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ANALYSIS AND NUMERICAL SOLVER FOR

EXCITATORY-INHIBITORY NETWORKS WITH DELAY AND

REFRACTORY PERIODS

Maŕıa J. Cáceres* and Ricarda Schneider

Abstract. The network of noisy leaky integrate and fire (NNLIF) model is one of the simplest
self-contained mean-field models considered to describe the behavior of neural networks. Even so,
in studying its mathematical properties some simplifications are required [Cáceres and Perthame,
J. Theor. Biol. 350 (2014) 81–89; Cáceres and Schneider, Kinet. Relat. Model. 10 (2017) 587–612;
Cáceres, Carrillo and Perthame, J. Math. Neurosci. 1 (2011) 7] which disregard crucial phenomena. In
this work we deal with the general NNLIF model without simplifications. It involves a network with
two populations (excitatory and inhibitory), with transmission delays between the neurons and where
the neurons remain in a refractory state for a certain time. In this paper we study the number of steady
states in terms of the model parameters, the long time behaviour via the entropy method and Poincaré’s
inequality, blow-up phenomena, and the importance of transmission delays between excitatory neurons
to prevent blow-up and to give rise to synchronous solutions. Besides analytical results, we present a
numerical solver, based on high order flux-splitting WENO schemes and an explicit third order TVD
Runge-Kutta method, in order to describe the wide range of phenomena exhibited by the network:
blow-up, asynchronous/synchronous solutions and instability/stability of the steady states. The solver
also allows us to observe the time evolution of the firing rates, refractory states and the probability
distributions of the excitatory and inhibitory populations.
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1. Introduction

Neuroscience uses a wide variety of models based on ordinary differential equations (ODEs) and/or partial
differential equations (PDEs). In recent years, analytical and numerical research shed light in the study of their
mathematical properties. There is a large number of microscopic models consisting of systems of Stochastic
differential equations (SDEs), where each equation describes the behavior of one of the network’s neurons.
There are many works that perform numerical simulations for these microscopic models using the Monte-Carlo
method [14, 15, 49, 50, 58, 60, 61, 66]. However, from a computational point of view, it is complicated to
deal with networks with a large number of neurons. Mean-field models overcome this difficulty, since they
determine the evolution of the network through density functions that are solutions of one (or a few) PDEs.
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This procedure is applied, e.g., in [5, 21, 33, 34, 39, 43, 51, 52, 76, 80]. Usually, these models permit to
recover macroscopic quantities as, e.g., the global firing rate of the network, which can be compared with the
corresponding macroscopic quantities of the SDEs.

In this paper, we study the network of noisy leaky integrate and fire neuron (NNLIF) system from an
analytical and a numerical point of view. It is one of the simplest self-contained mean-field models considered
for the description of neural networks. It was initially presented in [7] and is based on a nonlinear system of
two PDEs of Fokker-Planck type and two ODEs. All the equations are nonlinearly coupled, and some terms
are time-delayed. The system represents the behaviour of a network with excitatory and inhibitory neurons,
considered as different populations, and described at a microscopic level by the leaky IF model. Their unknowns
are ρα(t, v) and Rα(t). The probability densities ρα(t, v) describe the limiting probability of a neuron of the
excitatory population (α = E) or of the inhibitory one (α = I), with a membrane potential v at time t, when
the total number of neurons of the network, n, goes to infinity. And the refractory states Rα(t), one for each
population, represent the limiting proportion of neurons that do not respond to stimuli.

To achieve a better understanding of the mathematical properties of the model, some crucial phenomena
were disregarded in the literature. For example, the transmission delay of the neural spike, the existence of
refractory states, or the fact that there are two populations [10–12]. The simplest NNLIF model, widely studied
in [12, 19, 20], corresponds to the case in which the neural network is assumed to be composed of only one
population, which can be average-excitatory or average-inhibitory, and where the neurons always respond to
stimuli. Mathematically it means that there is a PDE, with a connectivity parameter b, whose sign determines
whether the population is average-excitatory (positive b) or average-inhibitory (negative b). The inclusion of the
refractory state was analyzed in [10, 11] investigated a model for two populations without delays and without
refractory states. Some other works have studied IF neural networks at microscopic level through stochastic
equations. Among them we point out [24, 25]. Moreover, [7, 10–12, 19, 20, 24, 25] provide complementary results
at different levels of description. As a matter of fact, they can be considered as the starting point of the research
of this paper, as we explain later on.

The aim of the current work is to study mathematical aspects of a more realistic NNLIF model consisting
of two populations with refractory states and transmission delays. We demonstrate that neural networks with
part of their neurons in a refractory state always have steady states. Therefore, the presence of refractory states
produces at least one steady state, while in the absence of refractory periods [11] there are some values of the
parameters for which the model has no steady states. We are also able to give conditions for the values of the
model parameters which ensure the uniqueness of the steady state. This result is completed with a proof of
exponential convergence of the solution to the steady state for networks with small connectivity parameters and
without transmission delay. The entropy method [11, 20] will be used to achieve this goal, with the additional
difficulty that we deal with a complex system involving four equations, for which the entropy functional is
composed of excitatory and inhibitory densities and their corresponding refractory probabilities. These results
were already known for the simpler case of only one population [10, 12].

Moreover, we extend to this case the analysis of blow-up phenomena started in [10, 11] for this Fokker-Planck
model. We will observe that the network can blow-up in finite time if the transmission delay between excitatory
neurons vanishes, even if there are transmission delays between inhibitory neurons or between inhibitory and
excitatory neurons. Consequently, we show that the only way to avoid the blow-up is to consider a nonzero
transmission delay between excitatory neurons. At the microscopic level, it is known that global-in-time solutions
exist under the presence of transmission delays in the case of only one average-excitatory population (see [24, 25]).
In that direction, in [27] it was shown that the blow-up disappears also for the Omurtag-Dumont model if there
is a nonzero delay. This model, which was initially presented in [53], is closely related to the NNLIF one, since
it appears from the same microscopic approximation as the NNLIF model. Thus, its unknown ρ refers to a
similar probability density. Concerning the explosion, we refer to [35, 64], for a discussion about the suitability
of the random IF models. Futhermore, there is a great deal of works that include the delay in neural models.
For instance [73–75], where it is taken into account the spatial distribution of the populations, too.

Some analytical problems related to this model remain open. In order to better understand them and to
visually show the behaviour of the network, we develop a numerical solver for the full model. Our solver is based
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on high order flux-splitting weighted essentially non oscillatory (WENO) schemes, total variation diminishing
(TVD) Runge-Kutta methods, and an efficient numerical strategy to deal with the saving and recovering of
data needed to take the delays into account. This new numerical solver improves our previous ones [10–12] not
only because it describes the complete NNLIF model, but also because it has been optimized. It allows us to
describe the wide range of phenomena displayed by the network: blow-up, asynchronous/synchronous solutions,
instability/stability of the steady states, as well as the time evolution of the firing rates, the proportion of
refractory states, and the probability distributions of the excitatory and inhibitory populations. Besides, we
numerically explore the importance of the transmission delay between excitatory neurons to avoid the blow-
up phenomenon. Blow-up without delay is prevented if a nonzero transmission delay is considered. Instead of
blowing-up, solutions approach a stationary solution, a synchronous state, or the firing rates increase without
blowing-up in finite time. Notice that the appearance of oscillatory solutions in neural networks is a known fact,
that has been widely studied in, e.g., [1, 7–9, 49, 50, 55, 61]. To our knowledge, the numerical solver presented
in this paper is the first deterministic solver to describe the behavior of the full NNLIF system including all the
characteristic phenomena of real networks. Other deterministic solvers for related neural PDE models can be
found, for instance [4, 13, 50, 51, 55, 56, 58].

Developing efficient numerical solvers that consider all relevant phenomena is essential to work out strategies
that, on the one hand, give answer to the open questions as for instance the stability in the case of large
connectivity parameters, the importance of the transmission delay to avoid the blow-up of the solutions and
to produce periodic solutions, or the study of conditions for which synchronous solutions appear; and, on the
other hand, help to implement solvers for other large-scaled models, which are becoming more common in
computational neuroscience [41, 46, 59, 69, 70, 77].

Our work is related to the results presented in [7] and we expect to complete them in two directions: On
one hand, our numerical scheme reproduces situations studied in [7] and provides the time evolution of the
firing rates, the refractory states and the probability distributions, and, on the other hand, we contribute to the
analytical study of the number of steady states, their stability for small connectivity parameters, the blow-up
phenomenon and the importance of the transmission delay to avoid it.

There are many other PDE models that are used to describe the behavior of neural networks: Population
density models of IF neurons with jumps [26–28, 53], Fokker-Planck equations for uncoupled neurons [49, 50];
Fokker-Planck equations including conductance variables, [13, 57, 61] (and references therein), time elapsed
models [54–56] which have been recently derived as mean-field limits of Hawkes processes [22, 23], McKean-
Vlasov equations [2, 48], which are the mean-field equations related to the behaviour of Fitzhugh-Nagumo
neurons [32], etc. Finding relations between these different families of PDEs is an interesting issue. The works
[29–31] are in that direction, since the authors showed connections between some Fokker-Planck equations and
the elapsed models.

