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MULTIPLE TRACES FORMULATION AND SEMI-IMPLICIT

SCHEME FOR MODELLING BIOLOGICAL CELLS UNDER

ELECTRICAL STIMULATIONI

Fernando Henŕıquez1 and Carlos Jerez-Hanckes2,*

Abstract. We model the electrical behavior of several biological cells under external stimuli by
extending and computationally improving the multiple traces formulation introduced in Henŕıquez et
al. [Numer. Math. 136 (2016) 101–145]. Therein, the electric potential and current for a single cell
are retrieved through the coupling of boundary integral operators and non-linear ordinary differential
systems of equations. Yet, the low-order discretization scheme presented becomes impractical when
accounting for interactions among multiple cells. In this note, we consider multi-cellular systems and
show existence and uniqueness of the resulting non-linear evolution problem in finite time. Our main
tools are analytic semigroup theory along with mapping properties of boundary integral operators in
Sobolev spaces. Thanks to the smoothness of cellular shapes, solutions are highly regular at a given
time. Hence, spectral spatial discretization can be employed, thereby largely reducing the number
of unknowns. Time-space coupling is achieved via a semi-implicit time-stepping scheme shown to be
stable and second order convergent. Numerical results in two dimensions validate our claims and match
observed biological behavior for the Hodgkin–Huxley dynamical model.
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1. Introduction

Research and development in biomedical engineering as well as in biological sciences have greatly benefited
from our ever-increasing ability to simulate complex cellular processes [32, 33, 41]. As computational resources
and algorithmic efficiency improves, more realistic mathematical models can be used to better understand
and enhance techniques such as localization and stimulation of peripheral nerves for anesthesia [9, 10, 48],
cardiac defibrillation [54, 59], gene transfection [15, 45], membrane electro-permeabilization [57], and electro-
chemotherapy of tumors [22, 53]. Yet, the intertwinement of multi-scale time-space phenomena, such as that
which occurs when stimulating tissues containing several cells, remains a major challenge to the applied and
computational mathematics community.
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Keywords and phrases: Multiple traces formulation, semi-implicit time stepping, biological cells, exponential convergence

1 Seminar for Applied Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland.
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660 F. HENRÍQUEZ AND C. JEREZ-HANCKES

Cellular electrical behavior is dictated by the movement of ions through channels across the cell membrane.
These channels are in turn composed of a large number of gates opening and closing randomly. Ion conduc-
tion occurs when all channel gates are open, an event whose probability depends on the voltage jump at the
membrane. Several phenomenological descriptions of such random process have been offered [35]. The pioneering
work of Hodgkin and Huxley [31] stands out as being the first model capable of describing axon electrical activity
and will constitute our model of choice without loss of generality. In order to obtain voltage differences between
intra- and extra-cellular domains, Maxwell equations are employed. As bioelectric signals are significantly slower
than electromagnetic ones, a quasi-static regime can be assumed that leads to the solving of Laplace equations
in each subdomain. Hence, one seeks to couple a dynamic model taking place on cellular membranes with a
static volumic one. The former is described by non-linear ordinary differential equations (ODEs) while the latter
by partial differential equations. In the case of multiple cells, non-local electrostatic interactions need also to be
duly accounted for.

Homogenization models present an alternative to simplify the above coupling [1–4]. Here, the underlying
idea hinges on reducing the heterogenous domain into an homogenous or effective medium. Hence, the methods
rely on requiring a very large numbers of cells with respect to the physical scales of the quantities of interest
simulated. Since we seek to understand the interactions among a large but finite number of closely interacting
or packed cells, we opt for a different approach to homogenization though we cannot over stress the usefulness
of such models in many biological simulations [21]. Among numerical methods able to model actual cellular
structure, we mention the work of Poignard and co-workers [28, 34, 38] as well as the references therein. The
so-called Voronoi Interface Method introduced there is based on a Cartesian grid and achieves second-order
convergence constituting a volume-based alternative to the approach here considered.

In [29], we modeled the electrical activity of one biological cell under external stimuli by coupling the local
Multiple Traces Formulation (MTF) [16, 17, 30] with ionic dynamics at the membrane. Although the MTF
was introduced to model heterogenous penetrable structures as in composite materials, it lends itself to solve
scattering by multiple disjoint homogenous bodies. The gist of the MTF is to consider as unknowns Dirichlet and
Neumann traces on either side of the cellular membrane. These traces must satisfy two requirements: Calderón
identities per subdomain and transmission conditions. Hence, the volume problem is condensed to one posed
over the cell boundary. To numerically couple it with our nonlinear dynamical model, in [29] we adopted a time-
stepping semi-implicit Galerkin scheme for spatial low-order basis functions, with proven stability independent
of space discretization and second order convergence. Our approach showed a considerable reduction of degrees
of freedom when compared to previous methods as well as good agreement with experimental data. However, the
method scales poorly in number of cells, with quickly increasing number of degrees of freedom and conditioning
numbers. Extending our previous work to address packed cells constitutes the main goal of the present work. It
should be mentioned that other single or multiple trace approaches could have been taken [13, 16, 17, 49, 62].
For instance, we could have chosen the Laplacian version of the Poggio–Miller–Chang–Harrington–Wu–Tsai
(PMCHWT) as it requires half the number of unknowns of the local MTF. Still, we have chosen to extend
the strategy [29] to focus on multiple scatterers and further work is required to determine the most suitable
boundary integral formulation for the problem at hand.

As a first challenge, we are required to show that the resulting multi-cellular dynamic MTF system is well
posed on the continuous level. Due to our boundary reduction, we must perform the analysis of Dirichlet-
to-Neumann operators relating transmembrane voltages to currents given by the Hodgkin–Huxley model. For
this, we heavily rely on: (i) the mapping properties of boundary integral operators in fractional Sobolev spaces
[18]; (ii) analytic group theory [40, 43, 47], and (iii) linearity of the underlying system. The latter will allow
us to define a suitable splitting of the sources of transmembrane currents on a given cell and analyze them
individually. This result is valid for a finite number of cells in two and three dimensions. In the case of single-cell
electro-permeabilization, Kavian et al. [34] obtain well-posedness using Dirichlet-to-Neumann maps but in a
bounded domain, somehow constituting a more restricted version of our results.

Computationally, one possible way to reduce the number of spatial unknowns relies on the observation that
cellular shapes are smooth. Indeed, cells seek to maximize their area-to-volume ratio as a means to pass nutri-
ents efficiently, which explains small cellular sizes and differentiable surfaces. Consequently, electric potentials
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will portray high regularity as long as the external stimulus is also sufficiently regular and that cells are not
touching each other. This scenario entails the possibility of replacing low-order basis by spectral ones – Fourier
polynomials in two dimensions or spherical harmonics in 3D – eventually yielding exponential convergence rates,
and consequently, greatly reducing the number of unknowns (cf. [11, 27, 37], [7], Sect. 6.5 or [51]). Still, cross
interactions among cells potentials can foil computational performance regardless of the discretization basis
employed.

Several schemes have been proposed to tackle multiple interactions [6, 8, 23, 24, 42]. The book by Martin
[42] provides an extensive review of the main techniques in the subject. In [6], the two-dimensional time-
harmonic acoustic multiple scattering problem at high-frequencies is solved by using series expansion. The
method described hinges on the boundary decomposition technique introduced by Balabane [8] while the reso-
lution and preconditioning of the underlying linear system is improved through the identification of particular
matrix structures. In [23–25] the authors tackle Helmholtz and Maxwell multiple scattering problems by propos-
ing different boundary integral equations, usually coupled with other techniques such as Balabane’s boundary
decomposition method [8] or the T-matrix method [61]. However, and to our knowledge, coupling such methods
with nonlinear time dependent models as the one taking place in packed cells stimulation has not been yet
performed. We believe the present work will open the path for such implementations though we will not tackle
this here. Moreover, our approach could be extended to describe cardiac electrophysiology when adequately
adapting non-linear models constructed via asymptotic expansions such as the ones given in [14, 20].

This article is arranged as follows. In Section 2, we introduce necessary notation and tools to state the
mathematical model problem for the interaction of multiple biological cells. Section 3 introduces boundary
integral operators along with their main properties. In Section 4, the MTF is employed to recast the original
volume problem as a problem solely posed on the cellular membranes. Existence and uniqueness of the boundary
integral problem is presented in Section 5. The main tool in this case is analytic semigroup theory. Our numerical
discretization scheme is described in Section 6, with stability and convergence analyses carried out in Sections 6.4
and 6.6, respectively. In Section 7, we show and discuss numerical results in the light of previous theoretical
and experimental insights, to then conclude in Section 8.

2. Preliminaries and volume model problem

2.1. Notation

Following [29], we set some of the recurring notation used throughout, with exceptions duly indicated. Let
D ⊆ Rd, with d = 1, 2, 3, be open. We denote by Ck(D) the space of k-times differentiable continuous functions
over D with k ∈ N0. Also, let Lp(D) be the standard equivalence class of functions with bounded Lp-norm over
D. For s ∈ R, Hs(D) denotes standard Sobolev spaces with H0(D) ≡ L2(D) ([44], Chap. 3). For s ≥ 0, we
write Hs

loc(D) for the local Sobolev space of distributions whose restriction to every compact set K b D lies in
Hs(K). Similarly, we introduce the notation Hs

comp(D) for the space of compactly supported Hs(D)-functions
in D, for s ∈ R. We will also use the notation H1

loc(∆, D) for functions u ∈ H1
loc(D) with ∆u ∈ L2

comp(D), for a
domain D not necessarily bounded. We consider as well the space:

H1
loc(∆,Rd\∂D) := {u ∈ L2(Rd) : u|D ∈ H

1
loc(∆, D) and u|Dc ∈ H

1
loc(∆, Dc)}.

For a Banach space V , k ∈ N0, functional spaces Ck([0, T ];V ) denote k-times continuous functions in t with
bounded V -norm for all t ∈ [0, T ]. An equivalent definition holds for Lp([0, T ];V ) spaces with p ∈ [1,∞]. S ′(Rd)
denotes the Schwartz functional space of tempered distributions over Rd. For Banach spaces X and Y , we also
introduce the space of bounded linear mappings L(X,Y ) from X into Y .

Duality products are denoted by angular brackets, 〈·, ·〉, while inner products by round brackets, (·, ·), both
with subscripts accounting for the domain of definition. Dual adjoint operators are denoted by prime super-
scripts, e.g., A′. Norms and semi-norms are written as ‖·‖, | · |, respectively, with subscripts indicating the
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associated functional space. We use ‖·‖2 to denote the Euclidean norm in Rd. Furthermore, time derivatives
and vectors are denoted by the symbol ∂t and by bold symbols, respectively.

2.2. Problem geometry

Set J ∈ N. Let Ωj b Rd with d = 2, 3 and j = 1, . . . , J , be bounded Lipschitz – eventually smooth – sub-
domains, each one with a connected boundary Γj := ∂Ωj and complement Ωcj := Rd \ Ωj . We assume that the

set of subdomains is pairwise or mutually disjoint, i.e. Ωj ∩ Ωk = ∅ whenever j 6= k, for j, k = 1, . . . , J . The
exterior domain to all subdomains, Ω0, and its boundary, Γ0, are defined as

Ω0 := Rd\
J⋃
j=1

Ωj and Γ0 :=

J⋃
j=1

Γj . (2.1)

2.3. Trace operators and multiple trace spaces

Let us denote by νj the outward unitary normal vector to the boundary Γj , for j = 1, . . . , J . Let γj be the

interior trace operator acting continuously from Hs
loc(Ωj) into Hs− 1

2 (Γj), for 1
2 < s < 3

2 if Ωj is Lipschitz, and
if it is a Ck-domain, for 1

2 < s < k ([52], Thms. 2.6.8 and 2.6.9). For u ∈ H1
loc(∆,Ωj), we introduce interior

Dirichlet and Neumann traces:

γjDu := γju and γjNu := γj (νj · ∇u) , (2.2)

respectively. Analogously, we define exterior traces:

γj,cD u := γj,cu and γj,cN u := γj,c (νj · ∇u) , (2.3)

where γj,c is the exterior trace operator mapping Hs
loc(Ω0) into Hs− 1

2 (Γj) with conditions on s as those stated
for interior traces. For a given subdomain boundary ∂Ωj , we set the product trace spaces per subdomain:

Vs
j := H

1
2 +s(∂Ωj)×H−

1
2 +s(∂Ωj),

with |s| ≤ 1
2 for a bounded Lipschitz domain Ωj or s ∈ R if Ωj is bounded and C∞. We identify Vj ≡ V0

j . Also,
for any ϕ, ξ in Vs

j , we define the cross or ×-duality product over Γj as (cf. [30], Sect. 2.2.1):

〈ϕ, ξ〉×,j := 〈ϕD, ξN〉j + 〈ϕN, ξD〉j . (2.4)

Given an operator B : Vk → Vj , we can write

B =

(
BDD BDN

BND BNN

)
,

with obvious mapping properties, and obtain its ×-dual adjoint B† : Vj → Vk as

B† =

(
B′NN B′DN

B′ND B′DD

)
, (2.5)
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since, for any λ ∈ Vk and ϕ ∈ Vj , it holds

〈Bλ,ϕ〉×,j = 〈BDDλD, ϕN〉j + 〈BDNλN, ϕN〉j + 〈BNDλD, ϕD〉j + 〈BNNλN, ϕD〉j
= 〈λD,B

′
DDϕN〉k + 〈λN,B

′
DNϕN〉k + 〈λD,B

′
NDϕD〉k + 〈λN,B

′
NNϕD〉k

=
〈
λ,B†ϕ

〉
×,k .

For shorthand, let us introduce the trace operators:

γju :=

(
γjDu

γjNu

)
: H1

loc(∆,Ωj)→ Vj , γj,cu :=

(
γj,cD u

γj,cN u

)
: H1

loc(∆,Ωcj)→ Vj . (2.6)

Moreover, we define trace jump and average operators across Γj as follows: for u ∈ H1
loc(∆,Ωj ∪ Ωcj), then

[γu]j = γj,cu− γju, {γu}j =
1

2

(
γju+ γj,cu

)
, (2.7)

respectively. Finally, we introduce the space V
(2)
j := Vj ×Vj as well as the multiple traces space VJ as the

Cartesian product of interior and exterior trace spaces per subdomain boundary Γj :

VJ :=

J∏
j=1

V
(2)
j .

