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EVOLUTION OF A SEMIDISCRETE SYSTEM MODELING THE SCATTERING

OF ACOUSTIC WAVES BY A PIEZOELECTRIC SOLID

Thomas S. Brown1, Tonatiuh Sánchez−Vizuet2 and Francisco-Javier Sayas1,∗

Abstract. We consider a model problem of the scattering of linear acoustic waves in free homogeneous
space by an elastic solid. The stress tensor in the solid combines the effect of a linear dependence of
strains with the influence of an existing electric field. The system is closed using Gauss’s law for the
associated electric displacement. Well-posedness of the system is studied by its reformulation as a first
order in space and time differential system with help of an elliptic lifting operator. We then proceed to
studying a semidiscrete formulation, corresponding to an abstract Finite Element discretization in the
electric and elastic fields, combined with an abstract Boundary Element approximation of a retarded
potential representation of the acoustic field. The results obtained with this approach improve estimates
obtained with Laplace domain techniques. While numerical experiments illustrating convergence of a
fully discrete version of this problem had already been published, we demonstrate some properties of
the full model with some simulations for the two dimensional case.
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1. Introduction

With a wide range of applications, such as the design of active and passive materials for noise and vibration
control and the construction of sensors for non-destructive ultra-sonic testing, the study of the interaction
between acoustic waves and solids with piezoelectric properties has been of great interest to researchers in
mathematics, physics, and engineering in recent years. The study of the mechanics of the piezoelectric solid
date back to the late 19th century and some examples of work done on these problems can be found in [2,8,26]
to name just a few. For our purposes, we will use the model of [9], which also presents the variational form of
the problem. The mathematical justification for the use of this quasi-static approximation in the solid where
the electric potential satisfies a time-independent equation has been tackled by [17].

Introducing an acoustic wave which scatters off of the solid results in the wave-structure interaction problem
which is the subject of this article. For the sake of the analysis we will use a first order in space and time formu-
lation as in [13], whereas for the numerical experiments we will use a surface integral potential representation
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for the scattered acoustic field as seen in [7,16,24]. This treatment of the acoustics leads to a boundary element
formulation for those unknowns and we will use finite elements for the semidiscretization of the piezoelectric
solid similar to [5], where the formulation considered is for a purely elastic solid. While we will not use mixed
methods, we would like to remark that it has been shown by [11] that their use for the treatment of the solid
results in an equivalent problem.

Let us now introduce the basic idea of the model we are working on, using some informal notation. (A detailed
rigorous description of the model equations is given in Sect. 2). We consider a solid occupying a bounded region
of the space Ω− and surrounded by an irrotational fluid in its unbounded exterior Ω+. An acoustic incident
wave in free space hits the solid at positive time. The acoustic field caused by scattering and by the effects of
wave propagation through the obstacle will be represented by the scattered acoustic potential u. As the incident
wave hits the obstacle, an elastic wave is triggered in the solid. The piezoelectric behavior is expressed in two
ways: stress is the combination of an instantaneous linear operator acting on strain (Hooke’s Law) and the effect
of electric fields in the solid; Gauss’s Law is then imposed for the electric displacement, which combines the
electric field and the elastic strain ε. The electric field will be expressed through an electric potential ψ and
the elastic effects will be described by the displacement field u. Formally we have three equations, namely, a
scalar wave equation in the unbounded region, and a vector wave equation as well as an elliptic equation in the
bounded domain:

utt = ∆u Ω+ × [0,∞),

ρutt = div (Cε+ e∇ψ) Ω− × [0,∞),

div(e>ε− κ∇ψ) = 0 Ω− × [0,∞).

The coupling of the elastic and the electrostatic fields happens through the piezoelectric tensor e. (When
e = 0 the model will reduce to wave-structure interaction). The coupling of acoustic and piezoelectric dynamics
takes place through two transmission conditions involving the normal components of the elastic stress σν and
the acoustic pressure ρf∂ν u̇ as well as the normal components of the acoustic and elastic velocities (∂νu and
u̇ · ν respectively) at the interface. The goal of Section 3 is the mathematical analysis of this model, which is
accomplished by recasting the system of PDE’s into a first order system in the spirit of [13]

U̇(t) = A?U(t) + F (t), BU(t) = ξ(t), U(0) = 0, (1.1)

for a certain operator A? that involves a first order in space differential operator and the inverse of an elliptic
operator, and boundary operator B that accounts for the conditions at the interface. The unknowns collected in
U are related to acoustic pressure, velocity, displacement, purely elastic stress and electric field, while right-hand
sides correspond to the influence of the incident wave in the system.

In the next step (Sect. 4) we rewrite the system using a variational formulation for the interior problems and
a retarded potential representation for the exterior fields. The interior equations are then approximated in the
space variables using a generic Galerkin (FEM) discretization, while the boundary unknowns are approximated
with an independent Galerkin (BEM) scheme. We then follow the ‘template’ of the continuous problem to
describe the semidiscrete problem in the form (1.1), by redefining all the operators, and to prove discrete well-
posedness (Sect. 5). The technique is reminiscent of [14] (coupling of the same exterior problem with a scalar
wave equation in the interior domain), although we need to overcome several difficulties, arising from the fact
that we have an elliptic equation coupled with the system with possible non-homogeneous Dirichlet boundary
conditions, as well as from the substitution of a simple scalar equation in the interior domain by a coupled system.
While [15,16,22] had already dealt with different versions of transient wave-structure interaction problems, using
Laplace transform techniques based on [3, 18, 19], the current approach has several advantages: (a) it presents
all situations in a unified form; (b) it provides sharper estimates (lower regularity required and bounds that
do not grow with time); (c) it reveals the underlying stability of the semidiscrete system, as reflected by the
fact that the solution is the convolution of the data with a group of isometries in a certain Hilbert space.
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We next show (Sect. 6) that a slight variation of the problem describes the evolution of the error due to
semidiscretization. In Section 7 we include some easy extensions and compare with existing results. Finally,
in Section 8, we illustrate the behavior of the system with some numerical experiments performed by using a
multistep Convolution Quadrature [4, 12, 19] technique applied to the semidiscrete problem. We note that the
papers [15, 22] already contained numerical experiments on this problem (with and without the piezoelectric
coupling) aimed at visualizing the convergence properties of the fully discrete problem. The goal of the numerical
simulations here is the illustration of the behavior of solutions to the coupled system.

Instead of presenting the work as a piece of numerical analysis (model equations, discretization, error es-
timates, numerical experiments), we emphasize the evolutionary equation structure of the three associated
problems (continuous problem, semidiscrete problem, error equations) and display all results in full generality,
giving conditions on the approximation spaces (there are very few prerequisites in them). Using ideas that go
back to [18], we take advantage of the fact that Galerkin semidiscretization of boundary integral equations can
be described using exotic transmission conditions (with the exterior acoustic fields partially invading the interior
domain) reflecting Galerkin orthogonality and the demand that the unknowns are in discrete spaces.

Remark 1.1. The symbol . will be used to avoid repeated occurrences of C, denoting a constant arising from
different types of inequalities and whose value is not relevant for the argument. Whenever discretization is taken
into account (this will be made clear by the appearance of an h index, not necessarily related to a discretization
mesh) and time is a variable, we will assume that a . b means that a ≤ Cb where C is independent of h and t.
Independence of h will mean specifically that the constant does not depend on the particular choice of discrete
spaces.

2. The continuous problem

Sobolev space preliminaries. On an open setO we consider the space L2(O) and its vector valued counterpart
L2(O) := L2(O)d. The symbols (·, ·)O and ‖ · ‖O will be indistinctly used for the inner product and norm of
scalar, vector, or matrix valued functions with components in L2(O). In the Sobolev space H1(O) we consider
the standard norm ‖u‖21,O := ‖u‖2O + ‖∇u‖2O. We will write H1(O) := H1(O)d. Finally, in

H(div,O) := {v ∈ L2(O) : ∇ · v ∈ L2(O)}

we consider the norm ‖v‖2div,O := ‖v‖2O + ‖∇ · v‖2O. For matrix-valued functions, we consider the spaces

L2
sym(O) := {A ∈ L2(O)d×d : A> = A a.e.},

Hsym(div,O) := {A ∈ L2
sym(O) : div A ∈ L2(O)},

where the divergence operator is applied to the rows of a matrix-valued function, outputting a vector-valued
function. All vectors will be taken to be column vectors.

The geometric setting for this article consists of a bounded open domain Ω− ⊂ Rd with Lipschitz boundary
Γ and exterior Ω+ := Rd\Ω−. There is no need for Γ to be connected, i.e, we admit Ω− to contain cavities.
The setting can be extended to Ω− being the finite union of Lipschitz domains with non-intersecting closures.

The Sobolev spaces H1/2(Γ ) and the surjective trace operators γ± : H1(Ω±) −→ H1/2(Γ ) are defined as
usual [1, 20]. We will denote H−1/2(Γ ) to the dual space of H1/2(Γ ) and 〈·, ·〉 will be used to represent the
duality products of H−1/2(Γ ) × H1/2(Γ ) as well as that of the product spaces H±1/2(Γ ) := H±1/2(Γ )d. The
unit normal vector field on Γ will point from Ω− to Ω+ and will be denoted ν. The exterior-interior weak
normal component operators γ±ν : H(div, Ω±) −→ H−1/2(Γ ) are given by the standard definitions

〈γ±ν v, γ±w〉 := ∓(∇ · v, w)Ω± ∓ (v,∇w)Ω± ∀w ∈ H1(Ω±).
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Both of them are surjective. We can also define γ±ν : Hsym(div, Ω±) −→ H−1/2(Γ ), given by

〈γ±ν S, γ±w〉 := ∓(S, ε(w))Ω± ∓ (div S,w)Ω± ∀w ∈ H1(Ω±),

where ε(w) := 1
2 (∇w + (∇w)>) is the symmetric gradient. Note that we can also define the action of the γ±ν

above using ∇w rather than ε(w) and obtain an equivalent definition. These operators are also surjective.
We assume that Γ is partitioned into two non-overlapping relatively open sets ΓN and ΓD with non-trivial ΓD

with the intention of imposing Neumann and Dirichlet boundary conditions respectively on these two subsets of
Γ = ΓN ∪ ΓD. To this end we also need to introduce the appropriate Sobolev spaces in which these conditions
will live. For u ∈ H1(Ω−) we define γDu := γu

∣∣
ΓD

and the following spaces [20]:

H1/2(ΓD) := {γDu : u ∈ H1(Ω−)}, H1
D(Ω−) := {u ∈ H1(Ω−) : γDu = 0},

H̃1/2(ΓN ) := {γu
∣∣
ΓN

: u ∈ H1
D(Ω−)}, H−1/2(ΓN ) := (H̃1/2(ΓN ))∗.

Above and in the sequel, the notation X∗ will be used to denote the dual of the space X. The duality pairing
of H−1/2(ΓN ) and H̃1/2(ΓN ) will be denoted explicitly by 〈·, ·〉ΓN

.

