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VIRTUAL ELEMENT METHOD FOR THE LAPLACE-BELTRAMI EQUATION
ON SURFACES

Massimo Frittelli∗,1 and Ivonne Sgura1

Abstract. We present and analyze a Virtual Element Method (VEM) for the Laplace-Beltrami equa-
tion on a surface in R3, that we call Surface Virtual Element Method (SVEM). The method combines
the Surface Finite Element Method (SFEM) (Dziuk, Eliott, G. Dziuk and C.M. Elliott., Acta Numer.
22 (2013) 289–396.) and the recent VEM (Beirão da Veiga et al., Math. Mod. Methods Appl. Sci. 23
(2013) 199–214.) in order to allow for a general polygonal approximation of the surface. We account
for the error arising from the geometry approximation and in the case of polynomial order k = 1 we
extend to surfaces the error estimates for the interpolation in the virtual element space. We prove
existence, uniqueness and first order H1 convergence of the numerical solution.We highlight the differ-
ences between SVEM and VEM from the implementation point of view. Moreover, we show that the
capability of SVEM of handling nonconforming and discontinuous meshes can be exploited in the case
of surface pasting. We provide some numerical experiments to confirm the convergence result and to
show an application of mesh pasting.
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1. Introduction

The Virtual Element Method (VEM) is a recent extension of the well-known Finite Element Method (FEM)
for the numerical approximation of several classes of partial differential equations on planar domains [1–7].
The main features of the method have been introduced in [1, 8]. The key feature of VEM is that of being a
polygonal finite element method, i.e. the method handles elements of quite general polygonal shape, rather than
just triangular [1], and nonconforming meshes [1,9]. The increased mesh generality provides several advantages,
we mention some of them. About nonconforming meshes: (i) they naturally arise when pasting several meshes
to obtain a polygonal approximation of the whole domain [10, 11] and, in contrast to conforming pasting
techniques [12, 13], there is no need to match the nodal points; (ii) they allow simple adaptive refinement
strategies [14]. Elements of more general shape and arbitrary number of edges allow for: (i) flexible approximation
of the domain and in particular of its boundary [15]; (ii) the possibility of enforcing higher regularity to the
numerical solution [6, 16,17].
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The core idea of the VEM is that, given a polynomial order k ∈ N and a polygonal element K, the local basis
function space on K includes the polynomials of degree k (thus ensuring the optimal degree of accuracy) plus
other basis functions that are not known in closed form [1]. The presence of these virtual functions motivates
the name of the method. However, the knowledge of certain degrees of freedom attached to the basis functions
is sufficient to compute the discrete bilinear forms with a degree of accuracy k.

The VEM introduced for the Laplace equation in two dimensions in the recent publication [1] has been
extended to more complicated PDEs, for example a non exhaustive list of applications is: linear elasticity [2],
plate bending [17], fracture problems [7], eigenvalue problems [3], Cahn-Hilliard equation [6], heat [4] and wave
equations [5].

The aim of the present work is to consider the VEM in the case k = 1 and extend it to solve surface
PDEs, i.e. PDEs having a two-dimensional smooth surface in R3 as spatial domain. Surface PDEs arise in the
modelling of several problems such as advection [18], water waves [19], phase separation [20], reaction-diffusion
systems and pattern formation [21–25], tumor growth [26], biomembrane modelling [27], cell motility [28],
superconductivity [29], metal dealloying [30], image processing [21] and surface modelling [31].

Here we will focus on the Laplace-Beltrami equation, that is the prototypal second order elliptic PDE on
smooth surfaces and corresponds to the extension of the Laplace equation to surfaces, see e.g. [32], (Chap. 14).
Among the various discretisation techniques for surface PDEs existing in literature (see for example [24,26,33–
38]) we consider the Surface Finite Element Method (SFEM) introduced in the seminal paper [39]. The core idea
is to approximate the surface with a polygonal surface made, as in the planar case, of triangular non-overlapping
elements whose vertices belong to the surface and to consider a space of piecewise linear functions. The resulting
method is exactly similar to the well-known planar FEM, but the convergence estimates must account for the
additional error arising from the approximation of the surface, see [37] for a thorough analysis of the method.
In this paper, we define a Virtual Element Method on polygonal surfaces by combining the approaches of VEM
and SFEM, we will refer to the resulting method as Surface Virtual Element Method (SVEM). Then we prove,
under minimal regularity assumptions on the polygonal mesh, some error estimates for the approximation of
surfaces and for the projection operators and bilinear forms involved in the method. Furthermore, we prove
existence and uniqueness of the discrete solution and a first order (and thus optimal) H1 error estimate. As an
application, we show that SVEM can easily handle composite meshes arising from pasting two (or more) meshes
along a curve in the space.

The structure of the paper is as follows. In Section 2, we recall some preliminaries on differential operators
and function spaces on surfaces. In Section 3, we recall the Laplace-Beltrami equation on arbitrary smooth
surfaces without boundary in strong and weak forms. In Section 4, we introduce a Virtual Element Method
for the Laplace-Beltrami equation, defined on general polygonal approximation of surfaces. In Section 5, we
prove error estimates for the discrete bilinear forms and the approximation of geometry. In Section 6, we prove
existence, uniqueness and first order H1 convergence of the numerical solution. In Section 7 we face with the
issues related to the implementation of the method. In Section 8 we (i) discuss some advantages of the SVEM
when applied to mesh pasting and (ii) present three numerical experiments on a sphere, a torus and a cylinder,
respectively.

2. Differential operators on surfaces

In this section we recall some fundamental notions concerning surface PDEs. If not explicitly stated, definitions
and results are taken from [37].

Definition 2.1 (Ck surface, normal and conormal vectors). Given k ∈ N, a set Γ ⊂ R3 is said to be a Ck

surface if, for every x0 ∈ Γ , there exist an open set Ux0 ⊂ R3 containing x0 and a function φ ∈ Ck(U) such that

Ux0 ∩ Γ = {x ∈ Ux0 |φ(x) = 0}.
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Figure 1. Surface Γ and respective Fermi stripe U . Each point x ∈ U is obtained by moving
its normal projection a(x) ∈ Γ by a distance d(x) in the normal direction ν(x).

The vector field

ν : Γ → R3, x 7→ ∇φ(x)
‖∇φ(x)‖ (2.1)

is said to be the unit normal vector. We denote by ∂Γ the one-dimensional boundary of Γ . If ∂Γ has a well-defined
tangent direction at each point, the vector field µ : ∂Γ → R3 such that

• µ(x) ⊥ ν(x) ∀x ∈ ∂Γ ;
• µ(x) ⊥ ∂Γ ∀x ∈ ∂Γ ;
• µ(x) points outward of Γ ,

is called the conormal unit vector.

Lemma 2.2 (Fermi coordinates, see [37]). If Γ is a C2 surface, there exists an open neighbourhood U ⊂ R3 of
Γ such that every x ∈ U admits a unique decomposition of the form

x = a(x) + d(x)ν(a(x)), a(x) ∈ Γ, d(x) ∈ R. (2.2)

The maximal open set U with this property is called the Fermi stripe of Γ , a(x) is called normal projection onto
Γ , d(x) is called oriented distance function and (a(x), d(x)) are called the Fermi coordinates of x. An example
of Fermi stripe is depicted in Figure 1.

Definition 2.3 (Tangential gradient, tangential divergence). If Γ is a C1 surface, A is an open neighborhood
of Γ and f ∈ C1(A,R), the operator

∇Γ f : Γ → R3, x 7→ ∇f(x)− (∇f(x) · ν(x))ν(x) = P (x)∇f(x), (2.3)

where ∇ denotes the usual gradient in R3 and P (x)ij = δij − νi(x)νj(x), is called the tangential gradient of f .
The components of the tangential gradient, i.e.

Dif : S → R, x 7→ Pi(x)∇f(x), i ∈ {1, 2, 3}, (2.4)

where Pi(x) is the ith row of P (x), are called the tangential derivatives of f . Given a vector field F ∈ C1(A,R3),
the operator

∇Γ · F : S → R, x 7→
3∑
i=1

DiFi(x) (2.5)

is called the tangential divergence of F .
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Theorem 2.4. Given Γ ⊂ A a C1 surface, if f and g are C1(A,R) functions such that f|Γ = g|Γ , then

∇Γ f(x) = ∇Γ g(x) ∀x ∈ Γ.
This means that the tangential gradient of a function only depends on its restriction over Γ .

Theorem 2.4 makes the following definition well-posed.

Definition 2.5 (Ck(Γ ) functions). If Γ is a C1 surface, a function f : Γ → R is said to be C1(Γ ) if it is
differentiable at any point of Γ and its tangential derivatives are continuous over Γ .

If k ≥ 2 and Γ is a Ck surface, a function f : Γ → R is said to be Ck(Γ ) if it is C1(Γ ) and its tangential
derivatives are Ck−1(Γ ) functions.

Definition 2.6 (Laplace-Beltrami operator). Given a C2 surface Γ and f ∈ C2(Γ ), the operator

∆Γ f : Γ → R, x 7→ ∇Γ · ∇Γ f(x) =
3∑
i=1

DiDif(x)

is called the Laplace-Beltrami operator of f .

We now recall the definitions of some remarkable Sobolev spaces on surfaces.

Definition 2.7 (Sobolev spaces on surfaces). Given s ∈ N, let Γ be a Cs surface and let L0(Γ ) be the set of
measurable functions with respect to the bidimensional Hausdorff measure on Γ . Consider the Sobolev spaces

H0(Γ ) = L2(Γ ) =
{
f ∈ L0(Γ )

∣∣∣∣ ∫
Γ

f2 dσ < +∞
}

; (2.6)

Hr(Γ ) =
{
f ∈ L2(Γ ) | Dif ∈ Hr−1(Γ ) ∀i ∈ {1, 2, 3}

}
, ∀ 1 ≤ r ≤ s; (2.7)

Hr
0(Γ ) =

{
f ∈ Hr(Γ )

∣∣∣∣ ∫
Γ

f = 0
}
, ∀ 1 ≤ r ≤ s, (2.8)

where derivatives are meant in distributional sense2. These are Hilbert spaces if endowed with the scalar products

〈f, g〉Hr(Γ ) =
∫
Γ

∑
|α|≤r

DαfDαg

 dσ ∀f, g ∈ Hr(Γ ) ∀ 0 ≤ r ≤ s.

where Dα is the multi-index notation for partial tangential derivatives, see [41].

