and g orthogonal to
√
µ,

|(u · K∗f, g)| ≤ C 1

ε
‖u‖H3([f, f ] + [g, g]). (4.2)

Proof. Using the commutator relation

K(u · K∗f) = (u · K∗)Kf + uf, (4.3)

i.e.,

Ki

 3∑
j=1

ujK∗jf

 =

3∑
j=1

ujK∗jKif + uif, (4.4)
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one gets

(u · K∗f, g) = 2〈K(u · K∗f),Kg〉+ ε〈K(u · K∗f),Sg〉+ ε〈S(u · K∗f),Kg〉+ ε2〈S(u · K∗f),Sg〉
= 2〈uKf,K2g〉+ 2〈uf,Kg〉+ ε〈uKf,KSg〉+ ε〈uf,Sg〉

+ε〈S(uf),K2g〉+ ε2〈S(uf),SKg〉
= 2〈uKf,K2g〉+ 2〈uf,Kg〉+ ε〈uKf,KSg〉+ ε〈uf,Sg〉

+ε〈(Su)f,K2g〉+ ε〈u(Sf),K2g〉
+ε2〈(Su)f,SKg〉+ ε2〈u(Sf),KSg〉. (4.5)

where the term 〈S(uf),SKg〉 :=
∑3
i,j=1〈Si(ujf),SiKjg〉. Now use the Cauchy-Schwarz inequality, Lemma 4.1,

and the Sobolev inequality

‖u‖L∞ + ‖∇xu‖L∞ ≤ C‖u‖H3 , (4.6)

on each term. We provide the details for two of them and omit the others:

〈uf,Kg〉 ≤ ‖u‖L∞‖f‖L2‖Kg‖L2 ≤ C‖u‖L∞(‖Kf‖L2 + ‖Sf‖L2)‖Kg‖L2

≤ C‖u‖L∞
(
‖Kf‖2L2 + ‖Kg‖2L2 + ε‖Sf‖2L2 +

1

ε
‖Kg‖2L2

)
,

ε〈uf,Sg〉 ≤ ε‖u‖L∞‖f‖L2‖Sg‖L2 ≤ Cε‖u‖L∞(‖Kf‖L2 + ‖Sf‖L2)‖Sg‖L2

≤ Cε‖u‖L∞(‖Kf‖2L2 + ‖Sg‖2L2 + ‖Sf‖2L2 + ‖Sg‖2L2). (4.7)

Then one gets the conclusion, in view of the definition of [·, ·].

Now we prove the following lemma, which is an analog to Proposition 4.1 of [11]:

Lemma 4.3. Let the assumptions of Theorem 2.2 be fulfilled. Then there exists a constant c′1(s, r) ≤ c1(s+ 3, r)
such that, if we assume that Es+3,r(0) ≤ c′1(s, r) is small enough, then there exists a constant λ1 > 0 such that
(at each z)

∂t(f, f)s,r + λ1
1

ε2
[f, f ]s,r ≤ C(λ1)

(
|u|2s,r + |∇xu|2s,r +

1

ε2
|Kf |2s,r

)
. (4.8)

Proof. One can write the evolution equation of ∂αfγ as

∂t∂
αfγ +

1

ε
P∂αfγ +

1

ε2
(K∗ · K)∂αfγ =

1

ε
∂αuγ · v√µ

+
1

ε

∑
0≤η≤α

∑
0≤β≤γ

(
γ

β

)(
α

η

)
∂ηuβ · K∗∂α−ηfγ−β . (4.9)
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We will take the (·, ·) inner product of (4.9) with ∂αfγ . For the linear terms, by the same argument as the proof
of Proposition 4.1 of [11], one gets

1

ε
(P∂αfγ , ∂αfγ) = 2

1

ε
〈S∂αfγ ,K∂αfγ〉+ |S∂αfγ |20 ≥

3

4
|S∂αfγ |20 − 4

1

ε2
|K∂αfγ |20,

1

ε2
(K∗ · K∂αfγ , ∂αfγ) = 2

1

ε2
|K∂αfγ |20 + 2

1

ε2
|K2∂αfγ |20 + |SK∂αfγ |20

+
1

ε
〈K∂αfγ ,S∂αfγ〉+ 2

1

ε
〈K2∂αfγ ,SK∂αfγ〉

≥ 3

2

1

ε2
|K∂αfγ |20 +

1

2

1

ε2
|K2∂αfγ |20 +

1

3
|SK∂αfγ |20 −

1

2
|S∂αfγ |20,

1

ε
|(∂αuγ · v√µ, ∂αfγ)| = |21

ε
〈K(∂αuγ · v√µ),K∂αfγ〉+ 〈K(∂αuγ · v√µ),S∂αfγ〉

+〈S(∂αuγ · v√µ),K∂αfγ〉+ ε〈S(∂αuγ · v√µ),S∂αfγ〉|

≤ δ(
1

ε2
|K∂αfγ |20 + |S∂αfγ |20) + C(δ)(|u|2s,r + |∇xu|2s,r). (4.10)