The paper is structured as follows. In the second section we describe the model and the concept of solution
considered. In Section 3 we analyze the number of steady states, prove exponential convergence to the unique
stationary solution when the connectivity parameters are small enough, and present a criterion to obtain solu-
tions that blow-up in finite time. Our numerical scheme is detailed in Section 4. In Section 5 we illustrate the
theoretical results and explore the complex dynamics of the NNLIF model in some aspects that have not been
treated from an analytical point of view due to its complexity. Finally, in Section 6 we present some conclusions
and open problems.

2. The model

In this section we provide the conceptual mathematical and biological framework of this paper. We explain
how the system of PDEs and ODEs, that represents the full NNLIF model, is derived from the biological model
that describes the behavior of the neurons at a microscopic level, by means of IF neuron models. We refer to
[6–8, 28, 35, 36, 38, 62, 64, 65, 71, 72, 78], and references therein, for a background on different versions of the
IF model and its validation as a suitable neuroscience model.
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We consider a neural network with n neurons (nE excitatory and nI inhibitory) described by the IF model,
which depicts the activity of the membrane potential. The time evolution of the membrane potential Vα(t) of
an inhibitory neuron (α = I) or an excitatory one (α = E) is given by the following equation (see [7, 8] for
details)

Cm
dV α

dt
(t) = −gL(V α(t)− VL) + Iα(t), (2.1)

where Cm is the capacitance of the membrane, gL is the leak conductance, VL is the leak reversal potential and
Iα(t) is the incoming synaptic current, which models all the interactions of the neuron with other neurons. In
the absence of interactions with other neurons (Iα(t) = 0), the membrane potential relaxes towards a resting
value VL. However, the interaction with other neurons provokes the neuron to fire, that is, it emits an action
potential (spike) when V α(t) reaches its threshold or firing value VF , and the membrane potential relaxes to
a reset value VR. (Let us remark that VL < VR < VF ). Each neuron receives Cext connections from excitatory
neurons outside the network and C = CE + CI connections from neurons in the network, of which CE = ε nE
are from excitatory neurons and CI = ε nI are from inhibitory neurons. These connections are assumed to be
randomly choosen, and the network to be sparsely connected, namely, ε = CE

nE
= CI

nI
<< 1, see [7]. The synaptic

current Iα(t) takes the form of the following stochastic process

Iα(t) = JαE

C̄E∑
i=1

∑
j

δ(t− tiEj −Dα
E)− JαI

CI∑
i=1

∑
j

δ(t− tiIj −Dα
I ), α = E, I,

where Dα
E ≥ 0, Dα

I ≥ 0 are the synaptic delays, tiEj and tiIj are the times of the jth-spike coming from the ith-

presynaptic neuron for excitatory and inhibitory neurons, respectively, C̄E = CE +Cext, and Jαk , for α, k = E, I,
are the strengths of the synapses. The stochastic character is enclosed in the distribution of the spike times of the
neurons. The spike trains of all neurons in the network are supposed to be described by Poisson processes with
a common instantaneous firing rate, να(t), α = E, I. These processes are supposed to be independent [7, 12].
By using these hypotheses and assuming Cext = CE , the mean value of the current, µαC(t), and its variance,
σα2
C (t), take the form

µαC(t) = CEJ
α
EνE(t−Dα

E)− CIJαI νI(t−Dα
I ), (2.2)

σα2
C (t) = CE(JαE)2νE(t−Dα

E) + CI(J
α
I )2νI(t−Dα

I ). (2.3)

Many authors [7, 8, 47, 53] approximate the incoming synaptic current by a continuous-in-time stochastic
process of Ornstein-Uhlenbeck type which has the same mean and variance as the Poissonian spike-train process.
Specifically, Iα(t) is approached by

Iα(t)dt ≈ µαC(t) dt+ σαC(t) dBt, α = E, I, (2.4)

where Bt is the standard Brownian motion. This diffusion approximation becomes exact in the infinitely large
network limit, n→∞, if the synaptic strengths JαE and JαI , α = E, I, are scaled appropriately with the network
sizes CE and CI , as shown in [62].

Summing up, the approximation to the stochastic diferential model (2.1), taking the voltage and time units
so that Cm = gL = 1, finally yields

dV α(t) = (−V α(t) + VL + µαC(t)) dt+ σαC(t) dBt, V α ≤ VF , α = E, I, (2.5)
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with the jump process V α(t+0 ) = VR, V α(t−0 ) = VF , whenever at t0 the voltage reaches the threshold value VF .
The firing rate or probability of firing per unit time of the Poissonian spike train, να(t), is calculated in [62] as

να(t) = να,ext +Nα(t), α = E, I,

where να,ext is the frequency of the external input and Nα(t) is the mean firing rate of the population α. Also,
νI,ext = 0 since the external connections are with excitatory neurons.

Going back to (2.5), a system of coupled PDEs for the evolution of the probability densities ρα(v, t) can be
written, where ρα(v, t) denotes the limiting probability of finding a neuron in the population α, with a voltage
v ∈ (−∞, VF ] at a time t ≥ 0.

Using Itô’s rule [7, 8, 47, 53, 63], the stochastic equations (2.1) and (2.4) are transformed into a system of
coupled Fokker-Planck or backward Kolmogorov equations with sources

∂ρI
∂t (v, t) + ∂

∂v [hI(v,NE(t−DI
E), NI(t−DI

I ))ρI(v, t)]− aI(NE(t−DI
E), NI(t−DI

I ))∂
2ρI
∂v2 (v, t)

= MI(t)δ(v − VR),

∂ρE
∂t (v, t) + ∂

∂v [hE(v,NE(t−DE
E), NI(t−DE

I ))ρE(v, t)]− aE(NE(t−DE
E), NI(t−DE

I ))∂
2ρE
∂v2 (v, t)

= ME(t)δ(v − VR),

(2.6)

with hα(v,NE(t−Dα
E), NI(t−Dα

I )) = −v + VL + µαC and aα(NE(t−Dα
E), NI(t−Dα

I )) =
σα2
C

2 . The right hand
sides in (2.6) represent the fact that when neurons reach the threshold potential VF , they emit a spike over the
network, reset their membrane potential to the reset value VR and remain some time in a refractory period,

denoted τα. Different choices ofMα(t) can be considered:Mα(t) = Nα(t−τα), as studied in [7], orMα(t) = Rα(t)
τα

,
as proposed in [10]. Thus, system (2.6) is completed with two ODEs for Rα(t), the limiting probabilities to find
a neuron from population α in the refractory state,

dRα(t)

dt
= Nα(t)−Mα(t), ∀α = E, I, (2.7)

Dirichlet boundary conditions and initial data

ρα(−∞, t) = 0, ρα(VF , t) = 0, ρα(v, 0) = ρ0
α(v) ≥ 0, Rα(0) = R0

α ≥ 0, α = E, I. (2.8)

In order to simplify the notation, we denote dαk = Ck(Jαk )2 ≥ 0 and bαk = CkJ
α
k ≥ 0 for k, α = E, I, and the

variable v is translated with the factor VL+ bEE νE,ext. Let us remark that we keep the same notation for the other
involved values (VR, VF ) and also v for the new variable. With the new voltage variable and using expressions
(2.2) and (2.3) for µαC(t) and σαC(t), the drift and diffusion coefficients become

hα(v,NE(t−Dα
E), NI(t−Dα

I )) = −v + bαENE(t−Dα
E)− bαINI(t−Dα

I ) + (bαE − bEE)νE,ext, (2.9)

aα(NE(t−Dα
E), NI(t−Dα

I )) = dαEνE,ext + dαENE(t−Dα
E) + dαINI(t−Dα

I ), α = E, I. (2.10)

The coupling of the system (2.6) is hidden in these two terms, since the mean firing rates Nα obey to

Nα(t) = −aα(NE(t), NI(t))
∂ρα
∂v

(VF , t) ≥ 0, α = E, I. (2.11)

Moreover, (2.11) gives rise to the nonlinearity of (2.6), since firing rates are defined in terms of boundary
conditions on the distribution functions ρα. On the other hand, since RE and RI represent probabilities and
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ρE and ρI are probability densities, the total mass is conserved:

∫ VF

−∞
ρα(v, t) dv +Rα(t) =

∫ VF

−∞
ρ0
α(v) dv +R0

α = 1 ∀ t ≥ 0, α = E, I. (2.12)

To finish the description of the model, we remark that system (2.6) also includes the case of only one
population (in average excitatory or inhibitory), with refractory state and transmission delay. Specifically, we
can remove α in (2.6) by considering only one PDE for the probability density, ρ(v, t), which is coupled to an
ODE for the probability that a neuron is in a refractory state, R(t):

∂ρ

∂t
(v, t) +

∂

∂v
[h(v,N(t−D))ρ(v, t)]− a(N(t−D))

∂2ρ

∂v2
(v, t) = M(t)δ(v − VR),

dR(t)

dt
= N(t)−M(t), with M(t) = N(t− τ) or M(t) = R(t)/τ,

N(t) = −a(N(t−D))
∂ρ

∂v
(VF , t) ≥ 0,

ρ(−∞, t) = 0, ρ(VF , t) = 0, ρ(v, 0) = ρ0(v) ≥ 0, R(0) = R0,

(2.13)

with drift and diffusion terms

h(v,N(t)) = −v + bN(t) + νext, (2.14)

a(N(t)) = d0 + d1N(t), (2.15)

where the connectivity parameter b is positive for an average-excitatory population and negative for an average-
inhibitory population, d0 > 0, d1 ≥ 0, τ > 0 is the refractory period, and νext describes the external firing rate
(note that this parameter and νE,ext have different units, since νext includes other model constants).