Norms will be denoted by ‖ · ‖L2(Γ ), ‖ · ‖Hr(Γ ) and seminorms by | · |Hr(Γ ).
As well as in the planar case, a Poincaré inequality holds on H1

0(Γ ), see [37].

Theorem 2.8 (Poincaré’s inequality on surfaces). Given a C2 surface Γ with a well-defined tangent vector field
on the boundary ∂Γ , there exists C > 0 such that

‖f‖L2(Γ ) ≤ C|f |H1(Γ ) ∀ f ∈ H1
0(Γ ). (2.9)

A basic result in surface calculus, taken from [37], is the following

Theorem 2.9 (Green’s formula on surfaces). Given a C2 surface Γ with a well-defined tangent vector field on
the boundary ∂Γ and f, g ∈ C2(Γ ), it holds that∫

Γ

f∆Γ g dσ = −
∫
Γ

∇Γ f · ∇Γ g dσ +
∫
∂Γ

f
∂g

∂µ
dl, (2.10)

where µ is the conormal vector (see Def. 2.1) and ∂g
∂µ (x) := ∇Γ g(x) · µ(x) is the conormal derivative of g on

∂Γ .
2See [40], (Chap. 4) or [37], (Def. 2.11) for a precise definition of distributional tangential derivatives.
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3. The Laplace-Beltrami equation

In this section we introduce the Laplace-Beltrami equation on a surface without boundary, that will be the
model problem throughout the paper.

Let Γ be a C3 surface without boundary and let f ∈ L2(Γ ) such that
∫
Γ
f = 0. Consider the Laplace-Beltrami

equation on Γ , given by {−∆Γu(x) = f(x), x ∈ Γ,∫
Γ
u(x) dx = 0,

(3.1)

and its weak formulation {
u ∈ H1

0(Γ )

a(u, φ) = 〈f, φ〉L2(Γ ) ∀ φ ∈ H1(Γ ),
(3.2)

where a(u, v) :=
∫
Γ
∇Γu · ∇Γ v for all u, v ∈ H1(Γ ) and 〈u, v〉L2(Γ ) :=

∫
Γ
uv for all u, v ∈ L2(Γ ). Notice that,

from condition
∫
Γ
f = 0, the formulation (3.2) is equivalent tou ∈ H1

0(Γ )

a(u, φ) = 〈f, φ〉L2(Γ ) ∀ φ ∈ H1
0(Γ ).

(3.3)

Let us justify the above requirements
∫
Γ
u = 0 and

∫
Γ
f = 0. Since φ ≡ 1 is allowed as a test function for the

weak Laplace-Beltrami equation (3.2), it follows
∫
Γ
f = 0 as a compatibility condition. Moreover, if u fulfills

a(u, φ) = 〈f, φ〉L2(Γ ) ∀φ ∈ H1(Γ ) and c ∈ R, then u + c fulfills the same equation; condition
∫
Γ
u = 0 is

thus enforced to provide uniqueness of the solution. Existence and uniqueness for problem (3.3) will be proven
rigorously in Theorem 6.1 in Section 6.

Remark 3.1 (Surfaces with boundary). The whole analysis carried out in this paper holds unchanged in the
presence of a non-empty boundary, ∂Γ 6= ∅, and homogeneous Neumann boundary conditions. In the case of
homogeneous Dirichlet boundary conditions, the analysis still holds if H1

0(Γ ) is the space of H1(Γ ) functions
that vanish on ∂Γ in a weak sense, see [40], (Chap. 4.5).

4. Space discretisation by SVEM

In this section, we will address space discretisation of (3.3). After defining the approximation of the geometry
and the corresponding discrete function spaces, the Surface Virtual Element Method (SVEM) will be introduced.

4.1. Approximation of the surface

In this section, we define a polygonal approximation of the surface Γ in Definition 2.1 and a virtual element
space on this polygonal approximation. The method will thus generalise, in the piecewise linear case, the Surface
Finite Element Method (SFEM) [37] and the Virtual Element Method (VEM) [1] at once.

Given a C2 surface Γ in R3, we constuct a piecewise flat approximate surface Γh, defined as

Γh =
⋃
E∈Th

E, (4.1)

where:

(1) Th is a finite set of non-overlapping simple polygons, i.e. without holes and with non self-intersecting
boundary, having diameters less than or equal to h > 0;

(2) Γh is contained in the Fermi stripe U associated to Γ , see Lemma 2.2;
(3) The normal projection a : Γh → Γ defined in Lemma 2.2 is one-to-one;
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(4) the vertices of Γh lie on Γ .

Following [37], we define how to lift functions from the approximate surface Γh to the continuous one Γ .

Definition 4.1 (Lifted functions). Let Γ be a C2 surface and Γh be as in (4.1). Given a function φ : Γh → R,
its lift φ` : Γ → R is defined by φ ◦ (a|Γh)−1, where a : Γh → Γ is the normal projection defined in Lemma 2.2.
Given a function ψ : Γ → R, its unlift ψ−` : Γh → R is defined by ψ ◦ a.

This definition is well-posed thanks to assumption (3).

Furthermore, the following mesh regularity requirements will be assumed throughout the paper. There exist
γ1, γ2 > 0 such that, for all h > 0 and E ∈ Th,

(A1) E is star-shaped with respect to a ball of radius ρE such that

ρE ≥ γ1hE ;

(A2) for every pair of nodes P,Q ∈ E, the distance ‖P −Q‖ fulfills

‖P −Q‖ ≥ γ2hE ,

where hE is the diameter of E.

Remark 4.2. This kind of polygonal approximation has two remarkable subcases:

(1) If each E ∈ Th has three vertices, we obtain the classical triangulations adopted, for instance, in [37,39].
(2) If Γ is a flat surface, we obtain the polygonal meshes considered in [1].

We remark that the considered class of polygonations includes nonconforming meshes. We will show in Sec-
tion 8.1 that this feature can be exploited in mesh pasting.

4.2. Discrete function spaces

In this subsection we define local function spaces based on the paper [42], which treats the VEM in the planar
case. For our purpose, the standard gradient operator used for defining the function spaces is replaced by the
tangential gradient on the polygonal surface. Consider E ∈ Th. Without loss of generality, E may be assumed
to lie in the (x, y) plane. We consider the space

Ṽh(E) = {vh ∈ H1(E) | vh|e ∈ P1(e) ∀e ∈ edges(E), ∆vh ∈ P1(E)}. (4.2)

We recall that functions in Ṽh(E) are virtual, i.e. they are not known explicitly. For this reason we consider the
projection Π∇E : Vh(E)→ P1(E) defined by∫

E

∇EΠ∇E (vh) · ∇Eq1 =
∫
E

∇Evh · ∇Eq1 ∀ q1 ∈ P1(E); (4.3)∑
P∈ nodes(E)

Π∇E vh(P ) =
∑

P∈ nodes(E)

vh(P ), (4.4)

where (4.4) is needed to fix the free constant in (4.3). Exactly as in the case of planar domains considered in [1],
this projection is computable. The local virtual space is defined by

Vh(E) :=
{
vh ∈ Ṽh(E)

∣∣∣∣ ∫
E

(vh −Π∇E vh)q1 = 0 ∀q1 ∈ P1(E)
}
. (4.5)

In [42] it has been proven that the nodal values

{vh(P )|P ∈ vertices(E)} (4.6)
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are unisolvent for the space Vh(E) in (4.5). Given w ∈ Hs(E), s > 1, by Sobolev’s embedding theorem we have
w ∈ C0(E). Hence, the nodal values of w are well-defined. The unique function wI ∈ Vh(E) such that

wI(P ) = w(P ), P ∈ vertices(E), (4.7)

is said to be the interpolant of w. If Ẽ = a(E) is the curved element corresponding to E and v ∈ H2(Ẽ), we
have v−` ∈ H2(E), for this result see Theorem 5.4 in Section 5. The unique function vI ∈ Vh(E) such that

vI(P ) = v−`(P ), P ∈ vertices(E), (4.8)

is said to be the interpolant of v.

Remark 4.3. From the definition of Vh(E) in (4.5) it follows that:

(1) P1(E) ⊆ Vh(E);

(2) every vh ∈ Vh(E) is explicitly known on the boundary ∂E, but not on the interior
◦
E;

(3) if E is a triangle, Vh(E) = P1(E), i.e. the VEM method reduces to FEM.

The global discrete space will be defined by

Vh = {vh ∈ C0(Γh) | vh|E ∈ Vh(E) ∀ E ∈ Th}.

Furthermore, we define the zero-averaged virtual space Wh by

Wh =
{
vh ∈ Vh

∣∣∣∣ ∫
Γh

vh = 0
}
. (4.9)

We observe that, from definition (4.5), the integral in (4.9) is computable. Finally, we define the following broken
Hs seminorms, s ∈ {1, 2}, on the polygonal surface Γh:

|vh|h,s =
√∑
E∈Th

|vh|E |2Hs(E) ∀vh ∈
∏
E∈Th

Hs(E)

4.3. The Surface Virtual Element Method

We may write a discrete formulation for (3.3):{
uh ∈Wh∫
Γh
∇Γhuh · ∇Γhφh =

∫
Γh
fIφh ∀ φh ∈Wh.

(4.10)

where fI is the interpolant of f defined piecewise in (4.8). For later purposes, we define ā(uh, vh) :=
∫
Γh
∇Γhuh ·

∇Γhvh for all uh, vh ∈Wh and 〈uh, vh〉L2(Γh) :=
∫
Γh
uhvh for all uh ∈ L2(Γh) and vh ∈Wh.

