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SPARSE QUADRATURE FOR HIGH-DIMENSIONAL INTEGRATION

WITH GAUSSIAN MEASUREI

Peng Chen*

Abstract. In this work we analyze the dimension-independent convergence property of an abstract
sparse quadrature scheme for numerical integration of functions of high-dimensional parameters with
Gaussian measure. Under certain assumptions on the exactness and boundedness of univariate quadra-
ture rules as well as on the regularity assumptions on the parametric functions with respect to the
parameters, we prove that the convergence of the sparse quadrature error is independent of the number
of the parameter dimensions. Moreover, we propose both an a priori and an a posteriori schemes for the
construction of a practical sparse quadrature rule and perform numerical experiments to demonstrate
their dimension-independent convergence rates.
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1. Introduction

In the mathematical modelling of a physical system, uncertainties may arise from various sources, such
as material properties, initial/boundary conditions, and computational geometries. These uncertainies lead to
the discrepancy between the experimental/observational data and the outputs of mathematical models. How
to propagate the uncertainties through the mathematical models and how to calibrate them with given data
are known as uncertainty quantification (UQ) problems [23, 32, 46, 49]. One of the central tasks of UQ is
to compute the integral of some quantity of interest related to the solution with respect to the probability
law of the uncertain inputs. When the uncertain inputs are approximated by many or a countably infinite
number of random variables or parameters, e.g., by Karhunen–Loève expansion [45], one faces high/infinite-
dimensional integration problems. Since the integral with respect to the parameters can not be computed
analytically in general, numerical integration based on certain quadrature rules has to be employed. However,
it is a great challenge to perform high-dimensional numerical integration as the computational complexity
grows exponentially fast with respect to the number of the dimensions for most deterministic quadratures,
which is widely known as “curse of dimensionality”. On the other hand, probabilistic quadrature rules, in
particular Monte Carlo [7], are best known to break the curse of dimensionality. However, the convergence of
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these quadrature rules is often very slow, e.g., the convergence rate of Monte Carlo quadrature is O(M−1/2)
with M samples, regardless of the smoothness of the function and of the number of dimensions.

Recent years have seen a great development of sparse quadrature – numerical integration based on sparse
grids [2, 5, 6, 10, 21, 22, 38, 43, 50] – to efficiently deal with high-dimensional integration problems. The curse
of dimensionality is shown to be alleviated and/or broken by adaptive allocation of the quadrature points in
different dimensions by ample numerical evidence [11, 12, 13, 21, 22, 27, 39, 43], which is also observed for
interpolation problems by the same or similar dimension-adaptive algorithms [14, 15, 35, 37]. The dimension-
independent convergence rate of the sparse quadrature for infinite-dimensional integration with respect to
uniformly distributed parameters was proved in [43, 44], which is based on the dimension-independent con-
vergence of Legendre/Taylor polynomial chaos approximation of stochastic problems in [15, 16, 17]. Different
approximation methods of the stochastic problems with (lognormal) Gaussian random parameters have been
studied in [8, 9, 18, 25, 26, 31, 33, 34, 40, 42]. More recently, a dimension-independent convergence rate of
the polynomial chaos (based on Hermite polynormials) approximation for an elliptic problem with lognormal
coefficients is obtained in [28], whose convergence rate is improved in [3]. A convergence result based on [3] is
obtained in [19] for a sparse collocation method.

In this work, we show the dimension-independent convergence rate of an abstract sparse quadrature scheme
for infinite-dimensional integration problems with i.i.d. standard Gaussian distributed parameters. The result
holds under certain assumptions on the exactness and boundedness of univariate quadrature rules, and certain
regularity assumptions on the parametric functions with respect to the parameters. In particular, only weighted
derivatives are required to exist as in [3], compared to an analytic regularity requirement for the result with
uniform distribution in [43]. Two examples are provided to illustrate the regularity assumptions, including an
infinite-dimensional nonlinear parametric function, and an elliptic PDE with nonlinear parametric lognormal
coefficients. The proof relies on three results: 1) the exactness and the boundedness of the sparse quadrature
in arbitrary number of dimensions; 2) the bound of the sparse quadrature error by a weighted sum of the
Hermite coefficients; 3) the summability of a weighted sequence of the coefficients arising from the regularity
assumptions on the parametric function. Based on the proof, we propose a priori construction of the sparse
quadrature, whose error is guaranteed to converge with a dimension-independent convergence rate with respect
to the number of indices. We also present a goal-oriented a posteriori construction of the sparse quadrature,
which turns out to be more accurate for the test examples. Both the a priori and the a posteriori construction
schemes are built on several univariate quadrature rules, including the non-nested Gauss–Hermite quadrature
rule [24], the nested transformed Gauss–Kronrod–Patterson (or Gauss–Patterson) quadrature rule [21], and the
nested Genz–Keister quadrature rule [20]. We will investigate and compare the convergence properties of the
construction schemes with different quadrature rules in high dimensions. Numerical experiments on the sparse
quadrature for a nonlinear parametric function and an elliptic parametric PDE are performed to demonstrate
the dimension-independent convergence rate, and to compare the a priori and the a posteriori construction
schemes with different quadrature rules.

The rest of the paper is organized as follows. In Section 2 we present the sparse quadrature. Several univariate
quadrature rules are introduced in hierarchical representation in Section 2.1, followed by the presentation of
tensorization of these rules in Section 2.2 and of the sparse quadrature in Section 2.3. Section 3 is devoted to
a convergence analysis of the sparse quadrature, with a dimension-independent convergence rate obtained in
the main theorem in Section 3.1 and two examples shown to satisfy the regularity assumptions in Section 3.2.
In Section 4 we introduce an a priori scheme (in Sect. 4.2) and an a posteriori scheme (in Sect. 4.1) for the
construction of the sparse quadrature. We present two sets of numerical experiments in Section 5, one on the
sparse quadrature for numerical integration of an infinite-dimensional parametric function in Section 5.1 and
the other for numerical integration of two quantities of interest related to the solution of an elliptic parametric
PDE in Section 5.2. Finally, in Section 6 we conclude with some further research perspectives.
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2. Sparse quadrature with Gaussian measure

In this section, we present a sparse quadrature for numerical integration of a function of high/infinite-
dimensional parameters with Gaussian measure. At first, we formulate a hierarchical representation of a
univariate quadrature with three different quadrature rules. Then a tensor-product quadrature is constructed
by tensorization of the univariate quadrature. The sparse quadrature is then defined by a sum of the tensorized
univariate quadrature in an admissible index set.

2.1. Univariate quadrature

Let f : R→ S be a univariate function of a random variable with standard Gaussian (or normal) distribution
N(0, 1), which takes values in some Banach space S. Let I denote an integral defined as

I(f) =

∫
R
f(y)dγ(y), (2.1)

where γ(y) is a Gaussian measure with the probability density function ρ(y) given by

ρ(y) =
1√
2π

e−y
2/2. (2.2)

We introduce a sequence of quadrature rules {Ql}l≥0 indexed by level l ∈ N, defined as

Ql(f) =

ml−1∑
k=0

wlkf(ylk), l ≥ 0, (2.3)

where ylk ∈ R and wlk ∈ R, k = 0, . . . ,ml − 1, represent quadrature points and weights; ml is the number of
the quadrature points at level l, which satisfies m0 = 1 and ml < ml+1. We consider two classical choices of ml

[2, 20, 29] – adding one point or doubling the number of points from level l to l + 1, i.e., ml+1 = l + 1 or ml =
2l+1 − 1. Let {4l}l≥0 denote a set of difference quadrature rules, which are defined as

4l = Ql −Ql−1, l ≥ 0 , (2.4)

where we set Q−1 = 0 by convention, i.e., Q−1(f) = 0. Then we obtain a hierarchical representation of Ql
through a telescopic sum of 4i, i = 0, . . . , l, i.e.,

Ql =

l∑
i=0

4i . (2.5)

As for the quadrature points and weights in (2.3) as well as the specific number of points in each level, we
consider the following ones.

1. Gauss–Hermite (GH) quadrature. A Gauss quadrature is used for the approximation of the integral
with the density ρ as the weight function [24], where y0

0 = 0 and w0
0 = 1 for l = 0, and for l ≥ 1, ylk,

k = 0, . . . ,ml− 1, are the roots of the orthonormal (with respect to ρ) Hermite polynomial Hn for n = ml,
where

Hn(y) =
(−1)n√
n!