The notation | · |0 is interpreted by (2.4) with s = r = 0, i.e., taking L2
x,v norm for a fixed z. For the nonlinear

term (the summation), we apply Lemma 4.2 and get

1

ε
|(∂ηuβ · K∗∂α−ηfγ−β , ∂αfγ)| ≤ C

1

ε2
|∂ηuβ |3,0([∂α−ηfγ−β , ∂α−ηfγ−β ] + [∂αfγ , ∂αfγ ])

≤ C
1

ε2
|u|s+3,r[f, f ]s,r, (4.11)

where we used the fact that the x and z derivatives commute with the operators K and S. With these estimates,
we get

1

2
∂t(∂

αfγ , ∂αfγ) +
1

2

1

ε2
|K2∂αfγ |20 +

1

3
|SK∂αfγ |20 +

1

4
|S∂αfγ |20 −

5

2

1

ε2
|K∂αfγ |20

≤ δ
(

1

ε2
|K∂αfγ |20 + |S∂αfγ |20

)
+ C(δ)(|u|2s,r + |∇xu|2s,r) + C

1

ε2
|u|s+3,r[f, f ]s,r. (4.12)

Then we choose δ = 1/8 to absorb the term |S∂αfγ |20 on the RHS by the same term on the LHS. Summing over
α, γ, we get

∂t(f, f)s,r + (
1

8
− C1|u|s+3,r)

1

ε2
[f, f ]s,r ≤ C2(|u|2s,r + |∇xu|2s,r +

1

ε2
|Kf |2s,r), (4.13)

where C1 = NC, C2 = max{3, NC(δ)}, N being the number of possible pairs (α, γ).
Thus if one chooses c′1 = min{c1(s+ 3, r), 1

16C1
}, then by Theorem 2.1, Es+3,r(t) is decreasing, so Es+3,r(t) ≤

c′1 for all t. Thus |u|s+3,r ≤ Es+3,r ≤ c′1 for all t, and one gets the conclusion, with λ1 = 1/16.

Proof of Theorem 2.2. To obtain the energy decay estimate, we write

G = |∇xu|2s,r + 2|ū|2r + |u√µ− 1

ε
Kf |2s,r

≥ |ū|2r + 2λ2|u|2s+1,r + |u√µ− 1

ε
Kf |2s,r

≥ |ū|2r + λ2|u|2s+1,r +
1

2
|u√µ− 1

ε
Kf |2s,r + λ3

1

ε2
|Kf |2s,r, (4.14)
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where λ3 = min{λ2

2 ,
1
4}. The first inequality is by the Poincare-Wirtinger inequality. The second inequality is

because

‖1

ε
Kf‖2s,r = ‖

(
1

ε
Kf − u√µ

)
+ u
√
µ|2s,r ≤ 2

(
‖1

ε
Kf − u√µ‖2s,r + |u√µ|2s,r

)
= 2

(
‖1

ε
Kf − u√µ‖2s,r + |u|2s,r

)
. (4.15)

Thus, by adding to (3.24) some positive constant λ4 (to be chosen) times (4.8), we have

∂tẼ + G̃ ≤ λ4B̃, (4.16)

where

Ẽ = E + λ4(f, f)s,r, G̃ = G+ λ4λ1
1

ε2
[f, f ]s,r, (4.17)

B̃ = C(λ1)(|u|2s,r + |∇xu|2s,r +
1

ε2
|Kf |2s,r). (4.18)

It is clear from (4.14) that B̃ ≤ CG ≤ CG̃. Thus by choosing λ4 = min{ 1
2C , 1}, C being the previous constant,

we get

∂tẼ +
1

2
G̃ ≤ 0. (4.19)

Notice that Lemma 4.1 implies that

|f |2s,r ≤ C(|Kf |2s,r + |Sf |2s,r), (4.20)

and by definition one also has

(f, f)s,r ≤ C(|Kf |2s,r + |Sf |2s,r) ≤ C
1

ε2
(f, f)s,r. (4.21)

Thus

Ẽ ≤ C(G+ |f |2s,r) + λ4((f, f))s,r ≤ C(G+ |Kf |2s,r + |Sf |2s,r) ≤ CG̃. (4.22)

This together with (4.19) implies

Ẽ(t) ≤ Ẽ(0)e−λt, (4.23)

where λ = 1
2C , C being the constant in (4.22).

Finally, the proof of Theorem 2.2 is finished by noticing that

E(t) ≤ Ẽ(t) ≤ Ẽ(0)e−λt ≤ (E(0) + Ch)e−λt. (4.24)
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5. Proof of spectral accuracy of the gPC-sG approximation

In order to prove the accuracy of the gPC-sG method, we first prove Theorem 2.3, which is an energy estimate
for the gPC coefficients (uk, fk).