Remark 4.4 (Regularity of f). In the following we assume f ∈ H2(Γ ), such that, from Sobolev’s embedding
theorem, its pointwise values (and thus its interpolant fI) are well-defined. We remark that, in the framework
of surface PDEs, the problem of numerically handling Hs(Γ ), 0 ≤ s ≤ 1, load terms is intrinsically challenging.
In fact, if the pointwise values of f are not available, then any approximation f̄ of f defined on Γh must account
for the mapping a : Γh → Γ in (2.2) that, in general, is not computable.

Notice that ā(·, ·) and 〈fI , ·〉L2(Γh) are not computable. We thus need to write a computable approximation
of problem (4.10). To this end, following [1], an approximate bilinear form ah(·, ·) and an approximate linear
form 〈fh, ·〉h will be constructed instead of ā(·, ·) and 〈fI , ·〉L2(Γh), respectively.
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For each E ∈ Th, we consider the local form āE(vh, wh) :=
∫
E
∇Evh · ∇Ewh, for all vh, wh ∈ Vh(E).

Following [1], we consider a local approximate form defined by

ah,E(vh, wh) = āE
(
Π∇E vh, Π

∇
Ewh

)
+ SE

((
I −Π∇E

)
vh,
(
I −Π∇E

)
wh
)

∀ vh, wh ∈ Vh(E), (4.11)

where SE is a stabilising form defined by

SE(vh, wh) =
∑

xi∈nodes(E)

vh(xi)wh(xi) ∀ vh, wh ∈ Vh(E), (4.12)

which scales as āE on the kernel of Π∇E , (see [1]) i.e. there exist c∗ > c∗ > 0 such that

c∗āE(vh, vh) ≤ SE(vh, vh) ≤ c∗āE(vh, vh) ∀ vh ∈ ker (Π∇E ). (4.13)

Notice that, since Π∇E q1 = q1 for all q1 ∈ P1(E), the local form (4.11) fulfils the consistency property

ah,E(vh, q1) = āE(vh, q1) ∀vh ∈ Vh(E), ∀q1 ∈ P1(E). (4.14)

A global approximate gradient form is defined by pasting the local ones:

ah(vh, wh) :=
∑
E∈Th

ah,E(vh|E , wh|E) ∀ vh, wh ∈ Vh. (4.15)

We want to define an approximate L2 form and the approximate right hand side. For each E ∈ Th, consider the
local L2(E) projection Π0

E : Vh(E)→ P1(E) given by

〈Π0
Evh, q1〉L2(E) = 〈vh, q1〉L2(E) ∀q1 ∈ P1(E). (4.16)

We remark that Π0
E = Π∇E (see for instance [42] for the planar case), hence Π0

E is computable. Following [8],
and in analogy with the approximate gradient form (4.11), we consider the following local approximate L2 form:

〈vh, wh〉L2
h,E

:=
∫
Γh

Π0
EvhΠ

0
Ewh + |E|SE((I −Π0

E)vh, (I −Π0
E)wh) ∀vh, wh ∈ Vh(E), (4.17)

where SE and Π0
E are defined in (4.12) and (4.16), respectively. Notice that the local approximate L2 form (4.17)

fulfils the consistency property

〈vh, q1〉L2
h,E

= 〈vh, q1〉L2(E) ∀vh ∈ Vh(E), ∀q1 ∈ P1(E).

As a consequence, we have that

〈vh, 1〉L2
h,E

=
∫
E

vh ∀vh ∈ Vh(E), (4.18)

i.e. the integral of any Vh(E) function can be computed exactly. A computable global approximate L2 form is
obtained by pasting the local ones:

〈vh, wh〉L2
h

=
∑
E∈Th

〈vh|E , wh|E〉L2
h,E

∀vh, wh ∈ Vh. (4.19)

Property (4.18) implies that the space Wh defined in (4.9) can be represented as

Wh = {vh ∈ Vh|〈vh, 1〉L2
h

= 0}, (4.20)
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hence Wh is computable. To approximate the right hand side, following [1], for any function g ∈ H1(Γh) we
consider the functional 〈g, ·〉h defined by

〈g, vh〉h =
∑
E∈Th

∫
E

g
∑

V ∈vertices(E)

vh(V )
nE

∀ vh ∈ Vh, (4.21)

where nE is the number of vertices of E. From (4.18) we have that 〈g, vh〉h is computable, given the degrees of
freedom of g and vh. Furthermore, notice that

〈g, 1〉h =
∫
Γh

g ∀g ∈ H1(Γ ). (4.22)

Another difference between the presented method and its planar counterpart introduced in [1] is the approxi-
mation of the load term. In fact, as well as in the continuous formulation (3.3), the numerical method needs a
zero-averaged load term in order to be well-posed. To this end, we define the load term

fh := fI −
〈fI , 1〉L2

h

|Γh|
. (4.23)

From (4.18), fh is zero averaged and, from (4.22), fh fulfils

〈fh, 1〉h = 0. (4.24)

We may now write a computable discrete problem, as follows:{
uh ∈Wh

ah(uh, φh) = 〈fh, φh〉h ∀ φh ∈Wh.
(4.25)

We will discuss the implementation of (4.25) in Section 7, while the error analysis will be carried out in next
sections in the following steps, respectively:

(1) the geometric and interpolation error estimates in [37] will be extended to our polygonal/virtual setting;
(2) the error between the continuous weak formulation (3.3) and the computable discrete one (4.25) will be

estimated by extending the analogous convergence theorem in [1] to surfaces.

In Section 5 we deal with step (1), in Section 6 we deal with step (2).

5. Interpolation, projection and geometric error estimates

We start this section by recalling some results. The following result taken from [43] addresses the projection
error on P1(E), E ∈ Th.

Theorem 5.1. Under the regularity Assumption (A1), there exists C > 0, depending only on Γ , such that for
s ∈ {1, 2} and for all w ∈ Hs(E) there exists a wπ ∈ P1(E) such that

‖w − wπ‖L2(E) + hE |w − wπ|H1(E) ≤ ChsE |w|Hs(E). (5.1)

We now address interpolation in Vh(E), E ∈ Th. The following theorem from [1] gives an interpolation error
estimate in Vh(E).

Theorem 5.2. Under the regularity Assumption (A1), there exists C > 0, depending only on Γ , such that for
all w ∈ H2(E), the interpolant wI ∈ Vh(E) satisfies

‖w − wI‖L2(E) + h|w − wI |H1(E) ≤ Ch2
E |w|H2(E). (5.2)
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To approximate integrals and bilinear forms under lifting, a geometric error must be taken into account. To this
end, we recall some geometric quantities from [37]. For any x ∈ Γh, let Bε be an open ball (in the topology of
Γh) centred in x with radius ε. Define

δh(x) := lim
ε→0

meas(a(Bε))
meas(Bε)

, x ∈ Γh, (5.3)

where meas denotes the two-dimensional Hausdorff measure. Let P and Ph be the projections onto the tangent
planes of the smooth and the discrete surfaces, respectively, that is Pij = δij − νiνj and Ph,ij = δij − νh,iνh,j
for i, j = 1, 2, 3, and define

Qh =
1
δh
P (I − dH)Ph(I − dH)P, (5.4)

where d is the oriented distance function defined in (2.2) and H is the Weingarten map defined by Hij = Diνj
for i, j = 1, 2, 3. The analysis of the geometric error will rely on the following fundamental equalities borrowed
from [37]:∫

Γ

u`v` −
∫
Γh

uv =
∫
Γ

(
1− 1

δ`h

)
u`v`, ∀u, v ∈ L2(Γh) s.t. u`, v` ∈ L2(Γ ); (5.5)∫

Γ

∇Γu` · ∇Γ v` −
∫
Γh

∇Γhu · ∇Γhv =
∫
Γ

(P −Qh)∇Γu` · ∇Γ v`, ∀u, v ∈ H1(Γh) s.t. u`, v` ∈ H1(Γ ). (5.6)

Relations (5.5)–(5.6) motivate the following lemma, which generalises Lemma 4.1 in [37] to polygonal approxi-
mations of the surface.

Lemma 5.3. Let Γh be a polygonal approximation of Γ as in (4.1). The oriented distance function introduced
in (2.2) fulfils

‖d‖L∞(Γh) ≤ Ch2. (5.7)

The surface measure quotient δh defined in (5.3) fulfils

‖1− δh‖L∞(Γh) ≤ Ch2. (5.8)

The following estimate holds
‖P −Qh‖L∞(Γh) ≤ Ch2. (5.9)

In all of the claimed inequalities C depends only on the curvature of Γ .

Proof. We start by recalling the definition of the | · |C2 seminorm on polygons and segments. Let U be an open
set in R3, let E be a polygon contained in U and let r be a segment contained in E. Without loss of generality,
E and r may be assumed to lie in R2 and R, respectively. Let u ∈ C2(U). Then consider

|u|C2(r) := max
x∈r

∣∣∣∣∂2u

∂x2
(x)
∣∣∣∣ , |u|C2(E) := max

α∈(N∪0)2
|α|=2

max
x∈E

∣∣∣∣ ∂2u

∂xα
(x)
∣∣∣∣ , |u|C2(U) := max

α∈(N∪0)3
|α|=2

max
x∈U

∣∣∣∣ ∂2u

∂xα
(x)
∣∣∣∣ ,

with the multi-index notation for partial derivatives. It is easy to prove that

|u|C2(r) ≤ |u|C2(E) ≤ |u|C2(U). (5.10)

Furthermore, if ur is the linear interpolant of u on r, i.e. the linear function on r that agrees with u at the
endpoints of r, the following classical interpolation error estimate holds

‖u− ur‖L∞(r) ≤ C|r|2|u|C2(r), (5.11)
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(a) The element E is given.

xBe

(b) The point xB is on the edge e
of the boundary ∂E.

s

x

x1

x2

(c) x1 and x2 are two distinct in-
tersection points between s and
∂E such that [x1,x2] ⊂ E.