ρ(n)(y)

ρ(y)
, n ≥ 0 , (2.6)
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and the weights wlk, k = 0, 1, . . . ,ml − 1, are given by

wlk =
1

m2
l (Hml−1(ylk))2

. (2.7)

Note that this quadrature rule is provided for the weight function ρ(y) instead of e−y
2

in the classical
formula [24], Section 5.3. It is exact with ml points for polynomials of degree up to 2ml− 1, the maximum
possible exactness. However, the quadrature points are not nested in the sense that {ylk} are not included

in {yl′k } for l′ > l (except for l = 0 and l′ such that ml′ is odd which share the point y = 0), so that we
need to evaluate the function at all the quadrature points at each level l. As for the number of points ml

at each level l, we consider ml = l + 1 (denoted as GH1) and ml = 2l+1 − 1 (GH2).
2. Transformed Gauss–Kronrod–Patteron (tGKP) quadrature. In [30], Kronrod presented a method

to add m+ 1 points to an m-point Gauss–Legendre quadrature rule for integration with constant weight
and showed its optimality in integrating polynomials with such nested construction. Patterson [41]
extended this construction iteratively and obtained a nested quadrature rule with ml = 2l+1 − 1 points
at level l (denoted as GKP). Then for integration with more general weight, e.g., normal weight ρ in our
problem, we can make a change of variables, e.g., by the following map

x = Fρ(y) , (2.8)

where Fρ is the cumulative distribution function given by Fρ(y) =
∫ y
−∞ ρ(y)dy, so that dx = ρ(y)dy and

the integration with weight ρ can be transformed as

∫
R
f(y)ρ(y)dy =

∫ 1

0

f(F−1
ρ (x))dx ≈

ml−1∑
k=0

f(F−1
ρ (xlk))wlk . (2.9)

where F−1
ρ is the inverse of Fρ, x

l
k and wlk are the GKP points and weights at level l. This transformed

GKP (tGKP) has been used, e.g., in [21].
3. Genz–Keister (GK) quadrature: In [20], Genz and Keister extended the GKP construction for uniform

distribution to that for normal distribution. However, the construction does not follow that of GKP since
the quadrature points obtained by Kronrod’s method in level l = 2 are not real valued, thus they can
not be used as quadrature points. Instead, Genz and Keister showed that, among several extensions,
1, 2, 6, 10, 16 points can be added, resulting in ml = 1, 3, 9, 19, 35 points at level l = 0, 1, 2, 3, 4. Further
extension to higher levels is limited by numerical precision issues, see details in [20].

2.2. Tensor-product quadrature

For a given function f : Y → S, where Y = RJ , J ∈ N for finite dimensions or J =∞ for infinite dimensions,
we consider the product measure space (Y,B(Y ),γ) as in [3] where B(Y ) is the σ-algebra generated by the Borel
cylinders and γ is a tensorized Gaussian probability measure. The task is to compute the integral

I(f) =

∫
Y

f(y)dγ(y) . (2.10)

In order to approximate (2.10), we define a tensor-product quadrature as follows. By F we denote a set of
multi-indices ν = (ν1, . . . , νJ), which is defined as

F = {ν ∈ NJ : |ν|0 <∞}, (2.11)
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where |ν|0 = #{j ∈ N : νj 6= 0}. Note that each ν ∈ F is finitely supported and we denote its finite support set
as

Jν = {j ∈ N : νj 6= 0}. (2.12)

Given ν ∈ F , we define a multivariate quadrature rule Qν as tensorization of the univariate quadrature rules
on the tensor-product grids Gν = {yνk : kj = 0, . . . ,mνj − 1, j ∈ Jν}, i.e.,

Qν(f) =
⊗
j∈Jν

Qνj (f) ≡
mνj1

−1∑
kj1=0

· · ·
mνjd

−1∑
kjd=0

w
νj1
kj1
· · ·wνjdkjd f

(
y
νj1
kj1
, . . . , y

νjd
kjd

)
, (2.13)

where we suppose Jν is explicitly given as Jν = {j1, . . . , jd} for some d ∈ N, and we set yj = 0 for all j 6∈ Jν and
omit their appearance in the arguments of f by slight abuse of notation. A full tensor-product quadrature for
approximation of (2.10) is defined as Qν(f) for ν = l, i.e., νj = l for each j = 1, . . . , J at given l ∈ N. However,
the total computational cost of (ml)

J function evaluations grows exponentially with respect to the number of
dimensions J , known as curse of dimensionality, rendering this quadrature rule computationally prohibitive for
large J , especially when evaluation of f is expensive.

2.3. Sparse quadrature

In order to alleviate the curse of dimensionality, we turn to a sparse quadrature, which breaks the restriction
of taking νj = l in each dimension and allows free choice of ν ∈ F . For each ν ∈ F with support Jν in d
dimensions, we define a multivariate difference quadrature rule as

4ν(f) =
⊗
j∈Jν

4νj (f) ≡
⊗
j∈Jν

(Qνj −Qνj−1)(f) , (2.14)

which can be computed through (2.13) with 2d terms. If the quadrature points are nested, this computation
only involves

∏
j∈Jν mνj evaluations of the function f . Otherwise, the number becomes

∏
j∈Jν (mνj + mνj−1).

Both costs become feasible for small d. By Λ we denote an admissible index set [22], also called downward closed
or monotonic index set [14, 43], which is defined such that

for any ν ∈ F , if ν ∈ Λ, then µ ∈ Λ for all µ � ν (i.e., µj ≤ νj ,∀j ≥ 1) . (2.15)

Then we can define a sparse quadrature rule on the grids GΛ = ∪ν∈ΛGν as

QΛ(f) =
∑
ν∈Λ
4ν(f) . (2.16)

Note that both the full tensor-product quadrature and the Smolyak quadrature [21, 47] can be represented as
the sparse quadrature with Λ := {ν ∈ F , |ν|∞ ≤ l} for the former, where |ν|∞ := maxj≥1 νj , and Λ := {ν ∈
F , |ν|1 ≤ l} with |ν|1 = ν1 + ν2 + · · · for the latter. A more general sparse quadrature is an anisotropic sparse
quadrature in [22, 37], where the maximum level of the index νj is allowed to vary for different j. The index set
Λ and the corresponding quadrature points GΛ for the full tensor-product quadrature, the isotropic Smolyak
sparse quadrature, and the anisotropic sparse quadrature are shown for GK with l = 4 in Figure 1 in two
dimensions, from which we can observe large reduction of the points successively.
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Figure 1. The admissible index sets (top) and the corresponding GK quadrature points (bot-
tom). Left : tensor-product grids; middle: isotropic Smolyak sparse grids; right : anisotropic
sparse grids.

3. Convergence analysis

Let N be the cardinality of an admissible index set Λ, which we denote as ΛN to reflect its cardinality. In this
section we provide sufficient conditions for the existence of a sparse quadrature QΛN whose quadrature error
||I(f)−QΛN (f)||S does not depend on the number of dimensions J , thus breaking the curse of dimensionality.
Moreover, we analyze the convergence rate of this error with respect to N under certain assumptions on the
regularity of the function f with respect to y. We provide two specific examples for which such assumptions are
verified.

3.1. Convergence analysis

In general, we consider the function f to have finite second moment, i.e.,

||f ||L2
γ(Y,S) =

(∫
Y

||f(y)||2Sdγ(y)

)1/2

<∞ . (3.1)

In this situation, f admits a polynomial expansion in the Hermite series [3], i.e.

f(y) =
∑
ν∈F

fνHν(y) , (3.2)
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where the multivariate Hermite polynomials Hν(y) and the coefficients fν read

Hν(y) =
∏
j≥1

Hνj (yj), and fν =

∫
Y

f(y)Hν(y)dγ(y) . (3.3)

Here and in what follows we consider J =∞ (J ∈ N is a special case where yj = 0 for j > J). The univariate
Hermite polynomials {Hn}n≥0, as given in (2.6), are orthonormal. Due to this orthonormality, we have the
Parseval’s identity

||f ||2L2
γ(Y,S) =

∑
ν∈F
||fν ||2S , (3.4)

i.e., {||fν ||S}ν∈F ∈ `2(F), a sufficient and necessary condition for f ∈ L2
γ(Y,S).

Assumption 3.1. We make the following assumptions on the properties of the univariate quadrature rules
{Ql}l≥0:

A.1 The quadrature at level l is exact for all the functions f ∈ Pl ⊗ S, where Pl = span{yi : i = 0, . . . , l}, i.e.