These spaces1 will be used in the MTF formulation of Section 3. For all Cartesian product spaces, inner and
duality products as well as norms are sums of individual components with cross duality pairings. For example,

for any λ
(2)
j = (λcj ,λj)

> and ϕ
(2)
j = (ϕcj ,ϕj)

> in V
(2)
j , their dual product is defined as〈

λ
(2)
j ,ϕ

(2)
j

〉
×,j

:=
〈
λcj ,ϕ

c
j

〉
×,j +

〈
λj ,ϕj

〉
×,j , (2.8)

with norm ∥∥∥ϕ(2)
j

∥∥∥
V

(2)
j

:=
∥∥ϕcj∥∥Vj

+
∥∥ϕj∥∥Vj

=
∥∥ϕcD,j∥∥H 1

2 (Γj)
+
∥∥ϕcN,j∥∥H− 1

2 (Γj)
+ ‖ϕD,j‖

H
1
2 (Γj)

+ ‖ϕN,j‖
H−

1
2 (Γj)

.
(2.9)

For s ∈ R, let us also define

HsJ := Hs(Γ1)× · · · ×Hs(ΓJ). (2.10)

The dual space of HsJ is H−sJ with duality pairing given as follows. Let u = (u1, u2, . . . , uJ) ∈ HsJ and w =
(w1, w2, . . . , wJ) ∈ H−sJ , then the duality pairing is

〈u,w〉Γ0
=

J∑
j=1

〈uj , wj〉j , (2.11)

1Here, exterior traces are ordered differently from the multiple traces space provided in [16, 17, 30] wherein all exterior traces
are placed consecutively.
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where 〈·, ·〉j is the standard pairing over Γj , for j = 1, . . . , J . We set

L2
J ≡ H0

J = L2(Γ1)× · · · × L2(ΓJ). (2.12)

2.4. Continuous volume problem

In what follows, we extend the continuous model presented in ([29], Sect. 2) from a single cell to multiple
ones. We assume the electric potential u ∈ H1

loc(∆,∪Jj=0Ωj) to satisfy electrostatic equations in each subdomain
Ωj , i.e. for each j = 0, . . . , J , if uj := u|Ωj , it must hold

−div (σj∇uj) = 0 in Ωj ,

where σj ∈ L∞(Ωj) denotes the subdomain electrical conductivity [39, 60]. We further assume the σj to be
strictly positive constants for all j = 0, . . . , J .

We define the transmembrane potential vj as the electric potential jump across the membrane Γj , from the
inside to the outside, i.e. Ωj to Ωcj . Furthermore, let us assume as given a potential field Φe, defined in Ω0, such
that −∆Φe = 0 in Ω0. This potential plays the role of an external source and in practice can be produced, for
instance, by charged electrodes.

As in [29], we assume that the current membrane follows a time-dependent model. For k = 1, . . . , J , the
current ik flowing across the membrane Γk is described as the sum of capacitive and ionic currents:

ik = cm,k∂tvk + iion,k on Γk, (2.13)

where cm,k is the membrane capacitance per unit area and iion,k stands for the ionic current of the kth cell.
Mathematically, a rigorous description of the ionic term is rather challenging, and thus, several models have
been set forth based on experimental observations. Without loss of generality, we choose the so-called Hodgkin–
Huxley (HH) model [21, 31] for the formulation presented below as well as for our numerical experiments
(cf. [29]).

For a cellular membrane Γk, the HH model describes the ionic current iion,k as a function of the transmem-
brane voltage vk and a vector gate variable gk. In the following, we write iion,k(vk, gk) to explicitly state such
dependence. Each vector gate variable gk satisfies a system of ODEs in time over Γk, written as

∂tgk = HHk (vk, gk) on Γk, (2.14)

along with adequate initial conditions.
The functions iion,k(vk, gk), HHk (vk, gk) : R×R→ R are analytic in both variables and one may extend their

action to Sobolev spaces on the boundary Γk, for k = 1, . . . , J (cf. Chap. 5 from [50] and Lem. 5.4 of [43]).

Remark 2.1. The HH model actually incorporates three gates variables to describe the ionic current. For the
sake of simplicity, throughout this work it is assumed the existence of solely one gate variable per biological
cell, namely gk. However, it is important to point out that in the computations presented in Section 7 the full
HH model is employed. Details of the HH model together with the explicit expressions for HHk and iion,k,
k = 1, . . . , J may be found in Appendix A.

The coupling between the membrane model, namely (2.13) and (2.14), and the potential field u relies on the
membrane current:

ik = −σkγkNuk = −σ0γ
k,c
N u0 − σ0γ

k,c
N Φe, on Γk, (2.15)

for k = 1, . . . , J . We can now state the volume formulation of the problem considered here as a generalization
of ([29], Problem 1), assuming cm,k ≡ cm to simplify the ensuing analysis.
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Problem 2.2 (Continuous volume problem). Set a final time T ∈ R+ and initial conditions vj(0) = v0
j , gj(0) =

g0
j . We seek suitably defined functions u0, uj , vj and gj , for j = 1, . . . , J , with support on Ω0, Ωj and Γj ,

respectively, such that, for all t ∈ (0, T ], it holds

−∆u0 = 0 in Ω0, (2.16a)

−∆uj = 0 in Ωj , j = 1, . . . , J, (2.16b)

γjDuj − γ
j,c
D u0 = vj + γj,cD Φe on Γj , j = 1, . . . , J, (2.16c)

σjγ
j
Nuj − σ0γ

j,c
N u0 = σ0γ

j,c
N Φe on Γj , j = 1, . . . , J, (2.16d)

−σjγjNuj = cm∂tvj + iion,j(vj , gj) on Γj , j = 1, . . . , J, (2.16e)

∂tgj = HH(vj , gj) on Γj , j = 1, . . . , J, (2.16f)

u0(x) = O
(
‖x‖−1

2

)
as ‖x‖2 →∞. (2.16g)

Remark 2.3. Conditions at infinity of the type

u0(x) = a+ b log ‖x‖2 +O
(
‖x‖−1

2

)
as ‖x‖2 →∞, (2.17)

for some constants a and b, are usually considered in the treatment of the exterior Laplace problem in R2,
instead of (2.16g) (cf. [19]). However, the intrinsic nature of the biological phenomenon that we would like to
model via Problem 2.2 dictates that the exterior potential has to be bounded and, furthermore, has to decay
at infinity, as established in (2.16g). Since we would like u0 to vanish at infinity, from now on we set a = 0 in
(2.17).

Let us define,

Lj :=
{
u ∈ H1

loc

(
∆,Rd\Γj

)
: −∆u = 0 in Rd\Γj satisfying (2.16g) if d = 3 and (2.17) if d = 2 with a = 0

}
,

(2.18)
for j = 0, · · · , J . Besides, let us consider the following auxiliary problem:

Problem 2.4. Find u0 ∈ H1
loc(Ω0) and uj ∈ H1(Ωj), for j = 1, . . . , J , such that

−∆u0 = 0 in Ω0, (2.19a)

−∆uj = 0 in Ωj , j = 1, . . . , J, (2.19b)

γjDuj − γ
j,c
D u0 = 0 on Γj , j = 1, . . . , J, (2.19c)

σjγ
j
Nuj − σ0γ

j,c
N u0 = 0 on Γj , j = 1, . . . , J, (2.19d)

u0(x) = O
(
‖x‖−1

2

)
as ‖x‖2 →∞. (2.19e)

Proposition 2.5. Functions u0 ∈ H1
loc(Ω0) and uj ∈ H1(Ωj), for j = 1, . . . , J , satisfy Problem 2.4 if and only

if u0 ≡ 0 in Ω0 and uj ≡ 0 in Ωj, for j = 1, . . . , J .

Proof. We take our cue from ([19], Prop. 4.7). Let % > 0 be such that

J⋃
j=1

Ωj ⊂ B% :=
{
x ∈ Rd : ‖x‖2 < %

}
. (2.20)
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Assume that (2.19a)–(2.19e) hold. We apply Green’s first identity over Ω0,% := Ω0 ∩B% and obtain

σ0

∫
Ω0,%

|∇u0|2 dx = σ0

∫
∂B%

u0 (ν% · ∇u0) dsx − σ0

J∑
j=1

∫
Γj

u0 (νj · ∇u0) dsx, (2.21)

where ν% is the outer normal vector to B%. Similarly, for j = 1, . . . , J , we have

σj

∫
Ωj

|∇uj |2 dx = σj

∫
Γj

uj (νj · ∇uj) dsx. (2.22)

Thus,

σ0

∫
Ω0,%

|∇u0|2 dx+

J∑
j=1

σj

∫
Ωj

|∇uj |2 dx = σ0

∫
∂B%

u0 (νρ · ∇u0) dsx

+

J∑
j=1

∫
Γj

(σj uj (νj · ∇uj)− σ0 u0 (νj · ∇u0)) dsx.

(2.23)

Using the transmission conditions (2.19c) and (2.19d) we obtain

σ0

∫
Ω0,%

|∇u0|2 dx+

J∑
j=1

σj

∫
Ωj

|∇uj |2 dx = σ0

∫
∂B%

u0 (ν% · ∇u0) dsx. (2.24)

The condition at infinity provided in (2.19e) allow us to conclude that (ν% · ∇u0) = O(%−2). Hence we have,

∫
∂B%

u0 (ν% · ∇u0) dsx = O(%−1). (2.25)

The right-hand side in (2.24) tends to zero as % → ∞. Therefore, u0 and uj , for j = 1, . . . , J are constants
over each domain. It follows from transmission and infinity conditions that u0 ≡ 0 in Ω0 and uj ≡ 0 in Ωj , for
j = 1, . . . , J . The converse claim is trivial.

3. Multiple traces formulation

3.1. Boundary potentials and integral representation formula

For d = 2, 3, let G(x,y) ∈ S ′(Rd) be the fundamental solution to the Laplace operator in Rd (cf. [55],
Chapter 5 or [52], Sect. 3.1), whose expression is

G(x,y) =

{
1

2π log ‖x− y‖−1
2 x 6= y ∈ R2,

1
4π ‖x− y‖

−1
2 x 6= y ∈ R3.

(3.1)
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For s ∈ R, we define the Newton potential N : Hs
comp(Rd)→ Hs+2

loc (Rd) ([52], Thm 3.1.2) informally as

(N f) (x) :=

∫
Rd
G(x,y)f(y)dy, ∀ x ∈ Rd, (3.2)

with extension to Sobolev spaces based on density and duality arguments. Let us introduce the classic single
and double layer potentials, Sj and Dj , respectively, defined2 over Γj as

Sj := N ◦
(
γjD

)′
and Dj := N ◦

(
γjN

)′
, j = 1, . . . , J. (3.3)

Theorem 3.1 (Thms. 3.1.16 and 3.1.12 in [52], Lem. 3.5 in [19]). For j = 1, . . . , J , the potentials Sj :

H−
1
2 (Γj) → H1

loc

(
Rd
)

and Dj : H
1
2 (Γj) → H1

loc

(
Rd \ Γj

)
are continuous. Moreover, for uj ∈ Lj, the integral

representation formula:

uj = −Sj
(

[γNuj ]j

)
+Dj

(
[γDuj ]j

)
in Rd \ Γj , (3.4)

holds for all j = 1, . . . , J . Besides, for ψj ∈ H−
1
2 (Γj) and φj ∈ H

1
2 (Γj) we have that Sj (ψj) ∈ Lj (with b =

〈ψj , 1〉Γj if d = 2) and Dj (φj) ∈ Lj (with b = 0 if d = 2).

Remark 3.2. For d = 2 and j = 1, . . . , J , we observe that if
〈

[γNuj ]j , 1
〉
j

= 0, the integral representation

formula (3.4) satisfies uj(x) = O
(
‖x‖−1

2

)
as ‖x‖2 →∞. Furthermore, if ψj ∈ H−

1
2 (Γj) is such that 〈ψj , 1〉j = 0,

then Sj (ψj) = O
(
‖x‖−1

2

)
as ‖x‖2 →∞.

Remark 3.3. Functions satisfying (3.4) yield null trace jumps at subdomain boundaries Γk as long as k 6= j.

Theorem 3.4. Let u0 ∈ L0. If d = 2 we further assume that
〈

[γNu0]j , 1
〉
j

= 0, for j = 1, . . . , J . Then, the

following integral representation formula holds

u0 =

J∑
j=1

−Sj
(

[γNu0]j

)
+Dj

(
[γDu0]j

)
in Rd \ Γ0. (3.5)

Proof. Choose u0 ∈ L0. For j = 1, . . . , J , we define a family of functions uj ∈ H1
loc(Rd \Γj) solutions of problems:

−∆uj = 0 in Rd\Γj , (3.6a)

[γuj ]j = [γu0]j on Γj , (3.6b)

uj(x) = O
(
‖x‖−1

2

)
as ‖x‖2 →∞. (3.6c)

For a given j, the above problem has a unique solution uj ∈ H1
loc(∆,Rd\Ωj) ([52], Thm 2.10.14). Set now

û0 :=

J∑
j=1

uj in Rd\Γ0. (3.7)

2Though one should use L2-adjoints instead of dual adjoints as in the Helmholtz case, for Laplace operators both definitions
are equivalent as the kernel is symmetric and inner and dual products are bilinear.
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By Theorem 3.1 and considering Remark 3.2, we obtain

û0 =

J∑
j=1

−Sj
(

[γNuj ]j

)
+Dj

(
[γDuj ]j

)
in Rd. (3.8)

Clearly, −∆û0 = 0 in Rd\Γ0 and by construction û0 ∈ H1
loc

(
∆,Rd\Γ0

)
. By trace jump continuity across Γ` for

uj , with ` 6= j, it holds

[γû0]` =

J∑
j=1

[γuj ]` = [γu`]` = [γu0]` . (3.9)

Hence, ū0 := û0 − u0 satisfies −∆ū0 = 0 in Rd\Γ0 with zero jump conditions over Γ0 and, furthermore, satisfies

ū0(x) = O
(
‖x‖−1

2

)
as ‖x‖2 →∞. By Proposition 2.5, we conclude that ū0 ≡ 0, leading to û0 ≡ u0. Thus, the

integral representation formula (3.5) holds for u0.