Figure 2. Some steps of the proof of Lemma 5.3.

where |r| is the length of r, see [44]. Consider E ∈ Th, see Figure 5. First of all we prove that

‖d‖L∞(∂E) ≤ Ch2|d|C2(E). (5.12)

To this end, let xB ∈ ∂E and let e be an edge of E such that xB ∈ e, see Figure 5. Then, if de is the linear
interpolant of d on e, then (i) de ≡ 0 since d vanishes at the endpoints of e and (ii) the interpolation error
estimate (5.11) holds with r = e and u = d. Using also (5.10), we have

|d(xB)| ≤ ‖de‖L∞(e) + ‖d− de‖L∞(e) ≤ C|e|2|d|C2(e) ≤ Ch2|d|C2(E),

that proves (5.12). Now let x ∈
◦
E and let s be any straight line contained in the plane of E and passing through

x, let x1,x2 ∈ s ∩ ∂E such that [x1,x2] ⊂ E, see Figure 5, and let ds be the linear interpolant of d on s. By
choosing r = s and u = d in (5.11), using (5.10) and (5.12) we have that

|d(x)| ≤ ‖ds‖L∞(s) + ‖d− ds‖L∞(s) = max(|d(x1)|, |d(x2)|) + ‖d− ds‖L∞(s)

≤ ‖d‖L∞(∂E) + C|s|2|d|C2(s) ≤ Ch2|d|C2(E) ≤ Ch2|d|C2(U), (5.13)

where U is the Fermi stripe of Γ . Now, |d|C2(U) depends only on the curvature of Γ , thus (5.13) proves (5.7).
To prove (5.7), (5.8) and (5.9), we proceed as in Lemma 4.1 in [37] using estimate (5.7) for polygonal meshes.
�

The following lemma generalizes Lemma 4.2 in [37] to our polygonal setting and provides lower and upper
bounds for some norms of arbitrary functions when they are unlifted from Γ to Γh or lifted from Γh to Γ .

Lemma 5.4. Let w : Γh → R with lift w` : Γ → R. Let a : Γh → Γ be the projection onto Γ defined in (2.2)
and, for every E ∈ Th, let Ẽ = a(E) ⊂ Γ be the curved element corresponding to E ∈ Th. Then

1
C
‖w‖L2(E) ≤ ‖w`‖L2(Ẽ) ≤ C‖w‖L2(E); (5.14)

1
C
‖∇Ew‖L2(E) ≤ ‖∇Ẽw`‖L2(Ẽ) ≤ C‖∇Ew‖L2(E); (5.15)

‖∇2
Ew‖L2(E) ≤ C‖∇2

Ẽ
w`‖L2(Ẽ) + ChE‖∇Ẽw`‖L2(Ẽ), (5.16)

if the norms exist, where C depends only on the local metric and the curvature tensors of Γ .
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Proof. We use the estimates of Lemma 5.3 for polygonal meshes into (5.5)–(5.6) and proceed exactly as in [37],
(Lem. 4.2). �

Notice that Equations (5.14) and (5.15) express the following equivalences under lifting: (5.14) between L2(Γh)
and L2(Γ ) norms and (5.15) between H1(Γh) and H1(Γ ) seminorms. Equation (5.16) can be interpreted as an
h-perturbed dominance of the H2(Γ ) seminorm over the H2(Γh) seminorm.

The following result provides error estimates for the interpolation in V `h and the projection on (
∏
E P1(E))`.

The interpolation result extends to SVEM Lemma 4.3 in [37] for the triangular SFEM.

Theorem 5.5. Given a C2 surface Γ , there exists C > 0 such that, for all v ∈ H2(Γ ) and w ∈ Hs(Γ ), s ∈ {1, 2},
and for all h > 0, then

• the interpolant vI ∈ V 1
h fulfills

‖v − v`I‖L2(Γ ) + h|v − v`I |H1(Γ ) ≤ Ch2
(
|v|H2(Γ ) + h|v|H1(Γ )

)
; (5.17)

• there exists a projection wπ ∈
∏
E P1(E) such that

‖w − w`π‖L2(Γ ) + h|w − w`π|h,1 ≤ Chs
(
|w|Hs(Γ ) + h|w|H1(Γ )

)
. (5.18)

Proof. From Lemma 5.4, w−` ∈ H1(Γh) ∩∏E Hs(E). Let wπ be the
∏
E P1(E) projection of w−` as in (5.1)

and let vI be the V 1
h interpolant of v−` defined piecewise by (4.7). From Theorems 5.1 and 5.2, by summing

piecewise contributions, we have

‖w−` − wπ‖L2(Γh) + h|w−` − wπ|h,1 ≤ Chs|w−`|2,h, (5.19)

‖v−` − vI‖L2(Γh) + h|v−` − vI |H1(Γh) ≤ Ch2|v−`|2,h. (5.20)

From (5.19), (5.20) and Lemma 5.4 we have

‖w − w`π‖L2(Γ ) + h|w − w`π|h,1 ≤ Chs
(
|w|Hs(Γ ) + h|w|H1(Γ )

)
, (5.21)

‖v − v`I‖L2(Γ ) + h|v − v`I |H1(Γ ) ≤ Ch2
(
|v|H2(Γ ) + h|v|H1(Γ )

)
, (5.22)

that are the desired estimates. �

The following Lemma generalises Lemma 4.7 in [37] to our polygonal/virtual setting and provides bounds for
the geometric errors in the bilinear forms.

Lemma 5.6. For any (v, w) ∈ H1(Γh)×H1(Γh), the following estimates hold:

|〈v`, w`〉L2(Γ ) − 〈v, w〉L2(Γh)| ≤ Ch2‖v`‖L2(Γ )‖w`‖L2(Γ ); (5.23)

|a(v`, w`)− ā(v, w)| ≤ Ch2‖∇Γ v`‖L2(Γ )‖∇Γw`‖L2(Γ ), (5.24)

where C depends only on the geometry of Γ .

Proof. We proceed as in Lemma 4.7 of [37], but here using, into (5.5)–(5.6), the generalised estimates (5.7)–(5.9)
given in the previous Lemma 5.3. �

In the first section we have recalled the Poincaré inequality (2.9) in H1
0(Γ ). In the following theorem we prove

an analogous inequality in H1
0(Γh), i.e. on polygonal surfaces Γh of the type (4.1).

Theorem 5.7 (Poincaré inequality in H1
0(Γh)). Let Γ be a closed C2 orientable surface in R3. Then there exist

h0 > 0 and C > 0 depending on Γ such that, for all 0 < h < h0 and Γh as in (4.1),

‖v‖L2(Γh) ≤ C|v|H1(Γh) ∀v ∈ H1
0(Γh). (5.25)
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Proof. From (5.14) and the triangle inequality we have

‖v‖L2(Γh) ≤ C‖v`‖L2(Γ ) ≤ C
(∥∥∥∥v` − 1

|Γ |

∫
Γ

v`
∥∥∥∥

L2(Γ )

+
1
|Γ | 12

∫
Γ

v`

)
. (5.26)

Now, from (5.14) we have that v` − 1
|Γ |
∫
Γ
v` ∈ H1

0(Γ ). Then, from Poincaré’s inequality (2.9) and (5.15) it
follows that ∥∥∥∥v` − 1

|Γ |

∫
Γ

v`
∥∥∥∥

L2(Γ )

≤ C|v`|H1(Γ ) ≤ C|v|H1(Γh). (5.27)

Furthermore, from (5.14), (5.23) and the fact that v is zero-averaged on Γh, it follows that

1
|Γ | 12

∫
Γ

v` ≤ 1
|Γ | 12

(∣∣∣∣∫
Γh

v

∣∣∣∣+ Ch2‖v`‖L2(Γ )|Γ |
1
2

)
≤ Ch2‖v‖L2(Γh). (5.28)

Combining (5.26), (5.27) and (5.28) we have

(1− Ch2)‖v‖L2(Γh) ≤ C|v|H1(Γ ).

By choosing, for instance, h0 = 1√
2C

, the result follows. �

Concerning the convergence rates of the above results we observe that:

• As shown in Lemma 5.6, in the approximation of the bilinear forms (5.23) and (5.24), the polygonal approx-
imation of geometry yields a geometric error that is quadratic in L2 norm and linear in H1 norm. In fact,
this Lemma is based on the geometric estimates of Lemma 5.3.

• The interpolation error on Γ , as shown by (5.17) in Lemma 5.5 (and its proof) arises from two sources. The
first one is the interpolation error on flat polygons (cp. Lem. 5.1). The second one is given by the geometric
estimates given in Lemma 5.3.

This implies that using higher-order virtual element spaces instead of (4.5) will not improve the convergence
rate of the method, since geometric error would dominate over the interpolation one. The same drawback occurs
with the standard SFEM [37] of higher order; in [45] it has been shown that a finite element space of degree
k ∈ N defined on a suitable curvilinear triangulation of degree k (isoparametric elements) provides a SFEM
with the same H1 convergence rate as polynomial interpolation of degree k. This suggests that, to formulate a
SVEM of order k > 1, a different approximation of the surface is needed.

We close this section proving an error estimate for the approximate right hand side 〈fh, vh〉h in the discrete
formulation (4.25).