I(f) = Ql(f) ∀f ∈ Pl ⊗ S . (3.5)

In particular, I(Hn) = Ql(Hn) for Hermite polynomials Hn, n = 0, . . . , l.
A.2 The quadrature Ql(Hn) for Hn with n > l is bounded by 2, i.e.

|Ql(Hn)| < 2, ∀l ≥ 0 . (3.6)

Both the Gauss–Hermite (GH) quadrature and the Genz–Keister (GK) quadrature satisfy Assumption 3.1
for ml ≥ l + 1, see [20, 24], while it does not hold for the transformed Gauss–Kronrod–Patterson (tGKP)
quadrature. As for Assumption 3.1, we can verify it for the GH quadrature in the following lemma.

Lemma 3.2. For the Gauss–Hermite quadrature with ml = l + 1 quadrature points at any level l ≥ 0, see
Section 2.1, we have the bound

|Ql(Hn)| < 2, ∀n ≥ 0 , (3.7)

for the orthonormal Hermite polynomials Hn, n ≥ 0, defined in (2.6).

The proof is based on the Cramér inequality, e.g., in [1], that is made aware from ([19], Lem. 14), and the
Markoff’s theorem, e.g., in [48].

Proof. For the (physicists’) orthogonal Hermite polynomials H̃n, n = 0, 1, . . ., defined as ([1], Chap. 22, p. 776)

H̃n(x) = (−1)nex
2 dn

dxn
e−x

2

, with

∫ ∞
−∞

H̃n(x)H̃m(x)e−x
2

dx =
√
π2nn!δnm , (3.8)

we have the Cramér inequality [1], Chapter 22, page 787

|H̃n(x)| < c2n/2
√
n!ex

2/2, with c ≈ 1.086435 . (3.9)
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Consequently, with proper rescaling for the (probabilists’) orthonormal Hermite polynormials defined in (2.6),
i.e., Hn(x) = (2n/2

√
n!)−1H̃n(x/

√
2), we have

|Hn(x)| < cex
2/4 . (3.10)

For the smooth function f(x) = ex
2/4, by Markoff’s theorem [48], Chapter 16, page 378 (note there n = ml = l+1

for our l here) there exists ξ ∈ R s.t.∫
R
f(x)ρ(x)dx = Ql(f) +

f (2l+2)(ξ)

(2l + 2)!
k−2
l+1 , (3.11)

where kl+1 is the highest coefficient of the Hermite polynomial Hl+1(x). As any even order derivative of f is
non-negative (see [36], Lem. 4), from (3.11) we have

Ql(f) ≤
∫
R
f(x)ρ(x)dx =

1√
2π

∫
R

ex
2/4e−x

2/2dx =
√

2 . (3.12)

Hence, we obtain

|Ql(Hn)| ≤ Ql(|Hn|) ≤ cQl(f) ≤
√

2c ≈ 1.536451 < 2 , (3.13)

where the first inequality is due to the positivity of the quadrature weights (2.7), and the second one is due to
the bound (3.10).

As for the GK quadrature and the tGKP quadrature, no theoretical result is known to us for Assumption 3.1.
We have computedQl(Hn) numerically by all three types of quadrature rules with all possible levels l and degrees
of Hermite polynomial n up to machine precision. The results show that 3.1 holds in all cases with a sharper
bound |Ql(Hn)| ≤ 1. The left of Figure 2 displays the numerical value |Ql(Hn)| for the three quadrature rules
with l = 3 and n = 0, . . . , 150 (the polynomial degree n can not be larger due to machine precision); the right
of Figure 2 shows |Ql(Hn)| ≤ 1 by the GH2 (GH with ml = 2l+1 − 1) quadrature at l = 0, 1, 2, 3, 4, 5 and
n = 0, . . . , 150. Moreover, from the left figure we can also see that GH2 (with m3 = 15 points) is exact (with
machine precision) for I(Hn) for n = 0, . . . , 29, and GK (with m3 = 19 points) is exact for n = 0, . . . , 29, which
satisfy Assumption 3.1.

Assumption 3.1 implies the exactness and the boundedness of the sparse quadrature QΛ in multiple dimen-
sions as presented in the following lemma. Similar results have been obtained on the exactness of the sparse
quadrature for integration with respect to uniform measure, see, e.g., [4, 43].

Lemma 3.3. Under Assumption 3.1, for any admissible index set Λ ⊂ F , we have

I(f) = QΛ(f), ∀f ∈ PΛ ⊗ S , (3.14)

where PΛ = span{
∏
j≥1 y

νj
j ,ν ∈ Λ}. In particular, as Hν ∈ PΛ, we have

I(Hν) = QΛ(Hν), ∀ν ∈ Λ . (3.15)

Moreover, for any ν ∈ F \ 0, we have

|QΛ∩Rν (Hν)| ≤
∏
j∈Jν

(1 + νj)
3 . (3.16)
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Figure 2. Left : the numerical values |Q3(Hn)| by GH2, GK, and tGKP; right : the numerical
values |Ql(Hn)| by GH2 with ml = 2l+1 − 1 points for l = 0, 1, 2, 3, 4, 5.

where the index set Rν := {µ ∈ F : µ � ν}, and Jν is the support set of ν.

Proof. The result (3.14) can be obtained by induction based on Assumption 3.1, e.g., as in [43], Theorem 4.2
for the uniform measure. Here, we provide a different proof for the Gaussian measure. First, for Λ = {0}, and
f(y) = u0 with some function u0 ∈ S for all y ∈ Y , we have I(f) = u0 and Q0(f) = f(0) = u0, which verifies
(3.14). Suppose (3.14) holds for an admissible set Λ, then we only need to verify that (3.14) also holds for
the admissible set Λ+k = Λ ∪ {ν+k} for all possible k ∈ N, where ν+k = ν∗ + ek for some ν∗ ∈ Λ such that
(ν∗)k ≥ νk for all ν ∈ Λ. Here ek ∈ F is the vector whose k-th component is one with all remaining components
zero. In fact, the function f ∈ PΛ+k

⊗ S can be decomposed as

f(y) =
∑
ν∈Λ+k

yνuν =
∑
ν∈Λ

yνuν + yν+kuν+k
≡ fΛ(y) + f+k(y), (3.17)

where we have denoted fΛ(y) =
∑
ν∈Λ y

νuν and f+k(y) = yν+kuν+k
. Hence

QΛ+k
(f) = QΛ+k

(fΛ) +QΛ+k
(f+k). (3.18)

By the definition (2.16) of the sparse quadrature rule, for the first term of (3.18), we have

QΛ+k
(fΛ) = QΛ(fΛ) +4ν+k

(fΛ) , (3.19)

where the first term QΛ(fΛ) = I(fΛ) by the induction’s assumption, and the second term, by the
Definition (2.14), can be explicitly written as

4ν+k
(fΛ) =

∑
ν∈Λ

uν
⊗

j∈Jν+k

(Q(ν+k)j −Q(ν+k)j−1)(y
νj
j ) . (3.20)

By 3.1 and the fact νk ≤ (ν∗)k for all ν ∈ Λ and ν+k = ν∗ + ek, we have

(Q(ν+k)k −Q(ν+k)k−1)(yνkk ) = (Q(ν∗)k+1 −Q(ν∗)k)(yνkk ) = I(yνkk )− I(yνkk ) = 0 , (3.21)
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which implies that 4ν+k
(fΛ) = 0, thus QΛ+k