For simplicity, given λj = (λjD, λ
j
N)> ∈ Vj , we introduce the potential:

Ψj(λj) := −Sj
(
λjN

)
+Dj

(
λjD

)
for j = 1, . . . , J. (3.10)

3.2. Boundary integral operators

We introduce the standard Boundary Integral Operators (BIOs) over Γj [52]:

Vj := {γD ◦ Sj}j : H−
1
2 (Γj)→ H

1
2 (Γj), (3.11)

K′j := {γN ◦ Sj}j : H−
1
2 (Γj)→ H−

1
2 (Γj), (3.12)

Kj := {γD ◦ Dj}j : H
1
2 (Γj)→ H

1
2 (Γj), (3.13)

Wj := −{γN ◦ Dj}j : H
1
2 (Γj)→ H−

1
2 (Γj). (3.14)

Theorem 3.5 ([55], Thm. 6.34). Let Γj be a bounded Lipschitz boundary in Rd, d = 2, 3 for j = 1, . . . , J and
|s| ≤ 1

2 , the BIOs are linear and generate the following bounded mappings:

Vj : H−
1
2 +s(Γj)→ H

1
2 +s(Γj), Kj : H

1
2 +s(Γj)→ H

1
2 +s(Γj),

K′j : H−
1
2 +s(Γj)→ H−

1
2 +s(Γj), Wj : H

1
2 +s(Γj)→ H−

1
2 +s(Γj),

If Γj is a C∞-boundary, the statement is valid for all s ∈ R.

The traces of uj , namely solutions of Problem 2.2, satisfy the following property:

γjuj =

(
γjDuj
γjNuj

)
=

(
1
2 I− Kj Vj
Wj

1
2 I + K′j

)(
γjDuj
γjNuj

)
over Γj , j = 1, . . . , J. (3.15)
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The block operator defined in (3.15), known as the interior Calderón projector and denoted by Cj , plays a key
role in our boundary integral formulation. Consider the following decomposition:

Cj :=
1

2
I + Aj , Aj :=

(
−Kj Vj
Wj K′j

)
, (3.16)

with Aj : Vs
j → Vs

j continuously under the conditions given in Theorem 3.5. We also consider the exterior

Calderón operator Ccj := 1
2 I− Aj .

Lemma 3.6 (Lem. 2 in [29]). For each j = 1, . . . , J , the operator Aj : Vj → Vj is continuous and Vj-coercive,
i.e. it holds

〈Ajϕ,λ〉×,j ≤ αj ‖ϕ‖Vj
‖λ‖Vj

, ∀ ϕ,λ ∈ Vj , (3.17)

for a strictly positive constant αj, and there exists a compact operator TAj : Vj → Vj and a positive constant
µj such that

〈Ajϕ,ϕ〉×,j +
〈
TAjϕ,ϕ

〉
×,j ≥ µj ‖ϕ‖

2
Vj
, ∀ ϕ ∈ Vj . (3.18)

3.3. Multiple traces formulation

For every k = 1, . . . , J , Theorem 3.1 allows the use of the following integral representation for uk ∈ Lk

satisfying the Laplace equation in Ωk:

uk = Sk
(
γkNuk

)
−Dk

(
γkDuk

)
in Ωk. (3.19)

Furthermore, if ũk denotes the extension of uk by zero over Ωck, i.e. ũk|Ωck ≡ 0, then (3.19) also holds over

Rd \ Γk. Taking interior traces yields

γkuk = Ck γ
kuk on Γk, (3.20)

which is equivalent to

1

2
γkuk = Ak γ

kuk on Γk. (3.21)

On the other hand, let u0 ∈ L0 satisfy −∆u0 = 0 in Ω0, with a null extension over all Ωk, written ũ0, i.e. ũ0|Ωk =
0, for all k = 1, . . . , J . Theorem 3.4 guarantees the representation:

u0 =

J∑
j=1

−Sj
(
γj,cN u0

)
+Dj

(
γj,cD u0

)
in Rd \ Γ0. (3.22)

Taking exterior traces γk,c on Γk, we obtain

γk,cu0 = Cc
k γ

k,cu0 +

J∑
j=1
j 6=k

Tk,j γ
j,cu0 on Γk, (3.23)
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where

Tk,j :=

(
γk,cD ◦ Dj −γk,cD ◦ Sj
γk,cN ◦ Dj −γk,cN ◦ Sj

)
: Vj → Vk. (3.24)

for j, k = 1, . . . , J such that j 6= k. Equation (3.23) may be written as follows

1

2
γk,cu0 = −Aj γk,cu0 +

J∑
j=1
j 6=k

Tk,j γ
j,cu0 on Γk. (3.25)

Let us set the excitation potential traces and transmembrane potential vectors:

γk,cΦe = (γk,cD Φe, γ
k,c
N Φe)

> and Vk := (vk, 0)> on Γk, (3.26)

respectively. With the above observations, for all cell membranes Γk, k = 1, . . . , J , transmission conditions
(2.16c) and (2.16d), may be written as

γkuk − Xkγ
k,cu0 = Xk

(
γk,cΦe + Vk

)
on Γk, (3.27)

wherein we have defined3

Xk :=

(
I 0
0 σ0

σk
I

)
: Vk → Vk. (3.28)

Merging (3.21) together with (3.27) yields

Akγ
kuk −

1

2
Xkγ

k,cu0 =
1

2
Xk
(
γk,cΦe + Vk

)
on Γk, (3.29)

whereas (3.23) in (3.27) renders

− Akγ
k,cu0 +

J∑
j=1
j 6=k

Tk,jγ
j,cu0 −

1

2
X−1
k γ

kuk = −1

2

(
γk,cΦe + Vk

)
on Γk. (3.30)

As shorthand, we denote the exterior and interior traces on a membrane Γj by λcj := γj,cu0 and λj := γjuj ,
respectively. Moreover, since Neumann transmission conditions (2.16d) lead to ratios σj/σ0, we introduce the
notation:

Âj :=
σj
σ0

Aj and X̂j :=
σj
σ0

Xj . (3.31)

Define the block operator:

Mj :=

(
Aj

1
2X
−1
j

− 1
2 X̂j Âj

)
: V

(2)
j → V

(2)
j . (3.32)

3Observe that this definition differs from that in [29, 30] as in this work Neumann traces are directed along the outward normal
vector, and consequently, there is no minus sign (cf. Sect. 2.3).
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Lemma 3.7. The operator Mj is continuous in V
(2)
j , injective and coercive, i.e. it satisfies the G̊arding-type

inequality: 〈
Mjλ

(2)
j ,λ

(2)
j

〉
×,j

+
〈
TMjλ

(2)
j ,λ

(2)
j

〉
×,j
≥ µMj

∥∥∥λ(2)
j

∥∥∥2

V
(2)
j

, ∀ λ(2)
j ∈ V

(2)
j , (3.33)

and where µMj > 0, with duality products given as in (2.8), and TMj : V
(2)
j → V

(2)
j is a compact operator.

Proof. Conductivities σj , j = 1, . . . , J are positive, yielding quotients
σj
σ0

positive as well. Therefore, by

Lemma 3.6, the operators Aj and Âj are continuous and coercive with

T̂Aj :=
σj
σ0

TAj and µ̂j := µj
σj
σ0
. (3.34)

Coercivity of Mj follows as cross terms vanish yielding

TMj :=

(
TAj 0

0 T̂Aj

)
: V

(2)
j → V

(2)
j , µMj := µj min{1, σj/σ0}.

Injectivity follows verbatim from the proof of ([30], Thm. 4) but for the sake of completeness we include the

proof. Let λ = (λcj ,λj)
> ∈ V

(2)
j , where λcj = (λcj,D, λ

c
j,N)> ∈ Vj and λj = (λj,D, λj,N)> ∈ Vj , be the solution

of Mjλ = 0. Then, one must conclude that λj ≡ 0.

(i) First, we show that for λ = (λcj ,λj)
> ∈ V

(2)
j satisfying Mjλ = 0 one has〈

λcj,N, 1
〉
j

= 0 and 〈λj,N, 1〉j = 0, (3.35)

From Mjλ = 0, we conclude that it holds

Wj λ
c
j,D + K′j λ

c
j,N +

1

2

σj
σ0
λj,N = 0 (3.36)

and

−1

2
λcj,N +

σj
σ0

(
Wj λj,D + K′j λj,N

)
= 0. (3.37)

Taking means of (3.36) and (3.37) over Γj and considering that 〈Wj λj,D, 1〉j =
〈
Wj λ

c
j,D, 1

〉
j

= 0 together

with Kj 1 = − 1
2 , we obtain

−
〈
λcj,N, 1

〉
j

+
σj
σ0
〈λj,N, 1〉j = 0, (3.38a)

−
〈
λcj,N, 1

〉
j
− σj
σ0
〈λj,N, 1〉j = 0, (3.38b)

implying that
〈
λcj,N, 1

〉
j

= 〈λj,N, 1〉j = 0.

(ii) For j = 1, . . . , J , recalling (3.10), we consider

ũj := −Ψj (λj) in Ωj and ũcj := Ψj

(
λcj
)

in Ωcj . (3.39)
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Let us compute

γj ũj =

(
1

2
I + Aj

)
λj on Γj , (3.40)

and

γj,cũcj =

(
1

2
I− Aj

)
λcj on Γj , (3.41)

for j = 1, . . . , J . Recalling that Mjλ = 0, we have

γj ũj =
1

2

(
λj + Xj λ

c
j

)
and γj,cũcj =

1

2

(
λcj + X−1

j λj
)

on Γj . (3.42)

We compute the jump

γj ũj − Xjγ
j,cũcj = 0 on Γj . (3.43)

Therefore, ũj and ũcj are solutions of Problem 2.4 for a single domain, i.e. J ≡ 1. We remark that for d = 2

the condition at infinity (2.19e) is satisfied since as shown in item (i) we have
〈
λcj,N, 1

〉
j

= 〈λj,N, 1〉j = 0.

Hence, recalling Theorem 3.1 and Remark 3.2, one concludes that the behaviour at infinity of ũj and ũcj
is the one required in (2.19e). By Proposition 2.5, we conclude that ũj ≡ 0 in Ωj and ũcj ≡ 0 in Ωcj .

(iii) Let j = 1, . . . , J be arbitrary but fixed and define

ûj := −Ψj

(
λcj
)

in Ωj and ûcj := −Ψj (λj) in Ωcj . (3.44)

Taking interior and exterior traces, we obtain

γj ûj =

(
1

2
I + Aj

)
λcj on Γj , (3.45)

and

γj,cûcj = −
(

1

2
I− Aj

)
λj on Γj . (3.46)

Recalling that it holds Mjλ = 0, we have

γj ûj =
1

2
λcj −

1

2
X−1
j λj and γj,cûcj = −1

2
λj +

1

2
Xjλ

c
j on Γj . (3.47)

We compute the jump

γj ûj − X−1
j γ

j,cûcj = 0. (3.48)

Hence, ûj and ûcj are also solutions of Problem 2.4 for a single domain. We remark that for d = 2 the

condition at infinity (2.19e) is satisfied since, as shown in item (i), we have
〈
λcj,N, 1

〉
j

= 〈λj,N, 1〉j = 0.

Again, recalling Theorem 3.1 and Remark 3.2, one concludes that the behaviour at infinity of ûj and ûcj
is the one required in (2.19e). Thus, ûj ≡ 0 in Ωj and ûcj ≡ 0 in Ωcj .
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(iv) From steps (ii) and (iii) we conclude that

λj + Xjλ
c
j = 0 and λcj − X−1

j λj = 0 on Γj , (3.49)

respectively. Therefore, λj ≡ 0 and λcj ≡ 0.

Lemma 3.8. For j, k = 1, . . . , J , with j 6= k, the operators Tk,j : Vs
j → Vs

k are continuously bounded for

|s| ≤ 1
2 . Furthermore, they are compact as mappings from Vj to Vk. If the Γj, j = 1, . . . , J , are C∞-boundaries,

the statement is valid for all s ∈ R.

Proof. Operators Tk,j for j 6= k consist of four BIOs with continuous kernels as boundaries for integration and
trace evaluation never coincide. Therefore, the maps Tk,j : Vs

j → Vs
k are continuous for |s| ≤ 1

2 for Lipschitz
domains, whereas for C∞-boundaries, the statement holds for all s ∈ R (cf. Thm. 3.5). Compactness comes from
the compact embedding Vs

k ↪→ Vk, for s > 0, with s ≤ 1 or s ≤ k for Lipschitz or Ck-domains, respectively
([52], Thm 2.5.5).

Lemma 3.9. The ×-adjoint T†k,j = Tj,k for j, k = 1, . . . , J and j 6= k.

Proof. First, notice that S ′j = γjD ◦ N and D′j = γjN ◦ N , as N is self-adjoint. Then, by the definition of Tj,k
(3.24) and using (2.5), we obtain

T†k,j =

−S ′j ◦ (γk,cN

)′
−S ′j ◦

(
γk,cD

)′
D′j ◦

(
γk,cN

)′
D′j ◦

(
γk,cD

)′
 =

−γjD ◦ N ◦ (γk,cN

)′
−γjD ◦ N ◦

(
γk,cD

)′
γjN ◦ N ◦

(
γk,cN

)′
γjN ◦ N ◦

(
γk,cD

)′
 (3.50)

Observing that in this context γ·,cN = −γ·N and that γ·,cD = γ·D, we conclude

T†k,j = =

(
+γj,cD ◦ N ◦

(
γkN
)′ −γj,cD ◦ N ◦

(
γkD
)′

+γj,cN ◦ N ◦
(
γkN
)′ −γj,cN ◦ N ◦

(
γkD
)′) =

(
γj,cD ◦ Dk −γj,cD ◦ Sk
γj,cN ◦ Dk −γj,cN ◦ Sk

)
= Tj,k (3.51)

as stated.

Let us introduce the block operator:

Qj,k :=

(
−Tj,k 0

0 0

)
: V

(2)
k → V

(2)
j , (3.52)

inheriting the same continuity and compactness properties of Tj,k. Moreover, it also holds Q†j,k = Qk,j . Then,
we can write down the boundary integral problem we seek to solve:

Problem 3.10 (MTF for J Mutually Disjoint Subdomains). Find λ = (λc1,λ1, . . . ,λ
c
J ,λJ)> ∈ VJ such that

the following variational problem:

mJ(λ,ϕ) := 〈MJλ,ϕ〉× = 〈fJ ,ϕ〉× , for all ϕ ∈ VJ , (3.53)
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is satisfied, with duality pairing set as sums of cross-pairings (2.4). The block operator on the left-hand side is
defined using (3.32) and (3.52) as

MJ :=


M1 Q1,2 · · · Q1,J

Q2,1 M2 · · · Q2,J

...
...

. . .
...