Physical coefficients. We will consider that the unbounded domain Ω+ is occupied by a compressible, inviscid,
and irrotational fluid and we will deal with acoustic equations in it. The bounded domain Ω− describes the
equilibrium state of an elastic solid with piezoelectric properties. (Note that for the first set of results, with
variable coefficients on both domains, the situation of the solid and the fluid can be reversed. Once we move
to boundary-field formulations and their semidiscrete BEM-FEM discretization, the elastic domain will need to
be bounded and the acoustic coefficients will be expected to be constant).

The material properties on the acoustic domain will be determined by the functions

c ∈ L∞(Ω+) c ≥ c0 > 0 a.e.,

ρf ∈ L∞(Ω+) ρf ≥ ρ0,f > 0 a.e.,

although we will use the combined coefficients κ0 := 1/ρf and κ1 := 1/(c2ρf ). From the theoretical point of
view, there is no restriction in κ0 taking values on the space of symmetric matrices, as long as κ0 is almost
everywhere uniformly positive definite. The mass density in the elastic domain is given by a function

ρ ∈ L∞(Ω−) ρ ≥ ρ0 > 0 a.e.,

and elasticity is described by means of the symmetric stiffness tensor C : Ω− −→ B(Rd×d,Rd×d), where for all
A,B ∈ Rd×d and almost everywhere in Ω− we have

‖CA‖ ≤ CΣ‖A‖,
CA = 0 if A = −A>,

CA : B = A : CB,
C0,Σ‖A‖2 ≤ CA : A if A = A>.

Here A : B denotes the Frobenius inner product between the matrices A and B, and all of the matrix norms
are those induced by this inner product in Rd×d. The above properties imply that CA ∈ L2

sym(Ω−) for all
A ∈ L2

sym(Ω−). In some theoretical arguments, we will briefly need to make use of C−1, so at this time we will
define what we mean by this symbol. Commonly referred to as the compliance tensor, we define C−1 : Ω− −→
B(Rd×dsym ,Rd×dsym), where we say that C−1A = B if CB : M = A : M, for all M ∈ Rd×d.

To incorporate the piezoelectric properties of the solid occupying Ω−, we need to define the piezoelectric
tensor e : Ω− −→ B(Rd,Rd×d) and the dielectric tensor κψ : Ω− −→ B(Rd,Rd). We will also make use of
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e> : Ω− −→ B(Rd×d,Rd). The entries of these tensors will be functions in L∞(Ω−) and exhibit the following
symmetries

ekij = ekji, κψ,ij = κψ,ji.

We also assume that there is a constant d0 > 0 such that

κψd · d ≥ d0‖d‖2, ∀d ∈ Rd, a.e.

For d ∈ Rd and M ∈ Rd×dsym we define the action of these tensors as

(ed)ij =

d∑
k=1

ekijdk, (e>M)k =

d∑
i,j=1

ekijMij , (κψd)i =

d∑
j=1

κψ,ijdj .

A strong second order formulation. For the moment being, we are going to consider classical solutions of
a wave-structure interaction problem. We will use notation of the abstract theory of evolution equations where
only the time variable is displayed and functions take values on appropriate Sobolev spaces. All differential
operators will be applied in the space variables and the upper dot will denote classical differentiation with
respect to the time variable.

We look for a scalar (acoustic) field and another scalar (piezoelectric) field coupled with a vector (elastic)
field

u : [0,∞) −→ D(Ω+) :={w ∈ H1(Ω+) : κ0∇w ∈ H(div, Ω+)},
(ψ,u) : [0,∞) −→ D(Ω−) :={(φ,w) ∈ H1(Ω−)×H1(Ω−) :

Cε(w) + e∇φ ∈ Hsym(div, Ω−),

e>ε(w)− κψ∇φ ∈ H(div, Ω−)},

satisfying the wave equations

κ1ü(t) = ∇ · (κ0∇u) (t) in L2(Ω+) ∀t ≥ 0, (2.1a)

ρ ü(t) = div (Cε(u)(t) + e∇ψ(t)) in L2(Ω−) ∀t ≥ 0, (2.1b)

a divergence-free condition (Gauss’ law for the electric displacement)

∇ ·
(
e>ε(u)(t)− κψ∇ψ(t)

)
= 0 in L2(Ω−) ∀t ≥ 0, (2.1c)

the transmission conditions (continuity of velocity and normal stress)

γ+ν (κ0∇u)(t) + β1(t) + γ−u̇(t) · ν = 0 in H−1/2(Γ ) ∀t ≥ 0, (2.1d)

(γ+u̇(t) + β̇0(t))ν + γ−ν (Cε(u)(t) + e∇ψ(t)) = 0 in H−1/2(Γ ) ∀t ≥ 0, (2.1e)

the mixed boundary conditions

γ−
(
e>ε(u)(t)− κψ∇ψ(t)

)
· ν − η(t) = 0 in H−1/2(ΓN ) ∀t ≥ 0, (2.1f)

γDψ(t)− µ(t) = 0 in H1/2(ΓD) ∀t ≥ 0, (2.1g)

and vanishing initial conditions

u(0) = 0, u̇(0) = 0, u(0) = 0, u̇(0) = 0. (2.1h)

In (2.1d) and (2.1e),
β0 : [0,∞) −→ H1/2(Γ ), β1 : [0,∞) −→ H−1/2(Γ )

are boundary data, representing the trace and normal flux of a known incident wave corresponding to the given
physical parameters, whereas in (2.1f) and (2.1g),

η : [0,∞) −→ H−1/2(ΓN ), µ : [0,∞) −→ H1/2(ΓD)

are boundary data for the electric displacement and potential.
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3. Well-posedness

Before stating our result for the well posedness of the above problem, we need the following definitions. For
a Banach space X and k ≥ 1, we define

W k(X) := {f ∈ Ck−1([0,∞), X) : f (k) ∈ L1((0,∞), X), f (`)(0) = 0, 0 ≤ ` ≤ k − 1},

and

Hk(f, t|X) :=

k∑
`=0

∫ t

0

‖f (`)(τ)‖X dτ. (3.1)

With the additional definition of

(∂−1f)(t) :=

∫ t

0

f(τ) dτ,

we are ready to present the following stability bounds.

Theorem 3.1. For (β1, β0, η, µ) ∈ W 1(H−1/2(Γ ))×W 2(H1/2(Γ ))×W 1(H−1/2(ΓN ))×W 1(H1/2(ΓD)) prob-
lem (2.1) is uniquely solvable and its solution satisfies for all t ≥ 0

‖u(t)‖1,Ω+
+ ‖ψ(t)‖1,Ω− + ‖u(t)‖1,Ω− . H2((∂−1β1, β0), t|H−1/2(Γ )×H1/2(Γ ))

+H1((η, µ), t|H−1/2(ΓN )×H1/2(ΓD)).

On our way to the proof. We begin by writing (2.1) as a first order problem, defining the variables

v := ∂−1(κ0∇u), S := ∂−1(Cε(u)), r := ∂−1∇ψ.

The steady-state differential equation (2.1c) and the associated boundary conditions (2.1f)-(2.1g) will be treated
as functions (u, η, µ) 7→ ∇ψ in the following form: consider the operators

LΩ : H1(Ω−) −→ L2(Ω−), LN : H−1/2(ΓN ) −→ L2(Ω−), LD : H1/2(ΓD) −→ L2(Ω−),

defined by

LΩu + LNη + LDµ = ∇ψ, (3.2a)

where ψ satisfies

ψ ∈ H1(Ω−), γDψ = µ, (3.2b)

(κψ∇ψ,∇ϕ)Ω− = (ε(u), e∇ϕ)Ω− − 〈η, γϕ〉ΓN
∀ϕ ∈ H1

D(Ω−). (3.2c)

The Sobolev space for the stress

He(div, Ω−) := {(S, r) ∈ L2
sym(Ω−)× L2(Ω−) : div(S + er) ∈ L2(Ω−)},

is endowed with its natural norm. With all of the above, we can state the first order formulation of the problem
as looking for

u : [0,∞) −→ H1(Ω+),

v : [0,∞) −→ H(div, Ω+),

u : [0,∞) −→ H1(Ω−),

(S, r) : [0,∞) −→ He(div, Ω−),
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satisfying the differential equations

u̇(t) = κ−11 ∇ · v(t) in L2(Ω+) ∀t ≥ 0, (3.3a)

v̇(t) = κ0∇u(t) in L2(Ω+) ∀t ≥ 0, (3.3b)

u̇(t) = ρ−1div(S(t) + er(t)) in L2(Ω−) ∀t ≥ 0, (3.3c)

Ṡ(t) = Cε(u)(t) in L2
sym(Ω−) ∀t ≥ 0, (3.3d)

ṙ(t) = LΩu(t) + LNη(t) + LDµ(t) in L2(Ω−) ∀t ≥ 0, (3.3e)

the transmission conditions

γ+ν v(t) + ∂−1β1(t) + γ−u(t) · ν = 0 in H−1/2(Γ ) ∀t ≥ 0, (3.3f)

(γ+u(t) + β0(t))ν + γ−ν (S(t) + er(t)) = 0 in H−1/2(Γ ) ∀t ≥ 0, (3.3g)

and homogeneous initial conditions

u(0) = 0, v(0) = 0, u(0) = 0, S(0) = 0, r(0) = 0. (3.3h)

Fitting this into the abstract framework. We now show how this problem can be fit into the framework
outlined in Section 8, and distilled from [13]. The desired spaces for this problem are

H := L2(Ω+)× L2(Ω+)× L2(Ω−)× (L2
sym(Ω−)× L2(Ω−)),

V := H1(Ω+)×H(div, Ω−)×H1(Ω−)×He(div, Ω−),

M = M2 := H−1/2(Γ )×H−1/2(Γ ).

For U := (u,v,u, (S, r)) ∈ H we define

‖U‖2H := (κ1u, u)Ω+
+ (κ−10 v,v)Ω+

+ (ρu,u)Ω− + (C−1S,S)Ω− + (κψr, r)Ω− ,

whereas in V and M we will use the natural product norms. The operators A? : V −→ H and B : V −→ M are
given by

A?U := (κ−11 ∇ · v, κ0∇u, ρ−1div(S + er), (Cε(u), LΩu)), (3.4)

BU := (γ+ν v + γ−u · ν, γ+uν + γ−ν (S + er)), (3.5)

and make the equivalence ‖A?U‖H + ‖U‖H ≈ ‖U‖V hold. These operators and spaces allow us to write (3.3) in
the abstract form

U̇(t) = A?U(t) + F (t), BU(t) = Ξ(t), U(0) = 0,

with
F = (0,0,0, (0, LNη + LDµ)), Ξ = (0, (−∂−1β1,−β0ν)). (3.6)

With the notation A := A?
∣∣
KerB

and D(A) := KerB, we go through the process of verifying the hypotheses of
the framework.

Lemma 3.2. For every U ∈ D(A), we have (AU,U)H = 0.