Theorem 5.8. Let f ∈ H1
0(Γ ). Under the regularity assumptions (A1)–(A2), there exists C > 0 depending on

Γ and γ such that

|〈f, v`h〉L2(Γ ) − 〈fh, vh〉h| ≤ Ch
(
|f |H1(Γ ) + h|f |H2(Γ )

)
|v`h|H1(Γ ) ∀vh ∈Wh. (5.29)

Proof. Let fI be as in (4.10) and fh be as in (4.25). We split the error as

|〈f, v`h〉L2(Γ ) − 〈fh, vh〉h| ≤ |〈f, v`h〉L2(Γ ) − 〈fI , vh〉L2(Γh)|+ |〈fI , vh〉L2(Γh) − 〈fh, vh〉L2(Γh)|
+ |〈fh, vh〉L2(Γh) − 〈fh, vh〉h|. (5.30)

From the Cauchy-Schwarz inequality (5.23) we obtain

|〈f, v`h〉L2(Γ ) − 〈fI , vh〉L2(Γh)| ≤ |〈f − f `I , v`h〉L2(Γ )|+ |〈f `I , v`h〉L2(Γ ) − 〈fI , vh〉L2(Γh)|
≤ ‖f − f `I‖L2(Γ )‖v`h‖L2(Γ ) + Ch2‖f `I‖L2(Γ )‖v`h‖L2(Γ ). (5.31)
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From the Cauchy-Schwarz inequality, the definition of fh and (5.23) we have

|〈fI , vh〉L2(Γh) − 〈fh, vh〉L2(Γh)| ≤ |Γh|−
1
2 |〈fI , 1〉L2(Γh)|‖vh‖L2(Γh)

≤ |Γh|−
1
2
(
|〈f `I − f, 1〉L2(Γ )|+ Ch2‖f `I‖L2(Γ )

)
‖vh‖L2(Γh)

≤
(
‖f `I − f‖L2(Γ ) + Ch2‖f `I‖L2(Γ )

)
‖vh‖L2(Γh). (5.32)

Following [1], we know that

|〈fh, vh〉L2(Γh) − 〈fh, vh〉h| ≤ Ch|fh|1,h|vh|H1(Γh), (5.33)

but, from the definition of fh and from (5.15) it follows that

|fh|1,h = |fI |H1(Γh) ≤ C|f `I |H1(Γ ). (5.34)

Combining (5.30)–(5.34), using (5.14), (5.15), (5.17), the Poincaré inequalities (2.9), (5.25) and the triangle
inequality we obtain

|〈f, v`h〉L2(Γ ) − 〈fh, vh〉h| ≤
(
‖f − f `I‖L2(Γ ) + Ch|f `I |H1(Γ ) + Ch2‖f `I‖L2(Γ )

)
|v`h|H1(Γ )

≤
(
(1 + Ch2)‖f − f `I‖L2(Γ ) + Ch2‖f‖L2(Γ ) + Ch|f − f `I |H1(Γ ) + Ch|f |H1(Γ )

)
|v`h|H1(Γ )

≤C
(
(h2 + h4)|f |H2(Γ ) + (h+ h3 + h5)|f |H1(Γ )

)
|v`h|H1(Γ ) ≤ Ch

(
|f |H1(Γ ) + h|f |H2(Γ )

)
|v`h|H1(Γ ),

that is the desired estimate. �

6. Existence, uniqueness and error analysis

The following theorem, that is the main result of this paper, extends Theorem 3.1 in [1] for the VEM on
planar domains to the Laplace-Beltrami equation on surfaces. In fact, it provides: (i) the existence and the
uniqueness of the solution for both the continuous (3.3) and the discrete problem (4.25) and (ii) an abstract
convergence result. As a corollary, an optimal H1(Γ ) error estimate for problem (4.25) will be given.

Theorem 6.1 (Abstract convergence theorem). Let a : H1
0(Γ )×H1

0(Γ )→ R be the bilinear form defined by

a(u, v) =
∫
Γ

∇Γu · ∇Γ v ∀u, v ∈ H1
0(Γ ),

and let ah : Wh ×Wh → R be any symmetric bilinear form such that

ah(uh, vh) =
∑
E∈Th

ah,E(uh|E , vh|E), (6.1)

where, for all E ∈ Th, ah,E is a symmetric bilinear form on Vh(E)× Vh(E) such that

|ah,E(p, vh,E)− aẼ(p`, v`h,E)| ≤ Ch2|p`|H1(Ẽ)|v`h,E |H1(Ẽ) ∀vh,E ∈ Vh(E), ∀p ∈ P1(E); (6.2)

α∗aẼ(v`h,E , v
`
h,E) ≤ ah,E(vh,E , vh,E) ≤ α∗aẼ(v`h,E , v

`
h,E) ∀vh,E ∈ Vh(E), (6.3)

where α∗ and α∗ are independent of h and E ∈ Th.
Let F ∈ L2(Γ )′ and Fh ∈W ′h be linear continuous functionals. Consider the problems{

u ∈ H1
0(Γ )

a(u, v) = F (v) ∀v ∈ H1
0(Γ )

(6.4){
uh ∈Wh

ah(uh, vh) = Fh(vh) ∀vh ∈Wh
(6.5)
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Both of these problems have a unique solution and the following error estimate holds

|u− u`h|H1(Γ ) ≤ C
(
|u− u`π|h,1 + |u− u`I |H1(Γ ) + Fh + h‖F‖L2(Γ )′

)
, (6.6)

where Fh is the smallest constant such that

|F (v`h)− Fh(vh)| ≤ Fh|v`h|H1(Γ ) ∀vh ∈Wh. (6.7)

Proof. Existence and uniqueness follow from Lax-Milgram’s theorem. In fact, from the Poincaré inequality (2.9)
on H1

0(Γ ), the bilinear form a is coercive and, from the Cauchy-Schwarz inequality, it is continuous. The bilinear
form ah is coercive since

|ah(vh, vh)| =
(6.1)

∣∣∣∣∣ ∑
E∈Th

ah,E(vh|E , vh|E)

∣∣∣∣∣ ≥(6.3) α∗ ∑
E∈Th

∣∣∣aẼ(v`h|E , v
`
h|E)

∣∣∣ = α∗
∑
E∈Th

|v`h|2H1(Ẽ)

≥
(5.15)

C
∑
E∈Th

|vh|2H1(E) = C|vh|2H1(Γh) ≥
(5.25)

C‖vh‖2H1(Γh),

for all vh ∈Wh. Now we prove that ah is continuous. To this end, since ah is symmetric and coercive (i.e. positive
definite), then it fulfills the Cauchy-Schwarz inequality. Then we have

|ah(vh, wh)| ≤
(6.1)

∑
E∈Th

|ah,E(vh|E , wh|E)| ≤
∑
E∈Th

ah,E(vh|E , vh|E)
1
2 ah,E(wh|E , wh|E)

1
2

≤
(6.3)

α∗
∑
E∈Th

aẼ(v`h|E , v
`
h|E)

1
2 aẼ(w`h|E , w

`
h|E)

1
2 = α∗

∑
E∈Th

|v`h|H1(Ẽ)|w`h|H1(Ẽ) ≤
(5.15)

C
∑
E∈Th

|vh|H1(E)|wh|H1(E)

≤ C
(∑
E∈Th

|vh|2H1(E)

) 1
2
(∑
E∈Th

|wh|2H1(E)

) 1
2

= C|vh|H1(Γh)|wh|H1(Γh) ≤ C‖vh‖H1(Γh)‖wh‖H1(Γh),

for all vh, wh ∈Wh. Hence, problems (6.4) and (6.5) meet the assumptions of Lax-Milgram’s theorem.
If a : Γh → Γ is the projection onto Γ defined in (2.2), then for any E ∈ Th, let Ẽ = a(E) be the curved

element corresponding to E. Let uπ ∈
∏
E∈Th P1(E) be the projection of u defined in (5.18) and let uI ∈ Wh

be the interpolant of u defined in (5.17). From [37, Theorem 3.3], The solution of (6.4) fulfills u ∈ H2(Γ ) and
thus uπ and uI are well-defined. Let δh = uh − uI . It holds that

α∗|δ`h|2W = α∗a(δ`h, δ
`
h) ≤ ah(δh, δh) = ah(uh, δh)− ah(uI , δh)

=
(6.1)

Fh(δh)−
∑
E∈Th

ah,E(uI , δh) = Fh(δh)−
∑
E∈Th

(ah,E(uI − uπ, δh) + ah,E(uπ, δh))

≤
(6.2)

Fh(δh)−
∑
E∈Th

(
ah,E(uI − uπ, δh) + aẼ(u`π, δ

`
h)
)

+ Ch2
∑
E∈Th

|u`π|H1(Ẽ)|δ`h|H1(Ẽ)

= Fh(δh)−
∑
E∈Th

(
ah,E(uI − uπ, δh) + aẼ(u`π − u, δ`h) + aẼ(u, δ`h)

)
+ Ch2

(
|u`π|2h,1 + |δ`h|2H1(Γ )

)
= Fh(δh)− a(u, δ`h)−

∑
E∈Th

(
ah,E(uI − uπ, δh) + aẼ(u`π − u, δ`h)

)
+ Ch2

(
|u`π|2h,1 + |δ`h|2H1(Γ )

)
= Fh(δh)− F (δ`h)−

∑
E∈Th

(
ah,E(uI − uπ, δh) + aẼ(u`π − u, δ`h)

)
+ Ch2

(
|u`π|2h,1 + |δ`h|2H1(Γ )

)
.

From (6.3), (6.7) and the continuity of a and ah we obtain

(α∗ − Ch2)|δ`h|2H1(Γ ) ≤ Fh|δ`h|H1(Γ ) + |uI − uπ|h,1|δh|H1(Γh) + |u`π − u|h,1|δ`h|H1(Γ ) + Ch2|u`π|2h,1.
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For h sufficiently small, by exploiting (5.15), we obtain

|δ`h|2H1(Γ ) ≤ C(Fh + |u`I − u`π|h,1 + |u`π − u|h,1)|δ`h|H1(Γ ) + Ch2|u`π|2h,1. (6.8)

By defining A = Fh + |u`I −u`π|h,1 + |u`π−u|h,1 and solving the second-degree-algebraic inequality (6.8) we have

|δ`h|H1(Γ ) ≤
CA

2
+

1
2

√
C2A2 + 4Ch2|u`π|2h,1 ≤

CA

2
+

1
2

(CA+ 2
√
Ch|u`π|h,1) ≤ CA+ Ch|u`π|h,1.

By recalling the definition of A and applying the triangle inequality, we get

|u− u`h|H1(Γ ) ≤ C(Fh + |u− u`I |H1(Γ ) + |u− u`π|h,1) + Ch|u`π|h,1.

By applying the triangle inequality to the last term, we obtain

|u− u`h|H1(Γ ) ≤ C
(
Fh + |u− u`I |H1(Γ ) + (1 + h)|u− u`π|h,1 + h|u|H1(Γ )

)
.

