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A SEMI-DISCRETE LARGE-TIME BEHAVIOR PRESERVING SCHEME
FOR THE AUGMENTED BURGERS EQUATION

Liviu I. Ignat1 and Alejandro Pozo2,3

Abstract. In this paper we analyze the large-time behavior of the augmented Burgers equation. We
first study the well-posedness of the Cauchy problem and obtain L1-Lp decay rates. The asymptotic
behavior of the solution is obtained by showing that the influence of the convolution term K ∗ uxx is
the same as uxx for large times. Then, we propose a semi-discrete numerical scheme that preserves this
asymptotic behavior, by introducing two correcting factors in the discretization of the non-local term.
Numerical experiments illustrating the accuracy of the results of the paper are also presented.
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1. Introduction

In this paper we consider the following equation:{
ut = uux + ν uxx + cKθ ∗ uxx, (t, x) ∈ (0,∞) × R,

u(0, x) = u0(x), x ∈ R,
(1.1)

where ∗ denotes the convolution in the x variable, the parameters ν, c, θ are positive and

Kθ(z) =

⎧⎨⎩
1
θ
e−z/θ, z > 0,

0, elsewhere.
(1.2)

This is a constant-parameter version of the augmented Burgers equation, which has been used to model the
propagation of the sonic-boom produced by supersonic aircrafts from their near-field down to the ground level.

Until the last decade of the 20th century, linear theory was used to model the evolution of this strident noise,
based on the seminal works by Hayes [13] and Whitham [33]. In fact, until recently, most of the research, both
from and analytical and a numerical point of view, followed the so-called Jones–Seebass–George–Darden theory
for sonic-boom minimization [8, 17, 27–29].
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Newer trends have started to use nonlinear physical models to improve the characterization of the sonic-boom
propagation. In this paper we focus on Burgers-type equations, which have been one of the main tools to model
the propagation of finite-amplitude plane waves. The classical viscous Burgers equation [4] was first considered
for wave propagation in a lossy medium. Successive generalizations included other effects such as geometrical
spreading and inhomogeneous mediums [5, 11, 20] or relaxation processes [22, 23]. All those phenomena were
taken into account in the augmented Burgers equation, initially developed by Cleveland [7] and then adopted
by Rallabhandi [25, 26]. This equation is given by

∂P

∂σ
= P

∂P

∂τ
+

1
Γ

∂2P

∂τ2
+
∑

ν

Cν
1

1 + θν
∂
∂τ

∂2P

∂τ2
− 1

2G
∂G

∂σ
P +

1
2ρ0c0

∂(ρ0c0)
∂σ

P, (1.3)

where P = P (σ, τ) is the dimensionless perturbation of the pressure distribution. The covered distance σ and
time of the perturbation τ are also dimensionless. The operator appearing in the summation, corresponding to
the molecular relaxations, it is defined by:

1
1 + θν

∂
∂τ

f(τ) =
1
θν

∫ τ

−∞
e(ξ−τ)/θνf(ξ)dξ = Kθν ∗ f(τ), (1.4)

Typically, two relaxation modes are considered: one for Oxygen molecules and another one for Nitrogen ones.
θν and Cν are the dimensionless relaxation time and dispersion parameter, respectively, for each one. Γ is a
dimensionless thermo-viscous parameter and function G ≡ G(σ) denotes the ray-tube area. The atmosphere
conditions are given by density ρ0 ≡ ρ(σ) and speed of sound c0 ≡ c0(σ), both closely related to the altitude of
the flight. We refer the reader to [7] for a detailed description on the development of this model and to [1] for
a comprehensive review about the sonic-boom minimization problem.

Industrial applications of this kind of models, such as the aforementioned sonic-boom phenomena, need
to approximate solutions for large time. Therefore, they need a good understanding of the behavior of the
solutions in these extended regimes in order to be able to simulate them accurately. This issue needs to be
treated carefully, as it was already shown in [14]. In that work, the authors proved that a numerical scheme
with an acceptable accuracy in short-time intervals could completely disturb the large-time behavior of solutions
due to the numerical viscosity introduced by the numerical approximation. It is well known that the asymptotic
profile of the inviscid Burgers equation belongs to a two-parameter family of N-waves [21], whereas these N-
waves are mere intermediate metastable states of the viscous Burgers equation [19]. In our case, (1.1) is not a
hyperbolic equation and, hence, the asymptotic profile is not an N-wave, but a diffusive wave too. Nevertheless,
in our simulations we show that small values for ν and c require a similar treatment from the numerical point of
view, as if the equation was a hyperbolic conservation law. In fact, in those situations, the solution may develop
very steep regions (in what follows we refer to these as quasi-shocks), which numerically behave almost like
shocks.

Besides the nonlinear term, in this work we also analyze the influence of the operator (1.4) on the large-time
behavior of the solutions of the augmented Burgers equation. For the sake of simplicity, we consider only one
molecular relaxation phenomenon and homogeneous atmosphere –thus, we neglect the last two terms in (1.3).
In that framework, note that (1.3) can be expressed as in (1.1). Moreover, the asymptotical analysis done in the
first sections is focused on the case ν = c = θ = 1, but the extension to any positive value of these parameters
is immediate. We will omit the subindex θ whenever its value is one. In this case, we have that

K ∗ uxx = K ∗ u− u+ ux.

Thus, (1.1) can be rewritten in a more suitable manner as follows:{
ut = uux + uxx +K ∗ u− u+ ux, (t, x) ∈ (0,∞) × R,

u(t = 0, x) = u0(x), x ∈ R.
(1.5)
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The main goals of the present paper are to analyze the asymptotic behavior of the solutions to (1.5) as t→ ∞
and to build a semi-discrete numerical scheme that preserves this behavior. In what concerns the large-time
behavior of solutions of system (1.5), the main result is stated in the following theorem.

Theorem 1.1. Let u0 ∈ L1(R). For any p ∈ [1,∞], the solution u to (1.5) satisfies

t
1
2 (1− 1

p )‖u(t) − uM (t)‖p −→ 0, as t→ ∞,

where uM (t, x) is the solution of the following equation:{
ut = uux + 2uxx, x ∈ R, t > 0,

u(0) = Mδ0.

Here δ0 denotes the Dirac measure at the origin and M is the mass of the initial data, M =
∫

R
u0(x)dx.

In the cases when ν, c and θ are no longer equal to one, the asymptotic profile does not depend on θ. Moreover,
the coefficient in front of the viscosity term in the equation satisfied by the profile is ν + c:{

ut = uux + (ν + c)uxx, x ∈ R, t > 0,

u(0) = Mδ0.

As a matter of fact, our results are also valid for the case ν > 0 and c = 0, which corresponds to the classical
viscous Burgers equation. At the continuous level, this has been long known (see, for instance, [10] and the
references therein). But, to the best of our knowledge, the results for the semi-discrete framework included in
our work are new too. On the contrary, the case ν = 0 and c > 0 would require additional results that are
beyond the scope of this paper.

Note also that the general case mentioned above will be particularly important at the numerical level. On
the one hand, when choosing the numerical flux to discretize the nonlinearity, we need to handle thoroughly the
numerical viscosity that is introduced. In [14], it is shown that in the hyperbolic case, the N-wave asymptotic
profile could be destroyed if the numerical flux is not chosen carefully. In our case, if ν and c are much smaller
than Δx2/(2Δt) (Δx being the mesh-size and Δt, the time-step), the Lax–Friedrichs scheme would make the
diffusion start dominating much earlier due to the numerical viscosity. On the other hand, we need to treat
the truncation of the integral term in such a manner that we do not introduce undesired pathologies in the
large-time behavior of the numerical solutions. We do this by means of two correcting factors for the terms u
and ux in (1.5).

Let us denote by uΔ an approximation to the solution u of (1.5). We define this piecewise constant in space
function as follows:

uΔ(t, x) = uj(t), x ∈ (xj−1/2, xj+1/2), t ≥ 0, (1.6)

where xj+1/2 = (j+ 1
2 )Δx, for all j ∈ Z, and Δx > 0 is a given mesh-size. We will also denote by xj = jΔx the

intermediate points of the spatial cells. For each j ∈ Z we need to compute a function uj(t) that approximates
the value of the solution in the cell. Taking into account the issues enumerated above, we choose the following
discretization of (1.5): the Engquist–Osher scheme for the flux, centered finite differences for the laplacian and
the composite rectangle rule for the integral:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′j(t) =
gj+1/2(t) − gj−1/2(t)

Δx
+
uj−1(t) − 2uj(t) + uj+1(t)

Δx2

+
N∑

m=1

ωmuj−m(t) − FΔ
0 uj(t) + FΔ

1

uj+1(t) − uj(t)
Δx

, j ∈ Z, t ≥ 0,

uj(0) =
1
Δx

∫ xj+1/2

xj−1/2

u0(x)dx, j ∈ Z,

(1.7)



2370 L.I. IGNAT AND A. POZO

where
ωm =

∫ xm

xm−1

K(z)dz = e−mΔx
(
eΔx − 1

)
, m = 1, . . . , N, (1.8)

and

gj+1/2(t) =
uj(t)

(
uj(t) − |uj(t)|

)
4

+
uj+1(t)

(
uj+1(t) + |uj+1(t)|

)
4

, j ∈ Z, t ≥ 0.

The parameter N = N(Δx) ∈ N denotes the number of nodes considered in the quadrature formula of the
integral. The correcting factors FΔ

0 and FΔ
1 in front of the approximations of u and ux, given by

FΔ
0 =

N∑
m=1

ωm and FΔ
1 = Δx

N∑
m=1

mωm, (1.9)

handle, from the asymptotic behavior point of view, the correct truncation of the nonlocal term:

(K ∗ u− u+ ux)(x) =
∫

R

K(x− y)(u(y) − u(x) − (y − x)ux(x))dy 	
N∑

m=1

ωm

(
uj−m − uj +m

uj+1 − uj

Δx

)
·

Finally, for Δx fixed we study the asymptotic behavior as t→ ∞ of these semi-discrete solutions uΔ.

Theorem 1.2. Let u0 ∈ L1(R), Δx > 0 and uΔ be the corresponding solution of the semi-discrete scheme (1.7)
for the augmented Burgers equation (1.5). For any p ∈ [1,∞], the following holds

t
1
2 (1− 1

p )‖uΔ(t) − uΔ
M (t)‖p −→ 0, as t→ ∞, (1.10)

where uΔ
M (t, x) is the unique solution of the following viscous Burgers equation:{

vt = vvx + (1 + FΔ
2 )vxx, x ∈ R, t > 0,

v(x, 0) = Mδ0.