QJ,1 QJ,2 · · · MJ

 : VJ → VJ , (3.54)

with source term fJ given in terms of the following components:

V := (V1,V1, . . . ,VJ ,VJ) ∈ VJ , (3.55)

φe := (γ1,cΦe,γ
1,cΦe, . . . ,γ

J,cΦe,γ
J,cΦe) ∈ VJ , (3.56)

Fj :=

(
I 0

0 X̂j

)
∈ V

(2)
j → V

(2)
j , (3.57)

so that

fJ(V1, . . . ,VJ ,φe) :=
1

2
diag (F1,F2, . . . ,FJ) (V + φe) ∈ VJ . (3.58)

We now prove the well-posedness of Problem 3.10 as a consequence of the Fredholm alternative.

Proposition 3.11. The operator MJ : VJ → VJ is injective, namely Problem 3.10 admits at most one solution.

Proof. We proceed as in the proof of Lemma 3.7. Let λ = (λc1,λ1, . . . ,λ
c
J ,λJ)> ∈ VJ , where λcj =

(λcj,D, λ
c
j,N)> ∈ Vj and λj = (λj,D, λj,N)> ∈ Vj , be the solution of MJλ = 0. Then one must show that λ ≡ 0.

(i) First, we show that for λ ∈ VJ satisfying MJλ = 0 one has〈
λcj,N, 1

〉
j

= 0 and 〈λj,N, 1〉j = 0, j = 1, . . . , J. (3.59)

Since MJλ = 0, we conclude that it holds

Wj λ
c
j,D + K′j λ

c
j,N −

J∑
k=1
k 6=j

((
γj,cN ◦ Dk

)
λck,D −

(
γj,cN ◦ Sk

)
λck,N

)
+

1

2

σj
σ0
λj,N = 0 (3.60)

and

−1

2
λcj,N +

σj
σ0

(
Wj λj,D + K′j λj,N

)
= 0. (3.61)

Testing (3.60) and (3.61) against one over Γj and considering that 〈Wj λj,D, 1〉j =
〈
Wj λ

c
j,D, 1

〉
j

= 0 and

Kj 1 = − 1
2 , together with

〈(
γj,cN ◦ Dk

)
λck,D, 1

〉
j

=
〈(
γj,cN ◦ Sk

)
λck,N, 1

〉
j

= 0, for j, k = 1, . . . , J , with

j 6= k, we obtain

−
〈
λcj,N, 1

〉
j

+
σj
σ0
〈λj,N, 1〉j = 0, (3.62a)

−
〈
λcj,N, 1

〉
j
− σj
σ0
〈λj,N, 1〉j = 0, (3.62b)
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which in turn implies that
〈
λcj,N, 1

〉
j

= 〈λj,N, 1〉j = 0.

(ii) Recalling (3.10), for j = 1, . . . , J , we define

ũj := −Ψj (λj) in Ωj and ũ0 :=

J∑
`=1

Ψj

(
λcj
)

in Ω0. (3.63)

Let us compute

γj ũj =

(
1

2
I + Aj

)
λj on Γj , (3.64)

for j = 1, . . . , J , and

γj,cũ0 =

(
1

2
I− Aj

)
λcj +

J∑
`=1
` 6=j

Tj,`λ
c
` on Γj , (3.65)

for j = 1, . . . , J . Recalling that MJλ = 0, we have

γj ũj =
1

2

(
λj + Xj λ

c
j

)
and γj,cũ0 =

1

2

(
λcj + X−1

j λj
)

on Γj . (3.66)

We compute the jump

γj ũj − Xjγ
j,cũ0 = 0 on Γj . (3.67)

By construction, ũj and ũ0 are solution of Problem 2.4. As in Lemma 3.7, we observe that for d = 2 the
condition at infinity (2.19e) is satisfied, since as shown in item (i), we have that

〈
λcj,N, 1

〉
j

= 〈λj,N, 1〉j = 0.

Therefore, recalling Theorem 3.1 and Remark 3.2, one concludes that the behaviour at infinity of ũj and
ũ0 is the one required in (2.19e), for j = 1, . . . , J . Hence, from Proposition 2.5 we conclude that ũj ≡ 0 in
Ωj and ũ0 ≡ 0 in Ω0, for j = 1, . . . , J .

(iii) Let us define

ûj := −
J∑
`=1

Ψ` (λc`) Ωj and ûcj := −Ψj (λj) in Ωcj , (3.68)

for j = 1, . . . , J . Taking interior and exterior traces, we obtain

γj ûj =

(
1

2
I + Aj

)
λcj −

J∑
`=1
` 6=j

T̃j,` λ
c
` on Γj , (3.69)

where

T̃j,` :=

(
γjD ◦ D` −γjD ◦ S`
γjN ◦ D` −γjN ◦ S`

)
: V` → Vj . (3.70)
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and

γj,cûcj = −
(

1

2
I− Aj

)
λj on Γj , (3.71)

Note that T̃j,` = Tj,`, due to definitions (2.2) and (2.3). Recalling that it holds MJλ = 0, we have

γj ûj =
1

2
λcj −

1

2
X−1
j λj and γj,cûcj = −1

2
λj +

1

2
Xjλ

c
j on Γj . (3.72)

We compute the jump

γj û0 − X−1
j γ

j,cûcj = 0 on Γj . (3.73)

Since the assumptions of Proposition 2.5 hold we can conclude that ũj ≡ 0 in Ωj and ũ0 ≡ 0 in Ω0.
(iv) As in step (iv) of the proof for Lemma 3.7, from steps (ii) and (iii) we conclude that λj ≡ 0 and λcj ≡ 0

for all j = 1, . . . , J , so that λ ≡ 0 as required.

Proposition 3.12. Let Ωj ∈ Rd, d = 2, 3, j = 1, . . . , J , be Lipschitz domains. The bilinear form mJ : VsJ ×
VsJ → R is continuously bounded for |s| ≤ 1

2 , i.e. for a constant αJ(s) > 0 there holds

|mJ (λ,ϕ)| ≤ αJ(s) ‖λ‖VsJ ‖ϕ‖VsJ , ∀ λ,ϕ ∈ VsJ , (3.74)

and it is VJ -coercive, i.e. there exists another constant µmJ > 0 and TJ : VJ → VJ compact such that

mJ(λ,λ) + 〈TJλ,λ〉× ≥ µmJ ‖ϕ‖
2
VJ , ∀ λ ∈ VJ . (3.75)

Proof. Splitting λ and ϕ into its J components in V
(2)
j , for j = 1, . . . , J , the bilinear form mJ can be cast as

follows

mJ (λ,ϕ) =

J∑
j=1

〈
Mjλ

(2)
j ,ϕ

(2)
j

〉
×,j

+

J∑
j=1

J∑
k=1
k 6=j

〈
Qj,kλ

(2)
k ,ϕ

(2)
j

〉
×,j

. (3.76)

Continuity follows from Lemmae 3.7 and 3.8 whereas coercivity is derived by combining also Lemma 3.7 with
the compactness of Qj,k. Specifically, the operator TJ is given by

TJ :=


TM1

−Q1,2 · · · −Q1,J

−Q2,1 TM2

. . . −Q2,J

...
. . .

. . .
...

−QJ,1 −QJ,2 · · · TMJ

 . (3.77)

Therefore,

mJ(λ,λ) + 〈TJλλ×〉 ≥ min
j=1,...,J

µMj ‖λ‖
2
VJ , (3.78)

with µmJ := min
j=1,...,J

µMj > 0.
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4. MTF for several biological cells

In what follows, we explain how the MTF given in Problem 3.10 relates to the transmembrane current in
the HH model for many cells. Hence, from this point onwards all currents and potentials are time-dependent
quantities. Yet, for the sake of brevity we forgo momentarily to write down such dependence. The transmembrane
current across a cell boundary Γj can be expressed as contributions originated by the exterior potential Φe, ion
currents iion,j , and potential jumps vj and vk present at the surrounding J − 1 cells. Explicitly, if we consider
the unknown trace vector λ ∈ VJ in (3.53), and recall the current equation (2.15), we deduce

− 2ij = σjλj,N + σ0λ
c
j,N + σ0γ

j,c
N Φe, on Γj , for j = 1, . . . , J, (4.1)

or, equivalently,

ij = −1

2

(
0 σ0 0 σj

)
λ

(2)
j −

1

2
σ0γ

j,c
N Φe, on Γj , for j = 1, . . . , J. (4.2)

By linearity of Problem 3.10, we consider contributions for each term in (4.2) by switching on each component
in fJ (3.58) while setting to zero all other sources. Recalling the definition of fJ (3.58), we can write the linear
combination:

fJ (V1, . . .VJ ,φe) =

J∑
j=1

f jJ(φe) +

J∑
j=1

f jJ (vj) ∈ VJ , (4.3)

with components:

f jJ(φe) :=
1

2

(
0, . . . ,0,

(
γj,cΦe

X̂jγ
j,cΦe

)
,0, . . . ,0

)
∈ VJ , (4.4)

f jJ(vj) :=
1

2

(
0, . . . ,0,

(
Vj

X̂jVj

)
, . . . ,0

)
∈ VJ , (4.5)

as vj appears in the term Vj . Each term leads to a corresponding solution of the MTF system given by the
application of M−1

J onto each right-hand side (4.4) and (4.5). From the statement of Problem 3.10, we can easily
derive the jth block equation:

λ
(2)
j =

1

2
M−1
j f jJ(φe) +

1

2
M−1
j f jJ(vj)−M−1

j

J∑
k=1
k 6=j

Qj,kλ
(2)
k ∈ V

(2)
j . (4.6)

Let us adopt the notation λ
(2)
j (vk,φe) to explicitly show the dependence on a particular source, e.g., λ

(2)
j (vk,0)

is the solution of the traces pair over the jth cell solely due to the transmembrane potential vk. Plugging
solutions (4.6) into (4.2) yields the electric current decomposition:

ij = ij(φe) + ij(vj) +

J∑
k=1
k 6=j

ij(vk) on Γj , (4.7)
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wherein

ij(φe) := −1

2
σ0γ

j,c
N Φe −

1

2

(
0 σ0 0 σj

)1

2
M−1
j

(
γj,cΦe

X̂jγ
j,cΦe

)
−M−1

j

J∑
`=1
6̀=j

Qj,`λ
(2)
` (0,φe)

 , (4.8)

ij(vj) := −1

2

(
0 σ0 0 σj

)1

2
M−1
j

(
Vj

X̂jVj

)
−M−1

j

J∑
`=1
6̀=j

Qj,`λ
(2)
` (vj ,0)

 , (4.9)

ij(vk) := +
1

2

(
0 σ0 0 σj

)
M−1
j

J∑
`=1
6̀=j

Qj,`λ
(2)
` (vk,0) for j 6= k. (4.10)

Recall that each term represents the electric current generated by a given source. We start by obtaining the
contribution ij(vj) due to one transmembrane potential vj , or equivalently, set the external potential traces φe
as well as vk, for all k 6= j, equal to zero. Defining the following maps:

Jj(vj) :=
1

4σ0

(
0 σ0 0 σj

)
M−1
j


σ0

0
σj
0

 vj : H
1
2 (Γj)→ H−

1
2 (Γj), (4.11)

Jj,k(vk) :=
1

2

(
0 σ0 0 σj

)
M−1
j

J∑
`=1
` 6=j

Qj,`λ
(2)
` (vk,0) : H

1
2 (Γk)→ H−

1
2 (Γj), (4.12)

we can also write (4.9) as the sum of contributions:

ij = ij(φe)− Jj(vj) +

J∑
k=1

Jj,k(vk). (4.13)

Lemma 4.1. Let Γj be C∞-boundaries of Ωj ∈ Rd, d = 2, 3, for j = 1, . . . , J . For j = 1, . . . , J , the operators

Jj : H
1
2 +s(Γj)→ H−

1
2 +s(Γj) defined in (4.11) are continuous for s ∈ R. Moreover, they are H

1
2 (Γj)-coercive,

i.e. it holds

〈(
Jj + TJj

)
v, v
〉
j
≥ cJj ‖v‖

2

H
1
2 (Γj)

, for all v ∈ H 1
2 (Γj), (4.14)

where cJj is a strictly positive constant and TJj : H
1
2 +s(Γj) → H−

1
2 +s(Γj) is compact. Besides, the operator

Jj is self-adjoint.

For k = 1, . . . , J with k 6= j, the operators Jj,k : H
1
2 +s(Γk) → H−

1
2 +s(Γj), are continuous for s ∈ R and,

furthermore, compact.