(fΛ) = I(fΛ). As for the second term of (3.18), we have

QΛ+k
(f+k) =

∑
ν∈Λ+k

4ν(f+k) =
∑

ν∈Rν+k

4ν(f+k) +
∑

ν∈Λ+k\Rν+k

4ν(f+k) , (3.22)

where we recall that Rν+k
= {µ ∈ F : µ � ν+k}. Then by 3.1 the first term yields

∑
ν∈Rν+k

4ν(f+k) = QRν+k
(f+k) = uν+k

⊗
j≥1

Q(ν+k)j

(
y

(ν+k)j
j

)
= I(f+k) , (3.23)

and 4ν(f+k) vanishes for each ν ∈ Λ+k \Rν+k
by the same reasoning as in (3.21), i.e., there exists j ∈ Jν such

that νj > (ν+k)j , so that (Qνj −Qνj−1)
(
y

(ν+k)j
j

)
= 0. Therefore, we also have QΛ+k

(f+k) = I(f+k), so that

QΛ+k
(f) = I(f) for any f ∈ PΛ+k

⊗ S. This completes the induction and concludes the equality (3.14).
To check (3.16), by the definition of the sparse quadrature in (2.16) we have

|QΛ∩Rν (Hν)| =
∣∣∣ ∑
µ∈Λ∩Rν

4µ(Hν)
∣∣∣ ≤ ∑

µ∈Λ∩Rν

|4µ(Hν)| ≤
∑
µ∈Rν

|4µ(Hν)| , (3.24)

where the last inequality is due to Λ ∩Rν ⊂ Rν , where Rν is a box in which the bound is easier to be derived
as follows. By the definition of 4µ in (2.14), we have

|4µ(Hν)| ≤
∏
j∈Jµ

|Qµj (Hνj )−Qµj−1(Hνj )| ≤
∏
j∈Jµ

4 = 4|Jµ| , (3.25)

where the second bound is due to Assumption 3.1. Therefore, we have

∑
µ∈Rν

|4µ(Hν)| ≤
∑
µ∈Rν

4|Jµ| ≤
∑
µ∈Rν

4|Jν | =
∏
j∈Jν

4(1 + νj) ≤
∏
j∈Jν

(1 + νj)
3 , (3.26)

where for the equality we have used
∑
µ∈Rν

1 =
∏
j∈Jν (1 + νj) and for last inequality we have used 4(1 + n) ≤

(1 + n)3 for n ≥ 1, which completes the proof.

The following lemma bounds the quadrature error ||I(f) −QΛN (f)||S in terms of the weighted `1-norm of
the Hermite coefficients {||fν ||S}ν∈F\ΛN . Similar results using Legendre polynomial expansion and triangular
inequality can be found in [14], Lemma 4.2 and [43], Lemma 4.5 for interpolation and integration with uniform
measure. Instead of relying on the Lebesgue constant as in those papers, we use the orthogonality of the Hermite
polynomials and the bound in Assumption 3.1.

Lemma 3.4. Under Assumption 3.1, for any f ∈ L2
γ(Y,S), we have that for any N ∈ N, there exists an

admissible index set ΛN ⊂ F with |ΛN | = N , such that

||I(f)−QΛN (f)||S ≤
∑

ν∈F\ΛN

cν ||fν ||S , (3.27)

where cν :=
∏
j∈Jν (1 + νj)

3, the upper bound obtained in (3.16).
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Proof. As f ∈ L2
γ(Y,S), we have the polynomial expansion of f on the Hermite series as in (3.2), so that

QΛN (f) = QΛN

(∑
ν∈F

fνHν

)
=
∑
ν∈ΛN

fνQΛN (Hν) +
∑

ν∈F\ΛN

fνQΛN (Hν) . (3.28)

Therefore, by the identity (3.15) we obtain

||I(f)−QΛN (f)||S ≤
∑

ν∈F\ΛN

||fν ||S |(I −QΛN )(Hν)| (3.29)

For any ν ∈ F \ 0, there exists j ∈ N such that νj 6= 0, for which we have Ij(Hνj ) = 0 due to the orthogonality
of Hνj , hence

I(Hν) =
∏
j≥1

Ij(Hνj ) = 0 . (3.30)

Moreover, for any ν ∈ F , we have

QΛN (Hν) =
∑
µ∈ΛN

4µ(Hν)

=
∑
µ∈ΛN

∏
j≥1

(Qµj (Hνj )−Qµj−1(Hνj ))

=
∑

µ∈ΛN∩Rν

∏
j≥1

(Qµj (Hνj )−Qµj−1(Hνj ))

=
∑

µ∈ΛN∩Rν

4µ(Hν) = QΛN∩Rν (Hν) ,

(3.31)

where the third equality is due to Assumption 3.1. As a result, (3.29) becomes

||I(f)−QΛN (f)||S ≤
∑

ν∈F\ΛN

||fν ||S |QΛN∩Rν (Hν)| ≤
∑

ν∈F\ΛN

cν ||fν ||S , (3.32)

which completes the proof by using the bound (3.16).

In order to control the quadrature error, which is bounded by a weighted sum of the Hermite coefficients
as above, we make the following assumptions from [3], Theorem 3.3 on the derivatives of the function f with
respect to the parameter y.

Assumption 3.5. B.1 Let 0 < q < 2 , and (τj)j≥1 be a positive sequence such that

(τ−1
j )j≥1 ∈ `q(N) . (3.33)

B.2 Let r be the smallest integer such that r > 14/q, we assume ∂µy f ∈ L2
γ(Y,S) and there holds

∑
|µ|∞≤r

τ 2µ

µ!

∫
Y

||∂µy f(y)||2Sdγ(y) <∞ , (3.34)
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where τ 2µ =
∏
j≥1 τ

2µj
j , µ! =

∏
j≥1 µj !, and ∂µy f(y) =

(∏
j≥1 ∂

µj
yj

)
f(y).

Remark 3.6. Assumption 3.5 characterizes the relation between the regularity of the function f with respect to
the parameter y and sparsity of the parametrization, i.e., the anisotropic property of the function with respect
to different dimensions. The smaller q is, the faster τj grows, so the faster ∂µy f(y) decays with respect to j, and
as r > 14/q becomes larger, the higher orders of derivative are needed. We will present two examples in the
next section to verify Assumption 3.5 and illustrate this discussion.

The following result establishes the equivalence between the weighted summability of the integral of the mixed
derivatives and the weighted summability of the Hermite coefficients, which is the key to bring the sparsity of
the parametrization to the dimension-independent convergence rate.

Proposition 3.7. ([3], Thm. 3.3, Lem. 5.1). Under Assumption 3.5, we have

∑
|µ|∞≤r

τ 2µ

µ!

∫
Y

||∂µy f(y)||2Sdγ(y) =
∑
ν∈F

bν ||fν ||2S , (3.35)

where the weights bν given by

bν =
∑
|µ|∞≤r

(
ν
µ

)
τ 2µ, with

(
ν
µ

)
=
∏
j≥1

(
νj
µj

)
, (3.36)

satisfies the summability condition ∑
ν∈F

b−q/2ν <∞ (3.37)

for any integer r such that r > 2/q.

Based on the summability (3.37) and its proof, we obtain the following result.

Lemma 3.8. Under Assumption 3.5, for any η ≥ q/4, we have

∑
ν∈F

(
bν

c
1/η
ν

)−2η

<∞ . (3.38)

Proof. By the definition of bν in (3.36), we can rewrite it as

bν =
∏
j≥1

(
r∑
l=0

(
νj
l

)
τ2l
j

)
. (3.39)

Then the left hand side of (3.38) can be written in the factorized form as

∑
ν∈F

(
bν

c
1/η
ν

)−2η

=
∑
ν∈F

∏
j≥1

(
r∑
l=0

(
νj
l

)
τ2l
j

1

(1 + νj)3/η

)−2η

=
∏
j≥1

∑
n≥0

(
r∑
l=0

(
n
l

)
τ2l
j

1

(1 + n)3/η

)−2η

,

(3.40)
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as long as we can show that the product on the right hand side is finite. Now we have

∑
n≥0

(
r∑
l=0

(
n
l

)
τ2l
j

1

(1 + n)3/η

)−2η

≤
∑
n≥0

((
n

n ∧ r

)
τ

2(n∧r)
j

1

(1 + n)3/η

)−2η

≤ 1 + 26τ−4η
j + · · ·+ r6τ

−4η(r−1)
j + Cr,ητ

−4ηr
j =: dj(r, η, τj) , (3.41)

where in the first inequality we have only kept the term l = n ∧ r = min{n, r}, and the constant Cr,η is defined
as

Cr,η =
∑
n≥r

((
n
r

)
1

(1 + n)3/η

)−2η

= (r!)2η
∑
n≥0

(
(n+ 1) · · · (n+ r)

(1 + n+ r)3/η

)−2η

. (3.42)

As the term in the big parentheses grows as nr−3/η when n→∞, and 2η(r − 3/η) > 1 for any η ≥ q/4 when
r > 14/q one has that Cr,η < ∞. Since (τ−1

j )j≥1 ∈ `q(N) by Assumption 3.5, we have τj → ∞ as j → ∞, so
that there exists Jτ <∞ such that τj > 1 for all j > Jτ . For j > Jτ , we can bound the right hand side of (3.41)
by

dj(r, η, τj) ≤ 1 + (26 + · · ·+ r6 + Cr,η)τ−4η
j . (3.43)

Consequently, by setting Dr,η = 26 + · · ·+ r6 + Cr,η, we have

∑
ν∈F

(
bν

c
1/η
ν

)−2η

≤
∏
j≥1

dj(r, η, τj) ≤
∏

1≤j≤Jτ

dj(r, η, τj)
∏
j>Jτ

(1 +Dr,ητ
−4η
j ) , (3.44)

where the first term is bounded as Jτ <∞. The second term can be written as

∏
j>Jτ

(1 +Dr,ητ
−4η
j ) = exp

∑
j>Jτ

log
(

1 +Dr,ητ
−4η
j

) , (3.45)

which, by using log(1 + x) ≤ x for all x > −1, can be bounded by

exp

∑
j>Jτ

log
(

1 +Dr,ητ
−4η
j

) ≤ exp

Dr,η

∑
j>Jτ

τ−4η
j

 , (3.46)

which is finite when η ≥ q/4 since (τ−1
j )j≥1 ∈ `q(N) in Assumption 3.5. Hence, (3.38) is concluded by (3.44)

and (3.46).