Here, M =
∫

R
u0(x)dx is the mass of the initial data and

FΔ
2 =

Δx2

2

(
N∑

m=1

m(m− 1)ωm

)
. (1.11)

Let us observe that if N is taken such that NΔx → ∞ when Δx → 0 and N → ∞, then FΔ
2 → 1, which is,

precisely, the value that we should expect from the continuous model. Besides, let us remark that in the case
where ν, c and θ are not necessarily equal to one, the asymptotic profile is the unique solution of:{

vt = vvx + (ν + c FΔ,θ
2 )vxx, x ∈ R, t > 0,

v(x, 0) = Mδ0.

In this case, we take
ωθ

m = e−mΔx/θ
(
eΔx/θ − 1

)
and

FΔ,θ
0 =

N∑
m=1

ωθ
m, FΔ,θ

1 =
Δx

θ

N∑
m=1

mωθ
m and FΔ,θ

2 =
Δx2

2θ2

(
N∑

m=1

m(m− 1)ωθ
m

)
.

In the same conditions as above, for a fixed θ we still have that FΔ,θ
2 converges to one.
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Remark 1.3. We emphasize that function uM in Theorem 1.1 and uΔ
M in Theorem 1.2 are both particular

cases of uν
M (ν = 2 and ν = 1 + FΔ

2 respectively), which is solution of the equation{
ut = uux + νuxx, x ∈ R, t > 0,
u(0) = Mδ0.

In fact, uν
M is explicitly given by (see [10])

uν
M (t, x) = 2

√
ν t−

1
2 exp

(−x2

4νt

)[
CM +

∫ x/
√

νt

−∞
exp

(−s2
4

)
ds

]−1

, (1.12)

where CM ∈ R is a constant such that
∫

R
uν

M (t, x)dx = M , for all t > 0. This shows that both uM and uΔ
M are

of the form t−
1
2 fM

(
x√
t

)
for some function fM and, hence, self-similar. Note also that uΔ

M → uM as Δx→ 0.

Moreover, as we can see in the numerical experiments, the numerical flux needs to be chosen carefully, to
avoid adding an extra viscosity term to the equation of the asymptotic profile. This has already been observed
in [14] in the context of the numerical approximation of the inviscid Burgers equation. That extra viscosity
term, of the order of Δx2/(2Δt), would affect critically the numerical solution if both parameters ν and c were
much smaller. Note also that taking FΔ

0 = FΔ
1 = 1 would add undesired phenomena, such as a transport, to

the equation too.
Let us conclude this section by adding a final comment on the time discretization, which we do not address

in this paper. At the continuous/semi-discrete level, we obtain estimates on the solution that allow us to prove
the compactness of a family of rescaled solutions. Then, the asymptotic behavior is obtained as in (1.10). The
analogous step for the fully time-explicit discrete scheme requires further development.

The paper is organized as follows. In Section 2, we deal with the well-posedness of equation (1.5) and the
asymptotical behavior of its solutions. In Section 3, we focus on the semi-discrete numerical scheme (1.7),
showing its convergence and analyzing for a fixed Δx the large-time behavior of the numerical solutions. To
illustrate the main results of this work, we conclude with some numerical simulations in Section 4.

In this paper we have considered Engquist–Osher numerical flux for the discretization of the convective term.
Let us remark that any other scheme satisfying the analysis done in [14] would be valid too. For instance,
Godunov numerical flux would be acceptable, whereas Lax–Friedrichs-type ones are not (as we highlight in
Section 4).

2. Analysis of the augmented Burgers equation

In this section we study the well-posedness of the Cauchy problem for (1.5) with initial data in L1(R). We
also obtain estimates in the Lp-norms of its solution, which we subsequently denote ‖ · ‖p. We mainly proceed
as in [10, 18].

2.1. Existence and uniqueness of solutions

The following theorem concerns the global existence of solutions and specifies their regularity. Let us remark
that the result coincides with the one for the classical convection-diffusion equation [10].

Theorem 2.1. For any u0 ∈ L1(R), there exists a unique solution u ∈ C([0,∞),L1(R)) of (1.5). Moreover, it
also satisfies

u ∈ C((0,∞),W 2,p(R)) ∩ C1((0,∞),Lp(R)), ∀p ∈ (1,∞).

Additionally, equation (1.5) generates a contractive semigroup in L1(R).



2372 L.I. IGNAT AND A. POZO

Proof. Existence in L1(R)∩L∞(R). The local existence of the solution follows by a classical Banach fixed point
argument as in [10] or [15]. To extend the solution globally, we deduce a priori estimates on the L1(R) and
L∞(R) norms of the solution. Let us first focus on the L1-norm. Multiplying (1.5) by sign(u) and integrating in
R, it follows that

d
dt

∫
R

|u|dx ≤
∫

R

(K ∗ u− u) sign(u)dx ≤
∫

R

Kdx
∫

R

|u|dx−
∫

R

|u|dx ≤ 0 (2.1)

and, consequently, ‖u(t)‖1 ≤ ‖u0‖1.
To estimate the L∞-norm similar arguments apply. We define μ = ‖u0‖∞, multiply equation (1.5) by

sign[(u− μ)+], where z+ := max{0, z}, and integrate it in R. We obtain

d
dt

∫
R

(u− μ)+dx ≤
∫

R

(K ∗ u− u+ ux) sign(u− μ)+dx =
∫

R

(K ∗ (u− μ) − (u− μ)) sign(u− μ)+dx (2.2)

≤
∫

R

K ∗ (u− μ)+ −
∫

R

(u − μ)+ ≤ 0.

We conclude that (u − μ)+ ≤ (u0 − μ)+ = 0 and, consequently, u(t) ≤ μ almost everywhere. The same
argument for (u+μ)−, where z− := −max{0,−z}, shows that u ≥ −μ. Therefore, if u0 ∈ L1(R)∩L∞(R), then
‖u(t)‖∞ ≤ ‖u0‖∞ for all t > 0. Lastly, since both L1-norm and L∞-norm remain bounded in time, the solution
u exists globally.

Regularity. It follows from classical regularity arguments (e.g., [16]) that

u ∈ C((0, T ),W 2,p(R)) ∩ C1((0, T ),Lp(R))

for every p ∈ (1,∞). This also holds for T = ∞. Let us remark that this regularity makes the integrals in the
previous steps well defined.

Uniqueness. To prove the uniqueness of solution it is enough to check that (1.5) generates a contractive semigroup
in L1(R); that is, for any initial datum u0, v0 ∈ L1(R) ∩ L∞(R)

‖u(t) − v(t)‖1 ≤ ‖u0 − v0‖1, ∀t > 0, (2.3)

where u and v are the corresponding solutions. An analogous argument as in (2.1), applied to the equation
verified by u− v, shows

d
dt

∫
R

|u− v|dx ≤ 0,

hence the contraction property in L1(R).

Existence and uniqueness in L1(R). The extension of the result to a general u0 ∈ L1(R) can be done following
the same arguments as in [10]. �

2.2. Decay estimates and large-time behavior

Now we obtain Lp-decay rates for the solution to (1.5). These are the same as the ones for the viscous Burgers
equation [10].

Proposition 2.2. For all p ∈ [1,∞], there exists a positive constant C(p) such that

‖u(t)‖p ≤ C(p)‖u0‖1t
− 1

2 (1− 1
p ), ∀t > 0, (2.4)

for all solutions of equation (1.5) with initial data u0 ∈ L1(R).
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Proof. The case p = 1 is an immediate consequence of Theorem 2.1. In the case p ∈ [2,∞), we multiply
equation (1.5) by |u|p−2u and integrate it in R. We obtain:

1
p

d
dt
(‖u‖p

p

)
=
∫

R

|u|p−2uutdx =
∫

R

|u|puxdx+
∫

R

|u|p−2uuxxdx +
∫

R

|u|p−2u(K ∗ u− u+ ux)dx (2.5)

= −4(p− 1)
p2

∥∥∥(|u|p/2
)

x

∥∥∥2

2
− ‖u‖p

p +
∫

R

|u|p−2u(K ∗ u)dx.

Let us focus on the last term, so that we can compare it with the Lp-norm of u. Young’s inequality gives us that∣∣|u(t, x)|p−2u(t, x)u(t, y)
∣∣ = |u(t, x)|p−1|u(t, y)| ≤ p− 1

p
|u(t, x)|p +

1
p
|u(t, y)|p.

Thus, using that K has mass one, it follows:∣∣∣∣∫
R

|u|p−2u(K ∗ u)dx
∣∣∣∣ ≤ ∫

R

∫
R

K(x− y)|u(t, x)|p−1|u(t, y)|dydx ≤ ‖u‖p
p.

Plugging this last estimate in (2.5) we have

d
dt
(‖u(t)‖p

p

)
+

4(p− 1)
p

∥∥∥(|u(t)|p/2
)

x

∥∥∥2

2
≤ 0. (2.6)

Finally, with the same arguments as in [10] we obtain the desired estimate (2.4) for any p ∈ [2,∞). The case
p = ∞ follows using the techniques of Véron [32]. The case p ∈ (1, 2) follows by applying Hölder’s inequality
and (2.4) with p = 1 and p = 2. �

Similar estimates can be found for the derivative of the solution of (1.5). Let us define the re-scaled function
uλ, which will also be used in the following section to obtain the asymptotic profile. For λ > 0 we define

uλ(t, x) = λu(λ2t, λx). (2.7)

The scales are the same as for the Burgers or heat equations. Clearly, uλ is the solution of the following equation:{
uλ,t = uλuλ,x + uλ,xx + λ2(Kλ ∗ uλ − uλ) + λuλ,x, (t, x) ∈ (0,∞) × R,

uλ(0, x) = uλ,0(x) = λu0(λx), x ∈ R,
(2.8)

where Kλ(z) = λK(λz), z ∈ R.

Proposition 2.3. For each p ∈ [1,∞], there exists a constant C = C(p, ‖u0‖1) > 0, such that the solution of
equation (1.5) satisfies

‖ux(t)‖p ≤ Ct−
1
2 (1− 1

p )− 1
2 , ∀t > 0. (2.9)

Proof. First, note that, for any τ > 0,

‖uλ,x(τ)‖p = λ2− 1
p ‖ux(λ2τ)‖p,

so proving (2.9) is equivalent to showing that for some τ > 0, ‖uλ,x(τ)‖p is uniformly bounded on λ > 0 and,
afterwards, taking λ =

√
t/τ . Let us denote by Dt

λ the semigroup associated with the linear problem{
vt = λ2(Kλ ∗ v − v) + λvx, (t, x) ∈ (0,∞) × R,

v(0, x) = v0(x), x ∈ R.
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It is immediate that Dt
λ is non-expansive in Lp(R), 1 ≤ p <∞,

1
p

d
dt

∫
R

|v|pdx = λ2

∫
R

(Kλ ∗ v − v)|v|p−1 sign(v)dx ≤ 0.