5.1. Estimate of the gPC coefficients: proof of Theorem 2.3

In this section, all the norms and inner products acting on φk are taken on the random space Iz, and with
respect to the measure π(z) dz if not stated otherwise. In order to prove the estimate for the gPC coefficients,
we need the extra assumption (2.22) on the basis functions.

We mention some special cases where (2.22) is satisfied [28]. For the case Iz = [−1, 1] with uniform distribu-
tion, φk are the normalized Legendre polynomials, and (2.22) holds with p = 1/2. For the case Iz = [−1, 1] with
the distribution π(z) = 2

π
√
1−z2 , φk are the normalized Chebyshev polynomials, and (2.22) holds with p = 0.

Now we prove Proposition 2.5, which guarantees (2.22) for gPC basis with respect to a large class of probability
measures supported on a finite interval.

Proof of Proposition 2.5. First, if {φk} is the gPC basis for the probability measure π(z) dz on [−R,R], then
{φk(R·)} is the gPC basis for the probability measure Rπ(Rz) dz on [−1, 1]. Therefore we can assume R = 1
without loss of generality.

Let Φ(z) be any degree k polynomial on Iz = [−1, 1] with
∫
Iz
Φ(z)2 1

2 dz = 1, i.e., has norm 1 in the L2 space

with uniform distribution 1
2 dz. Then one can expand it into series of normalized Legendre polynomials {ψj}:

Φ(z) =

k+1∑
j=1

Φjψj(z),

k+1∑
j=1

Φ2
j = 1. (5.1)

Then it follows that

|Φ(z)| ≤

k+1∑
j=1

Φ2
j

1/2k+1∑
j=1

ψj(z)
2

1/2

≤ Ck, (5.2)

by the fact that {ψj} satisfies (2.22) with p = 1/2. Thus ‖Φ‖L∞ ≤ Ck.

Take Φ = φk
‖φk‖L2(1/2 dz)

, we obtain

‖φk‖L∞ ≤ Ck‖φk‖L2(1/2 dz). (5.3)

Next writing p2 = p1 + 1 > 1, p′2 = p2/(p2 − 1) = 1 + 1/p1, we estimate

‖φk‖L2(1/2 dz) =

(∫
φk(z)2

1

2π(z)
π(z) dz

)1/2

≤
(∫
|φk(z)|2p

′
2π(z) dz

)1/(2p′2)
(∫

1

(2π(z))p2
π(z) dz

)1/(2p2)

≤ C‖φk‖
(p′2−1)/p

′
2

L∞ ‖φk‖
1/p′2
L2(π(z) dz)

= C‖φk‖
(p′2−1)/p

′
2

L∞ , (5.4)

where we use the assumption that
∫
π(z)1−p2 dz < ∞ in the second inequality, and ‖φk‖L2(π(z) dz) = 1 in the

last equality. Combining with (5.3) we conclude the proof.
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This proposition gives (2.22) for a large class of probability measures on a finite interval. For example, if π(z)
is continuous and has only finite number of zeros, with π(z − z0) ≥ c|z − z0|p3 for some p3 > 0, c > 0 near any
zero z = z0, then the condition of Lemma 2.5 is satisfied with any p1 < 1/p3. This already includes all piecewise
polynomial weights with separated zeros.

It follows from (2.22) that

|Sijk| ≤ Cip, (5.5)

since

|Sijk| ≤ ‖φi‖L∞〈|φj |, |φk|〉 ≤ ‖φi‖L∞‖φj‖L2‖φk‖L2 ≤ Cip. (5.6)

Also, note that φk is a polynomial of degree k − 1, orthogonal to all lower order polynomials. If
(i− 1) + (j − 1) < k − 1, then Sijk = 0. Thus Sijk may be nonzero only when the triangle inequality

i+ j ≥ k + 1, (5.7)

holds.
Note that due to the symmetry in i, j, k of Sijk, (5.5) and (5.7) also hold if i, j, k are permuted.
Then we have the following lemma, which is the key nonlinear estimate:

Lemma 5.1. Assume condition (5.5). Let q > p + 2. Let s > 3
2 , α be a multi-index with |α| ≤ s. Let uk =

uk(x) ∈ Hs, wk = wk(x) ∈ Hs, yk = yk(x) ∈ L2, fk = fk(x, v) ∈ H̃2, gk = gk(x, v) ∈ L2. Then

∣∣∣∣∣
K∑
k=1

k2q〈∂α(uw)k, yk〉

∣∣∣∣∣ ≤ C(δ)

K∑
i=1

‖iqui‖2s
K∑
j=1

‖jqwj‖2s + δ

K∑
k=1

‖kqyk‖20,∣∣∣∣∣
K∑
k=1

k2q〈∂α(uf)k, gk〉

∣∣∣∣∣ ≤ C(δ)

K∑
i=1

‖iqui‖2s
K∑
j=1

‖jqfj‖2s + δ

K∑
k=1

‖kqgk‖20, (5.8)

where the constants are independent of K, and δ is any positive constant.