We are now ready to state and prove the main theorem. The idea behind the proof is from the short discussion
in ([3], Rem. 5.1) and the result ([51], Lem. 2.9).

Theorem 3.9. Under Assumption 3.1 and 3.5, there exists an admissible index set ΛN ⊂ F , a set of multi-
indices corresponding to the N smallest values of bν defined in (3.36), such that the sparse quadrature error is
bounded by

||I(f)−QΛN (f)||S ≤ C(N + 1)−s, s =
1

q
− 1

2
, (3.47)
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where the constant C is independent of N .

Proof. We consider the right hand side of (3.27) in Lemma 3.4, which we can bound by multiplying and dividing

b
−1/2+η
ν with η ≥ q/4 as ∑

ν∈F\ΛN

cν ||fν ||S ≤ sup
ν∈F\ΛN

b−1/2+η
ν

∑
ν∈F\ΛN

cν
bην
b1/2ν ||fν ||S , (3.48)

where the second term can be bounded by using Cauchy–Schwarz inequality as

∑
ν∈F\ΛN

cν
bην
b1/2ν ||fν ||S ≤

 ∑
ν∈F\ΛN

(
cν
bην

)2
1/2 ∑

ν∈F\ΛN

bν ||fν ||2S

1/2

≤

(∑
ν∈F

(
bν

c
1/η
ν

)−2η
)1/2(∑

ν∈F
bν ||fν ||2S

)1/2

,

(3.49)

which is finite as a result of Lemma 3.8 for the first term and Assumption 3.5 and Proposition 3.7 for the second.
By an increasing rearrangement of the sequence (bν)ν∈F , which is equivalent to a decreasing rearrangement of

(b
−1/2+η
ν )ν∈F for η < 1/2, which we denote as (zn)n≥1, the first term on the right hand side of (3.48) becomes

sup
ν∈F\ΛN

b−(1−2η)/2
ν = zN+1 . (3.50)

Since (b
−1/2
ν )ν∈F ∈ `q(F) as given in Proposition 3.7, we have that (zn)n≥1 ∈ `q/(1−2η)(N). We remark that

η < 1/2 with η = q/4 implies q < 2, as expected. As a result, by taking η = q/4, the smallest value for η, we
have (zn)n≥1 ∈ `q̃(N) where q̃ = 2q/(2− q) ∈ (0,∞) for q ∈ (0, 2). As (zn)n≥1 is monotonically decreasing, when
q̃ ∈ (0, 1), by Hölder’s inequality for s = 1

q̃ and its conjugate t = 1
1−q̃ we obtain

zq̃
2

n ≤
1

n

n∑
i=1

zq̃
2

i ≤
1

n

(
n∑
i=1

(
zq̃

2

i

)s) 1
s
(

n∑
i=1

1t

) 1
t

=

(
n∑
i=1

zq̃i

)q̃
n−q̃, (3.51)

so that

zn ≤

(
n∑
i=1

zq̃i

) 1
q̃

n−s ≤

( ∞∑
i=1

zq̃i

) 1
q̃

n−s. (3.52)

For q̃ ≥ 1, again by Hölder’s inequality for q̃ and its conjugate t = 1
1−s where s = 1

q̃ we have

zn ≤ n−1
n∑
i=1

zi ≤ n−1

(
n∑
i=1

zq̃i

) 1
q̃
(

n∑
i=1

1t

)1−s

≤

( ∞∑
i=1

zq̃i

) 1
q̃

n−s. (3.53)

Consequently, the main result (3.47) holds with the constant

C =

( ∞∑
i=1

zq̃i

) 1
q̃
(∑
ν∈F

(
bν

c
1/η
ν

)−2η
)1/2(∑

ν∈F
bν ||fν ||2S

)1/2

<∞, (3.54)
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which is independent of N . To conclude the proof, we need to show that the index set ΛN can be taken such
that it is admissible, for which we only need to verify that for any k ∈ N and ν ∈ F , we have

bν+ek ≥ bν . (3.55)

This is true by the definition of bν in (3.36), i.e., for Kronecker delta δjk,

bν+ek =
∑
|µ|∞≤r

∏
j≥1

(
νj + δjk
µj

)
τ

2µj
j ≥

∑
|µ|∞≤r

∏
j≥1

(
νj
µj

)
τ

2µj
j = bν . (3.56)

Remark 3.10. The convergence of the quadrature error with respect to the number of indices does not depend
on the number of parameter dimensions. It only depends on the summability parameter q, which measures the
sparsity of the parametric function with respect to the parameters: the smaller q is, the sparser f is, the faster
the convergence becomes.

Remark 3.11. For any parametric function satisfying Assumption 3.5, our theorem implies that we can con-
struct the admissible index set completely based on the definition of bν in (3.36) in order to achieve the
convergence rate N−s with s = 1/q − 1/2. This convergence rate is obtained as an upper bound, which is not
necessarily optimal. In fact, our numerical tests indicate that it could be improved.

The convergence rate is obtained with respect to the number of indices N in the index set ΛN , which is
not necessarily the same as the number of quadrature points that represents the computational work. The
following corollary provides a convergence rate with respect to the number of quadrature points in the case of
Gauss–Hermite quadrature with ml = l + 1.

Corollary 3.12. As a result of Theorem 3.9, for the case of Gauss–Hermite quadrature with ml = l + 1, the
sparse quadrature error is bounded by

||I(f)−QΛN (f)||S ≤ CN−s/2p , s =
1

q
− 1

2
, (3.57)

where C is independent of the number of quadrature points Np corresponding to ΛN .

Proof. The bound is a result of ([19], Prop. 18), which states that there exists a constant C such that Np ≤
CN2.

Remark 3.13. Similar convergence rates are observed in practice for both GH1, GH2, and GK with respect to
the number of quadrature points as that of indices, as shown in our numerical tests. The reason might be that
the number of quadrature points scales linearly with respect to the number of indices in practice, as suggested
in [19], and that the quadrature Ql, which uses ml quadrature points, is exact at least for Pn with n ≥ ml − 1
(in fact it is exact for P2ml−1 by GH quadrature), which is much richer than Pl.

3.2. Examples

The dimension-independent convergence rate relies on Assumption on the derivatives of the function f(y)
with respect to the parameter y as stated in Assumption 3.5. Here we provide two examples which satisfy such
an assumption. For both examples, we assume a common structure that the function f depends on y through
κ(y) as f(κ(y)), where κ is given by

κ(y) =
∑
j≥1

yjψj , (3.58)
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where we assume maxj≥1 ||ψj || <∞ with ||ψj || = |ψj | if ψ ∈ R and ||ψj || = ||ψj ||L∞(D) if ψj is a function in a
physical domain D.

3.2.1. Example 1 – A nonlinear parametric function

We first consider a nonlinear parametric function and set ψj = j−α in κ, in particular,

f(y) = f(κ(y)) = exp

∑
j≥1

yjj
−α

 , α > 1 . (3.59)

To satisfy Assumption 3.5, we compute

∑
|µ|∞≤r

τ 2µ

µ!

∫
Y

|∂µy f(y)|2dγ(y) =

∫
Y

f2(y)dγ(y)
∑
|µ|∞≤r

τ 2µ

µ!

∏
j≥1

j−2αµj , (3.60)

where, for α > 1, we have

∫
Y

f2(y)dγ(y) =
∏
j≥1

∫
R

e2j−αyjρ(yj)dyj = exp

2
∑
j≥1

j−2α

 <∞ . (3.61)

Moreover, we have the bound (by using 1 + x+ · · ·+ xr/r! < ex for any x > 0)

∑
|µ|∞≤r

τ 2µ

µ!