The obvious stability estimate |u|H1(Γ ) ≤ C‖F‖L2(Γ )′ , where C is the constant in the Poincaré inequality (2.9),
together with h ≤ h0, complete the proof. �

From the abstract framework given in Theorem 6.1 we are now ready to derive the H1(Γ ) error estimate between
the continuous problem (3.3) and the discrete one (4.25).

Corollary 6.2 (H1(Γ ) error estimate). Problems (3.3) and (4.25) have a unique solution. Let u and uh be the
their solutions, respectively. Under the mesh regularity assumptions (A1)–(A2), if f ∈ H2

0(Γ ), the following
estimate holds:

|u− u`h|H1(Γ ) ≤ Ch(|u|H2(Γ ) + |f |H1(Γ )) + Ch2|f |H2(Γ ). (6.9)

Proof. In Theorem 6.1, we choose

F (v) = 〈f, v〉L2(Γ ) ∀v ∈ H1(Γ );
Fh(vh) = 〈fh, vh〉h ∀vh ∈Wh,

with ah defined in (4.11), (4.15). Under the regularity assumptions (A1)–(A2),

(1) Assumption (6.2) follows from (4.14) and (5.24);
(2) Assumption (6.3) follows from (4.11), (4.13) and (5.15);
(3) From [37, Theorem 3.3] we have u ∈ H2(Γ ). Then, Theorem 5.5 provides

|u− u`π|h,1 + |u− u`I |H1(Γ ) < Ch(|u|H2(Γ ) + h|u|H1(Γ )); (6.10)

(4) if f ∈ H1
0(Γ ), the Poincaré inequality (2.9) provides

‖F‖L2(Γ )′ = ‖f‖L2(Γ ) ≤ C|f |H1(Γ ), (6.11)

and (5.29) yields
Fh ≤ Ch(|f |H1(Γ ) + h|f |H2(Γ )). (6.12)

By plugging (6.10)–(6.12), into the abstract error bound (6.6), we obtain

|u− u`h|H1(Γ ) ≤ Ch(|u|H2(Γ ) + |f |H1(Γ )) + Ch2(|u|H1(Γ ) + |f |H2(Γ )). (6.13)

By plugging the Poincaré inequality (2.9), the stability estimate |u|H1(Γ ) ≤ C‖F‖L2(Γ )′ and (6.11) into (6.13),
the result follows. �
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7. Implementation

In this section we will discuss how to implement the SVEM using only information on the mesh and the
nodal values of the load term f . The major differences with respect to the planar case are:

(1) construction of test problems on arbitrary surfaces, with the knowledge of the exact solution and construction
of polygonal meshes;

(2) computation of local matrices (mass, stiffness and load term);
(3) formulation of the discrete problem as a square, full-rank linear system which also accounts for the zero-

average condition on the solution.

7.1. Constructing test problems

To perform a convergence study of any numerical method for the Laplace-Beltrami equation, it is necessary
to construct some test problems, where the exact solution is known in closed form. Constructing test problems,
which is trivial in the planar case, is more involved on curved surfaces. For a generic surface, we proceed as
follows:

Represent Γ as a zero level set of a suitable function φ as in Definition 2.1;
(1) Compute the unit normal vector field ν according to (2.1);
(2) Choose the exact solution u such that u is well-defined and sufficiently smooth in an open neighbourhood

of Γ ;
(3) By repeatedly computing the tangential derivatives of u as in (2.4), compute the Laplace-Beltrami of u

according to (2.5), thus obtaining the right-hand side f of the Laplace-Beltrami equation (3.1). We remark
that, if Γ has no boundary, then, by construction, f is zero-averaged on Γ .

Though being merely algorithmic, this procedure can be particularly lengthy and tedious even on rather simple
surfaces, neverthless a symbolic calculus software could be used for this task.

On very special surfaces, such as spheres and cylinders, some eigenfunctions of the Laplace-Beltrami operator
are known in the literature [46]. Hence, if ū is an eigenfunction of −∆Γ with eigenvalue λ, a test problem is
immediately obtained by choosing the load term as f = λū. This approach will be used in our numerical example
provided in next Section 8 (Experiment 8.2.1).

Concerning the discretisation of generic surfaces for a Laplace-Beltrami equation, to the best of the author’s
knowledge, the problem of generating and refining arbitrary polygonal meshes is an open question and no general
algorithm is available. More is known on the specific case of triangular meshes, see [37, 47, 48] and some codes
are available [49,50]. Here we suggest a possible way of constructing polygonal meshes in the following cases:

(1) On spherical surfaces: polygonal meshes can be constructed starting from arbitrary triangulations by suit-
ably subdiving the triangles and projecting the resulting nodes onto Γ , as explained in Figure 3 for a single
triangle. In the caption of this figure we describe the steps required by this construction. We will apply
this approach in Experiment 8.2.1, see Figure 6a. Steps of the construction are explained in the caption of
Figure 3.

(2) For special surfaces, such as cylinders or tori: it is possible to trivially construct quadrilateral or trapezoidal
meshes that significantly reduce the number of elements, on equal number of degrees of freedom. We will
consider these meshes in Experiments 8.2.2 and 8.2.3.

7.2. Constructing local matrices

In this section we explain how the construction of the stiffness and mass matrices on polygonal meshes in
R3 differ from the planar case. Let N ∈ N be the number of vertices, say {xi, i = 1, . . . , N}, and for every
i = 1, . . . , N let φi ∈ Vh be the i-th basis function defined by φi(xj) = δij , for all j = 1, . . . , N . For every
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T

C

(a) Step 1

C
C′

(b) Step 2

C

(c) Step 3

E

(d) Step 4

E

(e) Step 5

Figure 3. Generating a polygonal mesh on the sphere. (a) Given a triangular element T , we
consider the out-circle C (which is contained in Γ ). (b) We consider a circle C′, concentric with
C′, whose radius is such that C′ intersect each edge of T in two distinct points. (c) The resulting
six points are moved, orthogonally to the plane of T , onto Γ . (d) By connecting these points,
an hexagon E is created, whose vertices are on Γ . (e) New triangles are added to connect the
nodes of E with the neighboring nodes of T .

element E ∈ Th, consider the local mass and stiffness matrices ME and AE defined respectively by

ME = (mE
ij) := 〈φi, φj〉L2

h,E
∀i, j : xi,xj ∈ nodes(E);

AE = (aEij) := ah,E(φi, φj) ∀i, j : xi,xj ∈ nodes(E).

For all E ∈ Th, we move E to the horizontal plane {z = 0} and we use the algorithm described in [8] for the
computation of the local matrices in the planar case.

To move E onto the horizontal plane, we proceed as follows. Let nE ∈ N be the number of vertices of E, let
Pi, i = 1, . . . , nE be the vertices of E and let P ′i = (x′i, y

′
i), i = 1, . . . , nE , be the vertices of the transformed

element. For the sake of simpleness, we fix the transformation by enforcing that

(1) the first vertex P1 is moved to the origin, i.e. P ′1 = O;
(2) the second vertex P2 is moved onto the x-axis, i.e. y′2 = 0;
(3) if j := min{i = 3, . . . , nE | P1, P2 and Pj are not aligned}, then Pj is moved onto the positive y half-plane,

i.e. y′j > 0.

The vertices of the transformed element can be computed with the following rule:

x′1 = 0, x′i =
(P2 − P1) · (Pi − P1)

‖P2 − P1‖
, i = 2, . . . , nE ;

y′1 = y′2 = 0, |y′i| =
‖(P2 − P1)× (Pi − P1)‖

‖P2 − P1‖
, i = 3, . . . , nE ;

y′j > 0, sign y′i = sign ((P2 − P1)× (Pj − P1)) · ((P2 − P1)× (Pi − P1)), i = j + 1, . . . , nE ,

where × denotes the cross-product. Notice that the transformed elements are used in the computation of the
local matrices, only. The numerical solution is then plotted on the original mesh in R3.
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7.3. Full-rank linear system associated to SVEM for the Laplace-Beltrami equation

As pointed out in Remark 3.1, the Laplace-Beltrami equation must be complemented with the zero-average
condition when (i) Γ has no boundary or (ii) The boundary condition are of homogeneous Neumann type.
In this subsection we explain how to write the discrete formulation as a square, full-rank linear system that
accounts for the zero-average condition and whose dimension is minimal, i.e. equal to the number of vertices.
To this end, we observe that, from (4.9) and (4.24), problem (4.25) is equivalent to

uh ∈ Vh
ah(uh, φh) = 〈fh, φh〉h ∀ φh ∈ Vh
〈uh, 1〉L2(Γh) = 0.

(7.1)

Notice that the overall number of degrees of freedom is equal to the number N of nodal points. We express the
numerical solution of (7.1) in the basis {φi}Ni=1 as

uh(x) =
N∑
j=1

ξjφj(x) ∀x ∈ Γh,

with ξj ∈ R for all j = 1, . . . , N . Problem (4.25) is then equivalent to

N∑
j=1

ah(φi, φj)ξj = 〈fh, φi〉h ∀i = 1, . . . , N, (7.2)

N∑
j=1

〈1, φj〉L2
h
ξj = 0. (7.3)

Problem (7.2)–(7.3) is a rectangular (N + 1)×N linear system that has, from Corollary 6.2, a unique solution.
We want to rephrase this problem as a square N × N linear system. To this end, notice that the function
φ̄ :=

∑N
i=1 φi fulfils φ̄(xj) = 1 for all j = 1, . . . , N and thus, from (4.5), we have

N∑
i=1

φi(x) = 1 ∀x ∈ Γh. (7.4)

We show that the sum of all equations in (7.2) vanishes. In fact, for the left hand side of (7.2), using (4.14)
and (7.4), we have that

N∑
i=1

N∑
j=1

ah(φi, φj)ξj =
N∑
j=1

ah

(
N∑
i=1

φi, φj

)
ξj =

N∑
j=1

ah(1, φj)ξj =
N∑
j=1

ā(1, φj)ξj = 0,

while for the right hand side of (7.2), from (4.24) and (7.4) we have
∑N
i=1〈fh, φi〉h = 〈fh, 1〉h = 0. We conclude

that the sum of equations (7.2) vanishes. This implies that we can remove, for instance, the N -th equation
in (7.2). System (7.2)–(7.3) is then equivalent to the N ×N system

N∑
j=1

ah(φi, φj)ξj = 〈fh, φi〉h ∀i = 1, . . . , N − 1,

N∑
j=1

〈1, φj〉L2
h
ξj = 0.
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Consider the stiffness matrix A, the mass matrix M , and the load term b defined by

A = (aij) := ah(φi, φj), M = (mij) := 〈φi, φj〉L2
h
∀i, j = 1, . . . , N, b = (bi) := 〈fh, φi〉h ∀i = 1, . . . , N.