To conclude the presentation of the model, we introduce the notion of solution that we consider in this work
(see [10–12]).

Definition 2.1. Let ρα ∈ L∞(R+;L1
+((−∞, VF ))), Nα ∈ L1

loc,+(R+) and Rα ∈ L∞+ (R+) for α = E, I. Then
(ρE , ρI , RE , RI , NE , NI) is a weak solution of (2.6)–(2.10) if for any test function φ(v, t) ∈ C∞((−∞, VF ]× [0, T ])

and such that ∂2φ
∂v2 , v

∂φ
∂v ∈ L

∞((−∞, VF )× (0, T )), the following relation

∫ T

0

∫ VF

−∞
ρα(v, t)

[
−∂φ
∂t
− ∂φ

∂v
hα(v,NE(t−Dα

E), NI(t−Dα
I ))− aα(NE(t−Dα

E), NI(t−Dα
I ))

∂2φ

∂v2

]
dvdt

=

∫ T

0

[Mα(t)φ(VR, t)−Nα(t)φ(VF , t)]dt+

∫ VF

−∞
ρ0
α(v)φ(v, 0)dv −

∫ VF

−∞
ρα(v, T )φ(v, T ) dv (2.16)

is satisfied, and Rα are solutions of the ODEs

dRα(t)

dt
= Nα(t)−Mα(t).

We recall some notations involved in Definition 2.1. For 1 ≤ p <∞, Lp(Ω) is the space of functions such that
fp is integrable in Ω, L∞(Ω) is the space of essentially bounded functions in Ω, L∞+ (Ω) represents the space
of non-negative essentially bounded functions in Ω, C∞(Ω) is the set of infinitely differentiable functions in Ω,
and L1

loc,+(Ω) denotes the set of non-negative functions that are locally integrable in Ω.
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3. Steady states and long time behavior

The study of the number of steady states for excitatory and inhibitory NNLIF neural networks, with refractory
periods and transmission delays of the spikes (2.6) (considering Rα either as defined in [10] or in [7]), can
be done combining the ideas of [10–12], with the additional difficulty that the system to be dealt with is
now more complicated, because there are two coupled non-linear PDEs and two ODEs. The steady states
(ρE , ρI , NE , NI , RE , RI) of (2.6) satisfy

∂

∂v
[hα(v)ρα(v)− aα(NE , NI)

∂ρα
∂v

(v) +
Rα
τα
H(v − VR)] = 0, Rα = ταNα, α = E, I,

in the sense of distributions, with H denoting the Heaviside function and hα(v,NE , NI) = V α0 (NE , NI) − v,
where V α0 (NE , NI) = bαENE − bαINI + (bαE − bEE)νE,ext. We remark that this equation is the same as the equation
for stationary solutions in a network without transmission delays. Using the definition of Nα and the Dirichlet
boundary conditions of (2.6) we obtain an initial value problem for every α = E, I, whose solutions are

ρα(v) =
Nα

aα(NE , NI)
e
− (v−V α0 (NE,NI ))

2

2aα(NE,NI )

∫ VF

max(v,VR)

e
(w−V α0 (NE,NI ))

2

2aα(NE,NI ) dw α = E, I. (3.1)

Moreover, the conservation of mass (2.12), which takes into account the refractory states, yields a system of
implicit equations for Nα

1− ταNα =
Nα

aα(NE , NI)

∫ VF

−∞
e
− (v−V α0 (NE,NI ))

2

2aα(NE,NI )

∫ VF

max(v,VR)

e
(w−V α0 (NE,NI ))

2

2aα(NE,NI ) dw dv. (3.2)

If this system could be solved, the profile (3.1) would provide an exact expression for ρα. In order to handle the
previous system more easily, we use two changes of variables as in [11]. First:

z =
v − V E0 (NE , NI)√

aE(NE , NI)
, u =

w − V E0 (NE , NI)√
aE(NE , NI)

, wF :=
VF − V E0 (NE , NI)√

aE(NE , NI)
, wR :=

VR − V E0 (NE , NI)√
aE(NE , NI)

,

z̃ =
v − V I0 (NE , NI)√

aI(NE , NI)
, ũ =

w − V I0 (NE , NI)√
aI(NE , NI)

, w̃F :=
VF − V I0 (NE , NI)√

aI(NE , NI)
, w̃R :=

VR − V I0 (NE , NI)√
aI(NE , NI)

,

and (3.2) is then written as

1

NE
− τE = I1(NE , NI), where I1(NE , NI) =

∫ wF

−∞
e−

z2

2

∫ wF

max(z,wR)

e
u2

2 du dz,

1

NI
− τI = I2(NE , NI), where I2(NE , NI) =

∫ w̃F

−∞
e−

z2

2

∫ w̃F

max(z,w̃R)

e
u2

2 du dz. (3.3)

As a consequence of (3.3), and the positivity of I1 and I2, we observe that the stationay firing rates satisfy:

Nα <
1

τα
α = E, I. (3.4)

And therefore, Rα = ταNα < 1. Next, the change of variables s = z−u
2 and s̃ = z+u

2 allows to formulate the
functions I1 and I2 as

I1(NE , NI) =

∫ ∞
0

e−
s2

2

s
(eswF − eswR) ds, (3.5)
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I2(NE , NI) =

∫ ∞
0

e−
s2

2

s
(es w̃F − es w̃R) ds. (3.6)

If bEI = bIE = 0 the equations are uncoupled, we are then reduced to the case of article [10]. The following
theorem analyses the coupled case.

Theorem 3.1. Assume that bEI > 0, bIE > 0, τE > 0, τI > 0, aα(NE , NI) = aα constant, and hα(v,NE , NI) =
V α0 (NE , NI)− v with V α0 (NE , NI) = bαENE − bαINI + (bαE − bEE)vE,ext for α = E, I. Then there is always an odd

number of steady states for (2.6) for both possible choices of Mα(t): Mα(t) = Nα(t− τα) and Mα(t) = Rα(t)
τα

.

Moreover, if bEE is small enough or τE is large enough (in comparison with the rest of parameters), then there
is a unique steady state for (2.6) for both choices of Mα(t).

Proof. The proof is based on determining the number of solutions of the system

1 = NE (τE + I1(NE , NI)) , 0 < NE <
1

τE
, (3.7)

1 = NI (τI + I2(NE , NI)) , 0 < NI <
1

τI
. (3.8)

With this aim, we adapt some ideas of [10, 11] to the system (3.7)–(3.8). Let us remember some of the most
relevant properties of the functions I1 and I2 (see (3.5) and (3.6)), which were proved in [11]. I1 satisfies:

1. I1(NE , NI) is C∞ in both variables.
2. For every NE ∈ [0,∞) fixed, I1(NE , NI) is an increasing strictly convex function on NI , since for all

integers k ≥ 1

∂kI1
∂Nk

I

=

(
bIE√
aE

)k ∫ ∞
0

e−
s2

2 sk−1(eswF − eswR) ds.

Thus, lim
NI→∞

I1(NE , NI) =∞, for every NE ∈ [0,∞) fixed.

3. For every NI ∈ [0,∞) fixed, I1(NE , NI) is a decreasing convex function on NE , since for all integers k ≥ 1

∂kI1
∂Nk

E

= (−1)k
(

bEE√
aE

)k ∫ ∞
0

e−
s2

2 sk−1(eswF − eswR) ds.

Thus, lim
NE→∞

I1(NE , NI) = 0, for every NI ∈ [0,∞) fixed.

And I2 verifies:

1. I2(NE , NI) is C∞ on both variables.
2. For every NE fixed, I2(NE , NI) is an increasing strictly convex function on NI , since for all integers k ≥ 1

∂kI2
∂Nk

I

=

(
bII√
aI

)k ∫ ∞
0

e−
s2

2 sk−1(esw̃F − esw̃R) ds. (3.9)

Thus, lim
NI→∞

I2(NE , NI) =∞ for every NE fixed.
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3. If we consider NI ∈ [0,∞), I2(NE , NI) is a decreasing convex function on NE , since for all integers k ≥ 1

∂kI2
∂Nk

E

= (−1)k
(
bIE√
aI

)k ∫ ∞
0

e−
s2

2 sk−1(esw̃F − esw̃R) ds. (3.10)

Thus, lim
NE→∞

I2(NE , NI) = 0, for every NI fixed.