Proof. For each U ∈ D(A) we have

(AU,U)H = (∇ · v, u)Ω+
+ (∇u,v)Ω+

+ (div(S + er),u)Ω− + (ε(u),S)Ω− + (κψLΩu, r)Ω−

= −〈γ+ν v, γ+u〉+ (div(S + er),u)Ω− + (ε(u),S + er)Ω−

= −〈γ+ν v, γ+u〉+ 〈γ−ν (S + er), γ−u〉 = 0,

which proves the result. �
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Lemma 3.3. The operator T (u,v,u, (S, r)) := (u,−v,−u, (S, r)) is an isometric involution in H, bijective in
D(A), and satisfies TA = −AT .

Proof. It is straightforward. �

Lemma 3.4. Let F = (f, f ,g, (G,h)) ∈ H and Ξ = (ξ, ξ) ∈M. Then there exists a unique U ∈ V such that

U = A?U + F, BU = Ξ, (3.7)

and
‖U‖V ≤ C(‖F‖H + ‖Ξ‖M).

Proof. Uniqueness follows from the linearity of A? and B and Lemma 3.2. We introduce an equivalent variational
formulation to show existence of solutions to the problem. We consider the space U := H1(Ω+) ×H1(Ω−), as
well as the bounded bilinear form a : U× U −→ R and bounded linear functional ` : U −→ R given by

a((u,u), (w,w)) := (κ1u,w)Ω+ + (κ0∇u,∇w)Ω+ + (ρu,w)Ω− + (Cε(u), ε(w))Ω−

+ (eLΩu, ε(w))Ω− − 〈γ−u · ν, γ+w〉+ 〈γ+uν, γ−w〉,
`(w,w) := (κ1f, w)Ω+

− (f ,∇w)Ω+
+ (ρg,w)Ω− − (G, ε(w))Ω− − (eh, ε(w))Ω−

− 〈ξ, γ+w〉+ 〈ξ, γ−w〉.

Since from the definition of the operator LΩ in (3.2) we have

(eLΩu, ε(u))Ω− = (κψLΩu, LΩu)Ω− ,

it follows readily that a is coercive in U. Therefore, the problem

(u,u) ∈ U, a((u,u), (w,w)) = `((w,w)) ∀(w,w) ∈ U, (3.8)

is well posed by the Lax-Milgram Lemma and we can easily bound its solution by

‖(u,u)‖U ≤ C(‖(f, f ,g,G,h)‖H + ‖(ξ, ξ)‖M). (3.9)

To show that the variational problem is equivalent to (3.7), we define the quantities

v := κ0∇u+ f ∈ L2(Ω−), S := Cε(u) + G ∈ L2
sym(Ω+), r := LΩu + h, (3.10)

and substitute them into the variational problem:

(κ1u,w)Ω+
+ (v,∇w)Ω+

+ (ρu,w)Ω− + (S + er, ε(w))Ω−

−〈γ−u · ν − ξ, γ+w〉+ 〈γ+uν − ξ, γ−w〉 = (κ1f, w)Ω+
+ (ρg,w)Ω− (3.11)

∀(w,w) ∈ U.

Testing this equation with (w,w) ∈ D(Ω+)×D(Ω−)d (here D(O) is the space of infinitely differentiable functions
with compact support in O) and applying elementary theory of distributions [25], we can show that

u = κ−11 ∇ · v + f, u = ρ−1div (S + er) + g, (3.12)

hence v ∈ H(div, Ω+) and (S, r) ∈ He(div, Ω−). Substituting (3.12) into (3.11), we obtain

(∇ · v, w)Ω+
+ (v,∇w)Ω+

+ (div (S + er) ,w)Ω− + (S + er, ε(w))Ω−

−〈γ−u · ν − ξ, γ+w〉+ 〈γ+uν − ξ, γ−w〉 = 0 ∀(w,w) ∈ U,
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which in turn leads us to

−〈γ+ν v + γ−u · ν − ξ, γ+w〉+ 〈γ−ν (S + er) + γ+uν − ξ, γ−w〉 = 0 ∀(w,w) ∈ U.

Since (γ+, γ−) : U −→ H1/2(Γ )×H1/2(Γ ) is surjective, it follows that the latter identity is equivalent to

γ+ν v + γ−u · ν = ξ, γ+uν + γ−ν (S + er) = ξ on Γ.

The process leading from the variational equation (3.8) and the introduction of additional variables (3.10) to
arrive at (3.7) can be easily reversed, showing that the problems are equivalent. From (3.9), we have bounds
on ‖u‖1,Ω+ and ‖u‖1,Ω− . An elementary calculation using (3.10) and (3.12) gives us bounds on ‖v‖div,Ω+ and
‖(S, r)‖He in terms of u,u and the data, hence the promised bound is valid. �

With the hypotheses verified, we can immediately use the result from Theorem A.1 in the context of our
problem. We also point out that the hidden constant from our result in Theorem 3.1 depends only on the
constant C in Lemma 3.4.

Proof of Theorem 3.1. Lemmas 3.2, 3.3, and 3.4 are verifications of the hypotheses of Theorem A.1. Applying
then Theorem A.1 with data given by (3.6), we have a unique solution with bounds:

‖u(t)‖1,Ω+
+ ‖u(t)‖1,Ω− ≤ ‖U(t)‖V

. ‖U(t)‖H + ‖A?U(t)‖H

. ‖U(t)‖H + ‖U̇(t)‖H + ‖LNη(t)‖Ω− + ‖LDµ(t)‖Ω−

. H2((∂−1β1, β0), t|H−1/2(Γ )×H1/2(Γ ))

+H1((LNη, LDµ), t|H−1/2(ΓN )×H1/2(ΓD))

+ ‖LNη(t)‖Ω− + ‖LDµ(t)‖Ω− .

Recalling that both LN and LD are bounded and that we can estimate

‖η(t)‖−1/2,ΓN
≤
∫ t

0

‖η̇(τ)‖−1/2,ΓN
dτ,

with similar results for ‖µ(t)‖1/2,ΓD
, and observing that from (3.2), we can bound

‖ψ(t)‖1,Ω− . ‖ε(u)(t)‖Ω− + ‖η(t)‖−1/2,ΓN
+ ‖µ(t)‖1/2,ΓD

. ‖C−1Ṡ(t)‖Ω− + ‖η(t)‖−1/2,ΓN
+ ‖µ(t)‖1/2,ΓD

. ‖U̇(t)‖H + ‖η(t)‖−1/2,ΓN
+ ‖µ(t)‖1/2,ΓD

,

we arrive at the desired estimate. �

4. A semidiscrete problem

We now look at a semidiscrete version of the problem where we require the parameters κ0 and κ1 to be strictly
positive constants. We do this with the intention of using an integral formulation on Γ to represent the acoustic
field and a volume-variational formulation in Ω− to represent the elastic and electric fields. These formulations
will then be discretized following a Galerkin approach, which will require allowing u to take values in H1(Rd\Γ )
rather than just H1(Ω+), as known since [18]. We introduce the finite dimensional subspaces Yh ⊆ H1/2(Γ )
and Xh ⊆ H−1/2(Γ ), which will be used to implement the discretized transmission conditions. The polar sets

Y ◦h := {η ∈ H−1/2(Γ ) : 〈η, ζh〉 = 0 ∀ζh ∈ Yh},
X◦h := {ϕ ∈ H1/2(Γ ) : 〈µh, ϕ〉 = 0 ∀µh ∈ Xh},
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will be used for shorthand notation of Galerkin testing. The notation Jγ·K := γ− − γ+ represents the jump
of the various trace operators across Γ . The finite-dimensional space for the electric potential will be denoted
Vh ⊂ H1(Ω−) and we define the spaces

Vh,D := Vh ∩H1
D(Ω−), γDVh := {γDϕ : ϕ ∈ Vh}.

For technical reasons, we will need to assume that there exists an h-uniformly bounded right inverse of
the operator γD : Vh −→ Vh,D. This hypothesis is met by the traditional finite element spaces on arbitrary
shape-regular meshes of a polygon/polyhedron.

We define Vh ⊂ H1(Ω−) as the finite dimensional approximation space for the elastic displacement. We
keep β0, β1, and η as in Section 2, but now we need µh : [0,∞) −→ Vh,D such that we approximate µ with µh.
The way in which this approximation is chosen will affect the final convergence estimates, but it will not change
the analysis. We now state the second order formulation of the problem as trying to find the semidiscrete
quantities

uh : [0,∞) −→ {wh ∈ H1(Rd\Γ ) : ∆wh ∈ L2(Rd\Γ )},
(ψh,uh) : [0,∞) −→ Vh ×Vh,

which for all t ≥ 0 satisfy

κ1ü
h(t) = κ0∆u

h(t), (4.1a)

(ρüh(t),w)Ω−+ (Cε(uh)(t) + e∇ψh(t), ε(w))Ω−= 〈Jγu̇hK(t)−β̇0(t), γw · ν〉 ∀w ∈ Vh, (4.1b)

(−e>ε(uh)(t) + κψ∇ψh(t),∇φ)Ω− = −〈η(t), γφ〉ΓN
∀φ ∈ Vh,D, (4.1c)

γDψ
h(t) = µh(t), (4.1d)

as well as

(JγuhK(t), J∂νuhK(t)) ∈ Yh ×Xh, (4.1e)

(γu̇h(t) · ν + κ0∂
+
ν u

h(t) + β1(t), γ−uh(t)) ∈ Y ◦h ×X◦h, (4.1f)

with vanishing initial conditions

uh(0) = 0, u̇h(0) = 0, uh(0) = 0, u̇h(0) = 0. (4.1g)

We next interpret the exotic transmission conditions (4.1e) and (4.1f) as a shorthand form for a Galerkin
semidiscretization of a retarded potential representation of the acoustic field uh.

Retarded Potentials and Boundary Integral Operators. Following [24], we introduce the retarded po-
tentials and time domain boundary integral operators associated to the wave equation in a weak form. This can
easily be done through the Laplace transform.

Given s ∈ C+ := {s : Re s > 0} and (λ, ϕ) ∈ H−1/2(Γ )×H1/2(Γ ), the problem

U ∈ H1
∆(R\Γ ), ∆U− s2U = 0, (4.2a)

JγUK = ϕ, J∂νUK = λ, (4.2b)

has a unique solution (see [24], Chaps. 2 and 4) and the references therein)

U = S(s)λ−D(s)ϕ,
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where S(s) and D(s) are the single layer and double layer potentials and H1
∆(R\Γ ) := {ξ ∈ H1(R\Γ ) : ∆ξ ∈

L2(R\Γ )}. We define the four boundary integral operators

V(s) := γS(s), K(s) :=
1

2
(γ+D(s) + γ−D(s)),

Kt(s) :=
1

2
(∂+ν S(s) + ∂−ν S(s)), W(s) := −∂νD(s).

We can then represent the solution to

κ1ü = κ0∆u, JγuK = ϕ, J∂νuK = λ,

as

u = S ∗ λ−D ∗ ϕ,

where we think of λ and ϕ as causal distributions, and we have denoted the Laplace transforms of S and D
respectively by L{S} := S (s/c), L{D} := D (s/c) (recall that c =

√
κ0/κ1 is constant now). The following

identities hold

γ±u = V ∗ λ−
(
±1

2
ϕ+K ∗ ϕ

)
, (4.3a)

∂±ν u = ∓1

2
λ+Kt ∗ λ+W ∗ ϕ, (4.3b)

where V,K,Kt, and W are similarly defined through the Laplace transform.