The matrices A and M are assembled from the corresponding local matrices introduced in the previous section.
To compute the load vector b we observe that, from (4.21) and the definition of the basis functions, it holds
that

bi =
∑

E:xi∈nodes(E)

1
nE

∫
E

fh ∀i = 1, . . . , N. (7.5)

Each integral in (7.5) is computed as follows. The nodal values of the load term fh are computed by

fh(xk) = fI(xk)−
〈fI , 1〉L2

h

|Γh|
= f(xk)−

∑N
i=1〈φi, 1〉L2

h
f(xi)

〈1, 1〉L2
h

= f(xk)−
∑N
i=1(

∑N
j=1mij)f(xi)∑N

i=1

∑N
j=1mij

,

for all k = 1, . . . , N . For every E, the integral of fh on E is given by

∫
E

fh =
(4.18)

〈fh, 1〉L2
h,E

=
∑

i:xi∈nodes(E)

〈φI , 1〉L2
h,E

fh(xi) =
∑

i:xi∈nodes(E)

 ∑
j:xj∈nodes(E)

mE
ij

 fh(xi).

In conclusion, the discretisation of the Laplace-Beltrami equation (3.2) by SVEM is given by the following
sparse, square, full-rank linear algebraic system

N∑
j=1

aijξj = bi ∀i = 1, . . . , N − 1,

N∑
j=1

(
N∑
i=1

mij

)
ξj = 0.

(7.6)

8. Applications and numerical examples

8.1. Mesh pasting

In this section we discuss a possible advantage of SVEM with respect to SFEM. Suppose that Γ is made up
of two surfaces Γ1 and Γ2, joining along a curve `, i.e. Γ = Γ1∪Γ2 and Γ1∩Γ2 = `. Furthermore, suppose we are
given two corresponding polygonal surfaces Γ1,h, Γ2,h. We want to construct a polygonal surface Γh by pasting
Γh,1 and Γh,2. Such a process can lead to nonconforming and/or discontinuous meshes. For this reason, pasting
algorithms for standard FEMs typically need additional steps to deform the meshes and match the nodes, see
for instance [12, 13]. As illustrated below, mesh pasting becomes trivial in the framework of the SVEM. We
distinguish two cases.
Pasting along a straight line. In the first case ` is a straight line. Suppose that Γ1,h and Γ2,h are triangulations
that fit ` exactly, i.e. Γ1,h∩Γ2,h = `. An example of pasting process is depicted in Figure 4. As shown in Figure 4b
this can lead, in general, to a nonconforming overall triangulation, that is Γh is composed of three quadrilaterals
and two triangles in this specific example. It is well-known that the triangular FEMs, including SFEM, are not
applicable to nonconforming meshes, since the basis functions are not well-defined in the presence of arbitrarily
many vertices per polygon.
Pasting along an arbitrary curve. The general case when ` is an arbitrary curve is more interesting. In this
case it is not true that Γ1,h ∩ Γ2,h = `. In general, only the vertices of Γ1,h and Γ2,h lie on `. Hence, Γh,1 ∪ Γh,2
might be a discontinuous mesh, as depicted in Figure 5b.
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Γ1

Γ2

ℓ ℓ

(a) Step 1

Γ1

Γ2

ℓ

(b) Step 2

Figure 4. Pasting meshes along a straight line. Step 1: two surfaces Γ1 and Γ2 are given to-
gether with their approximations Γ1,h and Γ2,h. The elements having an edge on ` are depicted
and their nodes on ` are black-marked. Step 2: by pasting the polygonal surfaces, a noncon-
forming polygonation of Γ = Γ1 ∪ Γ2 is formed, due to the presence of hanging nodes on `,
which are red-marked.

In order to apply the SVEM in this case, we proceed as follows:

(1) We sort the boundary nodes (i.e. that are on `) of Γh,1 ∪ Γh,2 according to their curvilinear abscissa;
(2) For each pair (P,R) of subsequent boundary nodes of Γh,1, let T1 be the element to which it belongs, see

Figure 5a
(3) For any boundary node Q of the other polygonal surface Γh,2 that is between P and R, consider the

orthogonal projection Q′ of Q onto the edge PR, as shown in Figure 5b;
(4) Add Q′ to the element T1 as a hanging node;
(5) Repeat steps (2)–(4) on the boundary nodes of the other mesh Γh,2;
(6) For any pair (Q,Q′) as above, enforce the virtual continuity condition uh(Q) = uh(Q′) on the numerical

solution uh.

Note that if Q = Q′, then of course the continuity condition is automatically fulfilled, but a new nonconforming
element arises (see e.g. R = R′ in Fig. 5b). We remark that, when assembling the matrices involved in the
method (mass, stiffness and load term), Q and Q′ are associated to the same degree of freedom, hence virtual
continuity does not affect the size of the linear system associated to the SVEM. Once again, this procedure
strongly relies on the possibility of handling polygons with arbitrarily many vertices and hanging nodes, where
standard FEMs are not well-defined. Furthermore, we point out that our convergence analysis in Section 6 does
not cover this case of discontinuous meshes. However, without giving full details, our analysis can be extended
to the present case in a straightforward way. In fact, based on interpolation estimates, it can be proven that the
distance ‖Q−Q′‖ decays quadratically with the meshsize (a similar result has been proven in [51] in the planar
case). In 8.2.3 we experimentally show that this approach to mesh pasting does not affect the convergence rate
of the method.

8.2. Numerical tests

In this section we will validate the theoretical findings through numerical experiments.
In Experiment 1, a Laplace-Beltrami problem on the unit sphere, approximated with a polygonal mesh, is

used to test the convergence rate in (6.9). The experiment also shows the robustness of the method with respect
to “badly shaped” meshes, i.e with polygons of very different size and very tight, thus confirming the generality
of assumptions (A1)–(A2). In Experiment 8.2.2, we solve the Laplace-Beltrami equation on a torus using the
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Q

P
R S

Γ1,h

Γ2,h

ℓ

ℓ

T1

T2

(a) Step 1

Q

P
R = R′

S
Q′

ℓ

Γ1,h

Γ2,h

T1

T2

(b) Step 2

Figure 5. Pasting meshes along an arbitrary curve. (a) Step 1: two surfaces Γ1 and Γ2 are
given together with their approximations Γ1,h and Γ2,h. The elements having an edge on ` are
depicted and some nodes on ` are black-marked. (b) Step 2: by pasting the polygonal surfaces, a
discontinuous polygonation of Γ = Γ1∪Γ2 is formed. The new node Q′ is obtained by projecting
Q onto the edge PR, so that the triangle T1 becomes a quadrilateral with a hanging node, and
the virtual continuity condition uh(Q) = uh(Q′) is enforced on the numerical solution. The
node R coincides with its projection R′ onto QS and the triangle T2 becomes a quadrilateral
with a hanging node.

SVEM on trapezoidal meshes. In Experiment 8.2.3, to present an example of mesh pasting along a curve, we
solve the Laplace-Beltrami equation on a cylindrical surface. We show that, even if discontinuous meshes are
used, the theoretical convergence order of the SVEM is preserved.

8.2.1. Experiment 1 (Sphere)

In this experiment we solve the Laplace-Beltrami equation{−∆Γu(x, y, z) = 6xy, (x, y, z) ∈ Γ,∫
Γ
u(x, y, z) dσ = 0,

(8.1)

on the unit sphere Γ := S2, whose exact solution is given by u(x, y, z) = xy, (x, y, z) ∈ Γ . In this case, the
Fermi stripe of Γ is U = R3 \ {0}, the oriented distance function is given by d(x) = ‖x‖ − 1, x ∈ U and the
outward unit normal vector field is given by ν(x) = x, x ∈ Γ . Hence, the representation (2.3) of the tangential
gradient of a function f ∈ C1(Γ ) becomes

∇Γ f(x) = ∇f(x)− (∇f(x) · x)x =

1− x2 −xy −xz
−xy 1− y2 −yz
−xz −yz 1− z2

∇f(x), x = (x, y, z) ∈ Γ. (8.2)

We solve the problem on a sequence of seven polygonal meshes, with decreasing meshsize h, made up with
triangles and hexagons whose vertices lie on Γ . These polygonal meshes are constructed with an ad-hoc algorithm
starting from a triangulation of the sphere obtained with the Matlab library DistMesh [49]. Each polygonal
mesh has been obtained by the algorithm explained in the previous Section 7.1. The sequence of polygonal
meshes is such that in each mesh the ratio between the number of triangles and hexagons is approximately
constant and for h → 0, this ratio tends to 12 : 1. Furthermore, the sequence of polygonal meshes fulfils the
regularity assumptions (A1)–(A2).
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We test the convergence rate as follows. Let uI be the interpolant, defined in (5.17), of the exact solution u
and let δh := uI − uh. We consider the following approximations of the L2, L∞ and H1 errors, respectively:

EL2,h := 〈δh, δh〉L2
h
; (8.3)

EL∞,h := max
P∈nodes(Γh)

|δh|; (8.4)

EH1,h := ah(δh, δh), (8.5)

where the forms ah(·, ·) and 〈·, ·〉L2
h

are defined in (4.15) and (4.19), respectively. These approximations are
O(h2)-accurate, see for instance [4]. The need of defining these approximate norms and seminorms arise from
the presence of the virtual basis functions that are not known in closed form. These norms are reminiscent of
the approximate L2 norm used for instance in [4], (Eq. 46), but also account for the fact that, in our case,
the exact and the numerical solutions are defined on different surfaces. The convergence rate in the norms and
seminorms defined in (8.3)–(8.5) is estimated by computing these errors as functions of h.