4. Using expression (3.3) for I2, for every NE fixed, I2(NE , 0) <∞, since

I2(NE , 0) =

∫ w̃F (0)

−∞
e−

z̃2

2

∫ w̃F (0)

max(z̃,w̃R(0))

e
ũ2

2 dũdz̃ ≤
√

2π

(
VF − VR√

aI

)
e
m

2aI ,

where m = max{(VF − bIENE − (bIE − bEE)vE,ext)
2, (VR − bIENE − (bIE − bEE)vE,ext)

2}.

Now we are ready to tackle the issue of the number of solutions to the system (3.7)–(3.8).

• Step 1. For every NE > 0 fixed, there is a unique solution NI(NE) that solves (3.8). This happens
due to the fact that for NE > 0 fixed, the function f(NI) = NI (τI + I2(NE , NI)) satisfies: f(0) = 0,

f( 1
τI

) = 1 +
I2(NE ,

1
τI

)

τI
> 1 and that it is increasing, since I2(NE , NI) is an increasing, strictly convex

function on NI (property 2).

• Step 2. There is always an odd number of steady states. This step is a consequence of the fact
that the function F(NE) := NE [I1(NE , NI(NE)) + τE ] satisfies that F(0) = 0 and that F( 1

τE
) =

1 +
I1
(

1
τE
,NI( 1

τE
)
)

τE
> 1.

• Step 3. Values of the parameters that provide sufficient conditions for the uniqueness of the steady state.
We analyze the derivative of F :

F ′(NE) = I1(NE , NI(NE)) + τE +NE

[
− bEE√

aE
+

bEI√
aE

N ′I(NE)

] ∫ ∞
0

e
−s2
2 (eswF − eswR) ds.

It is non-negative for 0 < NE < 1
τE

, for certain parameter values, and therefore there is a unique steady

state in these cases. For bEE small, F ′(NE) is positive since all the terms are positive, because N ′I(NE) is
positive (see the proof of Thm. 4.1 in [11]). For τE large, the proof of the positivity of F ′(NE) is more
complicated. It is necessary to use

N ′I(NE) =
bIEN

2
I (NE)I(NE)

√
aI + bIIN

2
I (NE)I(NE)

, (3.11)

where

I(NE) =

∫ ∞
0

e−s
2/2e

−(bIENE−b
I
INI (NE)+(bIE−b

E
E)νE,ext)s√

aI

(
esVF /

√
aI − esVR/

√
aI
)

ds.

This expression for N ′I(NE) is obtained differentiating (3.8) respect to NE . The function NI(NE) is

increasing and I(NE) is decreasing, since 0 < N ′I(NE) <
bIE
bII

(see the proof of Thm. 4.1 in [11]). Therefore,

for 0 < NE < 1
τE

,

A < − bEE√
aE

+
bEI√
aE

N ′I(NE) < B,
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where A := − bEE√
aE

+
bEI√
aE

bIEN
2
I (0)I( 1

τE
)

√
aI+bIIN

2
I ( 1
τE

)I(0)
and B := − bEE√

aE
+

bEI√
aE

bIEN
2
I ( 1
τE

)I(0)
√
aI+bIIN

2
I (0)I( 1

τE
)
. Thus, if 0 ≤ A it is

obvious that F(NE) is increasing. For the case A < 0, some additional computations are needed. First,
we consider Im := min0≤NE≤ 1

τE

I1(NE , NI(NE)). Next, since A < 0,

Im + τE +
A

τE
Ĩ(τE) ≤ F ′(NE),

where Ĩ(τE) :=

∫ ∞
0

e−
s2

2 e
sbEI NI (

1
τE

)

√
aE

(
e
sVF√
aE − e

sVR√
aE

)
ds. Finally, if 0 < Im+ τE + A

τE
Ĩ(τE), or equivalently

−AĨ(τE) < τE(Im + τE), then F(NE) is increasing. We observe that it happens for τE large enough.

Remark 3.2. Analyzing in more detail the expression of A in the previous proof (A = − bEE√
aE

+

bEI√
aE

bIEN
2
I (0)I( 1

τE
)

√
aI+bIIN

2
I ( 1
τE

)I(0)
), we observe that for bIEb

E
I large or bII small enough, in comparison with the rest of

parameters, there is also a unique stationary solution, since A > 0.
In other words, what we obtain is the uniqueness of the steady state in terms of the size of the parameters.

More precisely: If one of the two pure connectivity parameters, bEE or bII , is small, or one of the two cross
connectivity parameters, bIE or bIE , is large, or the excitatory refractory period, τE , is large, then there exists a
unique steady state.

3.1. Long time behavior

As proved in [11, 20], where no refractory states were considered, the solutions converge exponentialy fast to
the unique steady state when the connectivity parameters are small enough. We extend these results to the case
where refractory states, but no delays, are included. We prove the result for the case of only one population in
the following theorem, and then show the general case of two populations.

Theorem 3.3. Consider system (2.13) and M(t) = R(t)
τ . Assume that the connectivity parameter b is small

enough, |b| << 1, the diffusion term is constant, a(N) = a for some a > 0, there is no transmission delay, D = 0,
and that the initial datum is close enough to the unique steady state (ρ∞, R∞, N∞),

∫ VF

−∞
ρ∞(v)

(
ρ0(v)− ρ∞(v)

ρ∞(v)

)2

dv +R∞

(
R(0)

R∞
− 1

)2

≤ 1

2|b|
. (3.12)

Then, for fast decaying solutions to (2.13) there is a constant µ > 0 such that for all t ≥ 0

∫ VF

−∞
ρ∞(v)

(
ρ(v)− ρ∞(v)

ρ∞(v)

)2

dv +
(R(t)−R∞)2

R∞
≤ e−µt

[∫ VF

−∞
ρ∞

(
ρ0(v)− ρ∞(v)

ρ∞(v)

)2

dv +
(R0 −R∞)2

R∞

]
.

Proof. The proof combines a relative entropy argument with the Poincaré’s inequality that is presented in ([10],
Prop. 5.3). Additionally, to deal with the nonlinearity (the connectivity parameter does not vanish) we follow
some ideas of ([20], Thm. 2.1). Notice that along the proof we will use the simplified notation

p(v, t) =
ρ(v, t)

ρ∞(v)
, r(t) =

R(t)

R∞
, η(t) =

N(t)

N∞
.
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First, for any smooth convex function G : R+ → R, we recall that a natural relative entropy for equation (2.13)
is defined as

E(t) :=

∫ VF

−∞
ρ∞G(p(v, t)) dv +R∞G(r(t)). (3.13)

The time derivative of the relative entropy (3.13) can be written as

d

dt
E(t) =−a

∫ VF

−∞
ρ∞(v)G′′(p(v, t))

[
∂p

∂v

]2

(v, t) dv

− N∞ [G(η(t))−G(p(VR, t))− (r(t)− p(VR, t))G′(p(VR, t))− (η(t)− r(t))G′(r(t)]

+ b(N(t)−N∞)

∫ VF

−∞

∂ρ∞
∂v

(v) [G(p(v, t))− p(v, t)G′(p(v, t))] dv. (3.14)

Expression (3.14) is achieved after some simple computations, taking into account that (ρ,R,N) is a solution
of equation (2.13) and that (ρ∞, R∞, N∞) is the unique steady state of the same equation, thus given by

∂

∂v
[h(v,N∞)ρ∞(v)]− a∂

2ρ∞
∂v2

(v) =
R∞
τ
δ(v − VR),

R∞ = τN∞, N∞ = −a∂ρ∞
∂v

(VF ) ≥ 0,

ρ∞(−∞) = 0, ρ∞(VF ) = 0.

Specifically, we can obtain sucessively the following relations:

∂p

∂t
−
(
v − bN +

2a

ρ∞

∂ρ∞
∂v

)
∂p

∂v
− a∂

2p

∂v2
=

R∞
τρ∞

δ(v − VR) (r − p)− p

ρ∞
b(N −N∞)

∂ρ∞
∂v

, (3.15)

∂G (p)

∂t
−
(
v − bN +

2a

ρ∞

∂ρ∞
∂v

)
∂G (p)

∂v
− a∂

2G (p)

∂v2
= −G′ (p) p

ρ∞
b(N −N∞)

∂ρ∞
∂v

− aG′′ (p)
(
∂p

∂v

)2

+G′ (p)
R∞
τρ∞

δ(v − VR) (r − p) ,

(3.16)

and

∂

∂t
ρ∞G (p)− ∂

∂v
[(v − bN)ρ∞G (p)]− a ∂

2

∂v2
[ρ∞G (p)] = b(N −N∞)

∂ρ∞
∂v

[G (p)− pG′ (p)]− aρ∞G′′ (p)
(
∂p

∂v

)2

+
R∞
τ
δ(v − VR) [(r − p)G′ (p) +G (p)] . (3.17)

Finally, (3.14) is obtained after integrating (3.17) with respect to v, between −∞ and VF , taking into account
that

a
∂

∂v
[ρ∞G (p)]v=VF

= −N∞G (η) ,
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due to the boundary condition at VF and the l’Hopital rule, and adding

d

dt
R∞G (r) =

R∞
τ
R∞G

′ (r) (η − r) . (3.18)

To obtain the exponential rate of convergence stated in the theorem, we consider G(x) = (x− 1)2 in (3.14). Its
first term is negative and will provide the strongest control when combined with the Poincaré’s inequality. After
some algebraical computations, the second term can be written as

−N∞[G(η(t))−G(p(VR, t))− (r(t)− p(VR, t))G′(p(VR, t))− (η(t)− r(t))G′(r(t)]
= −N∞[(r(t)− η(t))2 + (r(t)− p(VR, t))2].