A boundary-field formulation. Consider now a solution of (2.1) extended by zero to negative times. We can
then write u = S ∗ λ−D ∗ ϕ, where λ = −∂+ν u and ϕ = −γ+u. This gives an automatic trivial extension of u
to Ω− for all times. The elastic wave equation (2.1b) together with the transmission condition (2.1e), and the
divergence-free law (2.1c) together with the boundary condition (2.1f) lead to the equations

(ρü,w)Ω−+ (Cε(u) + e∇ψ, ε(w))Ω−= 〈ϕ̇− β̇0, γw · ν〉 ∀w ∈ H1(Ω−), (4.4a)

(−e>ε(u) + κψ∇ψ,∇φ)Ω− = −〈η, γφ〉ΓN
∀φ ∈ H1

D(Ω−), (4.4b)

where time differentiation is now in the sense of vector-valued distributions of the time variable. The Dirichlet
boundary condition (2.1g) is imposed as an essential condition

γDψ = µ. (4.4c)

The transmission condition (2.1d) can be written as

κ0

(
−1

2
λ+Kt ∗ λ+W ∗ ϕ

)
+ β1 + γ−u̇ · ν = 0, (4.4d)

by using that u = S ∗ λ−D ∗ ϕ and the jump condition (4.3b). Finally we add the equation

V ∗ λ− 1

2
ϕ−K ∗ ϕ = 0, (4.4e)

which follows from imposing that γ−u = 0 and (4.3a) to ensure that the potential representation of u =
S ∗λ−D∗ϕ vanishes in Ω−. The equations (4.4) have to be understood as a coupled system of equations whose
solution ((ψ,u), λ, ϕ) is a causal D(Ω−)×H−1/2(Γ )×H1/2(Γ )-valued distribution.
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The semidiscrete coupled system. Our claim is that (4.1) is equivalent to a Galerkin semidiscretization in
space of (4.4). Four finite dimensional spaces

Vh ⊂ H1(Ω−), Vh ⊂ H1(Ω−), Xh ⊂ H−1/2(Γ ), Yh ⊂ H1/2(Γ )

have been chosen, and the unknowns (uh, ψh, λh, ϕh) are functions of the time variable with values in the
respective four discrete spaces. The time domain (retarded) boundary integral equations (4.4d) and (4.4e) are
substituted by the Galerkin semidiscretizations

〈γu̇h · ν + κ0

(
1

2
λh +Kt ∗ λh +W ∗ ϕh

)
, ζh〉 = −〈β1, ζh〉 ∀ζh ∈ Yh, (4.5a)〈

µh,V ∗ λh +
1

2
ϕh −K ∗ ϕh

〉
= 0 ∀µh ∈ Xh, (4.5b)

and (λh, ϕh) are then used as input of a retarded potential representation of the acoustic field (that as a result
of discretization now lives on both sides of Γ )

uh = S ∗ λh −D ∗ ϕh. (4.5c)

Note that now λh = J∂νuhK and ϕh = JγuhK and that the Galerkin semidiscrete integral equations can be
short-hand-written with the help of the polar sets:

γu̇h · ν + κ0

(
1

2
λh +Kt ∗ λh +W ∗ ϕh

)
+ β1 ∈ Y ◦h ,

V ∗ λh +
1

2
ϕh −K ∗ ϕh ∈ X◦h.

What is left is the Galerkin approximation of equations (4.4a) and (4.4b) (with the side restriction for the
Dirichlet condition (4.4c)), which become

(ρüh,w)Ω−+ (Cε(uh) + e∇ψh, ε(w))Ω−= 〈ϕ̇h−β̇0, γw · ν〉 ∀w ∈ Vh, (4.5d)

(−e>ε(uh) + κψ∇ψh,∇φ)Ω− = −〈η, γφ〉ΓN
∀φ ∈ Vh,D, (4.5e)

γDψ
h = µh. (4.5f)

The system (4.5) is a semidiscrete system that combines: two Galerkin-semidiscrete retarded integral equations,
the Galerkin semidiscretization of a second order hyperbolic PDE, and the Galerkin discretization of an elliptic
PDE, with the potential post processing (4.5c) for the boundary fields to recover the acoustic field in the exterior
domain.

5. Discrete well-posedness

Similar to what was done in Section 3, we first present our stability (or discrete well-posedness) result and
then we will work through the details leading to a proof. We begin by stating the dependence of the semidiscrete
solution with respect to the data as a function of time with constants that are independent of h. By this we
mean that the bounds will be independent on the particular choice of discrete spaces Vh, Vh, Xh, and Yh. In
fact, the only place where the constants in the estimates will even notice the presence of the discretization is
through the assumption that γD : Vh −→ γDVh has an h-uniformly bounded right-inverse.

Theorem 5.1. For (β0, β1, η, µ
h) ∈ W `+1(H1/2(Γ )) × W `(H−1/2(Γ )) × W `(H−1/2(ΓN )) × W `(γDVh), with

` = 1, problem (4.1) is uniquely solvable and its solution satisfies

‖uh(t)‖1,Rd\Γ + ‖ψh(t)‖1,Ω− + ‖uh(t)‖1,Ω− + ‖ϕh(t)‖1/2,Γ .H2((∂−1β1, β0), t|H−1/2(Γ )×H1/2(Γ ))

+H1((η, µh), t|H−1/2(ΓN )×H1/2(ΓD))
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for all t ≥ 0. If ` = 2, then additionally it holds

‖λh(t)‖−1/2,Γ .H3((∂−1β1, β0), t|H−1/2(Γ )×H1/2(Γ ))

+H2((η, µh), t|H−1/2(ΓN )×H1/2(ΓD)).

The first order formulation. To be able to write (4.1) in first order form we need to introduce the discrete
versions of the divergence, the transpose of γν , and of the operators defined in (3.2). The discrete divergence
divh : L2

sym(Ω−) −→ Vh is given by

divhM ∈ Vh, (ρ divhM,w)Ω− = −(M, ε(w))Ω− ∀w ∈ Vh.

The discrete transposed normal trace γtν,h : H1/2(Γ ) −→ Vh is defined by

γtν,hξ ∈ Vh, (ρ γtν,hξ,w)Ω− = 〈γw · ν, ξ〉 ∀w ∈ Vh.

Introducing the space Wh := ∇Vh = {∇uh : uh ∈ Vh}, we consider the operators

LhΩ : H1(Ω−) −→Wh, LhN : H−1/2(ΓN ) −→Wh, LhD : γDVh −→Wh,

defined by
LhΩu + LhNη + LhDµ

h = ∇ψh, (5.1a)

where ψh satisfies

ψh ∈ Vh, γDψ
h = µh, (5.1b)

(κψ∇ψh,∇φ)Ω− = (ε(u), e∇φ)Ω− − 〈η, γφ〉ΓN
∀φ ∈ Vh,D. (5.1c)

From the above we can see that by taking different combinations of homogeneous data, it is possible to bound
each of these separately

‖LhΩu‖Ω− ≤ C1‖ε(u)‖Ω− , ‖LhNη‖Ω− ≤ C2‖η‖−1/2,ΓN
, ‖LhDµh‖Ω− ≤ C3‖µh‖1/2,ΓD

,

where all constants are independent of h and the estimate on LDµ
h uses the hypothesis that γD has a uniformly

bounded right inverse. Furthermore

(κψL
h
Ωu, LhΩu)Ω− = (ε(u), eLhΩu)Ω− .

With the variables
vh := ∂−1(κ0∇uh), Sh := ∂−1Cε(uh), rh := ∂−1∇ψh,

and using the space Wh := {Cε(uh) : uh ∈ Vh} for ease of notation, we can write a first order form of the
semidiscrete problem (4.1) in the following way: we look for

(uh,vh,uh,Sh, rh) : [0,∞) −→ H1(Rd\Γ )×H(div,Rd \ Γ )×Vh ×Wh ×Wh,

which for all t ≥ 0 satisfies

u̇h(t) = κ−11 ∇ · vh(t), (5.2a)

v̇h(t) = κ0∇uh(t), (5.2b)

u̇h(t) = divh
(
Sh(t) + erh(t)

)
+ γtν,h(JγuhK(t)− β0(t)), (5.2c)

Ṡh(t) = Cε(uh)(t), (5.2d)

ṙh(t) = LhΩuh(t) + LhNη(t) + LhDµ
h(t), (5.2e)
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as well as

(JγuhK(t), JγνvhK(t)) ∈ Yh ×Xh, (5.2f)

(γuh · ν(t) + γ+ν vh(t) + ∂−1β1(t), γ−uh(t)) ∈ Y ◦h ×X◦h, (5.2g)

and have vanishing initial values

uh(0) = 0, vh(0) = 0, uh(0) = 0, Sh(0) = 0, r(0) = 0. (5.2h)

The abstract framework. As with the continuous problem, we now show that (5.2) has a unique solution by
way of fitting this problem into the abstract framework of Section 8. First we define the Hilbert spaces

H := L2(Rd \ Γ )× L2(R2 \ Γ )×Vh ×Wh ×Wh,

V := H1(Rd \ Γ )×H(div,Rd \ Γ )×Vh ×Wh ×Wh,

M = M1 ×M2 := H1/2(Γ )×
(

(Y ◦h )∗ × (X◦h)∗ × Y ∗h ×X∗h
)
,

where the asterisks denote dual spaces. In H we take the norm

‖Uh‖2H = ‖(uh,vh,uh,Sh, rh)‖2H := (κ1u
h, uh)Rd\Γ + (κ−10 vh,vh)Rd\Γ

+ (ρuh,uh)Ω− + (C−1Sh,Sh)Ω− + (κψrh, rh)Ω− ,

and in M we take the natural product norm.
For this problem we have A? : V −→ H and G : M1 −→ H where the actions of these operators on

Uh = (uh,vh,uh,Sh, rh) ∈ V and ξ ∈M1 are defined as

A?U
h :=

(
κ−11 ∇ · vh, κ0∇uh, divh(Sh + erh) + γtν,hJγu

hK, Cε(uh), LhΩuh
)
,

Gξ := (0, 0, γtν,hξ, 0, 0).

With this definition of A?, we set the norm on V to be given by

‖Uh‖2V := ‖Uh‖2H + ‖A?Uh‖2H.

Before we introduce the operator B, let us explain some notation. We can consider JγuhK ∈ H1/2(Γ ) ≡
(H−1/2(Γ ))∗, as a functional acting on H−1/2(Γ ), and therefore by JγuhK

∣∣
Y ◦
h

we mean the restriction of

JγuhK : H−1/2(Γ ) −→ C to Y ◦h ⊂ H−1/2(Γ ). In other words, JγuhK
∣∣
Y ◦
h

: Y ◦h −→ C is an element of (Y ◦h )∗.