On the other hand, for all τ > 0, function uλ solution of (2.8) verifies the following integral equation:

uλ(t+ τ) = G(t) ∗Dt
λuλ(τ) +

∫ t

0

G(t− s) ∗Dt−s
λ

((
u2

λ(s+ τ)
2

)
x

)
ds,

where G(t) is the heat kernel. Using the fact that Dλ is non-expansive in Lp(R), 1 ≤ p <∞, and following the
same arguments as in [10] we obtain the desired results. For complete details see [24]. �

2.3. Asymptotic expansion

The decay rates of the previous section will allow us to obtain the asymptotic profile of solutions for (1.5).
Note that taking λ =

√
t we have that

‖uλ(1) − uM (1)‖1 = ‖u(t) − uM (t)‖1,

due to the definition of uλ and the self-similar nature of uM . Thus, the aim is to compute the limit λ → ∞
in (2.8), which is equivalent to taking the limit t→ ∞ in (1.5) when p = 1.

Let us first observe that the estimates in Proposition 2.2 and Proposition 2.3 are also valid for uλ defined
in (2.7). The mass is conserved too. We state this in the following lemma.

Lemma 2.4. For each p ∈ [1,∞], there exists a constant C = C(p, ‖u0‖1) > 0 such that, for all λ > 0, the
solution of (2.8) satisfies

‖uλ(t)‖p ≤ Ct−
1
2 (1− 1

p ) and ‖uλ,x(t)‖p ≤ Ct−
1
2 (1− 1

p )− 1
2 , ∀t > 0.

Moreover, the mass of uλ is conserved in time.

Proof. We just have to use the definition of uλ in (2.7) and apply Proposition 2.2. For all t > 0 and λ > 0 we
have

‖uλ(t)‖p = λ1− 1
p ‖u(λ2t)‖p ≤ Ct−

1
2 (1− 1

p ).

Same procedure applies to uλ,x, concerning Proposition 2.3. Regarding the last result, it is easy to see that:∫
R

uλ(t, x)dx =
∫

R

u(λ2t, x)dx =
∫

R

u0(x)dx,

which proves the mass conservation. �

In particular, this lemma implies that, for any finite time interval [τ, T ] with 0 < τ < T <∞, the set {uλ}λ>0

is uniformly bounded in L∞([τ, T ],Lp(R)), 1 ≤ p ≤ ∞.

2.3.1. Compactness of the family {uλ}λ>0

As we said at the beginning, we would like to pass to the limit λ → ∞. We need the following theorem due
to J. Simon [30], as an extension of the Aubin-Lions Lemma, to assure the compactness of the set {uλ}λ>0.

Theorem 2.5 ([30], Thm. 5). Let X, Z and Y be Banach spaces satisfying X ⊂ Z ⊂ Y with compact embedding
X ⊂ Z. Assume, for p ∈ [1,∞] and T > 0, that F is bounded in Lp(0, T ;X) and {∂tf : f ∈ F} is bounded in
Lp(0, T ;Y ). Then, F is relatively compact in Lp(0, T ;Z) and, in the case of p = ∞, also in C(0, T ;Z).
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Applying this result we can prove the following theorem regarding the relative compactness of the set {uλ}λ>0.
In the sequel, for any functions f and g, we denote f � g if there exists a constant C > 0, not depending on
the scaling parameter nor the time, such that f ≤ Cg.

Theorem 2.6. For every 0 < τ < T <∞, the set {uλ}λ>0 ⊂ C([τ, T ],L1(R)) is relatively compact.

Proof.
Step 1. Compactness in C([τ, T ],L1

loc(R)). First, for any r > 0 we will show the relative compactness in
C([τ, T ],L2(I)), with I = [−r, r]. Let us consider the spaces X = H1(I), Z = L2(I) and Y = H−1(I). We would
like to apply Theorem 2.5 to the set F = {uλ}λ>0.

From Lemma 2.4 we know that {uλ}λ>0 and {uλ,x}λ>0 are bounded in L∞([τ, T ],L2(I)). In particular,
the first condition of Theorem 2.5 on F is fulfilled. Therefore, it suffices to check that uλ,t is bounded in
L∞([τ, T ], H−1(I)). Using (2.8), for every ϕ ∈ C∞

c (I), we have:∣∣∣∣∫
R

uλ,tϕdx
∣∣∣∣ ≤ ∣∣∣∣∫

R

uλ uλ,xϕdx
∣∣∣∣+ ∣∣∣∣∫

R

uλ,xxϕdx
∣∣∣∣+ ∣∣∣∣∫

R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ϕdx

∣∣∣∣ (2.10)

� ‖ϕx‖2‖uλ‖2
4 + ‖ϕx‖2‖uλ,x‖2 +

∣∣∣∣∫
R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ϕdx

∣∣∣∣ .
Obviously, the first two terms on the right hand side of (2.10) are uniformly bounded in [τ, T ], so let us focus
on the third one:

Iλ =
∣∣∣∣∫

R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ϕdx

∣∣∣∣ =
∣∣∣∣∫

R

(
λ2
(
K̂(ξ/λ) − 1

)
+ iλξ

)
ûλ(ξ)ϕ̂(ξ)dξ

∣∣∣∣ .
Let us denote

mλ(ξ) = λ2
(
K̂(

ξ

λ
) − 1

)
+ iλξ.

We claim that
|mλ(ξ)| ≤ ξ2, ∀ξ ∈ R, ∀λ > 0. (2.11)

Using the Cauchy−Schwartz inequality, we have:

Iλ =
∣∣∣∣∫

R

mλ(ξ)ûλ(ξ)ϕ̂(ξ)dξ
∣∣∣∣ � ‖ϕ‖H1(R) ‖uλ‖H1(R) . (2.12)

Hence, going back to (2.10) and replacing (2.12), we obtain∣∣∣∣∫
R

uλ,tϕdx
∣∣∣∣ � ‖ϕ‖H1(R)

(
‖uλ‖2

4 + ‖uλ‖H1(R)

)
.

By Lemma 2.4, all the quantities in the right-hand side are uniformly bounded in [τ, T ]. Consequently, the set
{uλ}λ>0 is relatively compact in C([τ, T ],L2(I)).

It remains to prove claim (2.11). Observe that

K̂(ξ) =
1

1 + iξ
, ξ ∈ R, (2.13)

and, therefore,

|mλ(ξ)| =
∣∣∣∣λ2

(
1

1 + iξ/λ
− 1
)

+ iλξ

∣∣∣∣ =
λξ2√
λ2 + ξ2

≤ ξ2, ∀λ > 0.

Since L2(I) is continuously embedded in L1(I), the compactness in C([τ, T ],L2(I)) is clearly transferred to
C([τ, T ],L1(I)). To extend this local result to the globally we prove uniform, with respect to λ, estimates on
the tails of uλ.
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Step 2. Uniform control of the tails. For every r > 0, let us define function ψr(z) = ψ(z/r), where ψ is a
nonnegative C∞(R) function such that

ψ(z) =

{
0, |z| < 1,
1, |z| > 2.

(2.14)

Since {uλ}λ>0 is relatively compact in C([τ, T ],L1(I)), it suffices to show that

sup
t∈[τ,T ]

‖uλ(t)ψr‖1 −→ 0 as r → ∞, uniformly for λ > 0. (2.15)

We first observe that it is enough to consider nonnegative initial data. For any u0, v0 ∈ L1(R) satisfying
u0 ≤ v0 we can show that the corresponding solutions of (2.8) satisfy uλ ≤ vλ. Thus choosing v0 = |u0|
and v0 = −|u0| we can show that |uλ| ≤ ũλ where ũλ is the solution corresponding to |u0| initial data. This
reduces (2.15) to the case of non-negative solutions. Let us assume that uλ is a nonnegative solution. We
multiply (2.8) by ψr and integrate it over (0, t) × R. We obtain:∫ t

0

∫
R

uλ,sψrdxds = − 1
2

∫ t

0

∫
R

u2
λψ

′
rdxds+

∫ t

0

∫
R

uλψ
′′
r dxds

+
∫ t

0

∫
R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ψrdxds.

and, therefore, ∫
R

uλ(t)ψrdx ≤
∫

R

uλ,0ψrdx+
‖ψ′‖∞

2r

∫ t

0

‖uλ(s)‖2
2ds+

‖ψ′′‖∞
r2

∫ t

0

‖uλ(s)‖1ds (2.16)

+
∫ t

0

∫
R

(
λ2
(
Kλ ∗ uλ(s) − uλ(s)

)
+ λuλ,x(s)

)
ψrdxds.

We have to obtain an estimate on the last term in the integral, uniformly on λ. Let us denote

J =
∫

R

(
λ2
(
Kλ ∗ uλ(s) − uλ(s)

)
+ λuλ,x(s)

)
ψrdx.

A change of variables and integration by parts give us that

J = λ2

∫
R

∫
R

K(x− y)u(λ2s, y)ψλr(x)dydx − λ2

∫
R

u(λ2s, x)ψλr(x)dx − λ2

∫
R

u(λ2s, x)ψ′
λr(x)dx (2.17)

= λ2

∫
R

u(λ2s, y)
( ∫

R

K(x− y)
(
ψλr(x) − ψλr(y) − (x− y)ψ′

λr(y)
)
dx
)
dy

≤ λ2‖u0‖1‖(ψλr)′′‖∞ =
‖u0‖1‖ψ′′‖∞

r2
.

Plugging (2.17) into (2.16) and using Proposition 2.2, we get:∫
R

uλ(t)ψrdx ≤
∫

R

u0ψλrdx+ C

(√
t

r
+

t

r2

)
where C > 0 depends only on ‖u0‖1 and ‖ψ‖W 2,∞(R), which are both bounded. For λ > 1, since ψr(x) > ψλr(x),
we get ∫

R

uλ(t, x)ψr(x)dx ≤
∫

R

u0(x)ψr(x)dx + C

(√
t

r
+

t

r2

)
,

which tends to zero uniformly on λ when r → ∞. Therefore, we proved (2.15) and, consequently, we can assure
that {uλ}λ>0 is relatively compact in C([τ, T ],L1(R)). �
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Modifying slightly the previous proof, we can also conclude the following lemma, regarding the initial condi-
tion uλ,0.