Proof. Continuity of Jj and Jj,k, for k 6= j, comes from the fact that both operators are by definition the
composition of continuous operators (cf. Lems. 3.7 and 3.8). In particular, the operator Jj,k for k 6= j is defined
as the sum and composition of continuous and compact operators, therefore it is compact as well.
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From Lemma 3.7, Mj is invertible. Let ϕ
(2)
j ∈ V

(2)
j , then it holds

〈
Mjϕ

(2)
j ,ϕ

(2)
j

〉
×,j

=

〈
Mj

(
M†j

)−1

M†jϕ
(2)
j ,ϕ

(2)
j

〉
×,j

=

〈(
M†j

)−1

M†jϕ
(2)
j ,M†jϕ

(2)
j

〉
×,j

. (4.15)

By using (2.8) and (2.5), one can easily derive M†j = −SMjS, where

S :=

(
D 0
0 D

)
and D :=

(
I 0
0 −I

)
. (4.16)

Notice that S† = −S and S−1 = S. Then,〈(
M†j

)−1

M†jϕ
(2)
j ,M†jϕ

(2)
j

〉
×,j

=
〈
M−1
j SM†jϕ

(2)
j ,SM†jϕ

(2)
j

〉
×,j

. (4.17)

Defining λ
(2)
j = SM†jϕ

(2)
j ∈ V

(2)
j we have

〈
(Mj + TMj )ϕ

(2)
j ,ϕ

(2)
j

〉
×,j

=
〈
M−1
j λ

(2)
j ,λ

(2)
j

〉
×,j

+

〈
TMj

(
M†j

)−1

Sλ
(2)
j ,
(
M†j

)−1

Sλ
(2)
j

〉
×,j

=
〈
M−1
j λ

(2)
j ,λ

(2)
j

〉
×,j
−
〈
M−1
j STMj

(
M†j

)−1

Sλ
(2)
j ,λ

(2)
j

〉
×,j

=
〈
M−1
j λ

(2)
j ,λ

(2)
j

〉
×,j

+
〈
M−1
j STMjSM

−1
j λ

(2)
j ,λ

(2)
j

〉
×,j

≥ µMj

∥∥∥ϕ(2)
j

∥∥∥2

V
(2)
j

≥
µMj∥∥∥M†j∥∥∥L(V(2)

j ,V
(2)
j

)
∥∥∥λ(2)

j

∥∥∥2

V
(2)
j

(4.18)

with µMj given by Lemma 3.8. Therefore, if we define

µM−1
j

:=
µMj∥∥∥M†j∥∥∥L(V(2)

j ×V
(2)
j

) and TM−1
j

:= M−1
j STMjSM

−1
j : V

(2)
j → V

(2)
j , (4.19)

the operator M−1
j satisfies

〈(
M−1
j + TM−1

j

)
λ

(2)
j ,λ

(2)
j

〉
×,j
≥ µM−1

j

∥∥∥λ(2)
j

∥∥∥2

V
(2)
j

, ∀ λ(2)
j ∈ V

(2)
j . (4.20)

Clearly, the operator TM−1
j

is compact being the composition of compact and continuous operators. For vj ∈
H

1
2 (Γj), choose

λ
(2)
j = (σ0 0 σj 0)>vj ∈ V

(2)
j . (4.21)



680 F. HENRÍQUEZ AND C. JEREZ-HANCKES

It holds

〈(
0 σ0 0 σj

)
M−1
j


σ0

0
σj
0

 vj , vj

〉
j

+

〈(
0 σ0 0 σj

)
TM−1

j


σ0

0
σj
0

 vj , vj

〉
j

≥ µM−1
j

∥∥∥∥∥∥∥∥

σ0

0
σj
0

 vj

∥∥∥∥∥∥∥∥
2

V
(2)
j

≥ (σ2
j + σ2

0)µM−1
j
‖vj‖2

H
1
2 (Γj)

. (4.22)

Therefore, the operator Jj satisfies the following G̊arding inequality:

〈(
Jj + TJj

)
vj , vj

〉
j
≥ (σ2

j + σ2
0)cM−1

j
‖vj‖2

H
1
2 (Γj)

, ∀ vj ∈ H
1
2 (Γj), (4.23)

wherein

TJj :=
(
0 σ0 0 σj

)
TM−1

j


σ0

0
σj
0

 : H
1
2 (Γj)→ H−

1
2 (Γj) (4.24)

is a compact operator.

Define v = (v1, . . . , vJ)> and g = (g1, . . . , gJ)> and recall that all quantities are time-dependent. Let J :

H
1
2 +s

J → H−
1
2 +s

J , with s ∈ R, be the operator defined as

J := diag (J1,J2, . . . ,JJ)−

J1,1 · · · J1,J

...
. . .

...
JJ,1 · · · JJ,J

 . (4.25)

Based on (4.8) and (2.13), we also set the following:

iφe :=

i1(φe)
...

iJ(φe)

 and iion (v, g) :=

 iion,1 (v1, g1)
...

iion,J (vJ , gJ)

 . (4.26)

For the HH model we define

HH(v, g) :=

HH1(v1, g1)
...

HHJ(vJ , gJ)

 , (4.27)

where the HHk are given as (2.14) and Remark 2.1 applies. With the above definitions we are now in position
to set the continuous boundary problem we aim to solve.

Problem 4.2 (MTF for Packed Cells Problem). Let s > 3
2 , initial given data v0 ∈ H

1
2 +s

J , g0 ∈ H−
1
2 +s

J and T ∈
R+. We seek v ∈ C1

(
[0, T ];H−

1
2 +s

J

)
∩ C

(
[0, T ];H

1
2 +s

J

)
and g ∈ C1

(
[0, T ];H−

1
2 +s

J

)
such that, for all t ∈ [0, T ],
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it holds on
⋃J
j=1 Γj

cm∂tv = −J v + iφe − iion (v, g) , (4.28a)

∂tg = HH(v, g), (4.28b)

where iφe ∈ C
(

[0, T ];H−
1
2 +s

J

)
and with initial conditions

v(0) = v0 and g(0) = g0. (4.29)

As a consequence of Lemma 4.1 we have the following result:

Lemma 4.3. For s ≥ 0, the operator J : H
1
2 +s

J → H−
1
2 +s

J is continuous and coercive, i.e. there exists a compact

operator TJ : H
1
2 +s

J → H−
1
2 +s

J such that

〈
(J + TJ )v,v

〉
Γ0

≥ µ ‖v‖2
H

1
2
J

, for all v ∈ H
1
2

J . (4.30)

Furthermore, the operator J : H
1
2

J → H−
1
2

J is self-adjoint in the 〈·, ·〉Γ0
duality product.

5. Existence and uniqueness of solutions for the multiple cell
problem

We now aim to prove existence and uniqueness of the multiple cells problem, namely Problem 4.2. We follow
the approach presented for the single cell problem in [43], which relies on the use of analytic semigroup theory
[40].

5.1. Analytic semigroups

We present the required concepts on analytic semigroups to study the well-posedness of Problem 4.2. We
refer to Chapter 2 from [40] for further details. Let X be a complex Banach space with norm ‖·‖X with dual
X ′ and let L(X) be the space of linear endomorphisms on X.

Definition 5.1 ([40], Def. 2.0.1). Let A : D(A) ⊂ X → X be a linear operator with domain D(A). Recall the
resolvent set ρ(A) := {λ ∈ C : ∃ (λI−A)−1 ∈ L(X)} and resolvent operator R(λ,A) := (λI −A)−1 for λ ∈ ρ(A).
The operator A is said to be sectorial if there are constants ω ∈ R, θ ∈ (π/2, π) and M > 0 such that

(i) Sθ,ω := {λ ∈ C : λ 6= ω ∧ |arg(λ− ω)| < θ} ⊂ ρ(A),
(ii) ‖R(λ,A)‖L(X) ≤

M
|λ−ω| for all λ ∈ Sθ,ω.

For t > 0, the properties stated in Definition 5.1 allow us to define a linear bounded operator exp(tA) in X
by using the Dunford integral as follows:

exp(tA) =
1

2πı

∫
ω+γr,η

exp(tλ)R(λ,A)dλ, ∀ t > 0, (5.1)

where, for r > 0, η ∈ (π/2, θ), γr,η is the curve {λ ∈ C : |arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : |arg λ| ≤ η, |λ| = r}
oriented counterclockwise. Besides, we set

exp(0A)x = x, ∀ x ∈ X. (5.2)
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Definition 5.2 ([40], Def. 2.0.2). Let A : D(A) ⊂ X → X be a sectorial operator. The family {exp(tA) : t > 0}
defined by (5.1) and (5.2) is said to be the analytic semigroup generated by A in X.

The following proposition states sufficient conditions for an operator to be sectorial.

Proposition 5.3 ([40], Prop. 2.1.11). Let A : D(A) ⊂ X → X be a linear operator such that ρ(A) contains a
half plane {λ ∈ C : Reλ ≥ ω}, and

‖λR(λ,A)‖L(X) ≤M, Re λ ≥ ω, (5.3)

with ω ∈ R, M > 0. Then, the operator A is sectorial.

Let us now consider the following abstract evolution problem.

Problem 5.4 (Evolution problem). Find u in X such that for all t > 0, it holds

u′(t) = Au(t) + f(t, u(t)), u(0) = u0 ∈ X, (5.4)

where A : D(A) ⊂ X → X is a linear sectorial operator, f is a continuous function defined in [0, T ] ×X with
values in X.

One may define the different solution categories for the abstract evolution problem (5.4) as follows.

Definition 5.5 ([40], Defs 7.0.1 and 7.0.2). We distinguish the following solution classes for Problem 5.4:

(i) A continuous function u : (0, T ]→ X such that u(t) ∈ X for every t ∈ (0, T ] and f(·, u(·)) ∈ L1([0, T ];X),
is said to be a mild solution in the interval [0, T ] if u satisfies

u(t) = exp(tA)u0 +

t∫
0

exp [(t− s)A] f(s, u(s))ds, t ∈ [0, T ]. (5.5)

(ii) A function u ∈ C1((0, T ];X) ∩ C((0, T ];D(A)) ∩ C([0, T ];X) such that u(t) ∈ X for all t ∈ [0, T ] is said to
be a classical solution in the interval [0, T ] if (5.4) is satisfied for each t ∈ (0, T ].

(iii) A function u ∈ C1([0, T ];X) ∩ C([0, T ];D(A)) such that u(t) ∈ X for all t ∈ [0, T ] is said to be a strict
solution in the interval [0, T ] if (5.4) is satisfied for each t ∈ [0, T ].

Existence and uniqueness results together with conditions on the initial data u0 and the nonlinear function
f have been established for mild, classical and strict solutions ([40], Thm 7.1.2 and Prop. 7.1.10).

5.2. Existence and uniqueness of the multiple cells boundary problem

Using the previous definitions and results, we first prove that the operator −J , defined in (4.25), is actu-

ally sectorial, thus generating an analytic semigroup exp(−tJ ) in H−
1
2 +s

J , for s ≥ 1
2 . Throughout this section,

we work with complex-valued Sobolev spaces, denoted also by HsJ , to fit in the framework for analytic semi-
groups presented previously. This impacts directly coercivity estimates in Lemma 4.3. For complex valued
Sobolev spaces we should take the real part on the left hand side of the coercivity estimates. However, since the
fundamental solution to the Laplace operator (3.1) is real valued, it holds

Re

{〈(
J + TJ

)
v,v

〉
Γ0

}
=
〈(
J + TJ

)
v,v

〉
Γ0

≥ µ ‖v‖2
H

1
2
J

, for all v ∈ H
1
2

J . (5.6)
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Proposition 5.6. Let s ≥ 0 and f ∈ H−
1
2 +s

J as in (2.10). Then, there exists a unique v ∈ H
1
2 +s

J satisfying(
J + TJ

)
v = f , (5.7)

where TJ is the same as in Lemma 4.3.

Proof. By the Lax–Milgram lemma ([55], Thm 3.4) and Lemma 4.3, the assertion holds for s = 0. The result
for s > 0 follows from the regularity properties of the boundary integral equations and mapping properties of
the BIOs in smooth boundaries ([52], Thm 3.2.2) and Theorem 3.5, respectively.

Lemma 5.7. For s ≥ 1
2 , the operator J : H

1
2 +s

J → H−
1
2 +s

J generates an analytic semigroup exp(−tJ ) on

H−
1
2 +s

J .

Proof. We take our cue from ([47], Thm 7.2.7). Set R := −(J + TJ ). According to Proposition 5.6, for s = 1
2 ,

the operator R has the following mapping property R : H1
J ⊂ L2

J → L2
J with domain D(R) = H1

J . We define
the set S(R) as

S(R) :=
{
〈Ru,u〉Γ0

: u ∈ H1
J , such that ‖u‖L2

J
= 1
}
. (5.8)

By Lemma 4.3, one can conclude that

S(R) ⊂ S := {λ ∈ R : λ < 0} ⊂ C. (5.9)

Indeed, for u ∈ H1
J , it holds

−〈Ru,u〉Γ0
≥ µ ‖u‖2

H
1
2
J

≥ µ ‖u‖2L2
J
, (5.10)

and therefore

〈Ru,u〉Γ0

‖u‖2L2
J

≤ −µ < 0. (5.11)

On the other hand, one has

ρ(R) ⊃ Σ := {λ ∈ C : Re{λ} ≥ 0} . (5.12)

Also, we have that

Re
{
〈(λI−R)v,v〉Γ0

}
= Re

{〈(
λI + J + TJ

)
v,v

〉
Γ0

}
=
〈

(J + TJ )v,v
〉

Γ0

+ Re{λ} 〈v,v〉Γ0

≥ µ ‖v‖2
H

1
2
J

+ Re {λ} ‖v‖2L2
J
≥ µ ‖v‖2

H
1
2
J

holds for all v ∈ H
1
2

J if λ ∈ Σ. In this case, the complex version of Lax–Milgram lemma ([55], Thm 3.4) ensures
that λI−R has a bounded inverse for λ ∈ Σ. One may conclude that

d(λ, S) = |λ| , for λ ∈ Σ, (5.13)
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where d(λ, S) is the distance between λ and the closure of S. Moreover, for λ ∈ Σ and u ∈ H1
J such that

‖u‖L2
J

= 1, we have

d(λ, S) ≤
∣∣λ− 〈Ru,u〉Γ0

∣∣ ≤ ∣∣〈(λI−R)u,u〉Γ0

∣∣ ≤ ‖(λI−R)u‖L2
J
. (5.14)

Therefore, we have

∥∥R(λ,−(J + TJ )
∥∥
L(L2

J ,L2
J) = ‖R(λ,R)‖L(L2

J ,L2
J) ≤

1

|λ|
, λ ∈ Σ. (5.15)

By Proposition 5.3, R is a sectorial operator and generates an analytic semigroup of bounded linear operators
in L2

J . Being H1
J dense in L2

J and TJ : H1
J → L2

J a compact operator, from Proposition 2.4.3 in [40] we conclude
that −J itself is sectorial and also generates an analytic semigroup in L2

J . Finally, the mapping properties of

the operator J (cf. Lem. 4.3) guarantee the existence of an analytic semigroup in H−
1
2 +s

J , for s ≥ 1
2 .

We now recall the following result regarding the smoothness of the mappings HH(v, g) and iion (v, g).

Lemma 5.8 ([43], Lem. 5.4). Let R > 0 and s > 3
2 , then for all v ∈ H−

1
2 +s

J and g ∈ H−
1
2 +s

J such that
‖v‖

H
− 1

2
+s

J

≤ R and ‖g‖
H
− 1

2
+s

J

≤ R, there exist constants C0, depending on HH and iion, and C1, depending

on R and the derivatives of HH and iion, such that

‖HH(v, g)‖
H
− 1

2
+s

J

+ ‖iion (v, g)‖
H
− 1

2
+s

J

≤ C0 + C1(R)

(
‖v‖

H
− 1

2
+s

J

+ ‖g‖
H
− 1

2
+s

J

)
. (5.16)

Besides, for v,v′, g, g′ ∈ H−
1
2 +s

J such that ‖v‖
H
− 1

2
+s

J

, ‖v′‖
H
− 1

2
+s

J

, ‖g‖
H
− 1

2
+s

J

, ‖g′‖
H
− 1

2
+s

J

≤ R, there exists a

constant C2(R), depending on R and the derivatives of HH and iion, such that

‖HH(v, g)−HH(v′, g′)‖
H
− 1

2
+s

J

+ ‖iion(v, g)−HH(v′, g′)‖
H
− 1

2
+s

J

(5.17)

≤ C2(R)

(
‖v − v′‖

H
− 1

2
+s

J

+ ‖g − g′‖
H
− 1

2
+s

J

)
. (5.18)

We are now in position to enunciate the local existence and uniqueness results for Problem 4.2.