Note that
‖JγuhK

∣∣
Y ◦
h

‖(Y ◦
h )∗ ≤ ‖JγuhK‖H−1/2(Γ )∗ = ‖JγuhK‖1/2,Γ ,

and that
JγuhK

∣∣
Y ◦
h

= 0 ⇐⇒ JγuhK ∈ Yh

since Yh is closed. This should give a better idea of the meaning of the first component of B : V −→M2 whose
action on Uh is given by

BUh :=
(
JγuhK

∣∣
Y ◦
h

, JγνvhK
∣∣
X◦

h

, (γuh · ν + γ+ν vh)
∣∣
Yh
, γ−uh

∣∣
Xh

)
.

The remaining components of B can be thought of similarly. As before, we define D(A) = Ker B and A =
A?
∣∣
D(A)

. Next we verify the hypotheses of the abstract framework.
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Lemma 5.2. For each Uh ∈ D(A), we have (AUh, Uh)H = 0.

Proof. A simple calculation gives

(AUh, Uh)H = (∇ · vh, uh)Rd\Γ + (∇uh,vh)Rd\Γ

+ (ρ(divh(Sh + erh) + γtν,hJγu
hK),uh)Ω− + (ε(uh),Sh)Ω− + (κψL

h
Ωuh, rh)

= 〈γ−ν vh, γ−uh〉 − 〈γ+ν vh, γ+uh〉 − (Sh + erh, ε(uh))Ω−

+ 〈γuh · ν, JγuhK〉+ (ε(uh),Sh)Ω− + (ε(uh), erh)Ω−

= 〈JγνvhK, γ−u〉+ 〈γ+ν vh + γuh · ν, JγuhK〉 = 0 ∀Uh ∈ D(A).

Note that the final equality is a result of the duality pairings of elements of closed spaces with elements of their
polar sets. �

Lemma 5.3. The operator T (uh,vh,uh,Sh, rh) := (uh,−vh,−uh,Sh, rh) is an isometry from H to H, a bijec-
tion from D(A) to D(A), and satisfies TA = −TA.

Proof. It is straightforward. �

Lemma 5.4. For F = (f, f ,g,G,h) ∈ H and Ξ = (ξ, χ) = (ξ, (ψ1, ψ2, η1, η2)) ∈ M, the problem of finding
Uh ∈ V such that

Uh = A?U
h +Gξ + F, BUh = χ,

has a unique solution and
‖Uh‖V ≤ C(‖F‖H + ‖Ξ‖M),

where C is independent of h.

Proof. Uniqueness follows from the linearity of A?, B, and G and the calculation in Lemma 5.2. To show
existence of solutions, we work on an equivalent variational formulation. In order to do that, we define the
spaces

U := H1(Rd \ Γ )×Vh,

U0 := {(wh,wh) ∈ U : (JγwhK, γ−wh) ∈ Yh ×X◦h}.

and the trace operator

H1(Rd \ Γ ) 3 uh 7−→ γ̆uh := (JγuhK
∣∣
Y ◦
h

, γ−uh
∣∣
Xh

) ∈ (Y ◦h )∗ ×X∗h.

The operator γ̆ is surjective and admits a bounded right inverse whose norm is independent of h (see similar
arguments in several proofs in [18]). We now define the bilinear form a : U × U −→ R and the linear form
` : U −→ R, where

a((uh,uh), (w,w)) := (κ1u
h, w)Rd\Γ + (κ0∇uh,∇w)Rd\Γ

+ (ρuh,w)Ω− + (Cε(uh), ε(w))Ω− + (eLhΩuh, ε(w))Ω−

− 〈γw · ν, JγuhK〉+ 〈γuh · ν, JγwK〉,
`((w,w)) := (κ1f, w)Rd\Γ − (f ,∇w)Rd\Γ + (ρg,w)Ω− − (G, ε(w))Ω−

− (eh, ε(w))Ω− + 〈γw · ν, ξ〉+ 〈ψ2, γ
−w〉+ 〈η1, JγwK〉.

Now we have that the variational problem looking for (uh,uh) ∈ U such that

γ̆uh = (ψ1, η2), (5.3a)

a((uh,uh), (w,w)) = `((w,w)) ∀(w,w) ∈ U0, (5.3b)
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is uniquely solvable, and
‖(uh,uh)‖U ≤ C1‖`‖U∗

0
≤ C2(‖F‖H + ‖Ξ‖M),

where C1 and C2 are constants independent of h. The three missing components of Uh are defined as

vh := κ0∇uh + f , Sh := Cε(uh) + G, rh := LhΩuh + h.

With these new definitions, our variational problem becomes

(κ1u
h, w)Rd\Γ + (vh,∇w)Rd\Γ + (ρuh,w)Ω−

+(Sh + erh, ε(w))Ω− − 〈γw · ν, JγuhK〉
+〈γuh · ν, JγwK〉 = (κ1f, w)Rd\Γ + (ρg,w)Ω− + 〈γw · ν, ξ〉

+ 〈ψ2, γ
−w〉+ 〈η1, JγwK〉. (5.4)

Using the definition of divh and γtν,h and rearranging some of the terms above, we arrive at

(κ1(uh − f), w)Rd\Γ + (vh,∇w)Rd\Γ

+ (ρ(uh − divh(Sh + erh)− γtν,h(JγuhK + ξ)− g),w)Ω−= −〈γuh · ν − η1, JγwK〉
+〈ψ2, γ

−w〉. (5.5)

Choosing w = 0, and testing with all w ∈ Vh we see that

uh = divh(Sh + erh) + γtν,h(JγuhK + ξ) + g.

Substituting this definition of uh into (5.5) and testing with w ∈ D(Rd \ Γ ) we obtain

(κ1(uh − f), w)Rd\Γ + (vh,∇w)Rd\Γ = (κ1(uh − f)−∇ · vh, w)Rd\Γ = 0.

This shows that uh = κ−11 ∇ · vh + f and vh ∈ H(div,Rd \ Γ ). Making one final substitution into (5.5), testing
with (w,w) ∈ U0 and integrating by parts leads to

0 = 〈γ−ν vh, γ−w〉 − 〈γ+ν vh, γ+w〉+ 〈γuh · ν − η1, JγwK〉 − 〈ψ2, γ
−w〉

= 〈JγνvhK− ψ2, γ
−w〉+ 〈γuh · ν + γ+ν vh − η2, JγwK〉.

By the definition of U0, this gives us that

JγνvhK− ψ2 ∈ Xh, γuh · ν + γ+ν vh − η2 ∈ Y ◦h ,

and we have the desired transmission problem. All of the arguments above can easily be reversed to see the equiv-
alence of the two problems. Arriving at the bound on ‖Uh‖V follows similarly as in the proof of Lemma 3.4. �

We now return to the main result of this section.

Proof of Theorem 5.1. The estimates on ‖uh(t)‖1,Rd\Γ , ‖ψh(t)‖1,Ω− , and ‖uh(t)‖1,Ω− are found similarly to

those in Theorem 3.1. To achieve the bound on ‖ϕh(t)‖1/2,Γ , we note that

‖ϕh(t)‖1/2,Γ = ‖JγuhK(t)‖1/2,Γ . ‖uh(t)‖1,Rd\Γ ,

from which the bound follows. Finally, for the estimate on ‖λh(t)‖−1/2,Γ , we recall that

‖λh(t)‖−1/2,Γ = ‖J∂νuhK(t)‖−1/2,Γ = ‖κ−10 Jγν v̇hK(t)‖−1/2,Γ . ‖v̇(t)‖div,Rd\Γ

. ‖v̇(t)‖Rd\Γ + ‖∇ · v̇(t)‖Rd\Γ

. ‖U̇(t)‖H + ‖Ü(t)‖H.

Now we need only to appeal to Theorem A.1b to obtain the desired result. �
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6. Approximation properties

The goal of this section is the study of the difference between the solution of (4.1) (what we called a
semidiscrete solution) and a discrete projection acting on the solution of (2.1). This study is in essence an
analysis of the semidiscretization of (2.1) using (4.5). We will show that the error (as defined below) is driven
by an evolutionary equation of the form (A.2). Let U(t) = (u,v,u,S, r)(t) be the solution of (3.3) and

ϕ(t) := JγuK(t) = −γ+u(t) : [0,∞) −→ H1/2(Γ ),

λ(t) := J∂νuK(t) = −∂+ν u(t) = −κ−10 γ+ν v̇(t) : [0,∞) −→ H−1/2(Γ ).

Consider the finite dimensional spaces Vh, Vh, Xh, and Yh. In this setting, the solution to the problem (4.1)
will be denoted Uh(t) = (uh,vh,uh,Sh, rh)(t) with ϕh(t) = JγuhK(t) and λh(t) = J∂νuhK(t). Following [22] we
introduce an “elliptic projection” tailored to the coupled elliptic system inherent to our problem. Due to the
lack of Dirichlet conditions or mass terms in the elastic part of the bilinear form, we need to consider the finite
dimensional space of rigid motions

M := {m ∈ H1(Ω−) : (Cε(m), ε(m))Ω− = 0},

which we assume to be a subspace of Vh. We then consider the operator

H1(Ω−)×H1(Ω−)× γDVh 3 (u, ψ, µh) 7−→ (Phu, Phψ) ∈ Vh × Vh,

given by the unique solution of the coercive problem:

γDPhψ = µh,

(Cε(Phu− u), ε(w))Ω− + (e∇(Phψ − ψ), ε(w))Ω− = 0 ∀w ∈ Vh,

−(ε(Phu− u), e∇φ)Ω− + (κψ∇(Phψ − ψ),∇φ)Ω− = 0 ∀φ ∈ Vh,D,
(Phu− u,m)Ω− = 0 ∀m ∈M.

The above problem defining (Phu, Phψ) ∈ Vh × Vh is uniquely solvable since a straightforward application of
Poincaré’s and Korn’s inequalities guarantees coercivity when M ⊂ Vh. Using a uniformly bounded lifting of
γD (see [10,23], Sect. 5 to see why this is actually a necessity), we can then prove that

‖u−Phu‖1,Ω− + ‖ψ − Phψ‖1,Ω− . ‖u− Ihu‖1,Ω− + ‖ψ − Ihψ‖1,Ω− + ‖γDψ − µh‖1/2,ΓD
, (6.1)

where Ih : H1(Ω−) −→ Vh and Ih : H1(Ω−) −→ Vh are the best approximation operators on Vh and Vh
respectively. The hidden constant in the above inequality depends only on the physical parameters (through
boundedness and coercivity inequalities) and on the uniform bound for the best possible lifting of the discrete
trace. Notice that the notation of the projection is slightly misleading. In fact, Phu and Phψ both depend
not only on u and ψ, but also on the given discrete trace µh. We will keep the given notation for the sake of
simplicity.

We also define the operators ΠY
h : H1/2(Γ ) −→ Yh and ΠX

h : H−1/2(Γ ) −→ Xh as the best approximation
operators into Yh and Xh respectively, and the error quantities as follows

ehu := u− uh, ehv := v − vh,

ehu := Phu− uh ehS := ∂−1Cε(Phu)− Sh ehr := ∂−1LhΩ(Phu)− rh.