Lemma 2.7. For every test function ϕ ∈ C2
b(R), there exists a constant C = C(ϕ, u0) > 0, such that∣∣∣∣∫

R

uλ(t, x)ϕ(x)dx −
∫

R

uλ,0(x)ϕ(x)dx
∣∣∣∣ ≤ C(t+

√
t), ∀t > 0,

holds uniformly on λ > 0.

Proof. We multiply (2.8) by ϕ ∈ C2
b(R) and integrate it over (0, t) × R. We get:∫ t

0

∫
R

uλ,tϕ =
∫ t

0

∫
R

uλuλ,xϕ+
∫ t

0

∫
R

uλ,xxϕ+
∫ t

0

∫
R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ϕ.

Integrating by parts and making use of Lemma 2.4, we have∣∣∣∣∫
R

uλ(t)ϕdx −
∫

R

uλ,0ϕdx
∣∣∣∣ ≤ ‖ϕ′‖∞

2

∫ t

0

‖uλ(s)‖2
2ds+ ‖ϕ′′‖∞

∫ t

0

‖uλ(s)‖1ds

+
∣∣∣∣∫ t

0

∫
R

(
λ2
(
Kλ ∗ uλ(s) − uλ(s)

)
+ λuλ,x(s)

)
ϕdxds

∣∣∣∣ .
To conclude the proof, it is enough to apply a similar argument as for (2.16) to get:∣∣∣∣∫

R

uλ(t)ϕdx −
∫

R

uλ,0ϕdx
∣∣∣∣ ≤ C(‖ϕ‖W 2,∞(R), ‖u0‖1)(

√
t+ t).

The proof is now finished. �

2.3.2. Passing to the limit

Now we have all the ingredients that we need to prove our main result on the large-time behavior of solutions
to problem (1.5), stated in Theorem 1.1.

Proof of Theorem 1.1. By Theorem 2.6, we know that for every 0 < τ < T <∞, the family {uλ}λ>0 is relatively
compact in C([τ, T ],L1(R)). Consequently, there exists a subsequence of it (which we will not relabel) and a
function ū ∈ C((0,∞),L1(R)) such that

uλ −→ ū ∈ C([τ, T ],L1(R)), as λ→ ∞. (2.18)

We can also assume that uλ(t, x) → ū(t, x) almost everywhere in (0,∞) × R as λ→ ∞.
Our claim is that, passing to the limit λ→ ∞, we obtain that ū is a weak solution of the equation:{

ūt = ūūx + 2ūxx, (t, x) ∈ (0,∞) × R,

ū(0) = Mδ0.
(2.19)

Let us multiply equation (2.8) by a test function φ ∈ C∞
c ((0,∞)×R) and integrate it over (0,∞)×R. We have:

−
∫ ∞

0

∫
R

uλφt =
∫ ∞

0

∫
R

uλ uλ,xφ+
∫ ∞

0

∫
R

uλ,xxφ+
∫ ∞

0

∫
R

(λ2(Kλ ∗ uλ − uλ) + λuλ,x)φ.

Using the properties of {uλ}λ>0 shown in the previous section, it is sufficient to check that

lim
λ→∞

∫ ∞

0

∫
R

(
λ2
(
Kλ ∗ uλ(t) − uλ(t)

)
+ λuλ,x(t)

)
φ(t)dxdt =

∫ ∞

0

∫
R

ū(t)φxx(t)dxdt.
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Let us focus on the integral over the spatial domain. Taking into account the definition of Kλ and that∫
R
zmK(z)dz = m! for m ∈ N ∪ {0} we obtain

Lλ(t) :=
∫

R

(
λ2
(
Kλ ∗ uλ(t) − uλ(t)

)
+ λuλ,x(t)

)
φ(t)dx (2.20)

=
∫

R

∫
R

uλ(t, x)K(y)
(
φ
(
t, x+

y

λ

)
− φ(t, x) − y

λ
φx(t, x)

)
dxdy

= λ2

∫
R

∫
R

(
φ
(
t, x+

y

λ

)
− φ(t, x)

)
K(y)uλ(t, x)dydx − λ

∫
R

∫
R

φx(t, x)yK(y)uλ(t, x)dydx,

Now, because of Taylor’s Theorem, we know that there exists a point ζ ∈ (x, x + y/λ) such that

φ
(
t, x+

y

λ

)
− φ(t, x) =

y

λ
φx(t, x) +

1
2
y2

λ2
φxx(t, x) +

1
6
y3

λ3
φxxx(t, ζ).

We introduce this in (2.20):

Lλ(t) =
1
2

∫
R

φxx(t, x)uλ(t, x)dx
∫

R

y2K(y)dy +O(‖φxxx(t)‖∞)
1
6λ

∫
R

uλ(t, x)dx
∫

R

y3K(y)dy

=
∫

R

φxx(t, x)uλ(t, x)dx +O(‖φxxx(t)‖∞)
1
λ

∫
R

uλ(t, x)dx

=
∫

R

φxx(t, x)uλ(t, x)dx + λ−1O(‖φxxx(t)‖∞).

Since uλ(t) → ū(t) in C([τ, T ],L1(R)) and φ has compact support, we obtain that

lim
λ→∞

∫ ∞

0

Lλ(t)dt =
∫ ∞

0

∫
R

φxx(t, x)ū(t, x)dxdt.

It follows that ū satisfies
−
∫ ∞

0

∫
R

ūφt = −1
2

∫ ∞

0

∫
R

ū2φx + 2
∫ ∞

0

∫
R

ūφxx.

It remains to identify the behavior of ū as t→ 0. From Lemma 2.7, for any ϕ ∈ C2
b(R) we have∣∣∣∣∫

R

uλ(t, x)ϕ(x)dx −
∫

R

uλ,0(x)ϕ(x)dx
∣∣∣∣ ≤ C(t+

√
t)

and, due to (2.18) and the definition of uλ in (2.8), we deduce by letting λ→ ∞ that

lim
t↓0

∫
R

ū(t, x)ϕ(x)dx = Mϕ(0).

Using classical approximation arguments together with the uniform tail control of uλ in (2.15), we conclude
that ū(0) = Mδ0 in the sense of bounded measures.

Therefore, we can finally conclude that ū is the unique solution uM of (2.19), and that, indeed, the whole
family {uλ}λ>0 converges to uM in C((0,∞),L1(R)). In particular, we have:

lim
λ→∞

‖uλ(1) − uM (1)‖1 = 0.

Setting λ =
√
t and using the self-similar form of uM (see e.g. [10]), we obtain that

lim
t→∞ ‖u(t) − uM (t)‖1 = 0. (2.21)
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Finally, the convergence in the Lp-norms for p ∈ (1,∞) follows from (2.21), the decay estimate given in
Lemma 2.4 for p = ∞ and the Hölder inequality. In fact, we have:

‖u(t) − uM (t)‖p ≤ (‖u(t)‖∞ + ‖uM (t)‖∞)1−
1
p ‖u(t) − uM (t)‖

1
p

1 ≤ o(t−
1
2 (1− 1

p )). (2.22)

In the case of the L∞-norm, we use the decay of ux(t) given by Proposition 2.3 and the estimate ‖uM,x(t)‖2 �
t−

3
4 , resulting from the explicit formula (1.12). Using the Gagliardo–Nirenberg interpolation inequality

and (2.22), we obtain:

‖u(t) − uM (t)‖∞ � (‖ux(t)‖2 + ‖uM,x(t)‖2)
1
2 ‖u(t) − uM (t)‖ 1

2
2 ≤ o

(
t−

1
2

)
. (2.23)

The proof is now finished. �

3. Semidiscrete scheme

In this section, we focus on the semi-discrete numerical scheme for equation (1.5), defined in (1.7). In order to
prove Theorem 1.2, we need some preliminary results on the decay of uΔ similar to those obtained in Section 2
for the solution of equation (1.5). For simplicity, for every h > 0, we define the operators d+

h and d−h as follows:

d+
h f(x) :=

f(x+ h) − f(x)
h

and d−h f(x) :=
f(x) − f(x− h)

h
.

As in the continuous case, for μ > 0 we also introduce the family of rescaled solutions

uμ(t, x) = μuΔ(μ2t, μx), t ≥ 0, x ∈ R, (3.1)

and analyze the behavior of uμ when μ→ ∞. Note that function uμ is piecewise constant on space intervals of
length Δx/μ. Moreover, it satisfies the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uμ
t (t, x) =

1
4

(
d+

Δx/μ

(
uμ(t, x)2

)
+ d−Δx/μ

(
uμ(t, x)2

))
+Δxd+

Δx/μR
(
uμ(t, x− Δx

μ ), uμ(t, x)
)

+ d−Δx/μ

(
d+

Δx/μu
μ(t, x)

)
+μ2

N∑
m=1

ωmu
μ
(
t, x−mΔx

μ

)
− μ2FΔ

0 u
μ(t, x) + μFΔ

1 d
+
Δx/μu

μ(t, x), t > 0, a.e. x ∈ R,

uμ(0, x) = μu0
Δ(μx), a.e. x ∈ R,

(3.2)

where
R(u, v) =

1
4Δx

(v|v| − u|u|). (3.3)

Of course, the approximated solution uΔ defined in (1.6) and (1.7) satisfies (3.2) when μ = 1. Let us recall that
this decomposition of the numerical flux is called the viscous form of the scheme (see, for instance, Chap. III
in [12]). Note also that R is homogeneous of degree 2, allowing the term containing it in (3.2) to disappear as
μ → ∞, as observed in [14].

For any initial data u0
Δ ∈ L1(R), there exists a unique solution in C1([0,∞),L1(R)) for (3.2). The local

existence is obtained by Banach’s fixed point argument, whereas the following Lemma 3.1 excludes blow-ups.
Let us remark that the solution uμ of system (3.2) conserves the mass of the initial data u0

Δ. In fact, note that it
is the same as the mass of u0, when u0

Δ is defined as in (1.7). Moreover, we show that (3.2) defines a contractive
semigroup. This will be useful to obtain the estimates for the compactness of {uμ}μ>0. For the sake of clarity,
we prove this lemma in the Appendix A.
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Lemma 3.1. For any initial data u0
Δ ∈ L1(R), the solution uμ to (3.2) satisfies∫

R

uμ(t, x) =
∫

R

u0
Δ(x), ∀t > 0.