Theorem 5.9 (Local Existence and Uniqueness of Problem 4.2). For s > 3
2 , let v0 ∈ H−

1
2 +s

J and g0 ∈ H−
1
2 +s

J

be initial conditions of Problem 4.2. Then, Problem 4.2 admits a unique mild solution v, g ∈ C([0, T ],H−
1
2 +s

J )
depending continuously on the initial data. Besides, Problem 4.2 also admits a unique classical solution which

coincides with the mild solution. Finally, if v0 ∈ H
1
2 +s

J then the solution is strict.

Proof. For s ≥ 1
2 , let us consider the augmented operator defined as

G :=

(
J
0

)
: H

1
2 +s

J ×H−
1
2 +s

J → H−
1
2 +s

J ×H−
1
2 +s

J (5.19)

with domain D(G) = H
1
2 +s

J ×H−
1
2 +s

J . Being J sectorial, we have that G is sectorial as well, therefore generating

an analytic semigroup in H−
1
2 +s

J ×H−
1
2 +s

J . The claim on mild, classical and strict solutions is a consequence of
the analyticity of the semigroup generated by G ([40], Chap. 7). The condition s > 3

2 comes from Lemma 5.8,
which provides the required smoothness for HH(v, g) and iion (v, g) to lie in the right Sobolev spaces.
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Finally, for u,v ∈ H
1
2

J , we define the following bilinear form:

J(u,v) := 〈Ju,v〉Γ0
: H

1
2

J ×H
1
2

J → R. (5.20)

6. Numerical discretization

Though Problem 4.2 is valid in two and three dimensions, in what follows we present an efficient two-
dimensional discretization scheme proved to be stable and convergent. Our numerical scheme relies on two
key elements. On one hand, we take advantage of the smoothness inherent to biological cells by using Fourier
polynomials for space discretization, which yields exponential convergence rates. On the other hand, we use a
semi-implicit strategy in time to deal with the nonlinearities arising in the terms iion(v, g) and HH(v, g).

6.1. Fourier expansion

We recall some useful results of Fourier analysis and refer to ([36], Chap. 8) and ([7], Sect. 6.5) for more
details. Define the equivalence class of square integrable complex-valued functions as

L2[0, 2π] :=

{
ϕ : [0, 2π]→ C such that

∫ 2π

0

|f(θ)|2 dθ <∞
}
. (6.1)

As usual, the L2[0, 2π]-norm is induced by the inner product:

(ϕ,ψ)L2[0,2π] =

∫ 2π

0

ϕ(θ)ψ(θ)dθ. (6.2)

The Fourier series of ϕ ∈ L2[0, 2π] is

ϕ(θ) =
∑
k∈Z

ak exp(ıkθ). (6.3)

Let us define the Fourier polynomials ϕk := exp(ıkθ), for k ∈ Z. Then, Fourier coefficients ak in (6.3) are given
by

ak :=
1

2π
(ϕ,ϕk)L2[0,2π] =

1

2π

2π∫
0

ϕ(θ) exp(−ıkθ)dθ, (6.4)

and Parseval’s equality holds, i.e.

‖ϕ‖2L2[0,2π] = 2π
∑
k∈Z
|ak|2 . (6.5)

Definition 6.1 ([36], Def. 8.1). Let 0 ≤ p <∞. By Hp[0, 2π] we denote the space of all complex-valued functions
ϕ ∈ L2[0, 2π] with the property ∑

k∈Z
(1 + k2)p |ak|2 <∞, (6.6)

for the Fourier coefficients ak of ϕ. Notice that H0[0, 2π] can be identified with L2[0, 2π].



686 F. HENRÍQUEZ AND C. JEREZ-HANCKES

Theorem 6.2 ([36], Thm. 8.2). The Sobolev space Hp[0, 2π] is a Hilbert space with scalar product defined by

(ϕ,ψ)Hp[0,2π] =
∑
k∈Z

(1 + k2)pakbk, (6.7)

for ϕ,ψ ∈ Hp[0, 2π] with Fourier coefficients ak and bk, respectively. We can also define a semi-norm in Hp[0, 2π]
as follows

|ϕ|2Hp[0,2π] =
∑
k∈Z
|k|2p |ak|2 . (6.8)

Finally, the set of Fourier polynomials is dense in Hp[0, 2π].

Set SK := span{ϕk : k = −K, . . . ,K} as the finite dimensional space of Fourier polynomials up to degree
K. We define the partial Fourier summation up to order K as follows

(PKϕ)(θ) :=
∑
|k|≤K

ak exp(ıkθ) ∈ SK . (6.9)

Lemma 6.3 ([12], Sect. 5.1.1). Let 0 ≤ s ≤ p. For ϕ ∈ Hp[0, 2π] there exists a constant c(s, p) such that

‖ϕ− PKϕ‖Hs[0,2π] ≤ c(s, p)K
−(p−s) |ϕ|Hp[0,2π] . (6.10)

Exponential convergence rates can be achieved when assuming analyticity as the next result shows [56] or
([12], Sect. 5.1).

Lemma 6.4. If ϕ is 2π-periodic analytic, with analyticity strip of width 2η0, i.e. for |Im(z)| ≤ η0, ϕ(z) admits
the absolutely convergent expansion:

ϕ(z) =
∑
k∈Z

ϕk exp(ıkz).

Then, for any η, 0 < η < η0, it holds

‖ϕ− PKϕ‖Hs[0,2π] ≤ c(s, η)Ks exp(−ηK), (6.11)

with c and η independent of K.

Assume that Γ is the boundary of a simply connected bounded Ck-domain, k ∈ N and that χ(θ) for θ ∈
[0, 2π) is a k-times regular and continuously differentiable 2π-periodic parametric representation of Γ. Then, for
0 ≤ p ≤ k, we have the following characterization of the Sobolev space Hp(Γ):

Hp(Γ) :=
{
ϕ ∈ L2 (Γ) : τχϕ ∈ Hp[0, 2π]

}
, (6.12)

where τχ : Hp(Γ)→ Hp[0, 2π] is defined as τχϕ := ϕ ◦ χ for ϕ ∈ Hp(Γ), for p ≥ 0, with inner product:

(ϕ,ψ)Hp(Γ) := (τχϕ, τχψ)Hp[0,2π] , ∀ ϕ,ψ ∈ Hp(Γ). (6.13)

In particular, it holds

‖ϕ‖Hp(Γ) = ‖τχϕ‖Hp[0,2π] , ∀ ϕ ∈ Hp(Γ), 0 ≤ p ≤ k. (6.14)
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Moreover, the definition of Sobolev spaces Hp(Γ) is independent of the chosen parametric representation of the
boundary Γ ([36], Thm. 8.14). For s < 0, Hp(Γ ) are defined as the dual spaces of H−s(Γ ) ([36], Def. 8.9).

6.2. Semi-implicit time stepping scheme

Define ΥN := {tn}Nn=0 as the uniform partition of the time interval [0, T ], for T ∈ R+ and N ∈ N, where
tn := nτ and τ := T/N is the time step. Let

tn+ 1
2

:= tn +
τ

2
, n = 0, . . . , N − 1, (6.15)

be a midstep between tn and tn+1. For a time dependent quantity φ(t), we denote φn := φ(tn) and, for n =
1, . . . , N − 1, we consider the following quantities:

∂̄φn :=
φn+1 − φn

τ
, φn+ 1

2 := φ
(
tn+ 1

2

)
, (6.16)

φ̄n+ 1
2 :=

φn+1 + φn

2
, φ̂n+ 1

2 :=
3φn − φn−1

2
. (6.17)

With these definitions one may derive the following time-local estimates:

Lemma 6.5 ([29], Lem. 7). Let ϕ ∈ C2([0, T ];L2[0, 2π]), then it holds∥∥∥ϕ̄n+ 1
2 − ϕn+ 1

2

∥∥∥
L2[0,2π]

≤ 1

4
τ2 max

t∈[tn,tn+1]

∥∥∂2
t ϕ(t)

∥∥
L2[0,2π]

, (6.18)∥∥∥ϕ̂n+ 1
2 − ϕn+ 1

2

∥∥∥
L2[0,2π]

≤ 5

16
τ2 max

t∈[tn−1,tn+1]

∥∥∂2
t ϕ(t)

∥∥
L2[0,2π]

. (6.19)

Furthermore, if ϕ ∈ C3([0, T ];L2[0, 2π]),

∥∥∥∂̄ϕn − ∂tϕn+ 1
2

∥∥∥
L2[0,2π]

≤ τ2

48
max

t∈[tn,tn+1]

∥∥∂2
t ϕ(t)

∥∥
L2[0,2π]

. (6.20)

6.3. Fully discrete scheme

In what follows, we assume that each subdomain boundary Γj , for j = 1, . . . , J admits a 2π-periodic C∞-
parametric representation denoted by χj . Given K ∈ N, on each boundary we define the subspaces SK(Γj) :=
τ−1
χj
◦ SK , for j = 1, . . . , J and

SJ,K := SK(Γ1)× · · · × SK(ΓJ).

At each time step tn ∈ ΥN , we seek sets of functions vnK and gnK ∈ SJ,K . Each one of them is an approximation
at times tn of the vector of continuous membrane potentials membrane potential v and gate variables g,
respectively. With these elements, we state the semi-implicit time-space numerical discretization of Problem 4.2.

Problem 6.6 (Fully Discrete Boundary Integral Problem). Let v0
K , v1

K , g0
K and g1

K , belonging to SJ,K , be
given. Then, for time steps n = 1, . . . , N − 1 we seek vnK , gnK in SJ,K solutions of

〈
cm∂̄v

n
K ,ϕK

〉
Γ0

+ J
(
v̄
n+ 1

2

K ,ϕK

)
=
〈
i
n+ 1

2

Φe
,ϕK

〉
Γ0

−
〈
iion

(
v̂
n+ 1

2

K , ĝ
n+ 1

2

K

)
,ϕK

〉
Γ0

, (6.21a)〈
∂̄gnK ,ϕK

〉
Γ0

=
〈
HH
(
v̂
n+ 1

2

K , ĝ
n+ 1

2

K

)
,ϕK

〉
Γ0

, (6.21b)
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for all ϕK ∈ SJ,K , where the bilinear form J is defined in (5.20).

To properly solve Problem 6.6 values for v0
K , v1

K , g0
K and g1

K must be provided. A straightforward choice for

v0
K and g0

K comes from initial conditions v0 and g0. For instance, one may choose v0
K := P̂Kv0 and g0

K := P̂Kg
0,

where P̂K : HpJ → SJ,K is defined as P̂K := (P̂K,1, · · · , P̂K,J) and P̂K,j := τ−1
χj
◦ PK ◦ τχj , for j = 1, . . . , J and

p ≥ 0.
Values for v1

K and g1
K are estimated by solving the following predictor–corrector algorithm summarized in

Algorithm 6.7 (cf. Chap. 13 from [58], and [26]), as it has been done in [29] for the single biological cell case:

Algorithm 6.7 (Predictor–Corrector method). Set w0
K := v0

K and r0
K := g0

K , then we proceed as follows:

(I) Predictor. We first construct predictions w1
K and r1

K , for v1
K and g1

K , respectively, by solving the linear
system:

〈
cm∂̄w

0
K ,ϕK

〉
Γ0

+ J
(
w̄

1
2

K ,ϕK

)
=
〈
i

1
2

Φe
,ϕK

〉
Γ0

−
〈
iion

(
v0
K , g

0
K

)
,ϕK

〉
Γ0
,〈

∂̄r0
K ,ϕK

〉
Γ0

=
〈
HH
(
w0
K , r

0
K

)
,ϕK

〉
Γ0
,

for all ϕK ∈ SJ,K . Notice that both w1
K and r1

K appear through the definitions given in Section 6.2.
(II) Corrector. We now correct w1

K and r1
K , to obtain final values for v1

K and g1
K through

〈
cm∂̄v

0
K ,ϕK

〉
Γ0

+ J
(
v̄

1
2

K ,ϕK

)
=
〈
i

1
2

Φe
,ϕK

〉
Γ0

−
〈
iion

(
w̄

1
2

K , r̄
1
2

K

)
,ϕK

〉
Γ0

,〈
∂̄g0

K ,ϕk
〉

Γ0
=
〈
HH
(
w̄

1
2

K , r̄
1
2

K

)
,ϕK

〉
Γ0

,

for all ϕK ∈ SJ,K . Again, both v1
K and g1

K are implicit in the previous equations through the quantities
defined in Section 6.2.

6.4. Convergence analysis

We seek to prove bounds for the total approximation error for the transmembrane potential and gate variables.
In particular, we are interested in measuring the errors v(tn)−vn and g(tn)−gn in the L2

J -norm for all tn ∈ ΥN .

For v ∈ C1([0, T ],H
1
2

J ) and ζ ∈ R+, let us define vζ := exp(−ζt)v, for t ∈ [0, T ]. Then

∂tv = ζ exp(ζt)vζ + exp(ζt)∂tvζ . (6.22)

Consequently, one can rewrite Problem 4.2 in terms vζ as presented in Problem 6.8.

Problem 6.8. Let s > 3
2 and ζ > 0, v0 ∈ H

1
2 +s

J , g0 ∈ H−
1
2 +s

J and T ∈ R+. We seek v ∈ C1([0, T ],H−
1
2 +s

J ) ∩
C([0, T ],H

1
2 +s

J ) and g ∈ C1([0, T ],H−
1
2 +s

J ) such that for all t ∈ [0, T ] it holds

cm∂tvζ = −J ζvζ + exp(−ζt) (i(t)− iion (exp(ζt)vζ , g)) , (6.23a)

∂tg = HH (exp(ζt)vζ , g) , (6.23b)

where i ∈ C
(

[0, T ];H−
1
2 +s

J

)
and J ζ := cmζ I + J and which induces the bilinear form Jζ(·, ·).
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Remark 6.9. We can choose ζ large so that J ζ becomes elliptic. In fact, it is enough to pick

ζ ≥ ζmin :=

∥∥∥TJ ∥∥∥L(H
1
2
J ,L2

J

)
cm

. (6.24)

Indeed, we have 〈
J ζv,v

〉
Γ0

=
〈

(J + cmζ I + TJ − TJ )v,v
〉

Γ0

≥ µ ‖v‖2
H

1
2
J

+

(
cmζ −

∥∥∥TJ ∥∥∥L(H
1
2
J ,L2

J

)
)

︸ ︷︷ ︸
≥0

‖v‖2L2
J
≥ µ ‖v‖2

H
1
2
J

, (6.25)

with µ coming from (5.6), and where the boundedness of the map TJ : H
1
2

J → L2
J is a consequence of the

smoothing properties of the BIOs (cf. [55], Sect. 6.1 and [52], Thm. 3.5.5).