Proof. We focus on the proof of the first inequality, and the second one is similar (just use (3.3) instead of
(3.2)). Note (by (3.2))

k2q‖Sijk∂α(uiwj)‖0 ≤ Ck2q|Sijk|‖ui‖s‖wj‖s = C
k2q

iqjq
|Sijk| · ‖iqui‖s · ‖jqwj‖s. (5.9)

First we consider the case i ≥ j. Then since

iqjq ≥ 1

C

(
k + 1

2

)q
|Sijk|jq−p, (5.10)

by (5.5) and (5.7), we conclude that

k2q

iqjq
|Sijk| ≤ Ckqjp−q. (5.11)
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Thus if we write the (uw)k on the LHS of (5.8) as a summation in i, j by (2.20), the i ≥ j terms can be
estimated by∣∣∣∣∣∣

K∑
k=1

k2q
K∑

i,j=1; i≥j

χijkSijk〈∂α(uiwj), yk〉

∣∣∣∣∣∣ ≤
K∑

i,j,k=1; i≥j

k2q‖Sijk∂α(uiwj)‖0 · ‖yk‖0 · χijk

≤ C

K∑
i,j,k=1; i≥j

jp−q · ‖iqui‖s · ‖jqwj‖s · ‖kqyk‖0 · χijk

≤ C

K∑
i,j,k=1

jp−q · ‖iqui‖s · ‖jqwj‖s · ‖kqyk‖0 · χijk

≤ C(δ)

K∑
i,j,k=1

jp−q ·‖iqui‖2s ·‖jqwj‖2s ·χijk+δ
K∑

i,j,k=1

jp−q‖kquk‖20 ·χijk

= C(δ)I + δII, (5.12)

where the second inequality uses (5.11), and χijk is the indicator function of the set of indexes (i, j, k) for which
Sijk 6= 0.

Now we claim that

I ≤ 2

K∑
i=1

‖iqui‖2s ·
K∑
j=1

‖jqwj‖2s. (5.13)

In fact, fix i, then one can write

I =

K∑
i=1

‖iqui‖2sIi, Ii =

K∑
j,k=1

jp−q · ‖jqwj‖2sχijk. (5.14)

Notice that χijk = 1 implies that i − j + 1 ≤ k ≤ i + j − 1, by (5.7). Thus in the last summation, there is at
most 2j terms corresponding to a fixed j. Thus

Ii ≤ 2

K∑
j=1

jp−q+1‖jqwj‖2s ≤ 2

K∑
j=1

‖jqwj‖2s, (5.15)

if q ≥ p+ 1. This proves (5.13).
II is controlled by

II ≤ 2

K∑
j=1

jp−q+1
K∑
k=1

‖kqyk‖20, (5.16)

since for each fixed (j, k) there is at most 2j choices for i. Thus if q > p+ 2, one has

II ≤ C
K∑
k=1

‖kqyk‖20, C = 2

∞∑
j=1

jp−q+1 ≤ 2(1 + (p− q + 2)−1). (5.17)
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Thus we conclude that the i ≥ j terms can be controlled by the RHS of (5.8) (with δ replaced by Cδ).
For the terms of the LHS of (5.8) with i ≤ j, we exchange the indexes i and j, and get the LHS of (5.12)

with u and w exchanged. Thus one proceeds as before and get the same conclusion, since the RHS of (5.8) is
invariant if u and w are exchanged.

Remark 5.2. The weight kq appeared in the above lemma is essential. Suppose one uses a summation∑K
k=1〈∂α(uw)k, yk〉, then one ends up with the estimate

∣∣∣∣∣
K∑
k=1

〈∂α(uw)k, yk〉

∣∣∣∣∣ =

∣∣∣∣∣∣
K∑

i,j,k=1

Sijk〈∂α(uiwj), yk〉

∣∣∣∣∣∣
≤

K∑
i,j,k=1

min(i, j, k)p[C(δ)‖ui‖2s‖wj‖2s + δ‖yk‖20]

≤ C(δ)C1(K)

K∑
i=1

‖ui‖2s
K∑
j=1

‖wj‖2s + δC2(K)

K∑
k=1

‖yk‖20, (5.18)

where C1(K) =
∑K
k=1 k

p = O(Kp+1), C2(K) = K
∑K
i=1 i

p = O(Kp+2). Thus in this way one gets an estimate
with the coefficient depending on K. If one uses this estimate to prove an analog of Theorem 2.3, then one will
get a constant c2 depending on K.