The coarsest of the polygonal meshes under consideration (meshsize h = 0.6209) is shown in Figure 6a. The
numerical solution obtained on the finest mesh (meshsize h = 0.0798) is shown in Figure 6b. The convergence
results are shown in Figure 6c. The convergence is linear in H1 norm and, even if the method is not designed for
optimal L2 and L∞ convergence, it appears to be quadratic in L2 norm and almost quadratic in L∞ norm. We
remark that the considered meshes, like the one in Figure 6a, have polygons of very different size and shape,
this means that the regularity assumptions (A1) and (A2) are quite weak and the method is thus robust with
respect to badly shaped meshes.

8.2.2. Experiment 2 (Torus)

In this experiment we solve the Laplace-Beltrami equation−∆Γu(x, y, z) =
100z

9

(
2− 7

10 (x2 + y2)−
1
2

)
, (x, y, z) ∈ Γ,∫

Γ
u(x, y, z) dσ = 0

(8.6)

on the torus Γ := {(x, y, z) ∈ R3|((x2 + y2)
1
2 − 7

10 )2 + z2 = 9
100}, whose exact solution is given by u(x, y, z) =

z, (x, y, z) ∈ Γ . A similar experiment has been considered in [52]. In this case, the Fermi stripe of Γ is
U = {(x, y, z) ∈ R3|(x, y) 6= (0, 0) ∧ (x2 + y2 6= 49

100 ∨ z 6= 0)}, that is the whole space deprived of a circle and
the z-axis, the oriented distance function is given by d(x) = (((x2 + y2)

1
2 − 7

10 )2 + z2)
1
2 − 3

10 , x ∈ U and the
outward unit normal vector field is given by ν(x, y, z) = 10

3 (x, y, z)− 35

3(x2+y2)
1
2

(x, y, 0), (x, y, z) ∈ Γ . Hence, the

representation (2.3) of the tangential gradient of a function f ∈ C1(Γ ) becomes

∇Γ f(x) = ∇f(x)− (∇f(x) · x)x =

 1− ν2
1(x) −ν1(x)ν2(x) −ν1(x)ν3(x)

−ν1(x)ν2(x) 1− ν2
2(x) −ν2(x)ν3(x)

−ν1(x)ν3(x) −ν2(x)ν3(x) 1− ν2
3(x)

∇f(x), x ∈ Γ, (8.7)

with ν(x) = (ν1(x), ν2(x), ν3(x)) as defined above.
We consider a family of meshes defined as follows. Given m,n ∈ N, the approximation Γh of the torus Γ is

the polytope having the following mn gridpoints as vertices

Pij =
((

7
10

+
3
10

cos
2iπ
n

)
cos

2jπ
m

,

(
7
10

+
3
10

cos
2iπ
n

)
sin

2jπ
m

,
3
10

sin
2iπ
n

)
, i = 1, . . . n, j = 1, . . . ,m,

such that a trapezoidal mesh is obtained. To test the convergence, we consider a sequence of six trapezoidal
meshes Γ (k)

h of the type described above, obtained by increasing n = 3× 2k and m = 8× 2k, k = 0, . . . , 5. The
mesh Γ (2)

h is shown in Figure 7(a), while the numerical solution obtained for k = 5 is shown in Figure 7(b). For
all k = 0, . . . , 5, the errors (8.3)–(8.5) are shown in Figure 7(c) as functions of h. The experimental convergence
rate is quadratic in the approximate L2, L∞ norms and H1 seminorm. This superconvergence is due to the
symmetry of the mesh and of the solution.
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(a) Polygonal approximation Γh of the
unit sphere Γ , made up of triangles and
hexagons, with meshsize h = 0.6209.

(b) Numerical solution obtained on Γh, for h = 0.0798.

10
−1

10
−4

10
−2

10
0

 

 

E
H

1
,h

E
L

2
,h

E
L

∞
,h

10
−1

0

1

2

3

h
 

 H1 rate

L2 rate

L∞ rate

(c) Convergence results

Figure 6. Experiment 1 on the unit sphere.

8.2.3. Experiment 3 (mesh pasting along a curve)

In this experiment we solve the Laplace-Beltrami equation and we address the problem of pasting two surfaces
along a curve. We consider the cylinder

Γ := {(x, y, z) ∈ R3 | x2 + y2 = 1 ∧ 0 ≤ z ≤ 2}, (8.8)

and we split it into two parts Γ1 := Γ ∩ {z ≤ 1} and Γ2 := Γ ∩ {z ≥ 1}.
We consider the following Laplace-Beltrami problem with Neumann boundary conditions

−∆Γ u = ((10 + π2)x2 − 6x4 − 6x2y2 − 2) cos(πz), (x, y, z) ∈ Γ,
∂u

∂n
= 0, (x, y, z) ∈ ∂Γ,∫

Γ
udσ = 0,

(8.9)
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(a) Trapezoidal mesh Γ
(2)
h for the torus Γ ,

with meshsize h = 0.2470.
(b) Numerical solution obtained on the finest

mesh Γ
(5)
h , with meshsize h = 0.0314.
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Figure 7. Experiment 2 on the torus.

whose exact solution is given by x(x, y, z) = x2 cos(πz), (x, y, z) ∈ Γ .
In this case, the Fermi stripe of Γ is U = {(x, y, z) ∈ R3|(x, y) 6= (0, 0)}, the oriented distance function

is given by d(x, y, z) =
√
x2 + y2 − 1, (x, y, z) ∈ U and the outward unit normal vector field is given by

ν(x, y, z) = (x, y, 0), (x, y, z) ∈ Γ . Hence, the representation (2.3) of the tangential gradient of a function
f ∈ C1(Γ ) becomes

∇Γ f(x) = ∇f(x)− (∇f(x) · (x, y, 0))(x, y, 0) =

1− x2 −xy 0
−xy 1− y2 0

0 0 1

∇f(x), x = (x, y, z) ∈ Γ. (8.10)

We consider a family of meshes defined as follows. Let n ∈ N. The half cylinder Γ1 is approximated with 6n2

equal rectangular elements having the following 6n(n+ 1) gridpoints as vertices:

Pij =
(

cos
i

3n
π, sin

i

3n
π,
j

n

)
, i = 1, . . . 6n, j = 0, . . . , n,
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(c) Convergence results.

Figure 8. Experiment 3: mesh pasting on the cylinder.

while the half cylinder Γ2 is approximated with 6n2 equal rectangular elements constructed on the following
6n(n+ 1) gridpoints:

Pij =
(

cos
2i+ 1

6n
π, sin

2i+ 1
6n

π,
j

n
+ 1
)
, i = 1, . . . 6n j = 0, . . . , n.

By pasting these meshes we end up with a nonconforming and discontinuous mesh Γh made up of 12n2 elements,
of which 12n(n− 1) rectangles and 12n degenerate pentagons with one hanging node each.

To test the convergence, we consider a sequence of six meshes Γ (k)
h of the type described above, by increasing

n = 2k, k = 0, . . . , 5. Notice that h = O( 1
n ). For n = 1, the nonconforming mesh Γ

(0)
h is shown in Figure 8(a),

in which the rectangles are green and the pentagons are orange, while the corresponding numerical solution on
the finest mesh is shown in Figure 8(b).

For all k = 0, . . . , 5, the errors in the norms and seminorms (8.3)–(8.5) are shown in Figure 8(c) as functions
of h. The experimental convergence rate is quadratic in the approximate L2 and L∞ norms and superlinear in
the approximate H1 seminorm.
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9. Conclusions

In this study, we have considered a Surface Virtual Element Method (SVEM) for the numerical approximation
of the Laplace-Beltrami equation on smooth surfaces, by generalising the VEM on planar domains [1] and the
Surface FEM [37]. By extending the results in [1, 37], under minimal regularity assumptions for the polygonal
approximation of the surface, we have shown optimal asymptotic error estimates, that is: (i) for the interpolation
in the SVEM function space, (ii) for the approximation of the surface and (iii) for the projection onto the
polygonal surface. In particular, the geometric error arising from the approximation of the surface is quadratic
in the meshsize h and then one of the main features of the VEM in the planar case, that is arbitrary order of
accuracy on polytopal meshes, cannot be fully exploited when working on surfaces. For this reason, we have
confined this study to the case of virtual elements of first polynomial order k = 1. In order to increase the
convergence rate of the overall method, it is necessary to improve the approximation of geometry. To this end,
following [45], curved polygonal elements could be used. This will be subject of future investigations.

In the case k = 1, we have also shown existence, uniqueness of the numerical solution and its first order
H1 convergence. Moreover, we have shown (in Sect. 7) the differences, in terms of implementation, between
the planar VEM and the SVEM. In particular, we have discussed (i) the construction of test problems on
arbitrary surfaces, (ii) the computation of the matrices involved in the method and (iii) how to construct the
discrete problem for the Laplace-Beltrami equation as a sparse, full-rank linear system which accounts for the
zero-average condition on the solution. We have pointed out the ability of the SVEM to handle nonconforming
discontinuous meshes, which is particularly advantageous when applied to mesh pasting, for which the classical
SFEM cannot be applied. We have shown the predicted convergence rate of the SFEM in three numerical
examples for the Laplace-Beltrami equation (i) on the unit sphere with triangular and hexagonal elements, (ii)
on the torus with trapezoidal meshes and (iii) on a cylindrical surface.

Acknowledgements. The authors acknowledge prof. L. Beirão da Veiga for several fruitful discussions during the prepara-
tion of the manuscript. Moreover, the authors would like to thank the anonymous referees for their constructive comments
and suggestions.
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