We denote Eh := (ehu, e
h
v, e

h
u, e

h
S, e

h
r ) for brevity. Therefore

JγehuK = ϕ− ϕh, JγνehvK = κ0∂
−1(λ− λh).
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The problem of looking for Eh ∈ C1([0,∞),H) ∩ C([0,∞),V) which for each t ≥ 0 satisfies

Ėh(t) = A?E
h(t) + (0, 0, (Phu̇− u̇)(t), 0, LhD(µ− µh)(t)), (6.2a)

BEh(t) = ((ϕ−ΠY
h ϕ)(t)

∣∣
Y ◦
h

, κ0∂
−1(λ−ΠX

h λ)(t)
∣∣
X◦

h

, (γ(Phu− u) · ν(t))
∣∣
Yh
, 0), (6.2b)

with vanishing initial condition

Eh(0) = 0, (6.2c)

can be covered by the abstract framework of Section 8 by letting

F = (0, 0, Phu̇− u̇, 0, LhD(µ− µh)),

G ≡ 0,

Ξ = (0, ((ϕ−ΠY
h ϕ)

∣∣
Y ◦
h

, κ0∂
−1(λ−ΠX

h λ)
∣∣
X◦

h

, (γ(Phu− u) · ν)
∣∣
Yh

0)).

Before stating our error estimates, we introduce the following useful lemma.

Lemma 6.1. For (u,uh, µ, µh, η) ∈ H1(Ω−) × Vh × H1/2(ΓD) × γDVh × H−1/2(ΓN ), let ψ ∈ H1(Ω−) and
ψh ∈ Vh be given by

γDψ = µ, (6.3a)

(κψ∇ψ,∇φ)Ω− = (ε(u), e∇φ)Ω− − 〈η, γφ〉ΓN
∀φ ∈ H1

D(Ω−), (6.3b)

and

γDψ
h = µh, (6.4a)

(κψ∇ψh,∇φh)Ω− = (ε(uh), e∇φh)Ω− − 〈η, γφh〉ΓN
∀φh ∈ Vh,D, (6.4b)

respectively. Then

‖ψ − ψh‖1,Ω− . ‖ψ − Ihψ‖1,Ω− + ‖µ− µh‖1/2,ΓD
+ ‖ε(u)− ε(uh)‖Ω− .

Proof. Recalling the definitions of the various L and Lh operators above, we can write ∇ψ = LΩu+LNη+LDµ
and ∇ψh = LhΩuh + LhNη + LhDµ

h. We introduce the intermediate quantity ψ̃h ∈ Vh such that ∇ψ̃h = LhΩu +
LhNη + LhDµ

h. Since γD admits a uniformly bounded right-inverse, we have

‖ψ − ψ̃h‖1,Ω− . ‖ψ − Ihψ‖1,Ω− + ‖µ− µh‖1/2,ΓD
.

On the other hand, Strang’s First Lemma (cf. [6], Lem. III.1.1) gives us

‖ψ̃h − ψh‖1,Ω . sup
φh∈Vh,D

|(ε(u)− ε(uh), e∇φh)|
‖φh‖1,Ω−

. ‖ε(u)− ε(uh)‖Ω− .

Putting these two bounds together, the result follows. �

Now using Theorem A.1, we obtain the following semidiscrete error estimates.

Theorem 6.2. For (u, ψ, φ, λ, µ, µh) ∈W `+1(H1(Ω−))×W `+1(H1(Ω−))×W `+1(H1/2(Γ ))×W `(H−1/2(Γ ))×
W `+1(H1/2(ΓD))×W `+1(γDVh), with ` = 1, the problem (6.2) is uniquely solvable and for all t ≥ 0, its solution
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satisfies

‖(u− uh)(t)‖1,Rd\Γ + ‖(u− uh)(t)‖1,Ω−

‖ψ − ψh‖1,Ω− + ‖(ϕ− ϕh)(t)‖1/2,Γ . H2(ϕ−ΠY
h ϕ, t|H1/2(Γ ))

+H2(∂−1(λ−ΠX
h λ), t|H−1/2(Γ ))

+H2(u− Ihu, t|H1(Ω−))

+H2(ψ − Ihψ, t|H1(Ω−)),

+H2(µ− µh, t|H1/2(ΓD)),

Furthermore, if ` = 2, then we can also bound

‖(λ− λh)(t)‖−1/2,Γ . H3(ϕ−ΠY
h ϕ, t|H1/2(Γ )) +H2(λ−ΠX

h λ, t|H−1/2(Γ ))

+H3(u− Ihu, t|H1(Ω−)) +H3(ψ − Ihψ, t|H1(Ω−))

+H3(µ− µh, t|H1/2(ΓD)).

Proof. First, we note that

‖(u− uh)(t)‖1,Rd\Γ + ‖(u− uh)(t)‖1,Ω− ≤‖(u− uh)(t)‖1,Rd\Γ + ‖(u−Phu)(t)‖1,Ω−

+ ‖(Phu− uh)(t)‖1,Ω−

. ‖Eh(t)‖H + ‖Ėh(t)‖H
+H1(u−Phu, t|H1(Ω−)).

Noting that ‖(ϕ − ϕh)(t)‖1/2,Γ . ‖(u − uh)(t)‖1,Rd\Γ , and appealing to Theorem A.1, we arrive at our first
estimate after using (6.1) to change the joint elliptic projection by the best approximation operators. Lemma 6.1
gives us the bound

‖(ψ − ψh)(t)‖1,Ω− . ‖(ψ − Ihψ)(t)‖1,Ω− + ‖(µ− µh)(t)‖1/2,ΓD
+ ‖ε(u)− ε(uh)‖Ω−

. ‖(ψ − Ihψ)(t)‖1,Ω− + ‖(µ− µh)(t)‖1/2,ΓD
+ ‖u− uh‖1,Ω− ,

from which the estimate of the statement follows. The estimate on ‖(λ−λh)(t)‖−1/2,Γ is found similarly to the
bound on ‖λh(t)‖−1/2,Γ in Theorem 5.1 by appealing to Theorem A.1(b). �

7. Some additional issues

7.1. Purely acoustic-elastic coupling

We now proceed to analyze the wave-structure interaction problem where Ω− does not possess any piezo-
electric properties. The following theorem shows that this problem is a specific case of problem (2.1).

Theorem 7.1. Suppose that e ≡ 0, ΓN = ∅, (so that Γ = ΓD), and µ(t) = 0 for each t ≥ 0. Then the
problem (2.1) is equivalent to the problem of looking for

u : [0,∞) −→ {w ∈ H1(Ω+) : κ0∇w ∈ H(div, Ω+)},
u : [0,∞) −→ {w ∈ H1(Ω−) : Cε(w) ∈ Hsym(div, Ω−)},
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which for all t ≥ 0 satisfy

κ1ü(t) = ∇ · (κ0∇u) (t), (7.1a)

ρ ü(t) = div Cε(u)(t), (7.1b)

γ+ν (κ0∇u)(t) + β1(t) + γ−u̇(t) · ν = 0, (7.1c)

(γ+u̇(t) + β̇0(t))ν + γ−ν Cε(u)(t) = 0, (7.1d)

u(0) = 0, u̇(0) = 0, u(0) = 0, u̇(0) = 0, (7.1e)

with the added unknown ψ : [0,∞) −→ H1
0 (Ω−) such that ψ(t) = 0 for each t ≥ 0.

Proof. First we notice that (7.1a), (7.1c), and (7.1e) are identical to (2.1a), (2.1d), and (2.1h) respectively.
Letting e ≡ 0 immediately gives us that (7.1b) and (7.1d) are the same as (2.1b) and (2.1e). Since ΓN = ∅, we
have that (2.1f) is not a valid equation in this setting and µ(t) = 0 for all t ≥ 0 implies that we are looking for
ψ ∈ H1

0 (Ω−) such that
∇ · (κψ∇ψ(t)) = 0 in L2(Ω−) ∀t ≥ 0.

Since κψ is coercive, we have that ψ(t) = 0 for each t ≥ 0. Thus the two problems are equivalent. �

Similarly, we can make slight modifications to (4.1) and be able to use all of the same analysis to obtain
results on a semidiscrete version (7.1).

Theorem 7.2. Under the same hypotheses as Theorem 7.1, the problem (4.1) is equivalent to the problem of
looking for

(uh,uh)(t) : [0,∞) −→ H1(Rd \ Γ )×Vh,

which for every t ≥ 0 satisfy

κ1ü
h(t) = κ0∆u

h(t), (7.2a)

(ρüh(t),w)Ω−+ (Cε(uh)(t), ε(w))Ω−= 〈Jγu̇hK(t)−β̇0(t), γw〉 ∀w ∈ Vh, (7.2b)

as well as

(JγuhK(t), J∂νuhK(t)) ∈ Yh ×Xh, (7.2c)

(γu̇h(t) · ν + κ0∂
+
ν u

h(t) + β1(t), γ−uh(t)) ∈ Y ◦h ×X◦h, (7.2d)

with vanishing initial conditions

uh(0) = 0, u̇h(0) = 0, uh(0) = 0, u̇h(0) = 0. (7.2e)

with the added unknown ψh : [0,∞) −→ Vh such that ψh(t) = 0 for each t ≥ 0.

Proof. The proof is similar to that of Therem 7.1. �

7.2. A damped elastic wave equation

The elastic wave equation (2.1b) can be substituted by a damped version of the equation

ρü(t) + ωu̇(t) = div (Cε(u)(t) + e∇ψ(t)),

where ω ∈ L∞(Ω−) is non-negative. In this case the third component of A? in (3.4) has to be modified to be

ρ−1div (S + er)− ρ−1ωu.

A similar modification must be made to the semidiscrete version of A? defined in Section 5. The effect of this
change is that in Lemmas 3.2 and 5.2 rather than equality, we have (AU,U) ≤ 0 for each U ∈ D(A) and the
“flipping-sign” operator T of Lemmas 3.3 and 5.3, which allows for the reversal of time, no longer exists. All
of the stability and error estimate results of this paper are still valid, keeping in mind that hidden constants
will now also include constants related to the norm of ω, but now A generates a contraction C0-semigroup of
operators in H instead of a C0-group of isometries.
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7.3. Full integral formulations

In this section we formulate an alternate version of the semidiscrete wave-solid interaction problem without
piezoelectricity (7.2) with constant coefficients in the elastic law. The goal is to state the problem entirely on Γ
using non-local integral representations for both the acoustic and elastic unknowns, with the idea that we post-
process to find the values of the solution away from the boundary. This requires that both unknown quantities
now take values in Rd \ Γ . In addition to Yh, we define Yh ⊂ H1/2(Γ ) to be closed and Y◦h ⊂ H−1/2(Γ ) is
defined similarly to Y ◦h . As in Section 4 we require that κ0 and κ1 be positive constants, and additionally that
ρ and the tensor C have constant coefficients.