Moreover, (3.2) defines a contractive semigroup in L1(R).

3.1. L1-Lp estimates

We are interested in the large-time behavior of uΔ. The following two propositions are the discrete versions
of Proposition 2.2 and Proposition 2.3. The way of proceeding will be, indeed, very similar.

Proposition 3.2. For all p ∈ [1,∞] there exists a positive constant C(p) such that:

‖uμ(t)‖p ≤ C(p)‖u0
Δ‖1t

− 1
2 (1− 1

p), ∀t > 0. (3.4)

for all solutions of (3.2) with initial data u0
Δ ∈ L1(R).

Proof. The case p = 1 follows from Lemma 3.1 with C(p) = 1. Let us consider the case μ = 1 and p ∈ [2,∞).
We multiply (3.2) by |uΔ|p−2uΔ and integrate it over the whole space domain. We have:

1
p

d
dt

‖uΔ(t)‖p
p ≤ I1 +

∫
R

d−Δx

(
d+

ΔxuΔ(t, x)
) |uΔ(t, x)|p−2uΔ(t, x)dx + I2, (3.5)

where

I1 =
1
4

∫
R

(
d+

Δx

(
uΔ(t, x)2

)
+ d−Δx

(
uΔ(t, x)2

))|uΔ(t, x)|p−2uΔ(t, x)dx

+Δx

∫
R

d+
ΔxR

(
uΔ(t, x−Δx), uΔ(t, x)

)|uΔ(t, x)|p−2uΔ(t, x)dx

and

I2 =
∫

R

(
N∑

m=1

ωmuΔ(t, x−mΔx) − FΔ
0 uΔ(t, x) + FΔ

1 d
+
ΔxuΔ(t, x)

)
|uΔ(t, x)|p−2uΔ(t, x)dx

=
N∑

m=1

ωm

(∫
R

uΔ(t, x−mΔx)|uΔ(t, x)|p−2uΔ(t, x)dx −
∫

R

|uΔ(t, x)|pdx
)

+
FΔ

1

Δx

(∫
R

uΔ(t, x+Δx)|uΔ(t, x)|p−2uΔ(t, x)dx −
∫

R

|uΔ(t, x)|pdx
)
.

On the following, we will not make explicit the time dependence unless this is necessary.
Now, on the one hand, for any k ∈ Z, we have that∫

R

uΔ(x + kΔx)|uΔ(x)|p−2uΔ(x)dx ≤ p− 1
p

∫
R

|uΔ(x+ kΔx)|pdx+
1
p

∫
R

|uΔ(x)|pdx =
∫

R

|uΔ(x)|pdx.

Therefore, I2 ≤ 0.
On the other hand, for i ∈ {−1, 0, 1} let us denote

U±
i = {x ∈ R : ±uΔ(x+ iΔx) > 0} and U0

i = {x ∈ R : uΔ(x+ iΔx) = 0}.
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From the definition of R in (3.3), reordering I1 we get:

I1 =
1

4Δx

∫
R

(
u2

Δ(x+Δx) + uΔ(x+Δx)|uΔ(x+Δx)|) |uΔ(x)|p−2uΔ(x)dx − 1
2Δx

∫
R

|uΔ(x)|p+1dx

+
1

4Δx

∫
R

(
uΔ(x−Δx)|uΔ(x−Δx)| − u2

Δ(x−Δx)
) |uΔ(x)|p−2uΔ(x)dx

≤ 1
2Δx

∫
U+

0 ∩U+
1

u2
Δ(x+Δx)|uΔ(x)|p−1dx− 1

2Δx

∫
R

|uΔ(x)|p+1dx

+
1

2Δx

∫
U−

−1∩U−
0

u2
Δ(x−Δx)|uΔ(x)|p−1dx.

Using the following inequality

a2|b|p−1 ≤ 2
p+ 1

|a|p+1 +
p− 1
p+ 1

|b|p+1, ∀a, b ∈ R,

we obtain that

I1 ≤ 1
2Δx

(
2

p+ 1

∫
U+

0 ∩U+
1

|uΔ(x+Δx)|p+1dx+
p− 1
p+ 1

∫
U+

0 ∩U+
1

|uΔ(x)|p+1dx

)
− 1

2Δx

∫
R

|uΔ(x)|p+1dx

+
1

2Δx

(
2

p+ 1

∫
U−

−1∩U−
0

|uΔ(x−Δx)|p+1dx+
p− 1
p+ 1

∫
U−

−1∩U−
0

|uΔ(x)|p+1dx

)

=
1

2Δx

(
2

p+ 1

∫
U+

−1∩U+
0

|uΔ(x)|p+1dx+
p− 1
p+ 1

∫
U+

0 ∩U+
1

|uΔ(x)|p+1dx

)
− 1

2Δx

∫
R

|uΔ(x)|p+1dx

+
1

2Δx

(
2

p+ 1

∫
U−

0 ∩U−
1

|uΔ(x)|p+1dx+
p− 1
p+ 1

∫
U−

−1∩U−
0

|uΔ(x)|p+1dx

)

≤ 1
2Δx

∫
U+

0

|uΔ(x)|p+1dx− 1
2Δx

∫
R

|uΔ(x)|p+1dx+
1

2Δx

∫
U−

0

|uΔ(x)|p+1dx

and, hence, I1 ≤ 0.
Thus, from (3.5) we deduce:

1
p

d
dt

‖uΔ(t)‖p
p ≤

∫
R

d−Δx

(
d+

ΔxuΔ(x)
) |uΔ(x)|p−2uΔ(x)dx (3.6)

= − 1
Δx2

∫
R

(uΔ(x+Δx) − uΔ(x))
(|uΔ(x+Δx)|p−2uΔ(x +Δx) − |uΔ(x)|p−2uΔ(x)

)
dx.

Moreover, the following inequality (see [31], Lem. II.5.5, p. 22)∣∣∣|x|p/2 − |y|p/2
∣∣∣2 ≤ p2

4(p− 1)
(x− y)

(|x|p−2x− |y|p−2y
)
, ∀x, y ∈ R, ∀ p ∈ (1,∞),

guarantees that

d
dt

‖uΔ(t)‖p
p ≤ −4(p− 1)

p

∫
R

∣∣∣∣ |uΔ(x+Δx)|p/2 − |uΔ(x)|p/2

Δx

∣∣∣∣2 = −4(p− 1)
p

‖d+
Δx

(|uΔ|p/2
)‖2

2 ≤ 0. (3.7)

This estimate and Lemma A.1 allow us to write

d
dt

‖uΔ(t)‖p
p +

(p− 1)
p

‖uΔ(t)‖p(p+1)/(p−1)
p

‖u0
Δ(t)‖2p/(p−1)

1

≤ 0. (3.8)
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Following the same arguments as in [10], we conclude that for any p ∈ [2,∞)

‖uΔ(t)‖p ≤ C(p)‖u0
Δ‖1 t

− 1
2 (1− 1

p ), ∀t > 0. (3.9)

The case p ∈ (1, 2) follows by interpolation. The case p = ∞ follows by tracking carefully the constants in (3.8)
as in [32].

Finally, the general case μ > 0 is immediate from (3.9) and the definition of uμ (3.1), since for any p ∈ [1,∞]
we have

‖uμ(t)‖p = μ1− 1
p ‖uΔ(μ2t)‖p ≤ C(p)‖u0

Δ‖1 t
− 1

2 (1− 1
p ).

The proof is now complete. �

Now that we have estimates on the Lp-norms of the solution, we need to obtain a similar result for the discrete
gradient.

Proposition 3.3. For all p ∈ [1,∞] there exists a constant C = C(p, ‖u0
Δ‖1) > 0 such that:

‖d+
Δx/μu

μ(t)‖p ≤ Ct−
1
2 (1− 1

p )− 1
2 , ∀t > 0, (3.10)

for all solutions of (3.2) with initial data u0
Δ ∈ L1(R).

Proof. We proceed as in Proposition 2.3. Let us denote by Dt
μ the semigroup associated with⎧⎪⎪⎨⎪⎪⎩

vt(t, x) = μ2

N∑
m=1

ωmv

(
t, x−m

Δx

μ

)
− μ2FΔ

0 v(t, x) + μFΔ
1 d

+
Δx/μv(t, x), t > 0, a.e. x ∈ R,

v(0, x) = v0(x), a.e. x ∈ R.

(3.11)

Multiplying (3.11) by sign(v(t, x)), integrating on R and using that∫
R

v(x− h) sign(v(x))dx ≤
∫

R

|v(x)|dx, ∀h ∈ R,

one shows that Dt
μ is non-expansive in L1(R).

Now, for every τ > 0 and μ > 0, the solution of (3.2) satisfies:

uμ(t+ τ) = Gμ
Δ(t) ∗Dt

μu
μ(τ) +

∫ t

0

Gμ
Δ(t− s) ∗Dt−s

μ

(
H
(
uμ(s+ τ)

))
ds. (3.12)

where

H(uμ(s, x)) =
1
4

(
d+

Δx/μ

(
uμ(s, x)2

)
+ d−Δx/μ

(
uμ(s, x)2

))
+Δxd+

Δx/μR

(
uμ

(
s, x− Δx

μ

)
, uμ(s, x)

)
and Gμ

Δ is the fundamental solution of the one-dimensional semi-discrete heat equation, defined by

(
Gμ

Δ(t)
)
j

=
1
2π

∫ πμ/Δx

−πμ/Δx

e−
4tμ2

Δx2 sin2 ξΔx
2μ eijξ Δx

μ dξ, j ∈ Z.

It is well known (e.g. [3]) that, for any p ∈ [1,∞],

‖Gμ
Δ(t)‖p ≤ C(p)t−

1
2 (1− 1

p ), t > 0,
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and
‖d+

Δx/μG
μ
Δ(t)‖p ≤ C(p)t−

1
2 (1− 1

p)− 1
2 , t > 0.