Applying the inequality (a+ b)2 ≥ ε(a2 − 2b2), for a, b ∈ R and 0 < ε < 1
2 , we obtain

−N∞(r(t)− η(t))2 ≤ −εN∞(η(t)− 1)2 + 2εN∞(r(t)− 1)2. (3.19)

Recalling the Poincaré’s inequality of ([10], Prop. 5.3), and in a similar way as in [20], for small connectivity
parameters, there exists γ > 0 such that:

∫ VF

−∞

(ρ− ρ∞)2

ρ∞
dv +

(R−R∞)2

R∞
≤ 1

γ

[∫ VF

−∞
ρ∞(v)

[
∂p

∂v

]2

(v, t) dv +N∞(r(t)− p(VR, t))2

]
, (3.20)

thus

(r(t)− 1)2 ≤ 1

γR∞

∫ VF

−∞
ρ∞(v)

[
∂p

∂v

]2

(v, t) dv +
N∞
γR∞

(r(t)− p(VR, t))2, (3.21)

and therefore

2εN∞(r(t)− 1)2 ≤ 2εN∞
γR∞

∫ VF

−∞
ρ∞(v)

[
∂p

∂v

]2

(v, t) dv +
2εN∞
γR∞

N∞(r(t)− p(VR, t))2. (3.22)

Joining now estimates (3.19) and (3.22), choosing 0 < ε < 1
2 such that 2εN∞

γR∞
< min(a2 ,

1
2 ) and denoting C0 :=

εN∞ yields

−N∞[G(η(t))−G(p(VR, t))− (r(t)− p(VR, t))G′(p(VR, t))− (η(t)− r(t))G′(r(t)]

≤ −C0G(η(t)) +
a

2

∫ VF

−∞
ρ∞(v)

[
∂p

∂v

]2

(v, t) dv − 1

2
N∞(r(t)− p(VR, t))2. (3.23)

The third term can be bounded in the same way as in [20]. Thus, for some C > 0 we have

b(N(t)−N∞)

∫ VF

−∞

∂ρ∞
∂v

(v)[G(p(v, t))− p(v, t)G′(p(v, t))] dv

≤ C(2b2 + |b|)(η(t)− 1)2 + a

∫ VF

−∞
ρ∞

[
∂p

∂v

]2

(v, t) dv

(
1

2
+ |b|

∫ VF

−∞
ρ∞(v)(p(v, t)− 1)2 dv

)
. (3.24)
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Combining estimates (3.23) and (3.24) gives the bound

d

dt
E(t) ≤−C0(η(t)− 1)2 + C(2b2 + |b|)(η(t)− 1)2 − 1

2
N∞(r(t)− p(VR, t))2

− a
∫ VF

−∞
ρ∞(v)

[
∂p

∂v

]2

(v, t) dv

(
1− |b|

∫ VF

−∞
ρ∞(v)(p(v, t)− 1)2 dv

)
. (3.25)

Taking now b small enough such that C(2b2 + |b|) ≤ C0 we obtain

d

dt
E(t) ≤ −C̃

[∫ VF

−∞
ρ∞(v)

[
∂p

∂v

]2

(v, t) dv +N∞(r(t)− p(VR, t))2

]

− a

2

∫ VF

−∞
ρ∞(v)

[
∂p

∂v

]2

(v, t) dv

(
1− 2|b|

∫ VF

−∞
ρ∞(v)(p(v, t)− 1)2 dv

)

≤ −µE(t)− a

2
(1− 2|b|E(t))

∫ VF

−∞
ρ∞(v)

[
∂p

∂v

]2

(v, t) dv,

where Poincaré’s inequality (3.20) was used, with C̃ = min(a2 ,
1
2 ), µ = C̃γ. Finally, thanks to the choice of the

initial datum (3.12) and Gronwall’s inequality, the relative entropy decreases for all times so that, E(t) ≤ 1
2|b| ,

∀t ≥ 0, and the result is proved:

E(t) ≤ e−µtE(0) ≤ e−µt 1

2|b|
.

For two populations with refractory states (as given in model [10]), this exponential rate of convergence to
the unique steady can also be proved. The proof is achieved by considering the full entropy for both populations:

E [t] :=

∫ VF

−∞
ρ∞E (v)

(
ρE(v)− ρ∞E (v)

ρ∞E (v)

)2

dv +

∫ VF

−∞
ρ∞I (v)

(
ρI(v)− ρ∞I (v)

ρ∞I (v)

)2

dv

+
(RE(t)−R∞E )2

R∞E
+

(RI(t)−R∞I )2

R∞I
,

and proceeding in the same way as in ([11], Thm. 4.2), taking into account that now there are some terms with
refractory states which have to be handled, as in Theorem 3.3.

Theorem 3.4. Consider system (2.6) for two populations, with Mα(t) = Rα(t)
τα

, α = I, E. Assume that the
connectivity parameters bαi are small enough, the diffusion terms aα > 0 are constant, the transmission delays
Dα
i vanish (α = I, E, i = I, E), and that the initial data (ρ0

E , ρ
0
I) are close enough to the unique steady state

(ρ∞E , ρ
∞
I ):

E [0] <
1

2 max
(
bEE + bEI , b

I
E + bII

) .
Then, for fast decaying solutions to (2.6), there is a constant µ > 0 such that for all t ≥ 0

E [t] ≤ e−µtE [0].
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Consequently, for α = E, I∫ VF

−∞
ρ∞α (v)

(
ρα(v)− ρ∞α (v)

ρ∞α (v)

)2

dv +
(Rα(t)−R∞α )2

R∞α
≤ e−µtE [0].

In the previous results the delays were assumed to vanish, however a similar strategy could be considered for
the model with delays to prove the exponential convergence. The problem in this case is that the second term
of the right hand side of inequality (3.25) is transformed into C(2b2 + |b|)(η(t−D)− 1)2, and therefore should
be compared to C0(η(t)− 1)2. It seems that the solutions also converge exponentially fast to the steady state
for small nonzero values of the delays, since in these cases both terms might be compared. However, for larger
values of the delay(s), it does not seem easy to ensure the negativity of the sum of both terms (as done in the
proof of Thm. 3.3).

To conclude the study about the long time behavior we have to remember that solutions to (2.6) may blow-up
in finite time if there are no delays. Specifically, following similar steps as those developed in ([10], Thm. 3.1)
and ([11], Thm. 3.1), we can prove an analogous result for the general system (2.6) without delay between
excitatory neurons, this is DE

E = 0:

Theorem 3.5. Assume that

hE(v,NE , NI) + v ≥ bEENE − bEI NI , (3.26)

aE(NE , NI) ≥ am > 0, (3.27)

∀ v ∈ (−∞, VF ], and ∀ NI , NE ≥ 0. Assume also that DE
E = 0 and that there exists some C > 0 such that∫ t

0

NI(s−DE
I ) ds ≤ C t, ∀ t ≥ 0. (3.28)

Then, a weak solution to the system (2.6), for both possible choices of Mα(t): Mα(t) = Nα(t− τα) and Mα(t) =
Rα(t)
τα

, cannot be global in time because one of the following reasons:

• bEE > 0 is large enough, for ρ0
E fixed.

• ρ0
E is ‘concentrated enough’ around VF :∫ VF

−∞
eµvρ0

E(v) dv ≥ eµVF

bEEµ
, for a certain µ > 0 (3.29)

and for bEE > 0 fixed.

Therefore, thanks to Theorems 3.4 and 3.5, we may conclude that, even with a unique steady state, if system
(2.6) has immediate spike transmissions between excitatory neurons, (that is DE

E = 0) then solutions can blow-
up, whether initially they are close enough to the threshold potential or whether the excitatory neurons are
highly connected (that is bEE is large enough). In the following numerical experiments we will show that the
transmission delay between excitatory neurons prevent the blow-up phenomenon, but the rest of the transmission
delays cannot avoid it.

4. Numerical scheme

In this section we describe the deterministic numerical scheme that has been used to complete the theoretical
analysis with numerical results. For simplicity in the explanation, we will focus on the one-population case, and
only show how to extend it for two populations in the most difficult parts. Moreover, we recommend [45] for a
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great review of numerical methods for conservation laws and [4, 13, 50, 51, 58] for other deterministic methods
developed for related neural PDE models.