We can state the second order formulation of the problem as looking for

(uh,uh) : [0,∞) −→ H1(R \ Γ )×H1(R \ Γ ),

which for every t ≥ 0 satisfy

κ1ü
h(t) = κ0∆u

h(t), (7.3a)

ρüh(t) = div Cε(uh)(t), (7.3b)

Jγu̇hK(t) · ν − κ0J∂νuhK(t) + β1(t) = 0, (7.3c)

JγνCε(uh)K(t)− Jγu̇hK(t)ν + β̇0(t)ν = 0, (7.3d)

as well as

(JγuhK(t), JγuhK(t)) ∈ Yh ×Yh, (7.3e)

(γ+u̇h(t) · ν + κ0∂
−
ν u

h(t), γ+
ν Cε(uh)(t) + γ−u̇h(t)ν) ∈ Y ◦h ×Y◦h, (7.3f)

with vanishing initial conditions

uh(0) = 0, u̇h(0) = 0, uh(0) = 0, u̇h(0) = 0. (7.3g)

We arrive at an equivalent problem if we replace (7.3f) with

(γ−u̇h(t) · ν + κ0∂
+
ν u

h(t) + β1(t), γ−ν Cε(uh)(t) + γ+u̇h(t)ν + β̇0(t)ν) ∈ Y ◦h ×Y◦h.

Thinking in terms of retarded potentials and integral equations, we define the densities (φh,φh) :=
(JγuhK, JγuhK) ∈ Yh ×Yh to arrive at the following result.

Theorem 7.3. For (β0, β1) ∈W 2(H1/2(Γ ))×W 1(H−1/2(Γ )), we have that the solution to (7.3) is unique and
satisfies

‖uh(t)‖1,Rd\Γ + ‖uh(t)‖1,Rd\Γ

+ ‖φh(t)‖1/2,Γ + ‖φh(t)‖1/2,Γ . H2((β0, ∂
−1β1), t|H1/2(Γ )×H−1/2(Γ )).

The process of proving this result uses the same theoretical framework discussed in the analysis of the previous
problems and the argument is similar. In the interest of space and to avoid too much repetition, we forgo this
process and move on to the results concerning approximation errors.

If we choose Yh×Yh = H1/2(Γ )×H1/2(Γ ), then we will have Y ◦h ×Y◦h = {0}×{0}. The solution (u,u) to the
above problem with this choice of spaces is continuous with the corresponding densities (φ,φ) := (−γ+u, γ−u) ∈
H1/2(Γ )×H1/2(Γ ). Once again considering the semidiscrete solution (uh,uh) from the above result, and defining
the best approximation operators Πh : H1/2(Γ ) −→ Yh and Πh : H1/2(Γ ) −→ Yh, we obtain the following
error estimates.
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Theorem 7.4. Consider (φ,φ) ∈ W 2(H1/2), and let (uh,uh) be the semidiscretizations of the solutions (u,u)
of the system (7.3). The following estimate holds

‖(u− uh)(t)‖1,Rd\Γ + ‖(u− uh)(t)‖1,Rd\Γ

+ ‖(φ− φh)(t)‖1/2,Γ + ‖(φ− φh)(t)‖1/2,Γ . H2(φ−Πhφ, t|H1/2(Γ ))

+H2(φ−Πhφ, t|H1/2(Γ )).

7.4. Comparison with existing results

The problems explored in this work have been analyzed recently in [15, 22]. The novelty of this paper is the
method with which the problems are analyzed as we have tried to emphasize throughout. Here we briefly stress
some of the advantages that the new analysis provides.

First of all, the path followed in the aforementioned references required using the Laplace transform, analyzing
the problem in the Laplace domain and inverting back into the time domain to obtain the final estimates. Since
the Laplace transform is not an isometry, the estimates obtained in this fashion are not sharp. This leads to
a loss of regularity in the estimates and increased smoothness requirements in the problem data. Often times
these requirements are unnecessarily strong and are only due to the proof technique, as can be seen by the
improved results in the present communication.

In fact, we can see that the estimates we present here require decreased time differentiability from the problem
data. Comparing the results in Theorem 5.1 with Corollary 5.1 of [22], our current results require one less time
derivative of β0, β1 and η and two less time derivatives of µh. The error estimates in Theorem 6.2, when compared
with similar results from Corollary 5.2 from the same paper, require two less time derivatives for u and ψ, one
less time derivative for λ and φ. On the other hand, the corresponding bound in [22] does not depend on µ
and µh.

By way of Theorems 7.1 and 7.2 we can compare Theorems 5.1 and 6.2 with Corollaries 4.1 and 4.2 of [15].
We note that there is a typo in the statement of Corollary 4.2 in that the quantity u should be in the space
W 4

+(H1(Ω−))∩W 5
+(L2(Ω−)). With this correction, we see that the new results require one less time derivative

for all quantities involved. Finally, we can compare Theorems 7.3 and 7.4 with Corollaries 3.3 and 3.4 of [15]
and we see that the new results require two orders of differentiability less for all quantities.

Moreover, the bounds proven following the Laplace domain technique contain terms which depend on the time
variable, while all of the results obtained with the technique introduced in the present paper are independent
of t. Overall, it is clear that the analysis presented in the current work provides a noticeable improvement in
regularity requirements, and sharper error constants thus allowing for more general problem data.

8. Numerical experiments

We now present some numerical examples of the kind of problems that can be tackled using a fully-discrete
version of the integro-differential formulation (4.5). The aim of the section is not to discuss a concrete choice of
discretization scheme and its numerical properties, but rather to illustrate the applicability of the formulation
studied. We present three examples with simplified plane geometries that present interesting physical situations
that are accurately captured by the model.

For the experiments chosen, the spacial discretization strategy uses finite elements for the piezoelectric un-
knowns and Galerkin boundary elements for the acoustic wavefield, while the time discretization was done using
second order backwards differentiation (BDF2) time stepping for the finite element evolution and BDF2-based
Convolution Quadrature for the unknown acoustic densities. The analysis of the stability and convergence prop-
erties of such a coupling are not in the scope of the present work and have been done in [22], where details of
the implementation are also discussed.

In all the test problems, we consider that the speed of sound in the fluid is c = 1 and that the Lamé parameters
of the solid are λ = 2 and µ = 3. To express the entries of the elastic stiffness tensor C, the piezoelectric tensor e,
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(a) (b) (c)

Figure 1. Geometries and mass densities for the scatterers used. For the pentagonal obstacle
in (a) the density follows a Gaussian distribution peaking at its center which slows down waves
propagating closer to its core. For the trapping geometry (b) the mass changes linearly along
the x and y coordinates with a steeper slope in the y direction. The distribution (c) was used
for the transition to time-harmonic regime and has a similar behavior as the previous one but
with a steeper slope in the y direction.

and the dielectric tensor κψ we will make use of Voigt’s notation and identify the symmetric pairs of indices by

(1, 1)↔ 1 (2, 2)↔ 2 (1, 2)↔ 3.

This formally reduces the four-index tensor C into a 3×3 symmetric matrix, the three-index piezoelectric tensor
into a 2×3 matrix and the dielectric tensor κψ into a 3×1 vector. For these experiments, the physical coefficients
were chosen to be

C =

 2.118 0.6 0
0.6 2.118 0
0 0 0.9

, e =

(
1 5 5
5 1 5

)
, κψ =

4
4
1

. (8.1)

A piezoelectric pentagon. As a first test problem we consider the acoustic scattering by an inhomogeneous
piezoelectric obstacle. The sinusoidal plane pulse

vinc = 3χ[0,0.3](τ) sin (88τ), τ := t− r · d, r := (x, y), d := (1, 5)/
√

26, (8.2)

impinges upon the pentagonal scatterer depicted in Figure 1a with a mass distribution

ρΣ = 5 + 25e−100r
2

r := |r|.

All the edges of the obstacle were considered as Dirichlet boundary, where the smooth grounding potential

ψ(x, t) = 10H(t), (8.3)

was imposed as a boundary condition. The function H(t) is the following polynomial approximation to
Heaviside’s step function

H(t) := t5(1− 5(t− 1)+ 15(t− 1)2− 35(t− 1)3+ 70(t− 1)4− 126(t− 1)5)χ[0,1](t)+χ[1,∞)(t). (8.4)

The spacial discretization was done using P3/P2 continuous/discontinuous Galerkin boundary elements for the
acoustic densities and P3 Lagrangian finite elements for the elastic and electric unknowns. The simulation was
run until a final time T = 6 using 2000 equispaced points in time for a step size of κ = 0.003 and a MATLAB-
generated triangulation with 9024 elements and a mesh parameter of h = 0.014. The boundary element grid
consisted of 232 panels aligned with the boundary edges of the triangulation.
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Figure 2. Columnwise from left to right: norms of the electric potential, elastic displacement
and acoustic densities as functions of time.

Figure 2 shows the time dynamics of the L2(Ω−) and H1(Ω−) norms of the elastic displacement, the L2(Ω−)
norm of the electric potential, the L2(Ω−) of the electric field, and the H1/2(Γ ) and H−1/2(Γ ) norms of the
Dirichlet and Neumann acoustic traces of the approximate solutions. These norms provide a qualitative estimate
of the energy of the system peaking initially as the incident wave interacts with the obstacle and then decaying
in time as the internal reflections release the elastic and electric energy back into the fluid. Figure 3 shows the
acoustic time signature of the total acoustic wave as measured in ten different points in the fluid.

A trapping geometry. The second experiment is done with the trapping geometry shown in Figure 1b, the
density is now

ρΣ = 20 + |x|+ 10|y|.

All the remaining physical parameters are given in (8.1), while the grounding condition on the potential,
imposed on the entire boundary is given by (8.3) just like in the previous example. The profile of the acoustic
pulse is the same as before (8.2) but its propagation direction is changed to be d := (−1, 1)/

√
2. The geometry

was meshed with with 2992 triangular elements generated by MATLAB’s pdetool, with a mesh parameter
h = 0.0172. For the boundary element mesh we used 236 panels aligned with the finite element boundary
edges. Hence the mesh approximation properties are similar to those of the previous example. We used P3/P2

continuous/discontinuous Galerkin boundary elements for the boundary element unknowns and P3 Lagrangian
finite elements for the elastic displacement and electric potential.

Time discretization was done with the exact same parameters as before, final time T = 6, 4000 equispaced
points with step size κ = 0.0015. The behavior of the elastic, electric, and acoustic norms of the discrete solution
are shown in Figure 4, while the time signature of the total acoustic wave, at ten different points of the fluid
and the locations of the receivers are given in Figure 5.