Now let us apply the discrete operator d+
Δx/μ to (3.12). Then

d+
Δx/μu

μ(t+ τ) = d+
Δx/μG

μ
Δ(t) ∗Dt

μu
μ(τ) +

∫ t

0

d+
Δx/μG

μ
Δ(t− s) ∗Dt−s

μ

(
H
(
uμ(s+ τ)

))
ds. (3.13)

Using the decay properties of Gμ
Δ, Proposition 3.2 and the L1-stability of Dt

μ, we obtain

‖d+
Δx/μu

μ(t+ τ)‖1 ≤
∥∥∥d+

Δx/μG
μ
Δ(t)

∥∥∥
1

∥∥Dt
μu

μ(τ)
∥∥

1
(3.14)

+
∫ t

0

∥∥∥d+
Δx/μG

μ
Δ(t− s)

∥∥∥
1

∥∥∥Dt−s
μ

(
H
(
uμ(s+ τ)

))∥∥∥
1
ds

≤
∥∥∥d+

Δx/μG
μ
Δ(t)

∥∥∥
1
‖uμ(τ)‖1 +

∫ t

0

∥∥∥d+
Δx/μG

μ
Δ(t− s)

∥∥∥
1

∥∥H(uμ(s+ τ)
)∥∥

1
ds

≤ C ‖u0‖1 t
− 1

2 + C

∫ t

0

(t− s)−
1
2
∥∥H(uμ(s+ τ)

)∥∥
1
ds.

We now prove that for any p ∈ [1,∞), we have

‖H(uμ(s+ τ))‖p ≤ Cτ−
1
2 ‖d+

Δx/μu
μ(s+ τ)‖p. (3.15)

Observe that, in view of Proposition 3.2, we have

‖uμ(s+ τ)‖∞ � (s+ τ)−1/2‖uμ(0)‖1 � τ−1/2‖u0‖1.

Thus we obtain∥∥∥d+
Δx/μ

(
uμ(s+ τ)2

)∥∥∥
p
≤ 2 ‖uμ(s+ τ)‖∞

∥∥∥d+
Δx/μu

μ(s+ τ)
∥∥∥

p
≤ Cτ−

1
2

∥∥∥d+
Δx/μu

μ(s+ τ)
∥∥∥

p
.

A similar result holds for d−Δx/μ. Moreover, from the definition of R in (3.3) we have:

Δx

∥∥∥∥∥d+
Δx/μR

(
uμ

(
s+ τ, x− Δx

μ

)
, uμ(s+ τ, x)

)∥∥∥∥∥
p

≤ 1
2

∥∥∥d+
Δx/μ (uμ(s+ τ)|uμ(s+ τ)|)

∥∥∥
p

≤ ‖uμ(s+ τ)‖∞
∥∥∥d+

Δx/μu
μ(s+ τ)

∥∥∥
p
≤ Cτ−

1
2

∥∥∥d+
Δx/μu

μ(s+ τ)
∥∥∥

p
,

where we have used Proposition 3.2 and that∣∣x|x| − y|y|∣∣ ≤ 2|x− y|max{|x|, |y|}, ∀x, y ∈ R.

Therefore, introducing (3.15) with p = 1 in (3.14) we get

‖d+
Δx/μu

μ(t+ τ)‖1 ≤ Ct−
1
2 + Cτ−

1
2

∫ t

0

(t− s)−
1
2

∥∥∥d+
Δx/μu

μ(s+ τ)
∥∥∥

1
ds.

Applying fractional Gronwall’s Lemma (see for example [2], Lem. 2.4) and taking t = τ , we conclude that

‖d+
Δx/μ(uμ(2τ))‖1 ≤ Cτ , ∀μ > 0, (3.16)
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for some Cτ > 0 depending only on τ and ‖u0‖1. It is enough now to use the definition of uμ in (3.1), taking
τ = 1/2 to obtain ‖d+

Δx(uΔ(μ2))‖1 ≤ C/μ, for all μ > 0. Putting μ2 = t we find

‖d+
Δx(uΔ(t))‖1 ≤ C√

t
, ∀t > 0,

that is, (3.10) for μ = 1 and p = 1.
The case μ = 1 and p ∈ (1,∞) is immediate from (3.13), (3.15) and (3.16). Indeed, we have

‖d+
Δx/μu

μ(t+ τ)‖p ≤
∥∥∥d+

Δx/μG
μ
Δ(t)

∥∥∥
p
‖uμ(τ)‖1 +

∫ t

0

∥∥∥d+
Δx/μG

μ
Δ(t− s)

∥∥∥
p

∥∥H(uμ(s+ τ)
)∥∥

1
ds

≤ Cτ t
− 1

2 (1− 1
p )− 1

2 + Cτ

∫ t

0

(t− s)−
1
2 (1− 1

p )− 1
2 ds.

with Cτ = C(p, τ, ‖u0‖1). Applying again fractional Gronwall’s Lemma and taking t = τ we obtain that

‖d+
Δx/μu

μ(2τ)‖p ≤ Cτ , ∀μ > 0, (3.17)

This is equivalent to (3.10) for μ = 1 and p ∈ (1,∞).
Furthermore, repeating similar arguments, the case p = ∞ follows from (3.13) and estimates (3.15) and (3.17):

‖d+
Δx/μu

μ(t+ τ)‖∞ ≤
∥∥∥d+

Δx/μG
μ
Δ(t)

∥∥∥
∞

‖uμ(τ)‖1 +
∫ t

0

∥∥∥d+
Δx/μG

μ
Δ(t− s)

∥∥∥
2

∥∥H(uμ(s+ τ)
)∥∥

2
ds

≤ Cτ t
−1 + Cτ

∫ t

0

(t− s)−
3
4 ds.

where Cτ = C(τ, ‖u0‖1). It is now enough to take t = τ to conclude that

‖d+
Δx/μu

μ(2τ)‖∞ ≤ Cτ , ∀μ > 0,

which is equivalent to (3.10) for μ = 1 and p = ∞.
Finally, the general case μ > 0 is immediate from the case μ = 1 and the definition of uμ (3.1), since for any

p ∈ [1,∞] we have
‖d+

Δx/μu
μ(t)‖p = μ2− 1

p ‖d+
ΔxuΔ(μ2t)‖p ≤ Ct−

1
2 (1− 1

p )− 1
2 .

This concludes the proof. �

3.2. Compactness of the set {uµ}µ>0

In this section, we prove the compactness of the trajectories of the family {uμ(t)}μ>0 introduced in the
previous section, in order to pass to the limit μ→ ∞. Unlike the continuous case, we do not have estimates of
uμ in H1(R), since uμ is piecewise constant. Nevertheless, the following lemma makes possible the use of the
compact embedding of Hs

loc(R) into L2
loc(R), with 0 < s < 1/2. The proof will be given in the Appendix.

Lemma 3.4. For any 0 < s < 1
2 , there exists a positive constant C = C(s) such that, for any mesh-size

0 < Δx < 1, the following holds for all piecewise constant functions w as in (1.6):

‖w‖Hs(R) ≤ C
(‖w‖2 + ‖d+

Δxw‖2

)
.

Let us remark that, as a consequence of this lemma and Propositions 3.2 and 3.3, we obtain a time-decay
estimate for uμ in Hs(R) with 0 < s < 1/2 (this can be done since uμ is piecewise constant on intervals of
length Δx/λ):

‖uμ(t)‖Hs(R) ≤ C
(
‖uμ(t)‖2 + ‖d+

Δx/μu
μ(t)‖2

)
≤ C

(
t−

1
4 + t−

3
4

)
, ∀t > 0, ∀μ > 0. (3.18)

Thus, we can use Theorem 2.5 to prove the compactness of the family {uμ}μ>0.
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Theorem 3.5. For every 0 < τ < T <∞, the family {uμ}μ>0 ⊂ C([τ, T ],L1(R)) is relatively compact.

Proof. We will proceed in two steps, analogously to Theorem 2.6.

Step 1. First we will show the result locally in C([τ, T ],L1(I)), with I = [−r, r] for an arbitrary r > 0. Let us
consider the spaces X = Hs(I) with s ∈ (0, 1

2 ), Z = L2(I) and Y = H−1(I).
From (3.18) we know that the set {uμ}μ>0 is bounded in L∞([τ, T ],Hs

loc(R)). In particular, the first con-
dition of Theorem 2.5 is fulfilled. Thus, it suffices to check that uμ

t is bounded in L∞([τ, T ], H−1(I)). Let us
multiply (3.2) by a function ϕ ∈ C∞

c (R) and integrate it over R. Using the definition of R in (3.3), we have:∣∣∣∣∫
R

uμ
t ϕdx

∣∣∣∣ ≤ 1
4

∣∣∣∣∫
R

(
d+

Δx/μ

(
uμ(x)2

)
+ d−Δx/μ

(
uμ(x)2

))
ϕ(x)dx

∣∣∣∣
+Δx

∣∣∣∣∫
R

d+
Δx/μR

(
uμ

(
x− Δx

μ

)
, uμ(x)

)
ϕ(x)dx

∣∣∣∣ + ∣∣∣∣∫
R

d−Δx/μ

(
d+

Δx/μu
μ(x)

)
ϕ(x)dx

∣∣∣∣
+

∣∣∣∣∣
∫

R

(
μ2

N∑
m=1

ωmu
μ

(
x−m

Δx

μ

)
− μ2FΔ

0 u
μ(x) + μFΔ

1 d
+
Δx/μu

μ(x)

)
ϕ(x)dx

∣∣∣∣∣
≤ 1

2
‖d+

Δxϕ‖2‖uμ‖2
4 +

1
2
‖d+

Δxϕ‖2‖uμ‖2
4 + ‖d+

Δxϕ‖2‖d+
Δxu

μ‖2

+

∣∣∣∣∣
∫

R

(
μ2

N∑
m=1

ωm

(
uμ

(
x−m

Δx

μ

)
− uμ(x)

)
+ μFΔ

1 d
+
Δx/μu

μ(x)

)
ϕ(x)dx

∣∣∣∣∣ .
Obviously, the first three terms on the right hand side of the inequality are uniformly bounded for μ > 0, so let
us focus on the last one. Using the Fourier transform and the definition of FΔ

0 in (1.9), we have

Iμ =

∣∣∣∣∣
∫

R

(
μ2

N∑
m=1

ωm

(
uμ

(
x−m

Δx

μ

)
− uμ(x)

)
+ μFΔ

1 d
+
Δx/μu

μ(x)

)
ϕ(x)dx

∣∣∣∣∣
≤ μ2

∫
R

∣∣∣∣∣
N∑

m=1

ωm

(
e−im Δx

μ ξ − 1
)

+ FΔ
1

ei Δx
μ ξ − 1
Δx

∣∣∣∣∣ ∣∣ûμ(ξ)
∣∣ |ϕ̂(ξ)| dξ.