The use of the H
1
2

J -ellipticity of J ζ , for ζ large enough, requires first to compute the error in the L2
J -norm of

vζ(tn)− vnζ and gζ(tn)− gnζ for tn ∈ ΥN . Indeed, it holds

‖v(tn)− vn‖L2
J

= exp(ζtn)
∥∥vζ(tn)− vnζ

∥∥
L2
J

and (6.26a)

‖g(tn)− gn‖L2
J

= exp(ζtn)
∥∥gζ(tn)− gnζ

∥∥
L2
J

. (6.26b)

We drop momentarily the explicit time-dependence in n, reintroducing the corresponding superscript in
Section 6.5. The forthcoming error analysis relies on the one presented in ([29], Sect. 6) hinging on the so-called
elliptic projection wζ , defined as the solution of the following variational problem:

Jζ(vζ −wζ ,ϕ) = 0, for all ϕ ∈ H
1
2

J . (6.27)

One may similarly define the discrete elliptic projection wζ,K , unique solution of

Jζ(vζ −wζ,K ,ϕK) = 0, for all ϕK ∈ SJ,K . (6.28)

In particular, we notice that if vζ ∈ SJ,K , then vζ ≡ wζ,K . We decompose the error between the exact solution
vζ and the discrete approximation vζ,K ∈ SJ,K into

vζ − vζ,K = (vζ −wζ,K) + (wζ,K − vζ,K) (6.29)

and study each contribution independently.

6.4.1. Properties of the elliptic projector Jζ .

Let us consider the following auxiliary problem:

Problem 6.10. For a given f ∈ H−
1
2

J , find wζ ∈ H
1
2

J such that

Jζ(wζ ,ϕ) = 〈f ,ϕ〉Γ0
, for all ϕ ∈ H

1
2

J . (6.30)
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For a parameter ζ ∈ R+ large as in Remark 6.9, continuity and ellipticity of Jζ are ensured by Lemma 4.3.
Consequently, the Lax–Milgram lemma ([55], Thm. 3.4) guarantees existence and uniqueness for Problem 6.10.
It also holds

‖wζ‖
H

1
2
J

≤ 1

µ
‖f‖

H
− 1

2
J

, (6.31)

where µ is the ellipticiy constant of Jζ in (6.25). Cea’s lemma ([55], Thm. 8.1) allows us to extend those properties
to the discrete setting in SJ,K . It provides as well the best approximation error estimate:

‖wζ −wζ,K‖
H

1
2
J

≤ αζ
µ

inf
ϕK∈SJ,K

‖wζ −ϕK‖H
1
2
J

, (6.32)

where αζ := cmζ + ‖J ‖
L
(
H

1
2
J ,H

− 1
2

J

) is the continuity constant of Jζ .

Lemma 6.11. Assume f ∈ H−
1
2 +s

J and boundaries Γj to be of class C∞, for j = 1, . . . , J . Then, for s > 0, the

solution wζ of Problem 6.10 belongs to H−
1
2 +s

J and the following a priori estimate is valid

‖wζ‖
H

1
2
+s

J

≤ c(s)
(
‖wζ‖

H
1
2
J

+ ‖f‖
H
− 1

2
+s

J

)
, (6.33)

where c(s) is a positive constant depending on s.

Proof. Follows directly from BIOs regularity properties for smooth domains (cf. [52], Thm. 3.2.2).

6.4.2. Elliptic projection – error estimates

The triangle inequality yields

‖vζ −wζ,K‖
H

1
2
J

≤ ‖vζ −wζ‖
H

1
2
J

+ ‖wζ −wζ,K‖
H

1
2
J

. (6.34)

However, from the definition of elliptic projection, namely (6.27), and the ellipticity of the bilinear form Jζ(·, ·),
we have ‖vζ −wζ‖

H
1
2
J

= 0. Therefore, it holds

‖vζ −wζ,K‖
H

1
2
J

≤ ‖wζ −wζ,K‖
H

1
2
J

. (6.35)

Using estimates (6.35) and (6.32) we obtain

‖vζ −wζ,K‖
H

1
2
J

≤ ‖wζ −wζ,K‖
H

1
2
J

≤ αζ
µ

inf
ϕK∈SJ,K

‖wζ −ϕK‖H
1
2
J

. (6.36)

Recall that χj is the 2π-periodic parametric representation of the boundary Γj , for j = 1, . . . , J . Expanding the
total error bound (6.36) into its components over each boundary Γj and invoking (6.14), we have

‖vζ −wζ,K‖
H

1
2
J

≤ αζ
µ

J∑
j=1

inf
ϕj,K∈SK(Γj)

∥∥∥τχjwζj − τχjϕj,K∥∥∥
H

1
2 [0,2π]

, (6.37)
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Table 1. Simulation parameters.

Parameters Symbol Value Units

Extracellular conductivity σe 20 mS/cm
Intracellular conductivity σi 5 mS/cm
Membrane capacitance cm 1 µF/cm2

Cell radius R 7.5× 10−4 cm

Figure 1. Configurations used in the convergence analysis. We consider the three following
settings wherein all cells are of radius R. The distance d between cells will be specified later.
(i) A single cell centered at the origin of the coordinate system; (ii) two cells separated by a
distance d to be specified later; and, (iii) three cells separated by a distance d to be specified
later. In the three scenarios we assume that the electric field E is constant in space and time.

where wζ = (wζ1 , . . . , w
ζ
J) with elements wζj ∈ H

1
2 [0, 2π], wζ,K = (wζ1,K , . . . , w

ζ
J,K) and ϕK = (ϕ1,K , . . . , ϕJ,K)

are such that wζj,K , ϕj,K ∈ SK(Γj), for j = 1, . . . , J . By Lemma 6.11, we can employ the Aubin-Nitsche trick

([52], Sect. 4.2.5) to shift the error norm from H
1
2

J to L2
J . Then, by Lemma 6.3, we obtain the following error

estimate:

‖vζ −wζ,K‖L2
J
≤ αζ

µ
c(p)JK−p

J∑
j=1

∣∣∣vζj ∣∣∣
Hp[0,2π]

, (6.38)

by acknowledging that vζ = wζ . Furthermore, if the solution is 2π-periodic and analytic, we can use Lemma 6.4
to derive the following bound:

‖vζ −wζ,K‖L2
J
≤ αζ

µ
JΘ exp(−ηK), (6.39)

where Θ and η are positive constants independent of K and the number of cells J . Finally, using (6.26a), (6.26b)
to retrieve vζ from v, we can state the following theorem:

Theorem 6.12. Let v be the solution of Problem 4.2 and assume that it satisfies the analyticity conditions of
Lemma 6.4. Then, for all times t ∈ [0, T ], the following error estimate holds

‖v −wK‖L2
J
≤ αζ

µ
JΘ exp(ζT ) exp(−ηK), (6.40)

where Θ and η are positive constants independent of K and the number of cells J .
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Table 2. Convergence results for a single axon setting ε = 0.25 and δ = 0.75 and Φ
(1)
e as

external source. The rates of exponential convergence are 2.057, 1.051 and 0.774 for the single,
two and three cell cases, respectively.

K τ Error single cell Error two cells Error three cells

1 1.648721× 10−3 4.614530× 10+1 8.217310× 10+1 1.024221× 10+2

2 1.284025× 10−3 1.289820× 10+0 6.872140× 10+0 4.231990× 10+1

3 1.000000× 10−3 1.903200× 10−2 2.961200× 10+0 1.194092× 10+1

4 7.788008× 10−4 3.359740× 10−3 9.206260× 10−1 7.724340× 10+0

5 6.065307× 10−4 5.495460× 10−4 2.992460× 10−1 2.080491× 10+0

6 4.723666× 10−4 1.055950× 10−4 9.794200× 10−2 1.693611× 10+0

7 3.678794× 10−4 2.145180× 10−5 3.243720× 10−2 5.353650× 10−1

8 2.865048× 10−4 3.701340× 10−6 1.150910× 10−2 4.547880× 10−1

9 2.231302× 10−4 5.856280× 10−7 4.870160× 10−3 1.573761× 10−1

10 1.737739× 10−4 1.228320× 10−7 2.578580× 10−3 1.411557× 10−1

Table 3. Convergence results for a single axon setting ε = 0.5 and δ = 1.0 and Φ
(1)
e as external

source. The rates of exponential convergence are 1.853, 1.051 and 0.749 for the single, two and
three cell cases, respectively.

K τ Error single cell Error two cells Error three cells

1 1.648721× 10−3 3.584630× 10+1 6.432560e× 10+1 5.851500× 10+1

2 1.000000× 10−3 9.673760× 10−1 4.304700e× 10+0 2.588640× 10+1

3 6.065307× 10−4 3.079990× 10−2 1.928888× 10+0 6.519960× 10+0

4 3.678794× 10−4 6.512100× 10−3 5.907100× 10−1 4.784040× 10+0

5 2.231302× 10−4 1.209490× 10−3 1.958070× 10−1 1.245723× 10+0

6 1.353353× 10−4 2.821550× 10−4 6.648340× 10−2 1.009443× 10+0

7 8.208500× 10−5 6.493960× 10−5 2.386200× 10−2 3.125430× 10−1

8 4.978707× 10−5 1.226060× 10−5 1.006122× 10−2 2.617374× 10−1

9 4.978707× 10−5 2.540470× 10−6 5.285280× 10−3 9.018660× 10−2

10 1.831564× 10−5 5.752190× 10−7 3.053620× 10−3 7.857030× 10−2

6.5. Convergence estimates

We now return our attention to the time discretization. At a time tn ∈ ΥN , we split the full error vn − vnK
as follows

vn − vnK = (vn −wn
K)︸ ︷︷ ︸

=:ρn

+ (wn
K − vnK)︸ ︷︷ ︸
=:θn

, (6.41)

where wn
K is defined as in (6.28) for each time step tn, n = 0, . . . , N . Due to Lemma 6.4, one concludes that ρn

is bounded in the L2
J -norm by Theorem 6.12. Following the error analysis presented ([29], Sect. 6.3), one can

derive the next result for θn, for n = 0, . . . , N .

Lemma 6.13. Let v and g be the solution of Problem 4.2 for initial data v0 and g0. Besides, let vnK and gnK be
the solution of Problem 6.6 for initial boundary data v0

K , v1
K , g0

K and g1
K in SJ,K , for n = 1, . . . , N − 1. Then,
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Table 4. Convergence results for a single axon setting ε = 0.25 and δ = 0.75 and Φ
(2)
e as

external source. The rates of exponential convergence are 2.138, 1.061 and 0.673 for the single,
two and three cell cases, respectively.

K τ Error single cell Error two cells Error three cells

1 1.648721×10−3 1.985580×10+0 4.326700×10+0 8.099550×10+0

2 1.284025×10−3 2.689180×10−2 2.165740×10−1 6.036660×10−1

3 1.000000×10−3 2.401830×10−2 5.510000×10−2 2.174205×10−1

4 7.788008×10−4 1.722150×10−4 1.310898×10−3 7.859420×10−2

5 6.065307×10−4 1.721510×10−4 9.184340×10−4 6.394830×10−2

6 4.723666×10−4 3.037490×10−6 4.069820×10−4 3.217640×10−2

7 3.678794×10−4 3.037250×10−6 3.313340×10−4 2.720043×10−2

8 2.865048×10−4 7.669300×10−8 2.556620×10−4 1.313981×10−2

9 2.231302×10−4 7.663710×10−8 1.852766×10−4 1.135493×10−2

10 1.737739×10−4 2.605920×10−9 1.281980×10−4 5.607000×10−3

it holds:

∥∥θn+1
∥∥2

L2
J

≤ c1

∥∥θ1
∥∥2

L2
J

+ τ
∥∥θ0

∥∥2

L2
J

+ τ

n∑
j=1

(1 + δ1τ)
−(j+1)

∥∥∥ĝj+ 1
2

K − P̂Kg
j+ 1

2

∥∥∥2

L2
J

+
(
exp(−ηK) + τ2

)2 ,

and

∥∥gn+1 − gn+1
K

∥∥
L2
J

≤ c2

∥∥g1 − g1
K

∥∥
L2
J

+ τ
∥∥g0 − g0

K

∥∥
L2
J

+ τ

n∑
j=1

(1 + δ2τ)
−(j+1)

∥∥∥v̂j+ 1
2

K − P̂Kv
j+ 1

2

∥∥∥
L2
J

+ τ2

 ,

where c1, c2, δ1 and δ2 are positive constants independent of τ and K and depending on αζ , µ, J and Θ from
Theorem 6.12.

With this last result, we can now state the main convergence result of our numerical scheme:

Theorem 6.14. Under the same hypotheses of Lemma 6.13, if v1
K and g1

K are chosen according to
Algorithm 6.7, the following error estimates hold

‖vn − vnK‖L2
J
≤ cC

(∥∥v0
K − v0

∥∥
L2
J

+
∥∥g0 − g0

K

∥∥
L2
J

+ exp(−ηK) + τ2
)
,

‖gn − gnK‖L2
J
≤ cC

(∥∥v0
K − v0

∥∥
L2
J

+
∥∥g0 − g0

K

∥∥
L2
J

+ exp(−ηK) + τ2
)
,

for n = 2, . . . , N , with cC and η are positive constants independent of τ and K and depending on the constants
αζ , µ, J and Θ from Theorem 6.12.

Proof. The proof is a direct consequence of Lemma 6.13 together with approximation properties of v1
K and g1

K

given in Algorithm 6.7. For details, we refer to ([58], Thm. 13.5) and ([29], Thm. 4).