Let us consider the simplest NNLIF model (2.13) as an example to describe this numerical solver. We first
rewrite the equation as

∂ρ

∂t
(v, t) = − ∂

∂v
[h(v,N(t−D))ρ(v, t)] + a(N)

∂2ρ

∂v2
(v, t) +M(t)δ(v − VR),

and consider a uniform space mesh for v ∈ I := [−Vleft, VF ] given by vi = v0 + i dv ∀i = 1, ..., n and where −Vleft
is chosen such that ρ(−Vleft, t) ∼ 0, since ρ(−∞, t) = 0. Then, we approximate the two derivatives, the refractory
states function M(t) and the Dirac delta of the right hand side (RHS). The first derivative is approximated
by a fifth order flux-splitting WENO scheme, as described below. The second derivative is approximated by
standard second order finite differences and the Dirac delta by a very concentrated Maxwellian function.

To approximate the function M(t) we have to distinguish two cases: M(t) = N(t− τ), whose value is recov-

ered in the same manner as the delayed N , and M(t) = R(t)
τ , which is approximated using a finite difference

approximation of its ODE.
Thus, we denote by L the sum of all the approximations of the RHS, and write the approximated system as:{

∂ρ
∂t (v, t) = L(t, ρ(v, t)), ∀t ≥ 0, ∀v ∈ I,
ρ(v, 0) = ρ0(v), ∀v ∈ I. (4.1)

Finally, the time evolution of ρ is approximated by a third order TVD Runge-Kutta method, as described later.
The time step is adapted dynamically via a Courant-Friedrichs-Lewy (CFL) condition.

Due to the delay, during the time evolution of the solution we have to recover the value of N at time t−D,
for every time t. To implement this, we fix a time step dt and define an array of P = D

dt
positions. Therefore,

this array will save only P values of N(t) for a time interval [kD, (k + 1)D), k = 0, 1, 2, ... In the time interval
[(k + 1)D, (k + 2)D) these values of the array will be used to obtain the delayed values N(t − D) by linear
interpolation between the corresponding positions of the array. We assume that N(t) = 0, ∀t < 0, so initially all
the values of the array are zero, and the recovered values for the first time interval (k = 0) are all zero. Notice
that we use linear interpolation since the time step dt for the time evolution is taken according to the CFL
condition.

The numerical approximation of the solution for the two-populations model was implemented using the same
numerical scheme as that described above for one population. The main difference here is that the code runs over
two cores using parallel computational techniques, following the ideas in [11]. Each core handles the equations of
one of the populations. At the end of every time step the cores communicate via message passing interface (MPI)
to exchange the values of the firing rates. Also, the transmission delays were handled as for one population,
taking into account that now each processor has to save two arrays of firing rates, one for each population, since
there are four different delays.

4.1. WENO scheme

Here, we summarize the WENO scheme [42, 67] for model (2.13). For the complete model (2.6), it runs the
same way after taking into account that now there are two different fluxes: hα(v,NE(t−Dα

E), NI(t−Dα
I ))ρα(v, t)

for α = E, I. These finite difference methods are suitable to approximate singular regions, as for instance, in
semiconductor theory [16–18].

We consider the middle node mesh vi+ 1
2

= v0 + (i+ 1
2 ) dv, and denote by f(ρ(v, t)) = h(v,N(t−D))ρ(v, t).

Thus, the first derivative of the advection term is approximated by centered finite differences using the middle
nodes:

∂

∂v
f(ρ(vi, t)) ≈

f(ρ(vi+ 1
2
, t))− f(ρ(vi− 1

2
, t))

dv
, ∀i = 1, . . . , n. (4.2)
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The WENO reconstruction permits to approximate the flux f on the middle nodes

f̂i+ 1
2
≈ f(ρ(vi+ 1

2
, t)), (4.3)

f̂i− 1
2
≈ f(ρ(vi− 1

2
, t)), (4.4)

by means of the vi nodes: f̄i = f(ρ(vi, t)), as we show below.

Moreover, depending on the direction of the “wind” or Roe speed : āi+ 1
2
≡ f̄i+1−f̄i

ρi+1−ρi , (4.3) is computed using

the approximation on the right or the left of the flux on the middle node vi+ 1
2
. Specifically:

• If āi+ 1
2
≥ 0 then the wind blows from the left to the right, and thus the approximation on the left is used:

f̂i+ 1
2

= f−
i+ 1

2

.

• If āi+ 1
2
< 0 then the wind blows from the right to the left, and thus the approximation on the right is

used: f̂i+ 1
2

= f+
i+ 1

2

.

Finally, let us remember the concrete formulation of the fifth order WENO method [67]. The approximation
on the left is

f̂−
i+ 1

2

= ω0f
(0)

i+ 1
2

+ ω1f
(1)

i+ 1
2

+ ω2f
(2)

i+ 1
2

, (4.5)

where the nonlinear weights ωr are ωr = αr∑2
s=0 αs

, for r = 0, 1, 2, and the linear weights αs are given by

αs =
ds

(ε+ βs)2
s = 0, 1, 2, ε = 10−6, d0 =

3

10
, d1 =

3

5
, d2 =

1

10
,

with the smoothness indicators βs

β0 =
13

12
(f̄i − 2f̄i+1 + f̄i+2)2 +

1

4
(3f̄i − 4f̄i+1 + f̄i+2)2,

β1 =
13

12
(f̄i−1 − 2f̄i + f̄i+1)2 +

1

4
(f̄i−1 − f̄i+1)2,

β2 =
13

12
(f̄i−2 − 2f̄i−11 + f̄i)

2 +
1

4
(f̄i−2 − 4f̄i−1 + 3f̄i)

2. (4.6)

Finally, the third order fluxes are given by

f
(0)

i+ 1
2

=
1

3
f̄i +

5

6
f̄i+1 −

1

6
f̄i+2,

f
(1)

i+ 1
2

= −1

6
f̄i−1 +

5

6
f̄i +

1

3
f̄i+1,

f
(2)

i+ 1
2

=
1

3
f̄i−2 −

7

6
f̄i−1 +

11

6
f̄i.

In a similar way, the approximation on the right reads

f̂+
i+ 1

2

= ω̄0f̄
(0)

i+ 1
2

+ ω̄1f̄
(1)

i+ 1
2

+ ω̄2f̄
(2)

i+ 1
2

, (4.7)



EXCITATORY-INHIBITORY NETWORKS WITH DELAY AND REFRACTORY PERIODS 1749

where the nonlinear weights ω̄r and the linear weights ᾱs are given by

ω̄r =
ᾱr∑2
s=0 ᾱs

r = 0, 1, 2, ᾱs =
d̄s

(ε+ βs)2
s = 0, 1, 2, ε = 10−6 d̄0 =

1

10
, d̄1 =

3

5
, d̄2 =

3

10
,

where the smoothness indicators βs are defined by (4.6) and the third order fluxes are given by

f̄
(0)

i+ 1
2

=
11

6
f̄i+1 −

7

6
f̄i+2 +

1

3
f̄i+3,

f̄
(1)

i+ 1
2

=
1

3
f̄i +

5

6
f̄i+1 −

1

6
f̄i+2,

f̄
(2)

i+ 1
2

= −1

6
f̄i−1 +

5

6
f̄i +

1

3
f̄i+1.

4.2. Flux-splitting WENO scheme

Among others an inconvenient of the WENO-Roe approximation is, that sometimes it leads to solutions that
violate the entropy, as explained in [67]. This can be avoided, using a global flux-splitting. For that purpose, the
flux is split using a suitable flux-splitting f(ρ(v, t)) = fpos(ρ(v, t)) + fneg(ρ(v, t)), which has to satisfy

d

dρ
fpos(ρ(v, t)) ≥ 0,

d

dρ
fneg(ρ(v, t)) ≤ 0.

The flux-splitting considered in this paper is the Lax-Friedrich splitting [67]

fpos(ρ) =
1

2
(f(ρ) + αρ), fneg(ρ) =

1

2
(f(ρ)− αρ), where α = max

ρ
|f ′(ρ)|.

In our case f(ρ) = h(v,N)ρ, and thus α = maxv∈(−∞,VF ) |h(v,N)|.
Then the first derivative of the flux is calculated without using the Roe speed as

∂f

∂v
(ρ(vi, t)) ≈

f̂i+ 1
2
− f̂i− 1

2

dv
, ∀i = 1, ..., n, (4.8)

where f̂i+ 1
2

= f̂−pos
i+1

2

+ f̂+
neg

i+1
2

. Notice that f̂−pos
i+1

2

is obtained applying (4.5) to the splitted flux fpos and

f̂+
neg

i+1
2

is calculated as (4.7) using fneg as flux.