Transition into time-harmonic. We consider now the case where a causal sinusoidal wave (as opposed to
the windowed pulses from the previous two experiments) given by

vinc = 3H(τ) sin(6πτ) , τ := t− r · d , r := (x, y) ,d := (−1, 1)/
√

2,
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Figure 3. The acoustic time-signatures on the left column correspond to receivers placed
at the locations marked with a dot in the schematic, while the ones on the central column
correspond to those marked with an asterisk. On the right: Locations of the acoustic receivers;
the dotted line represents the initial location of the acoustic pulse which propagates in the
direction d = (1, 5).
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Figure 4. Columnwise from left to right: norms of the electric potential, elastic displacement
and acoustic densities as functions of time.
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Figure 5. The acoustic time-signatures on the left column correspond to receivers placed
at the locations marked with a dot in the schematic, while the ones on the central column
correspond to those marked with an asterisk. On the right: Locations of the acoustic receivers;
the dotted line represents the initial location of the acoustic pulse which propagates in the
direction d = (1,−1).

impinges into the trapping scatterer depicted in Figure 5c with mass distribution

ρΣ = 20 + |x|+ 50|y|,

and grounding condition on the potential on the entire boundary given by (8.3). Since the incident wave is no
longer compactly supported in time, the wavefield is expected to transition into the time-harmonic regime. The
interaction is simulated for t ∈ [0, 7] using the same geometry as in the previous example, BDF2-CQ with a
time step of size κ = 1.5× 10−3 and mesh parameter h = 0.0172, but with increased polynomial degree P4 for
the Lagrangian finite element mesh and P4/P3 continuous/discontinuous Galerkin BEM for the acoustic wave.

As a measure of the energy in the system, we plot the L2(Ω−), L2(Ω−), and H1(Ω−) norms of the approximate
finite element solutions and the H−1/2(Γ ) and H1/2(Γ ) norms of the approximate acoustic densities in Figure 6.
Regarding the acoustic wavefield, Figure 7 shows the total acoustic signal at 10 different locations and the
geometric setup of the experiment. Snapshots of the total acoustic field and the magnitude of the elastic
displacement are shown in Figure 8 at different stages of the transition.

Generation of acoustic/elastic waves. In this example we present the situation where there is no acoustic
incident wave, but the grounding potential oscillates periodically in time. The alternating electric potential
generates elastic stress that propagates in the interior of the solid and acts as a source of acoustic waves in
the exterior domain through the interface coupling conditions. This situation is of practical relevance, since a
piezoelectric patch can be used both as sensor of external vibrations and -when the grounding potential is tuned
accordingly- as generator of waves that can neutralize the external field.

In the example we use the pentagonal geometry of the first experiment depicted in Figure 1a with the same
physical parameters but imposing the time-dependent grounding condition

ψ = 6H(t) sin(4πt),
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Figure 6. Columnwise from left to right: norms of the electric potential, elastic displacement
and acoustic densities as functions of time.
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Figure 7. The acoustic time-signatures on the left column correspond to receivers placed
at the locations marked with a dot in the schematic, while the ones on the central column
correspond to those marked with an asterisk. On the right: Locations of the acoustic receivers;
the dotted lines represent the initial location of the acoustic wave which propagates in the
direction d = (−1, 1).
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Figure 8. Due to the periodic nature of the incident acoustic wave, the resulting interacting
fields transition into a time-harmonic regime. We present snapshots of the total acoustic field
and the magnitude of the elastic displacement for times t = 0.75, 1.5, 2.25, 3, 3.75, 7.5.

imposed on the entire interface Γ . The space discretization was done using the same MATLAB generated
triangulation with mesh parameter h = 1.72×10−2 with 2992 elements and a matching Boundary Element mesh
with 236 panels. The elastic and electric unknowns were approximated using P4 Lagrangian finite elements and
the acoustic field used P4/P3 continuous/discontinuous Galerkin boundary elements. For time discretization
BDF2 time stepping and BDF2-Based CQ were used for a uniform time grid with κ = 1.2 × 10−3 in the
interval t ∈ [0, 6]. As a measure of the system’s energy, the norms of the discrete elastic, electric and acoustic
approximations are shown in Figure 9, while Figure 10 shows the time signatures of the generated acoustic
wavefield in ten different locations in the fluid. Given the periodic nature of the forcing potential, the behavior
of the system eventually becomes harmonic. Snapshots of the post-processed acoustic pressure and the elastic
displacement for different times are shown in Figure 11.

Concluding Remarks. We have studied the problem of the scattering of acoustic waves by a piezoelectric
solid, as well as its abstract semidiscretization in space. We have focused on the analysis in the time domain to
obtain stability bounds (for both problems) and error estimates. The continuous problem, its semidiscretization,
and the evolution of the approximation error are recast as an abstract differential equation of the first order.

The semidiscrete problem is presented as an abstract transmission problem, where the interior fields are
posed in Galerkin form with exotic transmission conditions. However, we show it to be equivalent to a Galerkin
approximation for a coupled formulation using retarded boundary integral operators and volume terms, that
can be dealt with numerically as a coupled Finite Element-Boundary Element formulation.

We have also presented some variations of the model and its semidiscretization: decoupling the electric
potential from the problem by deactivating the piezoelectric tensor, adding a drag term to the elastic equation
(thus losing energy conservation), or using exact equations in the interior domain with more exotic transmission
conditions for coupling (thus having an equivalent system of semidiscrete integral equations modeling the entire
problem).
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Figure 9. Columnwise from left to right: norms of the electric potential, elastic displacement
and acoustic densities as functions of time.
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at the locations marked with a dot in the schematic, while the ones on the central column
correspond to those marked with an asterisk. On the right: Locations of the acoustic receivers.



452 T.S. BROWN ET AL.

Figure 11. A time-harmonic grounding potential generates internal elastic stresses that in
turn produce an acoustic wavefield. The figure presents snapshots of the total acoustic field
and the magnitude of the elastic displacement for times t = 0, 0.9, 1.8, 2.7, 3.6, 6.

Our approach improves previously known results from Laplace domain analysis. Several numerical exper-
iments have been presented in order to highlight some of the possibilities of our formulation. Rather than
convergence studies, we have opted to show that our method captures the physical attributes one might expect
from solutions to these problems. We again direct the reader who is interested in convergence studies to those
that can be found in [15,22].

Appendix A. The abstract framework

In this section we present the abstract framework which we follow to derive our results. This framework is
based on [13], although it is slightly simplified in two ways: (a) the flipping operator T allows us to avoid having
to deal with two different signs for an associated elliptic problem (this is used to prove that A and −A are both
maximal dissipative); (b) the hypothesis on the surjectivity of the boundary operator is hidden in a hypothesis
on existence of solutions for an elliptic problem. We will use some concepts and results from the theory of
contraction C0-semigroups of operators in Hilbert spaces and their relation to abstract evolution equations [21].

We begin with the Hilbert spaces H,V,M1, and M2, with the property that V ⊂ H with bounded injection.
On these spaces, we define bounded linear operators A? : V −→ H, B : V −→ M2, and G : M1 −→ H. We
assume that there exist two positive constants, C1 and C2 such that

C1‖U‖V ≤ ‖A?U‖H + ‖U‖H ≤ C2‖U‖V, ∀U ∈ V.



SCATTERING OF ACOUSTIC WAVES BY A PIEZOELECTRIC SOLID 453

We also define A := A?
∣∣
KerB

and D(A) := KerB. With these definitions, for each problem we need to verify
the following hypotheses:

• For all U ∈ D(A), (AU,U)H = 0.
• There exists an isometric involution T : H −→ H, which is a bijection in D(A) and satisfies TAU = −ATU

for all U ∈ D(A).
• For all data, which take the form of F ∈ H, and Ξ = (ξ, χ) ∈M := M1 ×M2, the problem

U = A?U + F +Gξ, BU = χ, (A.1)

is solvable and there is a positive constant Clift, such that

‖U‖V ≤ Clift (‖F‖H + ‖Ξ‖M) .

Under these hypotheses, we have the following. The operators ±A are dissipative by the homogeneity of (AU,U).
This property, along with the linearity of all operators involved, also shows that if there is a solution to (A.1),
that solution is unique. Since we take Ξ ∈ M to be arbitrary, we have the surjectivity of B. If we take Ξ = 0
in (A.1), then we see that I −A is onto, hence A is maximal dissipative. Furthermore, with the existence of T
and the surjectivity of I −A, we prove the surjectivity of I +A, so that −A is also maximal dissipative. From
this we can conclude that A is the infinitesimal generator of a C0-group of isometries in H, corresponding to
the evolution of initial conditions in the problem

U̇(t) = A?U(t) t ∈ R, U(0) = U0.

The result deals mainly with strong solutions of a non-homogeneous initial value problem and it also recognizes
their relation to causal distributional solutions of the same problem. This identification is needed to relate
the problems under study to retarded potential integral formulations, where the vanishing past behavior (for
negative times) of some of the fields is needed to make the definitions meaningful. Given a Banach space X, we
consider the Sobolev spaces

W k(X) := {f ∈ Ck−1([0,∞);X) : f (k) ∈ L1((0,∞);X), f (`)(0) = 0 ` ≤ k},
W k

+(X) := {f ∈ Ck−1(R, X) : f (k) ∈ L1(R;X), f ≡ 0 in (−∞, 0)}.

Theorem A.1.

(a) If F ∈ W 1(H) and Ξ = (ξ, χ) ∈ W 2(M), then there exists a unique U ∈ C1([0,∞),H) ∩ C([0,∞),V) which
satisfies

U̇(t) = A?U(t) + F (t) +Gξ(t), t ≥ 0, (A.2a)

BU(t) = χ(t) t ≥ 0, (A.2b)

U(0) = 0, (A.2c)

and the following estimates hold:

‖U(t)‖H . H1(Ξ, t|M) +

∫ t

0

‖F (τ)‖H dτ,

‖U̇(t)‖H . H2(Ξ, t|M) +

∫ t

0

‖Ḟ (τ)‖H dτ.

All constants hidden in the symbol . depend exclusively on Clift.
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(b) If F ∈W 2(H) and Ξ ∈W 3(M), then there exists a unique U solving (A.2), with the additional bound

‖Ü(t)‖H . H3(Ξ, t|M) +

∫ t

0

‖F̈ (τ)‖H dτ.

(c) If F ∈W 1
+(H) and Ξ ∈W 2

+(M) then the restriction of a distributional solution of

U̇ = A?U + F +Gξ, BU = χ,

to [0,∞) is the unique solution of (A.2).

Remark A.2. The above result still holds if (AU,U) ≤ 0 for each U ∈ D(A). In that case the operator T does
not exist and A is a maximal dissipative infinitesimal generator of a contraction C0-semigroup of operators in H.
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Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris (1966).

[26] J.-Q. Tarn and H.-H. Chang, A Hamiltonian state space approach to anisotropic elasticity and piezoelasticity. Acta Mech. 224
(2013) 1271–1284.


	Introduction
	The continuous problem
	Sobolev space preliminaries.
	Physical coefficients.
	A strong second order formulation.


	Well-posedness
	On our way to the proof.
	Fitting this into the abstract framework.



	A semidiscrete problem
	Retarded Potentials and Boundary Integral Operators.
	A boundary-field formulation.
	The semidiscrete coupled system.



	Discrete well-posedness
	The first order formulation.
	The abstract framework.


	Approximation properties
	Some additional issues
	Purely acoustic-elastic coupling
	A damped elastic wave equation
	Full integral formulations
	Comparison with existing results

	Numerical experiments
	A piezoelectric pentagon.
	A trapping geometry.
	Transition into time-harmonic.
	Generation of acoustic/elastic waves.
	Concluding Remarks.



	Appendix A. The abstract framework
	References