6.6. Stability analysis

We now provide stability conditions for the numerical scheme given in Problem 6.6. As shown in ([29], Sect. 5),
two time-dependent systems are coupled: one describing the evolution of HH gate variables (6.21b), while the
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Table 5. Convergence results for a single axon setting ε = 0.5 and δ = 1.0 and Φ
(2)
e as external

source. The rates of exponential convergence are 2.132, 1.060 and 0.671 for the single, two and
three cell cases, respectively.

K τ Error single cell Error two cells Error three cells

1 1.648721×10−3 1.985580×10+0 4.326700×10+0 8.099550×10+0

2 1.000000×10−3 2.401830×10−2 2.100040×10−1 5.749320×10−1

3 6.065307×10−4 2.323540×10−2 5.509560×10−2 2.169405×10−1

4 3.678794×10−4 1.721810×10−4 1.310730×10−3 7.858980×10−2

5 2.231302×10−4 1.722310×10−4 9.183680×10−4 6.399840×10−2

6 1.353353×10−4 3.040350×10−6 4.022760×10−4 3.218520×10−2

7 8.208500×10−5 3.042640×10−6 3.293040×10−4 2.720861×10−2

8 4.978707×10−5 7.662220×10−8 2.549920×10−4 1.313952×10−2

9 4.978707×10−5 7.663600×10−8 1.851376×10−4 1.135508×10−2

10 1.831564×10−5 2.605780×10−9 1.281256×10−4 5.607240×10−3

Figure 2. Transmembrane potential of the single biological cell setting at points (a) and (b) as
defined in Figure 1(i). The electric field used in this computation is E = (5000, 0, 0)>mV/cm.

second model depicts the transmembrane voltage and current (6.21a). We establish bounds for the time-spacing
τ in both cases and define a global criterion to be later used in numerical simulations.

In the HH model, the system of gating variables (6.21b) can be arranged as follows [21]:

∂tgj = −
gj − g∞j (vj)

τj(vj)
, gj(0) = gj,0,

where gj represents the gate variable related to the cellular membrane Γj , j = 1, . . . , J , with

g∞j (vj) =
αj(vj)

αj(vj) + βj(vj)
and τj(vj) =

1

αj(vj) + βj(vj)
,

for a given transmembrane potential vj . Moreover, assume that the ionic current iion,j can be written as the
product of a function depending solely on gj and vj , i.e.

iion,j(vj , gj) = Hj(gj) vj . (6.42)
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Figure 3. Transmembrane potential of the two biological cells setting. The electric field is this
computation is E = (5000, 0, 0)> mV/cm and the distance between cells is d = 5R. Figure 6(i)
depicts the transmembrane voltage at points (a) and (b) and Figure 6(ii) at points (c) and (d),
as defined in Figure 1(ii).

Figure 4. Transmembrane potential of the two biological cells setting. The electric field used
int this computation is E = (5000, 0, 0)>mV/cm and the distance between cells is d = 0.1R.
Figure 6(i) portrays the transmembrane voltage at points (a) and (b) and Figure 6(ii) at points
(c) and (d), as defined in Figure 1(ii).

Based on this assumption, we can state the following result regarding the stability of Problem 6.6 (cf. [29],
Thm. 3).

Theorem 6.15. Let vnK , gnK for n = 2, . . . , N − 1, denote solutions of the fully discrete Problem 6.6 at times
tn ∈ ΥN . If vmax > 0 denotes the bounded maximum value for the transmembrane potential for all biological
cells, the numerical scheme proposed is stable for all positive time-spacings τ such that

τ < min

{
cm
H1,max

, · · · , cm
HJ,max

,
2

3
min

|v1|≤vmax

1

α1(v1) + β1(v1)
, . . . ,

2

3
min

|vJ |≤vmax

1

αJ(vJ) + βJ(vJ)

}

where αj , βj, j = 1, . . . , J , denote the vj-dependent gate model variables and Hj,max is the maximum value for
Hj.
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Figure 5. Transmembrane potential of the two biological cells setting. The electric field is this
computation is E = (6000, 0, 0)>mV/cm and the distance between cells is d = 0.1R. Figure 6(i)
shows the transmembrane voltage at points (a) and (b) and Figure 6(ii) at points (c) and (d),
as defined in Figure 1(ii).

Figure 6. Transmembrane potential of the two biological cells setting. The electric field is this
computation is E = (7500, 0, 0)>mV/cm and the distance between cells is d = 0.1R. Figure 6(i)
displays the transmembrane voltage at points (a) and (b) and Figure 6(ii) at points (c) and
(d), as defined in Figure 1(ii).

7. Numerical results

The numerical scheme presented in Section 6 was implemented in C++ with basic linear algebra routines
coming from Lapack [5]. Simulations where run on a AMD FX-8350 Eight-Core processor at 2.8 GHz. In all the
simulations the biological cells are assumed to be circles of equal radius. Table 1 contains a list of parameters
employed in the computations presented here.

Simulations are carried out assuming a membrane behavior given by the HH model (cf. Appendix A or
[21, 31]). We consider the following external sources:

Φ(1)
e (x) := −E · x, (7.1)

Φ(2)
e (x) := −‖E‖ (exp(ωx) + exp(−ωx)) cos(ωy), (7.2)
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Figure 7. Transmembrane potential of the three biological cells setting. The electric field is
this computation is E = (5000, 0, 0)>mV/cm and the distance between cells is d = 0.1R. (i)
The transmembrane voltage at points (a) and (b); (ii) at points (c) and (d); and (iii) at points
(e) and (f), as defined in Figure 1(iii).

Figure 8. Transmembrane potential of the three biological cells setting. The electric field is
this computation is E = (7500, 0, 0)>mV/cm and the distance between cells is d = 0.1R. (i)
The transmembrane voltage at points (a) and (b); (ii) at points (c) and (d); and (iii) at points
(e) and (f), as defined in Figure 1(iii).

Figure 9. Configuration of 25 interacting biological cells. The cells are rranged in a grid of
size 5× 5 as depicted in (i). The distance between cells is d = 0.2R and transmembrane voltage
is measured at points and (a) and (b), as depicted in (ii).
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Figure 10. Transmembrane potential in the 5×5 biological cells configuration shown Figure 9.
The electric field is this computation is E = (7500, 0, 0)>mV/cm. We show the transmembrane
potential at points (a) and (b) as described in Figure 9(ii), i.e. the left- and right-most points
on the cell boundary. We show results for 9 of the 25 biological cells, following the numbering
described in Figure 9(i).

where x = (x, y) and we select ω = 5. The electric field E is assumed to be constant in space and time. The
error is measured in the following norm:

‖u‖L∞(ΥN ,L2
J ) := max

tn∈ΥN
‖u(tn)‖L2

J
. (7.3)
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7.1. Convergence results

We present convergence results of the numerical scheme presented in Section 6. We consider three different
configurations, as depicted in Figure 1. Figure 1(i)–(iii) shows one, two and three biological cell configurations,
respectively. Convergence analysis is performed with a number of Fourier modes K ranging from 1 up to 10 and
time steps are chosen such that τ = 0.001 exp(−εK + δ) ms, with ε and δ to be chosen, and for the simulation
time window [0, 1] ms.

Tables 2–5 show convergence results for the configurations described in Figure 1(i–iii) assuming d = 0.1R
and E = (5000, 0, 0)> mV/cm. The first column in Tables 2 and 3 is the number of Fourier modes K, the second
column corresponds to the time step τ , which has been chosen according to the rule τ = 0.001 exp(−εK + δ).
Finally, the third, fourth and fifth columns present the error measured in the ‖·‖L∞(ΥN ,L2

J )-norm as defined

in (7.3), with J = 1, 2, 3, for the single, two and three biological cells configurations presented in Figure 1,
respectively.

7.2. Transmembrane voltage

Transmembrane voltages at different points over biological cells for the three configurations described in

Figure 1 are provided using Φ
(1)
e defined by (7.2) as external source. Figure 2 shows the transmembrane voltage

for the single biological cell configuration at points (a) and (b) defined in Figure 1(i). The electric field employed
in this computation is E = (5000, 0, 0)> mV/cm. Figures 3–6 shown results for the two cells scenario. In Figure 3
the distance between cells is d = 5R and the electric field is E = (5000, 0, 0)> mV/cm. In Figure 4 the electric
field remains the same, however the distance between cells is reduced to d = 0.1R. In Figures 5 and 6 the
distance between cells is still d = 0.1R, nevertheless the electric field is increased to E = (6000, 0, 0)> mV/cm and
E = (7500, 0, 0)> mV/cm, respectively. Figures 7 and 8 portray the results for the three biological configuration,
presented in Figure 1(iii). In both figures, the distance between biological cells is d = 0.1R however in the Figure 7
the electric field is E = (5000, 0, 0)> mV/cm, while in Figure 8 it is set to E = (7500, 0, 0)> mV/cm.

Consider now electrical interactions among 25 biological cells distributed in a homogeneous lattice of size
5× 5, as shown in Figure 9. Cells are numbered following the scheme presented in Figure 9(i). As in previous
computations, all the cells are of equal radius R with a distance between them is d = 0.2R, as portrayed in
Figure 9(ii). Figure for 9 out the 25 biological cells we have considered in the computation. The transmembrane
potential at the left and rightmost points, respectively points (a) and (b) as described in Figure 9(ii), are plotted.
Figure 10(i–iii) show results for the biological cells in positions 1 × 1, 1 × 3 and 1 × 5. Figure 10(iv–vi) show
results for the biological cells in positions 3× 1, 3× 3 and 3× 5. Figure 10(vii–ix) show results for the biological
cells in positions 5× 1, 5× 3 and 5× 5.

7.3. Discussion

The results validate the expected exponential convergence rates when taking τ ∝ exp(−εK+ δ), for ε > 0 and
δ > 0, for the nonlinear membrane dynamics. Based on this observation, we calibrate our quadrature scheme
for the nonlinear terms using the same spatial nodes. Indeed, higher order quadratures would not improve
convergence rates though perhaps proportionality constants. In terms of computational effort, we observe a
rapid increase in computational times as expected as no acceleration routines were implemented. Interestingly,
we observed that as cells came closer to each other exponential rates decreased. This can be explained by a loss
of analyticity in the solutions, which disappears once cells touch each other.

From a biological perspective, our numerical results support the claim for membrane potentials depending
on both axon geometry and position with respect to external electrical excitations. Such interrelations are
extremely relevant when analyzing and modeling closely packed cells and their interactions [46]. For instance,
cells lying between the excitation and a given target cell can delay or even block the stimulation.
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8. Conclusions and future work

We have presented a novel numerical method to compute the temporal evolution of cellular membrane poten-
tials under electrical excitation. Key to the scheme’s success is the boundary reduction via the MTF along with
the coupling of the HH model for transmembrane voltages. The resulting problem is proven to be well posed. In
time-domain, the proposed semi-implicit method was shown to possess a time-step stability condition indepen-
dent of spatial discretization, relying solely on problem parameters. Moreover, for analytic solutions exponential
convergence rates were found for suitable chosen time and space steps, which was validated numerically for two-
dimensional cells. Simulations are found to agree with experimental observations. In particular, our numerical
results depict the blocking effect that surrounding axons can yield onto a particular one as well as the change
of excitation phase due to the multiple cellular interactions. Future work includes the extension to 3D simula-
tions as well as further acceleration for cross interactions including the use of iterative solvers by implementing
preconditioners based on Calderón identities or mass matrices. Also, further research should include the case of
touching cells as well as the comparison of other single or multiple trace formulations.

Appendix A. Hodgkin–Huxley model

We provide details on the HH model. More precisely, the explicit expression of HHk and iion,k considered in
the model – cf. (2.14) and (2.13), respectively – and in our computations. The content presented here comes
from ([21], Chap. 2). In the following, we drop the index k, which denotes the biological cell on which HHk and
iion,k are defined. We adopt the same convention for the transmembrane potential vk.

In the HH formalism ionic channels are characterized by the so-called gate variables to regulate the transport
of ionic species across the cellular membrane. As pointed out in Remark 2.1, the HH model makes use of three
gate variables to account for the nonlinear nature of the electrophysiological dynamics taking place over the
membrane of a biological cell. These gate variables, from now on denoted by m, n and h, are dimensionless
quantities taking values between zero and one and they can be understood as the probability of the corresponding
gates to be open. Two main ionic species are considered: sodium (Na+) and potassium (K+). The gate variables
m and h are used to describe the flow of the sodium ions, while only the gate variable n is employed to describe
the movement of potassium. Let g := (m,n, h)> be the vector containing the aforementioned gate variables and
v the transmembrane voltage. The HH model states that the total current produced by the transport of ionic
species across the cellular membrane can be described as follows:

iion(v,g) = gNa+m3h(v − vNa+) + gK+n4(v − vK+) + gL(v − vL), (A.1)

where the constants gNa+ and gK+ are called the maximum conductance of Na+ and K+ channels, respectively,
and the voltages vNa+ and vK+ are known as the Nernst potentials or equilibrium potentials for each ion. When
the transmembrane potential v reaches these values, the total flux of an specific ion vanishes. At this point, the
flow of ionic species due to concentration gradients matches the flow produced by the potential difference across
the cellular membrane. The term gL(v − vL) in (A.1) models a residual current produced by the flow of ionic
species other than sodium and potassium. Table A.1 provides numerical values for the parameters introduced
in (A.1).

The system of ODEs describing the dynamics of the gate variables g:

∂tg = HH (v,g) (A.2)

contains three equations, one per each gate variable in the HH model (cf. Rem. 2.1). These ordinary differential
equation (A.2) can expanded in the following way:

∂tm = αm(v)(1−m)− βm(v)m, (A.3)

∂tn = αn(v)(1− n)− βn(v)n, (A.4)
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Table A.1. Parameters of the Hodgkin–Huxley model.

Parameter Mean Range Standard Units

gNa+ 0.91 0.8–1.5 1.0 [mS/cm2]
gK+ 34 26–49 36 [mS/cm2]
gL 0.26 0.13–0.5 0.3 [mS/cm2]
vNa+ 109 95–119 115 [mV]
vK+ −11 9–14 -12 [mV]
vL 11 4–22 10.6 [mV]

∂th = αh(v)(1− h)− βh(v)h, (A.5)

where

αm(v) =
0.1(25− v)

exp(2.5− 0.1v)− 1
, βm(v) = 4 exp(−v/18), (A.6)

αn(v) =
0.01(10− v)

exp(1− 0.1v)− 1
, βn(v) = 0.125 exp(−v/80), (A.7)

αh(v) = 0.07 exp(−v/20), βh(v) =
1

exp(3− 0.1v) + 1
. (A.8)
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