4.3. TVD third order Runge-Kutta method

The evolution in time of the solution of (4.1) is approximate by a third order TVD Runge-Kutta method as
in [13, 68]:

ρ(1) = ρn + dtL(tn, ρ
n),

ρ(2) =
3

4
ρn +

1

4
ρ(1) +

1

4
dtL(tn + dt, ρ(1)),

ρn+1 =
1

3
ρn +

2

3
ρ(2) +

2

3
dtL(tn + 1/2dt, ρ(2)),
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where dt denotes the time step, ρn ≡ ρ(v, tn) for n = 0, 1, 2, . . . and tn = ndt. Thus, for (flux-splitting) WENO
it reads for i = 1, . . . , n

L(t, ρ(vi, t)) ≈ a
ρ(vi+1, t)− 2ρ(vi, t) + ρ(vi−1, t)

dv2
−
f̂i+ 1

2
(t)− f̂i− 1

2
(t)

dv
+N(t)δ(vi − VR),

where the Dirac delta is approximated by a Maxwellian function that is very concentrated on VR.
In all the simulations done in this work the time step has been adapted dynamically by the CFL condition,

thus for one population models, for every time the next time step is given by

dt ≤ min

{
adv2

2
,

CFL dv

maxi{|h(vi, N(t−D))}

}
,

and for two population models by

dt≤min

{
aEdv2

2
,
aIdv

2

2
,

CFL dv

maxi{|hE(vi, NE(t−Dα
E), NI(t−Dα

I ))}
,

CFL dv

maxi{|hI(vi, NE(t−Dα
E), NI(t−Dα

I ))}

}
.

5. Numerical results

In this section we present the numerical experiments that we have performed using the solver described in
the previous section. These experiments, on the one hand, illustrate the analytical results, and on the other
hand, they help to better understand some theoretical aspects that have not been solved until now. Among
these problems, we highlight the stability of the steady states, the analysis of the behavior of the solutions when
there is a nonzero delay in the excitatory-to-excitatory synapses, and the appearance of periodic solutions.

Thus, unless otherwise specified, for the showed simulations we will consider VF = 2, VR = 1, νE,ext = 0,
aα(NE , NI) = 1 and two different types of initial condition:

ρ0
α(v) =

k√
2π
e
− (v−vα0 )2

2σα0
2
, (5.1)

where k is a constant such that

∫ VF

−Vleft
ρ0
α(v) dv ≈ 1 numerically, and

ρ0
α(v) =

Nα
aα(NE , NI)

e
− (v−V α0 (NE,NI ))

2

2aα(NE,NI )

∫ VF

max(v,VR)

e
(w−V α0 (NE,NI ))

2

2aα(NE,NI ) dw, α = E, I, (5.2)

with V α0 (NE , NI) = bαENE − bαINI + (bαE − bEE)νE,ext and where Nα is an approximated value of the stationary
firing rate. The second kind of initial data is an approximation of the steady states of the system and allows us
to study their local stability. Notice that we will also refer to (5.1) as the initial condition for the one-population
model by considering ρα = ρ, vα0 = v0 and σα2

0 = σ2
0 .

5.1. Analysis of the number of steady states

As a first step in our numerical analysis we illustrate numerically some of the results of Theorem 3.1. Figure 1
shows the behaviour of F(NE) := NE [I1(NE , NI(NE) + τE ] for different parameter values, which produces
bifurcation diagrams. In the figure on the left we observe the influence of the excitatory refractory period τE ,
considering fixed the rest of parameters; a large τE gives rise to the uniqueness of the steady state. And on the
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Figure 1. Number of steady states for system (2.6) described by Theorem 3.1. Left: For fixed
bEI = 7, bII = 2, bIE = 0.01, bEE = 3 and τI = 0.2, we observe the influence of the excitatory
refractory period τE . Right: For fixed bEI = 7, bII = 2, bIE = 0.01 and τE = τI = 0.2, we observe
the influence of the connectivity parameter bEE .

right, the impact of the connectivity parameter bEE is described. In this case, a small bEE guarantees a unique
stationary solution. Moreover, as noted in Remark 3.2, we observe the uniqueness of the steady state if the
system is highly connected between excitatory and inhibitory neurons, or if the excitatory neurons have a large
enough refractory period.

As happens in the case of only one population [10], for two populations (excitatory and inhibitory), neurons
in a refractory state guarantee the existence of stationary states. However, the refractory state itself does not
prevent the blow-up phenomenon, as shown in Theorem 3.5 and Figures 4–6.

5.2. Blow-up

In [10], the blow-up phenomenon for one population of neurons with refractory states was shown. Theorem 3.5
extends this result to two populations of neurons, one excitatory and the other one inhibitory. The refractory
period is not enough to avoid the blow-up of the network; if the membrane potentials of the excitatory population
are close to the threshold potential, or if the connectivity parameter bEE is large enough, then the network blows-
up in finite time. To achieve the global-in-time existence, it seems necessary some transmission delay between
excitatory neurons, as we observe in our simulations and as it was proved at the microscopic level for one
population [25].

We start the analysis of the blow-up phenomenon by considering only one average-excitatory population (we
recall that there is global existence for one average-inhibitory population, see [19]). In [10, 12] it was proved
that some solutions blow-up. In Figures 2 and 3, we show how the transmission delay of the spikes between
neurons prevents the network from blowing-up in finite time, even in the case where the system has no steady
states. Recall that the one population model without refractory states has no equilibria for large values of
the connectivity parameter [12]. Initially, for this case, we expected a periodic behavior of the solutions after
avoiding the blow-up, nevertheless, this does not happen, and the firing rate seems to increase, but not to
blow-up in finite time (Fig. 2, bottom).

In [11], the excitatory-inhibitory system without refractory states was studied. In the current paper, we
extend this analysis to the presence of refractory states. Figures 4 and 5 illustrate the results of Theorem 3.5; if
there is no transmission delay between excitatory neurons, the solution blows-up because most of the excitatory
neurons have a membrane potential close to the threshold potential, or because excitatory neurons are highly
connected, that is, bEE is large enough. We observe in Figure 6 that the remaining delays do not avoid the blow-
up phenomenon, since in this figure all the delays are 0.1, except DE

E = 0. The importance of DE
E is discerned

in Figure 7. We show the evolution in time of the solution of (2.6), with the same initial data as considered in
Figure 5 and with DE

E = 0.1; in this case, the solution exists for every time, thus avoiding the blow-up.



1752 M.J. CÁCERES AND R. SCHNEIDER

Figure 2. System (2.13) (only one population without refractory states) presents blow-up, if
there is no transmission delay. We consider the initial data (5.1) with v0 = 1.83. Top: σ0 =
0.0003 and the connectivity parameter b = 0.5. Left: N blows-up in finite time, if there is no
delay, D = 0. Right: N tends to a steady state, if there is delay, D = 0.1. Bottom: σ0 = 0.003
and the connectivity parameter b = 2.2. Left: N blows-up in finite time, if there is no delay,
D = 0. Right: N does not blow-up if there is delay, D = 0.1.

Figure 3. System (2.13) (only one population with refractory state: M(t) = R(t)
τ ) presents

blow-up, if there is no transmission delay. We consider the initial data (5.1) with v0 = 1.83, and
σ0 = 0.0003, and the connectivity parameter b = 0.5. Left: R(0) = 0.2, τ = 0.025 and D = 0,
since there is no transmission delay N blows-up in finite time. Right: R(0) = 0.2, τ = 0.025 and
D = 0.07, the solution tends to the steady state, due to the transmission delay.
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Figure 4. System (2.6) (two populations: excitatory and inhibitory) presents blow-up, if there
are no transmission delays. We consider initial data (5.1) with vE0 = vI0 = 1.25 and σE0 =
σI0 = 0.0003, the connectivity parameters bEE = 6, bEI = 0.75, bII = 0.25, bIE = 0.5, and with
refractory states (Mα(t) = Nα(t− τα)) where τα = 0.025. We observe that the initial data are
not concentrated around the threshold potential but the solution blows-up because bEE = 6 is
large enough and there are no transmission delays (see Thm. 3.5).

Figure 5. System (2.6) (two populations: excitatory and inhibitory) presents blow-up, if there
are no transmission delays. We consider initial data (5.1) with vE0 = 1.89, vI0 = 1.25 and σE0 =
σI0 = 0.0003, the connectivity parameters bEE = 0.5, bEI = 0.75, bII = 0.25, bIE = 0.5, and with
refractory states (Mα(t) = Nα(t− τα)) where τ = 0.025. We observe that bEE = 0.5 is not large
enough, but the solution blows-up because the initial condition for the excitatory population
is concentrated around the threshold potential and there are no transmission delay (see Thm.
3.5).

Figure 6. System (2.6) (two populations: excitatory and inhibitory) presents blow-up, if there
is no excitatory transmission delay. We consider initial data (5.1) with vE0 = 1.89, vI0 = 1.25 and
σE0 = σI0 = 0.0003, the connectivity parameters bEE = 0.5, bEI = 0.75, bII = 0.25, bIE = 0.5, and
with refractory states (Mα(t) = Nα(t − τα)) where τα = 0.025. All the delays are 0.1, except
DE
E = 0. We observe that the other delays do not avoid the blow-up due to a concentrated

initial condition for the excitatory population.
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Figure 7. System (2.6) (two populations: excitatory and inhibitory) avoids blow-up, if there is
a transmission delay between excitatory neurons. We consider initial data (5.1) with vE0 = 1.89,
vI0 = 1.25 and σE0 = σI0 = 0.0003, the connectivity parameters bEE = 0.5, bEI = 0.75, bII = 0.25,
bIE = 0.5, DI

E = DE
I = DI

I = 0, and with refractory states (Mα(t) = Nα(t − τα)) where τ =
0.025. We observe that if there is a transmission delay between excitatory neurons DE

E = 0.1,
the blow-up phenomenon is avoided. Top: Firing rates. Bottom: Probability densities.