In view of Proposition 2.4, c2 being independent of K implies that the conclusion of Theorem 2.3 holds if the
initial data satisfies a smoothness condition independent of K. If c2 depends on K, then the initial data needs
to satisfy a K-dependent condition to make the conclusion of Theorem 2.3 true. This is not good, since it is
desirable that the gPC-sG method is stable for a class of initial data, for all K.

Remark 5.3. For gPC basis with respect to a probability measure supported on R, for example, the Gaussian
distribution, numerical evidence suggests that (5.5) may fail. In this case one might require a weaker condition,
for example, (5.5) with kp replaced by λk for some λ > 1, and prove results similar to Lemma 5.1 with different
weights. This is out of the scope of this paper.

Due to the similarity of Lemma 3.3 and Lemma 5.1, it is straightforward to modify the proof of Theorem 2.1
into a proof of Theorem 2.3:

Proof of Theorem 2.3. We take ∂α on the first and third equations of (2.18), and do L2 estimates on them as
well as on the fourth equation, and then sum over k and α with the kth equation multiplied by k2q. Then we
get

1

2
∂tE

K +GK +BK = 0, (5.19)

where

EK(t) =

K∑
k=1

(‖kquk‖2s + ‖kqfk‖2s + |kqūk|2),

GK = GK1 +GK2 =

K∑
k=1

(‖∇xkquk‖2s + 2|kqūk|2) +

K∑
k=1

∥∥∥∥kq (uk√µ− 1

ε
∇vfk −

1

ε

v

2
fk

)∥∥∥∥2
s

,

BK = BK1 +BK2 +BK3 =
∑
|α|≤s

BK1,α +
∑
|α|≤s

BK2,α +BK3 , (5.20)
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with

BK1,α =

K∑
k=1

k2q〈∂α(u · ∇xu)k, ∂
αuk〉,

BK2,α =

K∑
k=1

k2q
〈
∂α(uf)k, ∂

α

[
uk
√
µ− 1

ε
∇vfk −

1

ε

v

2
fk

]〉
,

BK3 =
1

|T3|

K∑
k=1

k2q〈(uf)k, ūk
√
µ〉. (5.21)

Now apply Lemma 5.1 to get

|BK1,α| ≤ C(δ)

K∑
k=1

‖kquk‖2s+1

K∑
k=1

‖kquk‖2s + δ

K∑
k=1

‖kquk‖2s+1 ≤ C(δ)EKGK1 + δGK1 ,

|BK2,α| ≤ C(δ)

K∑
k=1

‖kquk‖2s
K∑
k=1

‖kqfk‖2s + δGK2 ≤ C(δ)EKGK1 + δGK2 ,

|BK3 | ≤ C(δ)

K∑
k=1

‖kquk‖2s
K∑
k=1

‖kqfk‖2s +

K∑
k=1

δ|kqūk|2 ≤ C(δ)EKGK1 + δGK1 . (5.22)

And then one concludes

1

2
∂tE

K ≤ −(1− C(δ)EK − Cδ)GK . (5.23)

Assuming δ = 1
4C where C is the constant in (5.23), and c2(s, r) = 1

4C(δ) , then by the same argument as in the

proof of Theorem 2.1, if EK(0) ≤ c2(s, r), then one has

∂tE
K +GK ≤ 0, (5.24)

and EK is non-increasing.

Proof of Proposition 2.4. Note that (u0)k is the kth gPC coefficient of the initial data u0, and thus satisfies the
spectral accuracy estimate

|(u0)k(x)| ≤ C
‖u0(x, ·)‖Hrz

kr
, (5.25)

at each fixed x. By integrating (5.25) in x and replacing u by ∂αu and summing over α, one gets

‖kq(uk)0‖s ≤ Ckq−r‖u0‖s,r. (5.26)

Thus if r > q + 1
2 , one has

K∑
k=1

‖kq(uk)0‖2s ≤ C‖u0‖2s,r. (5.27)
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Similar estimate holds for f and ū. Thus one has

EKs,q(0) ≤ C‖Es,r(0)‖L1
z
, (5.28)

and the proof is finished.

5.2. Accuracy analysis: proof of Theorem 2.6

Recall the reconstructed gPC solution

uK(x, z) =

K∑
k=1

uk(x)φk(z). (5.29)

Then at a fixed x point one has

‖uK(x, ·)‖2L2
z

=

K∑
k=1

|uk(x)|2 ≤
K∑
k=1

|kquk(x)|2. (5.30)

Thus

‖uK‖20 ≤ EK0,q. (5.31)

for any q ≥ 0.
Furthermore, with the assumption (2.22), one has the estimate

‖uK(x)‖2L∞z ≤ C

(
K∑
k=1

|uk(x)|kp
)2

≤ C

(
K∑
k=1

|kquk(x)|2
)(

K∑
k=1

k2(p−q)

)
≤ C

(
K∑
k=1

|kquk(x)|2
)
, (5.32)

since q > p+ 2. Thus

‖uK‖2L∞z (L2
x)
≤ ‖uK‖2L2

x(L
∞
z ) ≤ CE

K
0,q. (5.33)

Similar estimates hold for f and ū and their x derivatives.