If we take a = e−Δx and b = e−i Δx
μ ξ on Lemma A.2 and use the definitions of ωm in (1.8) and FΔ

1 in (1.9), we
have: ∣∣∣∣∣

N∑
m=1

ωm

(
e−im Δx

μ ξ − 1
)

+ FΔ
1

ei Δx
μ ξ − 1
Δx

∣∣∣∣∣ (3.19)

=
∣∣eΔx − 1

∣∣ ∣∣∣∣∣
N∑

m=1

e−mΔx
(
e−im Δx

μ ξ − 1
)

+
N∑

m=1

me−mΔx(ei Δx
μ ξ − 1)

∣∣∣∣∣
≤ ∣∣eΔx − 1

∣∣ ∣∣∣e−i Δx
μ ξ − 1

∣∣∣2 e−Δx

(1 − e−Δx)3
=

|e−i Δx
μ ξ − 1|2

(1 − e−Δx)2
·

Combining this inequality with the Cauchy−Schwartz inequality and the fact that

‖d+
Δx/μu

μ‖2
2 =

∫
R

∣∣∣∣∣ei Δx
μ ξ − 1
Δx/μ

∣∣∣∣∣
2

|ûμ(ξ)|2dξ.
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we obtain

Iμ ≤ Δx2

(1 − e−Δx)2
‖d+

Δx/μu
μ‖2‖d+

Δx/μϕ‖2.

Thus, using that ‖d+
Δx/μϕ‖2 � ‖ϕ′‖2, we get

∣∣∣∣∫
R

uμ
t (t)ϕdx

∣∣∣∣ ≤‖d+
Δx/μϕ‖2‖uμ(t)‖2

4 + ‖d+
Δx/μϕ‖2‖d+

Δx/μu
μ(t)‖2

+
Δx2

(1 − e−Δx)2
‖d+

Δx/μu
μ(t)‖2‖d+

Δx/μϕ‖2

≤C‖ϕ‖H1(R)

(
‖uμ(t)‖2

4 + ‖d+
Δx/μu

μ(t)‖2

)
.

for any ϕ ∈ C∞
c (I) and with C > 0 independent of μ. In view of Propositions 3.2 and 3.3, both norms of uμ

in the right-hand side are uniformly bounded in [τ, T ], so uμ
t is uniformly bounded in L∞([τ, T ], H−1(I)). We

conclude that the family {uμ}μ>0 is relatively compact in C([τ, T ],L2
loc(R)). Finally, compactness in L2

loc(R)
implies compactness in L1

loc(R), so {uμ}μ>0 is also relatively compact in C([τ, T ],L1
loc(R)).

Step 2. Now we need to extend the result globally. Let us consider again the same function ψr defined in the
third step of the proof of Theorem 2.6, such that ψr(z) = ψ(z/r) with ψ given by (2.14) and r > 0. Since we
know that {uμ}μ>0 is relatively compact in C([τ, T ],L1

loc(R)), it suffices to show that

sup
[τ,T ]

‖uμ(t)ψr‖1 −→ 0 as r → ∞, uniformly on μ ≥ 1. (3.20)

A similar argument as in Theorem 2.6 shows that it is enough to prove (3.20) for nonnegative initial data and
solutions. Thus, we focus on those. Let us multiply (3.2) by ψr and integrate it over (0, t) × R. We obtain:∫

R

uμ(t, x)ψr(x)dx =
∫

R

uμ
0 (x)ψr(x)dx (3.21)

+
1
4

∫ t

0

∫
R

(
d+

Δx/μ

(
uμ(s, x)2

)
+ d−Δx/μ

(
uμ(s, x)2

))
ψr(x)dxds

+Δx

∫ t

0

∫
R

d+
Δx/μ

(
R

(
uμ

(
s, x− Δx

μ

)
, uμ(s, x)

))
ψr(x)dxds

+
∫ t

0

∫
R

d−Δx/μ

(
d+

Δx/μ

(
uμ(s, x)

))
ψr(x)dxds

+
∫ t

0

∫
R

(
μ2

N∑
m=1

ωm

(
uμ

(
s, x−m

Δx

μ

)
− uμ(s, x)

)
+ μFΔ

1 d
+
Δx/μu

μ(s, x)

)
ψr(x)dxds.

We pass now the discrete derivatives to ψr and estimate the right-hand side using time-decay estimates from
Proposition 3.2:

∫
R

uμ(t, x)ψr(x)dx �
∫

R

uμ
0 (x)ψr(x)dx + ‖ψ′‖∞

√
t

r
+ ‖ψ′′‖∞ t

r2
(3.22)

+
∫ t

0

∫
R

(
μ2

N∑
m=1

ωm

(
uμ

(
s, x−m

Δx

μ

)
− uμ(s, x)

)
+ μFΔ

1 d
+
Δx/μu

μ(s, x)

)
ψr(x)dxds.
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Let us focus on the last term. Using Taylor expansions and the definition of FΔ
0 and FΔ

1 from (1.9), we have∫
R

(
μ2

N∑
m=1

ωm

(
uμ

(
s, x−m

Δx

μ

)
− uμ(s, x)

)
+ μFΔ

1 d
+
Δx/μu

μ(s, x)

)
ψr(x)dx

= μ2
N∑

m=1

ωm

∫
R

uμ(s, x)
(
ψr

(
x+m

Δx

μ

)
− ψr(x) −m

Δx

μ
d−Δx/μ(ψr(x))

)
dx

�
∥∥∥∥∥μ2

N∑
m=1

ωm

(
ψr

(
x+m

Δx

μ

)
− ψr(x) −m

Δx

μ
d−Δx/μ(ψr(x))

)∥∥∥∥∥
∞

‖uμ(s)‖1

� ‖ψ′′‖∞
r2

‖u0
Δ‖1.

Thus, plugging this into (3.22) and using the non-negativity of the solution, we get∫
R

|uμ(t, x)|ψr(x)dx �
∫

R

|uμ
0 (x)|ψr(x)dx + ‖ψ′‖∞

√
t

r
+ ‖ψ′′‖∞ t

r2
, (3.23)

which tends to 0 uniformly on μ > 0 when r → ∞. Therefore, we proved (3.20) and, consequently, we can assure
that {uμ}μ>0 is relatively compact in C([τ, T ],L1(R)). �

A slight modification of the proof of the previous theorem gives as the necessary estimate to identify the
initial data, stated in the following proposition.

Lemma 3.6. For every test function ϕ ∈ C∞
c (R), there exists C > 0, independent of μ, such that∣∣∣∣∫

R

uμ(t, x)ϕ(x)dx −
∫

R

uμ
0 (x)ϕ(x)dx

∣∣∣∣ ≤ C(t+
√
t). (3.24)

Proof. It is enough to multiply (3.2) by ϕ ∈ C∞
c (R) and integrate it over (0, t)×R. Then, integrating by parts and

repeating arguments similar to the ones in the second step of the proof for Theorem 3.5, we deduce (3.24). �

3.3. Passing to the limit

Finally, we have everything that we need to prove our main result, stated in Theorem 1.2, regarding the
large-time behavior of the approximations to the solution of problem (1.5).

Proof of Theorem 1.2. By Theorem 3.5, we know that for every 0 < τ < T <∞, the family {uμ}μ>0 is relatively
compact in C([τ, T ],L1(R)). Consequently, there exists a subsequence of it (which we will not relabel) and a
function ū ∈ C((0,∞),L1(R)) such that

uμ −→ ū ∈ C([τ, T ],L1(R)), as μ→ ∞. (3.25)

We can also assume that uμ(t, x) → ū(t, x) almost everywhere in (0,∞) × R as μ→ ∞.
Now, we multiply equation (3.2) by a test function φ ∈ C∞

c ((0,∞)×R) and integrate it over (0,∞)×R. We
have:∫ ∞

0

∫
R

uμ
t (t, x)φ(t, x)dxdt =

1
4

∫ ∞

0

∫
R

(
d+

Δx/μ

(
uμ(t, x)2

)
+ d−Δx/μ

(
uμ(t, x)2

))
φ(t, x)dxdt (3.26)

+Δx

∫ ∞

0

∫
R

d+
Δx/μR

(
uμ

(
t, x− Δx

μ

)
, uμ(t, x)

)
φ(t, x)dxdt

+
∫ ∞

0

∫
R

d−Δx/μ

(
d+

Δx/μu
μ(t, x)

)
φ(t, x)dxdt

+
∫ ∞

0

∫
R

(
μ2

N∑
m=1

ωmu
μ

(
t, x−m

Δx

μ

)
− μ2FΔ

0 u
μ(t, x) + μFΔ

1 d
+
Δx/μu

μ(t, x)

)
φ(t, x)dxdt.
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Our claim is that, passing to the limit μ → ∞, we obtain that ū is a weak solution of the equation:{
ūt = ūūx + (1 + FΔ

2 )ūxx, (t, x) ∈ (0,∞) × R,

ū(0) = Mδ0.
(3.27)

All the limits in (3.26) are known except for the last term. In fact, let us recall that the degree of homogeneity
of R makes the corresponding numerical viscosity term vanish as μ→ ∞, as shown in [14].

Thus, it is sufficient to check that we can take the limit μ→ ∞ in

Lμ(t) =
∫

R

(
μ2

N∑
m=1

ωmu
μ

(
t, x−m

Δx

μ

)
− μ2FΔ

0 u
μ(t, x) + μFΔ

1 d
+
Δx/μu

μ(t, x)

)
φ(t, x)dx.

First, we reorder Lμ:

Lμ(t) = μ2

∫
R

uμ(t, x)
N∑

m=1

ωm

(
φ

(
t, x+m

Δx

μ

)
− φ(t, x) −m

Δx

μ
d−Δx/μ(φ(t, x))

)
dx. (3.28)

Now, due to Taylor’s Theorem, for each m ∈ {1, . . . , N}

φ

(
t, x+m

Δx

μ

)
− φ(t, x) = m

Δx

μ
φx(t, x) +

1
2
m2Δx

2

μ2
φxx(t, x) +

1
μ3
O(‖φxxx(t)‖∞).

In the same way,

d−Δx/μ(φ(t, x)) = φx(t, x) − 1
2
Δx

μ
φxx(t, x) +

1
μ2
O(‖φxxx(t)‖∞).

We combine this into (3.28) and get

Lμ(t) = FΔ
2

∫
R

uμ(t, x)φxx(t, x)dx +O(‖φxxx(t)‖∞)
1
μ

∫
R

uμ(t, x)dx, (3.29)

where

FΔ
2 =

Δx2

2

(
N∑

m=1

m(m− 1)ωm

)
.

Therefore, as uμ → ū in C([τ, T ],L1(R)), taking the limit μ→ ∞ in (3.29), we obtain:

lim
μ→∞

∫ ∞

0

Lμ(t) = FΔ
2

∫ ∞

0

∫
R

ū(t, x)φxx(t, x)dx.