Figure 8. Numerical analysis of the stability in the case of three steady states for the system
(2.6). If bEI = 7, bII = 2, bIE = 0.01, τE = τI = 0.2 and bEE = 3, there are three steady states
(see Fig. 1). The initial conditions for this simulations, ρ0

α − 1, 2, 3, are given by the profile
(5.2), where Nα are approximations of the stationary firing rates. We show the evolution of the
excitatory and inhibitory firing rates and observe that the lowest steady state is stable and the
other two are unstable.
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Figure 9. Numerical analysis of the stability in the case of three steady states for the system
(2.6). If bEI = 7, bII = 2, bIE = 0.01, τE = 0.3, τI = 0.2 and bEE = 3, there are three steady states
(see Fig. 1). The initial conditions used for this simulations, ρ0

α− 1, 2, 3, are given by the profile
(5.2), where Nα are approximations of the stationary firing rates. We show the evolution of the
excitatory and inhibitory firing rates and observe that the lowest steady state is stable and the
other two are unstable.

Figure 10. System (2.13) (only one average-excitatory population) presents periodic solutions,
if there is a transmission delay. We consider initial data (5.1) with σ0 = 0.0003, the connectivity
parameter b = 1.5, the transmission delay D = 0.1, vext = 0 and with refractory states (M(t) =
R(t)
τ ), where τ = 0.025 and R(0) = 0.2. Periodic solutions appear if the initial condition is

concentrated enough around the threshold potential Top: v0 = 1.83. Bottom: v0 = 1.5.
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Figure 11. System (2.13) (only one average-inhibitory population) presents periodic solutions,
if there is a transmission delay. We consider initial data (5.1) with σ0 = 0.0003, the connectivity

parameter b = −4, the transmission delay D = 0.1, and with refractory states (M(t) = R(t)
τ ),

where τ = 0.025 andR(0) = 0.2. Periodic solutions appear if the initial condition is concentrated
enough around the threshold potential, but even if the initial datum is far from the threshold
and the vext is large. Left: v0 = 1.83, vext = 20. Right: v0 = 1.5, vext = 20.

Figure 12. System (2.13) (only one average-inhibitory population) presents periodic solutions,
if there is a transmission delay. We consider initial data (5.2) with N = 3.669, the connectiv-
ity parameter b = −4, the transmission delay D = 0.1, vext = 20 and with refractory states

(M(t) = R(t)
τ ), where τ = 0.025 and R(0) = 0.091725. Periodic solutions also appear if the

initial condition is very close to the unique equilibrium when vext is large. Indeed, for this
parameter space, solutions always converge to the same periodic solution. Left and center:
Evolution of the firing rate and the refractory state for the solution with initial data given by
(5.2) with firing rate N = 3.669. Right: Influence of vext in the behaviour of the system.

5.3. Steady states and periodic solutions

In Figure 1 we examined several choices of the model parameters, for which the system (2.6) presents three
steady states. For one of these cases, the analysis of their stability is numerically investigated in Figure 8. For
α = E, I, the initial conditions ρ0

α − 1, 2, 3 are given by the profiles (5.2), where Nα are approximations of the
stationary firing rates. The evolution in time of the firing rates show that the lower steady state seems to be
stable, while the two others are unstable. Moreover, considering as initial data (5.2) with Nα approximations of
the higher stationary firing rates the solution blows-up in finite time, while with the intermediate firing rate the
solution tends to the lower steady state. Figure 9 also describes the stability when there are three steady states.
In this case the intermediate state is very close to the highest one. Here, the lower steady state also appears to
be stable. The two others are unstable, but the higher one does not blow-up in finite time.

The transmission delay not only prevents the blow-up phenomenon, but also can produce periodic solutions.
In Figure 10, we analyze the influence of the transmission delay for one average-excitatory population; if the
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Figure 13. Comparison between R(t) and N(t) for M(t) = R(t)
τ and M(t) = N(t − τ). Top:

Initial data (5.1) with v0 = 1.83 and σ0 = 0.0003, the connectivity parameter b = −4, the
transmission delay D = 0.1, τ = 0.025, R(0) = 0.2 and vext = 20. Bottom: Parameter space
of Figure 3, bottom. The qualitative behavior is the same for both models, even the solutions
seem to be hardly the same.

initial datum is concentrated around VF , periodic solutions appear; on the contrary, if it is far from VF , the
solution reaches a steady state. In Figures 11 and 12, for one average-inhibitory population with transmission
delay, we show that periodic solutions emerge if the initial condition is concentrated around the threshold
potential, and even if the initial datum is far from the threshold and vext is large. A comparison between R(t)

and N(t) for M(t) = R(t)
τ and M(t) = N(t− τ) is presented in Figure 13. In both cases the steady state is the

same and the solutions tend to it. If the system tends to a synchronous state, these states are also almost the
same for both possible choices of M .

Synchronous states appear also in the case of two populations (excitatory and inhibitory), as it is described
in Figure 14. In this particular case, they seem to appear due to the inhibitory population, which tends to a
periodic solution. What is more, the excitatory population presents a solution that oscillates close around the
equilibrium.

6. Conclusions and open problems

In this work, we have extended the results presented in [10–12] to the general NNLIF self-contained mean-
field model. This model is composed of two populations (excitatory and inhibitory), with transmission delays
between the neurons, and where the neurons remain in a refractory state for a certain time. From an analytical
point of view we have explored the number of steady states in terms of the model parameters (Thm. 3.1), the
long time behaviour for small connectivity parameters (Thm. 3.3), and blow-up phenomena, if there is not a
transmission delay between excitatory neurons (Thm. 3.5).

Besides analytical results, we have presented a numerical solver for this model (2.6), based on high order
flux-splitting WENO schemes and an explicit third order TVD Runge-Kutta method, in order to describe
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Figure 14. System (2.6) (two populations: excitatory and inhibitory) presents periodic solu-
tions if there is a delay. We consider initial data (5.1) with vE0 = vI0 = 1.25 and σE0 = σI0 =
0.0003, vext = 20 and the connectivity parameters bEE = 0.5, bEI = 0.75, bII = 4, bIE = 1 and with
refractory states (Mα(t) = Nα(t− τα)) where τα = 0.025. The time evolution of the excitatory
and inhibitory firing rates is showed.

the wide range of phenomena displayed by the network: Blow-up, asynchronous/synchronous solutions and
instability/stability of the steady states. The solver also allows to observe the time evolution of not only the
firing rates and refractory states, but also of the probability distributions of the excitatory and inhibitory
populations. It was used to illustrate the result of Theorem 3.5: as long as the transmission delay of the
excitatory to excitatory synapses is zero (DE

E = 0), blow-up phenomena appear in the full NNLIF model, even if
there are nonzero transmission delays in the rest of the synapses. We remark that the numerical results suggest
that blow-up phenomena disappear when the excitatory-to-excitatory transmission delay is nonzero, and the
solutions may tend to a steady state or to a synchronous state or the firing rates increase without explosion in
finite time. In the case of only one average-inhibitory population the behavior of the solutions after preventing
a blow-up phenomenon seems to depend on the external firing rate vext. Furthermore, we have also observed
periodic solutions for small values of the excitatory connectivity parameter combined with an initial data far
from the threshold potential. Thus, synchronous solutions are not a direct consequence of having avoided the
blow-up phenomenon.

Our numerical study is completed with the stability analysis of the steady states, when the network presents
three of them. In our simulations, we do not observe bistability phenomena since the two upper stationary firing
rates are unstable, while the lowest one is stable.

Finally, to our knowledge, the numerical solver presented in this paper is the first deterministic solver to
describe the behavior of the full NNLIF system involving all the characteristic phenomena of real networks.
Including all relevant phenomena is essential to explore some open problems, as for instance: the analytical
proof of the global existence of solution when there is a nonzero excitatory-to-excitatory transmission delay;
the reasons why solutions tend to a steady state or to a synchronous state or the firing rates increase without
blowing-up; and, an analytical study of the stability of the steady states when the connectivity parameters are
not small.

Proving the existence of blow-up phenomena for the two populations model, when there is no delay between
excitatory synapses, shows the importance of considering a nonzero excitatory-to-excitatory delay when the
model is used to study the behavior of biological networks which do not synchronize [64]. On the other and,
both the analytical and numerical results provided in this paper, can be interpreted from a biological point
of view. For instance, the blow-up is usually related to a synchronization of a part of the network, while the
number of steady states depending on the parameter values, might help to analyze situations of multi-stability
for more complete NNLIF models, as, e.g., conductance-based ones. In the literature, multi-stable networks
are related to the visual perception and the decision making [3, 37], the short term working memory [79] and
oculomotor integrators [44]. Also, the periodic or oscillatory solutions that we have observed numerically are
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interesting, since they are used to model synchronous states and oscillations, observed, e.g., during cortical
processing [37, 40].
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