∏
j≥1

j−2αµj =
∏
j≥1

(
r∑
l=0

(τ2
j j
−2α)l

l!

)
≤ exp

∑
j≥1

τ2
j j
−2α

 , (3.62)

which is finite if and only if τj . jα−1/2−ε for arbitrary ε > 0, so that (τ−1
j )j≥1 ∈ `q(N) for q ≥ 1/(α− 1/2− ε).

By Theorem 3.9, we obtain the convergence rate N−s for s = 1/q − 1/2 ≤ α− 1− ε. Note that the case α ≤ 1
is not covered by the theorem.

3.2.2. Example 2 – PDE solution as a nonlinear map

We consider the solution (nonlinear with respect to y) of the diffusion equation: find u(y) ∈ H1
0 (D) such that

− div(eκ(y)∇u(y)) = g, in D , (3.63)

with homogeneous Dirichlet boundary condition, and g ∈ H−1(D). This example is studied in detail in [3].
Under the parametrization (3.58), for (τj)j≥1 such that

sup
x∈D

∑
j≥1

τj |ψj(x)| < ln2√
r
, (3.64)

and (τ−1
j )j≥1 ∈ `q(N) for any 0 < q <∞, they proved the bound ([3], Thm. 4.2)

∑
|µ|∞≤r

τ 2µ

µ!

∫
Y

||∂µy u(y)||2Sdγ(y) ≤ C
∫
Y

exp(4||κ(y)||L∞(D))dγ(y) <∞ , (3.65)
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where S = H1
0 (D), C is a constant independent of y. The first inequality is ensured by (3.64) from a careful

estimate of the partial derivatives of u with respect to y and the sum of their integrals, while the second
inequality is ensured by (τ−1

j )j≥1 ∈ `q(N). Then the convergence rate N−s with s = 1/q − 1/2 in Theorem 3.9
is established for f(y) = u(y). Note that in [3] only r > 2/q is needed for the convergence result of a Hermite
polynomial approximation error, while we need r > 14/q for the convergence of the sparse quadrature error due
to the proof in Lemma 3.8.

Here, the solution u(y) can be replaced by a bounded linear functional of f(y) = f(u(y)), and the inequality
(3.65) can be verified for f due to

|∂µy f(y)|2 ≤ ||f ||2S′ ||∂µy u(y)||2S . (3.66)

4. Construction of the sparse quadrature

We present a common adaptive algorithm for the construction of the sparse quadrature using two different
construction schemes – one is a goal-oriented a posteriori construction based on an a posteriori error indicator –
the difference quadrature 4ν(f) in (2.14) that depends on each specific function f ; the other one is an a priori
construction that guarantees the dimension-independent convergence rate in Theorem 3.9. The a posteriori
construction cannot be guaranteed in theory to achieve a dimension-independent convergence rate but appears
to do so in our numerical experiments in Section 5.

4.1. Goal-oriented a posteriori construction

We first present the goal-oriented a posteriori construction of the sparse quadrature based on a dimension-
adaptive tensor-product quadrature initially developed in [22], which we call adaptive sparse quadrature, whose
associated grids GΛ are called adaptive sparse grids. The basic idea is based on the following adaptive process:
given an admissible index set Λ, we search an index ν ∈ F among the forward neighbors of Λ (ν ∈ F is called
a forward neighbor of Λ if Λ ∪ ν is still admissible), at which ||4ν ||S is maximized, and add this index to
the index set Λ = Λ ∪ {ν}. As the number of forward neighbors depends on the number of dimensions J (for
example, the forward neighbors of 0 are ej for all j), it is not feasible to search over all the forward neighbors
in high or infinite dimensions. In such cases, it is usually reasonable to assume that the dimensions with small
indices are more important than those with large indices, as determined, e.g., by the decaying eigenvalues in the
Karhunen–Loève representation of a random field. Therefore, we can explore the forward neighbors dimension
by dimension in a forward neighbor index set defined as (see, e.g., [14, 43])

N (Λ) := {ν 6∈ Λ : ν − ej ∈ Λ,∀j ∈ Jν and νj = 0 ,∀j > j(Λ) + 1}, (4.1)

where Jν = {j : νj 6= 0}; j(Λ) is the smallest j such that νj+1 = 0 for all ν ∈ Λ. More generally, j(Λ) +K for a
certain K ≥ 1 can be used, see [40].

The construction process is presented in Algorithm 4.1. We remark that instead of using the maximum
number of indices as the stopping criterion, we can use others, such as the maximum number of quadrature
points, or an heuristic error indicator ||

∑
µ∈N (ΛN )4µ(f)||S . Moreover, for the a posteriori construction, it

is also a common practice to choose ν as ν = argmaxµ∈N (ΛN ) ||4µ(f)||S/|Gµ| to balance the error and the
work, e.g., [22, 40]. However, these heuristic error indicators are not rigorous and may lead to early stopping
of the algorithm in the case that ||4µ(f)||S is critically small for all µ in N (ΛN ), which can be possibly
addressed by a verification process [10]. We remark that to construct ΛN , we need to evaluate the function f
at all quadrature points corresponding to N (ΛN ) by the a posteriori construction, so that the total number
of function evaluations is larger than that in ΛN as presented in Corollary 3.12. We will also investigate the
convergence rate with respect to the total number of quadrature points in the numerical experiments.
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Algorithm 4.1. Adaptive sparse quadrature
1: Input: maximum number of indices Nmax, function f .
2: Output: the admissible index set ΛN , quadrature QΛN (f).
3: Set N = 1, ΛN = {0}, evaluate f(0) and set QΛN (f) = f(0).
4: whileN < Nmaxdo
5: Construct the forward neighbor set N (ΛN ) by (4.1).
6: if a posteriori construction then
7: Compute 4ν(f) for all ν ∈ N (ΛN ) by (2.13).
8: Take ν = argmaxµ∈N (ΛN ) ||4µ(f)||S .

9: else if a priori construction then
10: Compute bν for all ν ∈ N (ΛN ) by (3.36).
11: Take ν = argminµ∈N (ΛN ) bν .

12: end if
13: Enrich the index set ΛN+1 = ΛN ∪ {ν}.
14: Set QΛN+1

(f) = QΛN (f) +4ν(f). Set N ← N + 1.
15: Set N ← N + 1.
16: end while

4.2. A priori construction

A priori construction of sparse grids has been considered in the literature, e.g., in [5, 35, 37]. We also
mention that a similar a priori algorithm is proposed in [19]. In our setting, from Theorem 3.9 we observe that
the dimension-independent convergence rate of the sparse quadrature can be achieved by choosing the admissible
index set ΛN with indices ν ∈ F corresponding to the N smallest values of bν . While we can compute bν for
all the indices ν ∈ Fr,J where

Fr,J = {ν ∈ F : |ν|∞ ≤ r, and νj = 0 for j > J} , (4.2)

it is expensive/unfeasible if r and J are very large or infinite. For a feasible construction, we first arrange (τj)j≥1

to be in increasing order, so that bej+1
≥ bej for all j = 1, 2, . . . by definition. Then we start with Λ = {0} and

adaptively enrich Λ by Algorithm 4.1 that pick the index ν corresponding to the smallest bν with candidate
indices from the forward neighbor set (4.1). By bej+1 ≥ bej for all j = 1, 2, . . ., and by the monotonic increasing
property of bν in (3.55), the index corresponding to the smallest bν for ν 6∈ Λ is in the forward neighbor set
N (Λ), so that the a priori construction will adaptively select the indices corresponding to the smallest bν , which
guarantees that the convergence rate predicted by theory will be attained.

We remark that this a priori construction depends only on the parameters q, τ and r in Assumption 3.5
for any function satisfying such assumption. However, it is not always straightforward or possible to verify this
assumption especially for nonlinear functions with respect to the parameter as in Example 2. In this situation,
and in the common parametrization as in (3.58), we use τj = jα−1 when ||ψj || decays as j−α as demonstrated in
Section 5.2 (see Fig. 8), and choose r = floor(14(α− 1)) + 1, the closest integer larger than 14(α− 1) according
to Assumption 3.5. Alternatively, we turn to a goal-oriented a posteriori construction that does not need q, τ
and r.

5. Numerical experiments

In this section, we present two numerical experiments for a parametric function and a parametric PDE to
demonstrate the convergence property of the sparse quadrature using different univariate quadrature rules and
different construction schemes in comparison with the Monte Carlo quadrature.
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Figure 3. Decay of quadrature errors |I(f) − QΛ(f)| with respect to the number of indices
(left) and the number of points (right) in Λ. Results are shown for the different quadrature
rules constructed by both the a priori and the a posteriori schemes with Algorithm 4.1. Here,
α = 2.