Proof of Theorem 2.6. The gPC coefficients of the mean fluid velocity satisfies

∂tūk + 2ūk + C

∫ ∫
√
µ(uf)k dv dx = 0. (5.34)

Denote the projection operator onto the span of {φk}Kk=1 by PK . Multiplying (2.18) and (5.34) by φk(z) and
summing in k, one gets the equations for (uK , fK)

∂tu
K + PK(uK · ∇xuK) +∇xpK −∆xu

K + uK +

∫
√
µPK(uKfK) dv − 1

ε

∫
v
√
µfK dv = 0,

∇x · uK = 0,

∂tf
K +

1

ε
v · ∇xfK +

1

ε

(
∇v −

v

2

)
· PK(uKfK)− 1

ε
uK · v√µ =

1

ε2

(
−|v|2

4
+

3

2
+ ∆v

)
fK ,

∂tū
K + 2ūK +

1

|T3|

∫ ∫
√
µPK(uKfK) dv dx = 0. (5.35)
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Then subtracting from (1.7) and (1.12), one gets

∂tu
e + [(I − PK)(u · ∇xu) + PK(ue · ∇xu+ uK · ∇xue)] +∇xpe −∆xu

e + ue

+

∫
√
µ[(I − PK)(uf) + PK(uef + uKfe)] dv − 1

ε

∫
v
√
µfe dv = 0,

∇x · ue = 0,

∂tf
e +

1

ε
v · ∇xfe +

1

ε
(∇v −

v

2
) · [(I − PK)(uf) + PK(uef + uKfe)]

−1

ε
ue · v√µ =

1

ε2
(
−|v|2

4
+

3

2
+ ∆v)f

e,

∂tū
e + 2ūe +

1

|T3|

∫ ∫
√
µ[(I − PK)(uf) + PK(uef + uKfe)] dv dx = 0, (5.36)

where (ue, fe) is the approximation error

ue = u− uK , fe = f − fK . (5.37)

Notice that (5.36) is linear in (ue, fe).
Now take ∂α on the first and third equations of (5.36), and do L2 estimates on the first, third, fourth equations

in (x, z), (x, v, z), z, respectively. First notice that PK commutes with x-derivatives, and has operator norm 1
on L2

z. Thus one has

|〈〈∂αPK(ue · ∇xu+ uK · ∇xue), ∂αue〉〉| ≤ C(‖u‖W s+1,∞ + ‖uK‖W s,∞)‖ue‖2s+1, (5.38)

where the W norms mean the Sobolev norms with power index∞, as defined in (2.13), and the sub-index r = 0
is omitted. By estimating the terms PK(uef + uKfe) in the same manner, i.e.,

|〈〈∂αPK(uef + uKfe), ∂αue〉〉| ≤ C(‖f‖W s,∞ + ‖uK‖W s,∞)(‖ue‖2s + ‖fe‖2s), (5.39)

one gets the energy estimate

1

2
∂tE

e ≤ −
(

2

3
− CH

)
Ge + CS, (5.40)

where

Ee = ‖ue‖2s + ‖fe‖2s + ‖ūe‖2,

Ge = ‖∇xue‖2s + 2‖ūe‖2 +

∥∥∥∥ue√µ− 1

ε
∇vfe −

1

ε

v

2
fe
∥∥∥∥2
s

,

S = (‖(I − PK)(u · ∇xu)‖2s + ‖(I − PK)(uf)‖2s),
H = ‖u‖W s+1,∞ + ‖uK‖W s,∞ + ‖f‖W s,∞ . (5.41)

First notice that by Sobolev embedding,

‖u‖W s+1,∞ ≤ C‖u‖L∞z (Hs+3
x ), ‖f‖W s,∞ ≤ C‖f‖L∞z (Hs+2

x (L2
v))
, (5.42)
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and by (5.33)

‖uK‖2W s,∞ ≤ CEKs+2,q. (5.43)

Thus H can be controlled by

H ≤ C(‖Es+3,0‖L∞z + EKs+2,q)
1/2. (5.44)

In view of Lemma 2.4, for r > p+ 5
2 one has

H ≤ C‖Es+3,r‖1/2L∞z
, (5.45)

which implies that

CH ≤ 1

6
, (5.46)

in (5.40) for all time if ‖Es+3,r(0)‖L∞z ≤ c′′1(s, r) ≤ min{ 1
4C , c1(s, r), c2(s, q)}, in view of Theorem 2.1 and

Theorem 2.3.
To estimate the source term S, notice that at each fixed x, v,

‖(I − PK)∂α(uf)(x, v)‖L2
z
≤ C
‖∂α(uf)(x, v)‖Hrz

Kr
. (5.47)