5.1. A parametric function

We first consider the nonlinear parametric function presented in Example 1, Section 3.2.1. The expectation
of the function is given analytically, which is

I(f) = exp

(
1

2
ζ(2α)

)
, (5.1)

where ζ(2α) =
∑
j≥1 j

−2α is the Riemann zeta function. We compute it by truncation of j at 104 dimensions and
use it as the reference value. We run Algorithm 4.1 for the construction of the sparse quadrature with both the a
priori construction in Section 4.2, and the goal-oriented a posteriori construction in Section 4.1. For the former,
we use τj = jα−1/2, as obtained in Example 1, for the computation of bν in (3.36). We set the maximum number
of sparse grid points at 105. The forward neighbor index set (4.1) is used since τj is monotonically increasing.
We test the four quadrature rules: 1) Gauss–Hermite rule with ml = l + 1 (GH1 for short); 2) Gauss–Hermite
rule with ml = 2l+1 − 1 (GH2); 3) transformed Gauss–Kronrod–Patterson rule (tGKP) with maximum level
l = 6; 4) Genz–Keister rule (GK) with maximum level l = 4.

Figure 3 displays the decay of the quadrature errors with respect to the number of indices |Λ| and the number
of sparse grid points (function evaluations) |GΛ| in Λ. We can observe an asymptotically dimension-independent
convergence rate of the quadrature error (except for tGKP which performs rather bad), not only with respect
to the number of indices as predicted by Theorem 3.9, but also with respect to the number of points. Note that
the convergence rate obtained is asymptotically dimension-independent, since only part of the dimensions at
disposal have been activated as observed in Figure 4: in other words, had we considered even more than the
current 104 random variables, possibly countably many, we would have observed the same convergence curve.
It is evident from the comparison that both the a priori and the a posteriori construction schemes lead to very
close convergence rates for the quadrature rules GH1, GH2 and GK, while the a posteriori construction gives
smaller quadrature errors at the same number of indices/points for all four quadrature rules.

The numerical convergence rate with respect to the number of indices is about N−s for GH1, GH2, and GK,
with s = 2 for α = 2, which is faster than that predicted by Theorem 3.9 at s = α− 1. This indicates that the
convergence rate obtained in Theorem 3.9 is possibly not optimal. Note that the convergence is sightly slower
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Figure 4. Maximum level (maxν∈Λ∪N (Λ) νj , j = 1, . . . , 104) in each of the 104 dimensions
constructed by the a priori and the a posteriori schemes for the four quadrature rules. α = 2.

than N−2 with respect to the number of points, which is due to the number of quadrature points growing faster
than the number of indices. The performance of GH1, GH2, and GK are very close: the errors of GH2 and GK
overlap with respect to the number of indices while the latter is smaller than the former with respect to the
number of points, because GK points are nested while GH2 (also GH1) points are not. On the other hand, it is
observed that tGKP does not converge as fast as the other three rules and the convergence becomes deteriorated
using a larger number of points/indices. This might be due to the fact that the degree of exactness of tGKP
is much smaller than the others; in particular, it does not satisfy 3.1 of Assumption 3.1 as shown in Figure 2.
The univariate quadrature level for each dimension for the two construction schemes with the four quadrature
rules is displayed in Figure 4. Note that we have set the maximum level for tGKP to 6, and for GK to 4 due to
the availability of the quadrature points. We set the maximum level for GH2 to 6 in the a priori construction
to prevent allocating too many quadrature points in the first few dimensions. The a priori construction tends
to use higher levels for the first few dimensions than the a posteriori construction for GH1, GH2, and GK,
which leads to too many quadrature points than needed because of the high exactness of the GH1, GH2, and
GK quadrature rules (see the early divergence of the errors in the right part of Fig. 3). This high exactness
is explored and benefited by the a posteriori construction. On the other hand, the low exactness of the tGKP
is not seen by the a priori construction but by the a posteriori , see the different levels for tGKP in Figure
4. Moreover, the a priori construction leads to less accurate quadrature results compared to the a posteriori
construction, especially for GH2, GK, and tGKP as the number of these quadrature points double from one
level to the next. As for GH1, the a priori construction is very close to the a posteriori construction in terms
of accuracy. This is because only one quadrature point is added from one level to the next, so that the number
of indices and the number of quadrature points are closer than those for the other three quadrature rules. Note
that the a priori construction is performed completely based on the quantity bν in (3.36), which only depends
on the index for fixed (τj)j≥1, regardless of how many quadrature points are used in the same index set.

The convergence rates have been investigated with respect to the number of indices and points in Λ to
demonstrate the results in Theorem 3.9. However, in order to construct Λ, the indices in its forward neighbor
set N (Λ) (see the Definition (4.1)) have to be searched over. Hence, we need to evaluate the function at
each quadrature point in N (Λ) by the a posteriori construction, or evaluate bν (defined in (3.36)) by the a
priori construction. Here we emphasize that the computational cost for the evaluation of bν could be negligible
compared to that of the function evaluation which requires, e.g., a PDE solve, so that the a priori construction
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Figure 5. Decay of quadrature errors |I(f) − QΛ̄(f)| with respect to the number of indices
(left) and the number of points (right) in Λ̄ = Λ ∪ N (Λ). Results are shown for the Monte
Carlo (MC) and the GK quadrature rules constructed by both the a priori and the a posteriori
construction schemes.

is potentially more efficient than the a posteriori . For instance, here 30601 function evaluations are performed
out of 100500 points (the remaining points are in the forward neighbor set N (Λ)) by GH1 quadrature rule.

To investigate the convergence rate with respect to the total number of indices and points in Λ̄ = Λ ∪N (Λ),
which represents the total computational cost, we compute the quadrature error |I(f)−QΛ̄(f)| for the GK rule
with α = 1, 2, 3. We also compute the Monte Carlo quadrature error by an average of 100 trials for all α in 103

dimensions. The quadrature errors are reported in Figure 5.
We can observe that the convergence rates of the quadrature errors with respect to both the total number

of indices and the total number of points corresponding to the union set Λ̄ are about N−s, where s = α− 1/2
for all α = 1, 2, 3, by both the a priori and the a posteriori construction schemes. Meanwhile, the average of
Monte Carlo (MC) quadrature errors decays as N−1/2 for all α, which is much slower than that of the sparse
quadrature errors for α = 2, 3. In the case α = 1, the sparse quadrature still achieves very close convergence
rate as N−1/2 for MC and with smaller errors in this test example, see in the right part of Figure 5. Note that
the MC quadrature error is measured in average/expectation, which could be much less accurate depending on
the trial, while the sparse quadrature error is deterministically bounded.

5.2. A parametric PDE

In this section, we consider the parametric PDE of Example 2 in Section 3.2.2, where the coefficient κ is a
Gaussian random field allowing the Karhunen–Loève expansion

κ = κ0 +
∑
j≥1

√
λjφjyj , (5.2)

where (λj , φj)j≥1 are the eigenpairs of (−δ4)−α, δ, α > 0, with homogeneous Dirichelet boundary condition on
the boundary ∂D of the domain D ∈ Rd, and (yj)j≥1 are i.i.d. standard Gaussian random variables. For the
simple case D = (0, 1), we have for δ = 1/π2,

λj = j−2α, and φj = sin(πjx) . (5.3)
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This monodimensional PDE problem under the above parametrization is well-posed under the condition α > 1/2,
see Assumption 3.1 from [8]. In the numerical test, we set κ0 = 0, the forcing term g = 1, and prescribe zero
Dirichlet boundary condition at x = 0, 1. A uniform mesh with mesh size h = 1/210 is used for the discretization
of the domain D, therefore we truncate j with J = 1023 dimensions in the parametrization (5.2). We use a finite
element method with piecewise linear elements to solve the elliptic PDE. Under the parametrization (5.2), our
quantity of interest is the average value of u in D and we compute its first two moments, i.e., we compute E[f1]
and E[f2], where

f1(y) = Q(u(y)) and f2(y) = Q2(u(y)), where Q(u(y)) =

∫
D

u(y)dx . (5.4)

Figure 6. Decay of quadrature errors |I(f) − QΛ(f)| with respect to the number of indices
(left) and the number of points (right) in Λ. Results are shown for the different quadrature
rules constructed by both the a priori and the a posteriori construction Algorithm 4.1. α = 2.
Top: f1; bottom: f2.
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Figure 7. Maximum level (maxν∈Λ∪N (Λ) νj , j = 1, . . . , 1023) in each dimension constructed
by the a priori and the a posteriori schemes for the four quadrature rules. α = 2. Top: f1;
bottom: f2.