Integrating in x, v and summing over α,

‖(I − PK)(uf)‖s ≤ C
‖uf‖s,r
Kr

. (5.48)

Notice that at each z,

|uf |s,r ≤ max
|α|≤s, |γ|≤r

‖∂αuγ‖L∞x |f |s,r ≤ C|u|s+2,r|f |s,r. (5.49)

Thus

‖uf‖s,r ≤ ‖|uf |s,r‖L∞z ≤ C‖|u|s+2,r‖L∞z ‖|f |s,r‖L∞z ≤ C‖Es+2,r‖1/2L∞z
‖Es,r‖1/2L∞z

. (5.50)

Then by Theorems 2.1 and 2.2 (suppress the dependence on Ch), taking c′′1 ≤ c′1(s, r),

Es+2,r(t) ≤ C, Es,r(t) ≤ Ce−λt. (5.51)

Thus we finally get

‖(I − PK)(uf)‖s ≤
Ce−

λ
2 t

Kr
. (5.52)

The term ‖(I − PK)(u · ∇xu)‖s can be estimated similarly, by using |u · ∇xu|s,r ≤ C|u|s+3,r|u|s,r, and we get

S ≤ Ce−λt

K2r
. (5.53)
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In conclusion, we have the estimate

∂tE
e +Ge ≤ C

K2r
e−λt. (5.54)

Finally, combining (5.40), (5.46) and (5.53), noticing that
∫∞
0
e−2λt dt converges, one concludes that Ee ≤ C

K2r

uniformly in time and ε.

5.3. Hypocoercivity estimates for the error: proof of Theorem 2.7

Proof of Theorem 2.7. In order to get a hypocoercivity estimate for (ue, fe), we write the equation of ∂αfe as

∂t∂
αfe +

1

ε
P∂αfe +

1

ε2
K∗K∂αfe =

1

ε
∂αue · v√µ+

1

ε
[(I − PK)∂α(u · K∗f) + PK∂

α(ue · K∗f)

+PK∂
α(uK · K∗fe)]. (5.55)

and then do energy estimate in (x, v, z). The linear terms can be handled in the same way as Lemma 4.2. The
first nonlinear term is estimated by∣∣∣∣1ε (( (I − PK)∂α(u · K∗f), ∂αfe))

∣∣∣∣ ≤ C

Kr

1

ε2
‖u‖L∞z (Hs+3,r)([[f, f ]]s,r + [[fe, fe]]s). (5.56)

In fact, by modifying the proof of Lemma 4.2, one can get an expression like (4.5):

(( (I − PK)∂α(u · K∗f), ∂αfe)) = 2〈〈(I − PK)∂α(uKf),K2∂αfe〉〉+ similar terms. (5.57)

The first term in (5.57) is estimated by

|〈〈(I − PK)∂α(uKf),K2∂αfe〉〉| ≤ ‖(I − PK)∂α(uKf)‖0‖K2∂αfe‖0

≤ C

Kr
‖∂α(u · Kf)‖0,r‖K2fe‖s

≤ C

Kr
max

|γ|≤r,|β|≤s
‖∂βuγ‖L∞‖Kf‖s,r‖K2fe‖s

≤ C

Kr
‖u‖L∞z (Hs+3,r)(‖Kf‖2s,r + ‖K2fe‖2s), (5.58)

and other terms in (5.57) can be estimated similarly.
The second nonlinear term in (5.55) is estimated by Lemma 4.2 as follows:∣∣∣∣1ε ((PK∂

α(ue · K∗f), ∂αfe))

∣∣∣∣ ≤ ∣∣∣∣1ε ((∂α(ue · K∗f), ∂αfe))

∣∣∣∣
≤ C

1

ε2
max
|β|≤s

‖∂βue‖L∞(C(δ)[[f, f ]]s + δ[[fe, fe]]s). (5.59)

The third nonlinear term is estimated by Lemma 4.2 as follows:∣∣∣∣1ε ((PK∂
α(uK · K∗fe), ∂αfe))

∣∣∣∣ ≤ ∣∣∣∣1ε ((∂α(uK · K∗fe), ∂αfe))
∣∣∣∣ ≤ C 1

ε2
‖uK‖L∞z (Hs+3)[[f

e, fe]]s. (5.60)
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Now by assumption, ‖Es+3,r(t)‖L∞z is small enough at t = 0 (which implies that they are small enough for
all time, by Theorem 2.1). Similar result holds for EKs+3,q ≤ C‖Es+3,r‖L∞z , by Theorem 2.3. As a result,

‖u‖L∞z (Hs+3,r) and ‖uK‖L∞z (Hs+3) are small enough, see (5.33) for the latter.

To bound the term max|β|≤s ‖∂βue‖L∞ appeared in (5.59), we estimate

‖ue‖L∞z =

∥∥∥∥∥
K∑
k=1

(ue)kφk(z)

∥∥∥∥∥
L∞z

≤ C

(
K∑
k=1

|(ue)k|2
)1/2( K∑

k=1

k2p

)1/2

≤ C‖ue‖L2
z
Kp+1/2, (5.61)

at any fixed x. Then taking L∞ in x we obtain

‖ue‖L∞ ≤ CKp+1/2‖ue‖L∞x (L2
z)
≤ CKp+1/2‖ue‖L2

z(L
∞
x ) ≤ CKp+1/2‖ue‖L2

z(H
2
x)
. (5.62)

By Theorem 2.6, ‖ue‖L2
z(H

s+3) is bounded by C
Kr . Doing the same estimate for the x-derivatives of ue, we obtain

max
|β|≤s

‖∂βue‖L∞ ≤
C

Kr−p−1/2 . (5.63)

Then by choosing δ in (5.59) small enough, all the [[fe, fe]]s terms from the nonlinear terms can be absorbed
by the corresponding term from the linear terms, and then one concludes the estimate

∂t((f
e, fe))s + λe1

1

ε2
[[fe, fe]]s ≤ C(λe1)(‖ue‖2s + ‖∇xue‖2s +

1

ε2
‖Kfe‖2s) +

C

Kr−p−1/2
1

ε2
[[f, f ]]s,r. (5.64)

Finally, similar to the proof of Theorem 2.2, by taking a suitable linear combination of (5.64)(5.54) and (4.19)
integrated in z (where the appearance of (4.19) is to control the term [[f, f ]]s,r in (5.64)), we get

∂tẼ
e +

1

2
G̃e ≤ λe4

C

Kr−p−1/2
1

ε2
[[f, f ]]s,r +

C

Kr
e−λt, (5.65)

where

Ẽe = Ee + λe4((fe, fe))s +
1

Kr−p−1/2λ
e
5‖Ẽ‖L1

z
, (5.66)

and

G̃e = Ge + λe4λ
e
1

1

ε2
[[fe, fe]]s +

1

2Kr−p−1/2λ
e
5‖G̃‖L1

z
. (5.67)

The choice of λe4 is in the same way as the choice of λ4. To choose λe5, one wants the G̃ term to control the first
RHS term in (5.65), and thus choose

λe5 = 4
Cλe4
λ4λ1

, (5.68)

where the C is the first constant in (5.65). Then

∂tẼ
e +

1

4
G̃e ≤ C

Kr
e−λt. (5.69)
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Then since Ẽe ≤ CG̃e (which can be proved similarly as the proof of Ẽ ≤ CG̃, see (4.22)), and Ẽe(0) ≤ C
Kr−p−1/2 ,

one concludes that

Ẽe ≤ C

Kr−p−1/2 e
−λet, (5.70)

where λe = min{λ, 1
4C } − δ for some δ > 0 small enough, in view of the lemma below.

Lemma 5.4. Let Φ = Φ(t) satisfy

dΦ

dt
+ a1Φ ≤ a2e−a3t. (5.71)

Then

Φ(t) ≤ e−at(Φ(0) + a2C(δ)), (5.72)

with a = min{a1, a3} − δ, δ being any positive constant.

Proof.

d

dt
(ea1tΦ) ≤ a2e(a1−a3)t, (5.73)

ea1tΦ ≤ Φ(0) +

∫ t

0

a2e
(a1−a3)s ds, (5.74)

Φ(t) ≤ e−a1tΦ(0) + a2
e−a3t − e−a1t

a1 − a3
= e−a1tΦ(0) + a2te

−ξt, (5.75)

for some ξ between a1 and a3, by the mean value theorem. Then the conclusion follows since

te−ξt ≤ e−at(te−δt) ≤ C(δ)e−at, (5.76)

where C(δ) = (δe)−1.

6. Conclusion

In this paper we first prove the uniform regularity in the random space for a kinetic-fluid two-phase flow model
with the light particle regime for random initial data near the global equilibrium, using an energy estimate in
suitable Sobolev spaces. By hypocoercivity arguments we prove the energy E(t) decays exponentially in time.
This result implies that for random initial data near the global equilibrium, the long time behavior of the
solution is insensitive to the random perturbation on initial data. Then we prove a result on the time decay of
the solution of the generalized polynomial chaos stochastic Galerkin (gPC-sG) method, in which the requirement
of the random initial data is independent of K, the number of basis functions. The key idea in this proof is
the usage of EK , a weighted sum of Sobolev norms of the gPC coefficients. Finally we prove the uniform
spectral accuracy of the sG method for random initial data near the global equilibrium, by doing energy and
hypocoercivity estimates on the sG error (ue, fe). All the constants involved in the results are independent of
ε, the Knudsen number.
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