We construct the sparse quadrature by both the a priori and the a posteriori construction schemes presented
in Algorithm 4.1. For the a priori construction, to satisfy the condition (3.64) with ψj =

√
λjφj = j−α sin(πjx),

a choice of τj ∝ jα−1−ε for arbitrary small ε > 0 is sufficient since

sup
x∈D

∑
j≥1

τj |ψj(x)| ≤
∑
j≥1

τj ||ψj ||L∞(D) =
∑
j≥1

τjj
−α . (5.5)

Here, we set τj = jα−1 with α = 2. To run Algorithm 4.1, we set the maximum number of sparse grid points
set to 105.

Figure 6 displays the convergence of the quadrature errors of the two moments E[f1] and E[f2] with respect
to the number of indices and points in the index set Λ, where we compute the error by

|I(f)−QΛ(f)| ≈ |QGK
Λ̄max

(f)−QΛ(f)| . (5.6)
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Figure 8. Left : maximum level (maxν∈Λ∪N (Λ) νj , j = 1, . . . , 1023) in each dimension con-
structed by the a priori scheme with different (τj)j≥1 and the a posteriori scheme, all using
GH1. Right : the corresponding sparse quadrature errors. α = 2.

Here QGK
Λ̄max

(f) is the approximation of I(f) by the a posteriori GK quadrature at the largest index set Λ̄max =

Λmax ∪N (Λmax) with about 105 quadrature points. GK quadrature is used since it is more accurate for this test
example as shown in Figure 6. Moreover, the number of activated dimensions in Λ, for which the maximum grid
level is larger than 1 in Λ ∪ N (Λ), is smaller than the number of the full dimensions for all quadrature rules,
in particular smaller than the number of dimensions activated by the a posteriori GK in Λ̄max, see Figure 7,
which indicates that the quadrature errors computed for the indices and the points in Λ are unbiased and the
convergence rate is asymptotically dimension-independent. From the decaying of the quadrature errors, we can
observe the asymptotically dimension-independent convergence rate about N−s with s = 2 with respect to the
number of both indices and points in Λ, for both quantities of interest f1 and f2. Again, GK quadrature turns
out to be the most accurate and tGKP is the least with the same number of quadrature points. The a priori
construction gives less accurate quadrature results compared to the a posteriori construction, in particular for
GH2, tGKP, and GK as explained in the last section. We remark that the same index set has been constructed
for both f1 and f2 by the a priori construction, while by the a posteriori construction, the index sets for the two
quantities are different. This can be illustrated by Figure 7, where the maximum level in each dimension is the
same for f1 and f2 by the a priori construction and different by the posteriori construction, see the comparison
of GH1 and GK for the two quantities. Therefore, the same index set can be used for different quantities of
interest (with the same (τj)j≥1) once constructed by the a priori scheme. On the other hand, the posteriori
scheme requires a complete reconstruction of the index set for each new quantity of interest.

Note that with τj = jα−1, i.e., (τ−1
j )j≥1 ∈ `q(N) for q > 1/(α − 1), the numerical convergence about N−s

with s = 2 is faster than the convergence of N−s with s = 1/q− 1/2 < α− 3/2 = 1/2 according to Theorem 3.9.
However, as the choice τj = jα−1 might be only a sufficient condition for Assumption 3.5, so we may numerically
relax it. Here we also test τj = jα−1/2 and τj = jα. The maximum level in each dimension and the convergence
of the quadrature errors are shown in Figure 8 for the a priori construction with GH1. We can see that the three
choices of τj produce a very close convergence rate N−s with s = 2, though τj = jα−1 leads to more accurate
quadrature than τj = jα−1/2 and τj = jα. The maximum levels from the three choices are also the same except
in a small number of dimensions.

Finally, in Figure 9 we report the decay of the sparse quadrature errors for both E[f1] and E[f2] with respect
to both the number of indices and the number of points in the union set Λ̄ = Λ∪N (Λ), which correspond to the
total computational cost. We use the most accurate GK quadrature rule and test α = 1, 2, 3. The convergence
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Figure 9. Decay of quadrature errors |I(f) − QΛ̄(f)| with respect to the number of indices
(left) and points (right) in Λ̄ = Λ ∪ N (Λ). Results are shown for both the a priori and the a
posteriori construction schemes with the MC and the GK quadrature rules. Top: f1; bottom:
f2.

rate about N−s with s = α − 1/2 can be observed for all α and for both the a priori construction and the a
posteriori construction, which indicates that the convergence rate only depends on the sparsity parameter α,
and is much higher than the Monte Carlo convergence rate N−1/2 for α = 2, 3. In the case α = 1, the sparse
quadrature errors converge with rate about N−1/2 and is smaller than that of Monte Carlo quadrature errors,
which are computed as the average of 100 trials.

6. Conclusion

In this work, we analyzed the dimension-independent convergence property of an abstract sparse quadrature
for high-dimensional integration with Gaussian measure under certain assumptions on the univariate quadra-
ture rules and the regularity of the parametric function with respect to the parameters, which established the
foundation of efficient algorithms to break the curse of dimensionality commonly faced by a class of high and
infinite-dimensional integration problems. We presented both a priori and a posteriori construction schemes for
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numerical integration. Moreover, we investigated the a priori and the a posteriori construction schemes with
four kinds of different univariate quadrature rules and studied their convergence properties through numeri-
cal experiments on a nonlinear parametric function and a nonlinear parametric PDE. The numerical results
demonstrate that the convergence rates of the quadrature errors do not depend on the number of dimensions
but only on some parameter related to the regularity of the parametric function. This conclusion holds not only
for the convergence of the quadrature errors with respect to the number of the indices in the admissible index
set as stated in the main theorem, but also for the convergence with respect to the total number of quadrature
points corresponding to the union of the admissible index set and its forward neighbor set, i.e., with respect
to the total number of function evaluations or PDE solutions. The convergence of the sparse quadrature errors
(with rate N−s) is faster than the Monte Carlo quadrature errors (i.e., s > 1/2) in all the numerical examples
with sufficiently large α (or small q) which indicates the regularity of the parametric function. The numerical
convergence rates in the examples are larger than those of the theoretical prediction in the main theorem,
which indicate that the latter may not be optimal. How to improve the theoretical convergence rate is worth
investigating.
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[32] O.P. Le Mâıtre and O.M. Knio, Introduction: Uncertainty Quantification and Propagation. Springer (2010).
[33] H. Li and D. Zhang, Probabilistic collocation method for flow in porous media: comparisons with other stochastic methods.

Water Resour. Res. 43 (2007).
[34] G. Lin and A.M. Tartakovsky, An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional

flow and solute transport in randomly heterogeneous porous media. Adv. Water Res. 32 (2009) 712–722.
[35] X. Ma and N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential

equations. J. Comput. Phys. 228 (2009) 3084–3113.
[36] P.G. Nevai, Mean convergence of Lagrange interpolation, II. J. Approx. Theory 30 (1980) 263–276.

[37] F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential
equations with random input data. SIAM J. Numer. Anal . 46 (2008) 2411–2442.

[38] F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with
random input data. SIAM J. Numer. Anal. 46 (2008) 2309–2345.

[39] F. Nobile, L. Tamellini and R. Tempone, Convergence of quasi-optimal sparse grid approximation of Hilbert-valued functions:
application to random elliptic PDEs. Numer. Math. 134 (2016) 343–388.

[40] F. Nobile, L. Tamellini, F. Tesei and R. Tempone, An adaptive sparse grid algorithm for elliptic PDEs with lognormal diffusion
coefficient, in Sparse Grids and Applications-Stuttgart 2014. Springer (2016) 191–220.

[41] T.N.L. Patterson, The optimum addition of points to quadrature formulae. Math. Comput. 22 (1968) 847–856.

[42] C. Schillings, S. Schmidt and V. Schulz, Efficient shape optimization for certain and uncertain aerodynamic design. Comput.
Fluids 46 (2011) 78–87

[43] C. Schillings and Ch. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Probl. 29 (2013)
065011.

[44] C. Schillings and Ch. Schwab, Sparsity in Bayesian inversion of parametric operator equations. Inverse Probl. 30 (2014)
065007.
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