Remark 3.7. Let us emphasize the key role that the correcting factors FΔ
0 and FΔ

1 have on the limit above.
Note that the fact that ∫

R

K(z)dz =
∫
zK(z)dz = 1

played an important role in the proof of Theorem 2.6, allowing us to show that K ∗ uxx behaves as uxx as
t→ ∞. Moreover, this is related also with the decomposition of K in Dirac delta functions as in [9]. Now, at the
discrete level, the corrector factors FΔ

0 and FΔ
1 had to be chosen accordingly. In this case, due to the truncation

of the integral, the use of a third factor FΔ
2 is required, though. All the same, these three coefficients are the

discretized moments of the kernel K.
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It follows that ū satisfies

−
∫ ∞

0

∫
R

ūφt = −1
2

∫ ∞

0

∫
R

ū2φx + (1 + FΔ
2 )
∫ ∞

0

∫
R

ūφxx,

so it is a weak solution of the equation in (3.27). It remains to identify the behavior of ū as t → 0. Due to
Lemma 3.6, for any ϕ ∈ C∞

c (R) we have∣∣∣∣∫
R

uμ(t, x)ϕ(x)dx −
∫

R

uμ
0 (x)ϕ(x)dx

∣∣∣∣ ≤ C(t+
√
t)

and from (3.25) we deduce ∣∣∣∣∫
R

ū(t, x)ϕ(x)dx −Mϕ(0)
∣∣∣∣ ≤ C(t+

√
t)

by letting μ → ∞. Passing to the limit t → 0 and using classical approximation arguments, we deduce that
ū(0) = Mδ0 in the sense of bounded measures. Thus, we conclude that ū is the unique solution uM of equa-
tion (3.27), and that, in fact, the whole family {uμ}μ>0 converges to uM in C((0,∞),L1(R)).

Therefore, by (3.25), we have:
lim

μ→∞ ‖uμ(1) − uM (1)‖1 = 0

and setting μ =
√
t and making use of the self-similar form of uM (see e.g. [10]) we obtain

lim
t→∞ ‖uΔ(t) − uM (t)‖1 = 0. (3.30)

Finally, the convergence in the Lp-norms for p ∈ (1,∞) follows from (3.30), the decay estimate of Proposi-
tion 3.2 for p = ∞ and the Hölder inequality. In fact, we have:

‖uΔ(t) − uM (t)‖p ≤ (‖uΔ(t)‖∞ + ‖uM (t)‖∞)1−
1
p ‖uΔ(t) − uM (t)‖

1
p

1 ≤ o
(
t−

1
2 (1− 1

p )
)
.

Using the piecewise constant interpolation of uM , which we denote S(uM ), and (A.2) from the Appendix, the
case p = ∞ follows:

‖uΔ(t) − uM (t)‖∞ ≤ ‖uΔ(t) − S(uM (t))‖∞ + ‖S(uM (t)) − uM (t)‖∞
� ‖uΔ(t) − S(uM (t))‖ 1

2
2 ‖d+

Δx(uΔ(t) − S(uM (t)))‖ 1
2
2 +Δx‖uM,x(t)‖∞

� (‖uΔ(t) − uM (t)‖2 + ‖uM (t) − S(uM (t))‖2)
1
2 (‖d+

ΔxuΔ(t)‖2 + ‖d+
ΔxS(uM (t))‖2)

1
2

+Δx‖uM,x(t)‖∞
≤ o

(
t−

1
2 + t−

3
4 + t−1

)
.

Now the proof is complete. �

3.4. Convergence of the scheme

To conclude this section, let us prove that uΔ converges to the solution u of (1.5) as Δx→ 0.

Theorem 3.8. Let u0 ∈ L1(R) and N = N(Δx) ∈ N such that NΔx→ ∞ as Δx→ 0. The set of approximated
solutions {uΔ}Δx>0 given by (1.7) converges in C((0,∞),L1(R)) to the solution u of (1.5) as Δx→ 0.
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Proof. Following the same arguments as in Theorem 3.5, one shows that for every 0 < τ < T < ∞, the family
{uΔ}Δx>0 ⊂ C([τ, T ],L1(R)) is relatively compact. Thus, there exists a subsequence of it (which we will not
relabel) and a function ū ∈ C((0,∞),L1(R)) such that

uΔ −→ ū ∈ C([τ, T ],L1(R)), as Δx→ 0. (3.31)

We can also assume that uΔ(t, x) → ū(t, x) almost everywhere in (0,∞) × R as Δx→ 0.
Now, we take μ = 1 in equation (3.2), multiply it by a test function φ ∈ C∞

c ((0,∞) × R) and integrate it
over (0,∞) × R. We have:∫ ∞

0

∫
R

uΔ,t(t, x)φ(t, x)dxdt =
1
4

∫ ∞

0

∫
R

(
d+

Δx

(
uΔ(t, x)2

)
+ d−Δx

(
uΔ(t, x)2

))
φ(t, x)dxdt (3.32)

+Δx

∫ ∞

0

∫
R

d+
ΔxR

(
uΔ(t, x−Δx), uΔ(t, x)

)
φ(t, x)dxdt

+
∫ ∞

0

∫
R

d−Δx

(
d+

ΔxuΔ(t, x)
)
φ(t, x)dxdt

+
∫ ∞

0

∫
R

(
N∑

m=1

ωmuΔ(t, x−mΔx) − FΔ
0 uΔ(t, x) + FΔ

1 d
+
ΔxuΔ(t, x)

)
φ(t, x)dxdt.

Our claim is that, passing to the limit Δx→ 0, we obtain that ū is a weak solution of the equation (1.5). Using
classical arguments, thanks to (3.31), Propositions 3.2 and 3.3, we can take all the limits in (3.32), except for
the last term. Thus, it is sufficient to check that we can also pass to the limit Δx→ 0 in

LΔ(t) =
∫

R

(
N∑

m=1

ωmuΔ(t, x−mΔx) − FΔ
0 uΔ(t, x) + FΔ

1 d
+
ΔxuΔ(t, x)

)
φ(t, x)dx

=
∫

R

uΔ(t, x)

(
N∑

m=1

ωmφ(t, x +mΔx) − FΔ
0 φ(t, x) − FΔ

1 d
−
Δxφ(t, x)

)
dx.

First, let us first observe that

FΔ
0 =

N∑
m=1

e−mΔx(eΔx − 1) = 1 − e−NΔx → 1

and

FΔ
1 = Δx(eΔx − 1)

N∑
m=1

me−mΔx =
Δxe−NΔx(e(N+1)Δx − eΔx(N + 1) +N)

eΔx − 1
→ 1,

as long as N = N(Δx) is taken such that NΔx→ ∞ as Δx→ 0. Moreover, using (2.13) and that

(eΔx − 1)
1 − e−NΔx(1−iξ)

e(1−iξ)Δx − 1
→ 1

1 − iξ
, as Δx→ 0,

we obtain∣∣∣∣∣
N∑

m=1

ωmφ(t, x+mΔx) − K̃ ∗ φ(t, x)

∣∣∣∣∣ ≤
∫

R

|φ̂(t, ξ)|
∣∣∣∣∣

N∑
m=1

ωmeimΔxξ − K̂(−ξ)
∣∣∣∣∣ dξ

=
∫

R

|φ̂(t, ξ)|
∣∣∣∣(eΔx − 1)

1 − e−NΔx(1−iξ)

e(1−iξ)Δx − 1
− 1

1 − iξ

∣∣∣∣ dξ → 0,
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where K̃(z) = K(−z). Therefore

lim
Δx→0

LΔ(t) =
∫

R

ū(t, x)
(
K̃ ∗ φ(t, x) − φ(t, x) − φx(t, x)

)
dx.

It follows that ū satisfies

−
∫ ∞

0

∫
R

ūφt = −1
2

∫ ∞

0

∫
R

ū2φx +
∫ ∞

0

∫
R

ūφxx +
∫ ∞

0

∫
R

ū(K̃ ∗ φ− φ− φx).

so it is a weak solution of the equation in (1.5).
Now, it remains to identify the behavior of ū as t→ 0. Using similar estimates as in the proof for Lemma 3.6,

we can show that for every test function ϕ ∈ C∞
c (R) and Δx < 1, there exists C > 0, independent of Δx, such

that ∣∣∣∣∫
R

uΔ(t, x)ϕ(x)dx −
∫

R

u0
Δ(x)ϕ(x)dx

∣∣∣∣ ≤ C(t+
√
t).

and from (3.31) and the definition of u0
Δ in (1.6), we deduce∣∣∣∣∫

R

ū(t, x)ϕ(x)dx −
∫

R

u0(x)ϕ(x)dx
∣∣∣∣ ≤ C(t+

√
t)

by letting Δx → 0. Using an approximation argument we deduce that u(t) → u0 in L1(R) as t → 0. Thus,
we conclude that ū is the unique solution u of equation (1.5) and that, in fact, the whole family {uΔ}Δx>0

converges to u in C((0,∞),L1(R)). Now the proof is complete. �

4. Numerical experiments

The aim of this last section is to support the necessity of using large-time behavior preserving schemes for
the augmented Burgers equation. On the one hand, we show the importance of a numerical flux that does not
destroy the N-wave shape at the early stages. On the other, we emphasize the role of the correcting factors FΔ

0

and FΔ
1 in the truncation of the convolution. Note that the former phenomenon was already stated in [14] in

the hyperbolic case, while the latter is an original contribution of the present work.
Regarding the time discretization, we opt for the explicit Euler for its simplicity. Even if there is no guaran-

tee that the asymptotic behavior is preserved, numerical simulations exhibit a correct performance. Thus, we
consider it enough to illustrate the key points enumerated above. We need to take into account that there is a
stability condition that must be satisfied to ensure the convergence. It is easy to see (e.g. [6,12]) that a sufficient
condition is that

Δt

Δx
max

j
{u0

j} + 2ν
Δt

Δx2
+ cΔt

N∑
m=1

(m+ 1)ωm ≤ 1. (4.1)

Let us choose the following compactly supported initial data.

u0(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

10
sin
(x

2

)
, x ∈ [−π, 0],

− 1
20

sin(2x), x ∈ [0,
π

2
],

0, elsewhere

(4.2)

We take a mesh size Δx = 0.1. In order to avoid boundary issues, we choose a large enough spatial domain.
In Figure 1 we show the solution for ν = 10−2, c = 2 × 10−2 and θ = 1 at time t = 104, as well as the

corresponding asymptotic profile uM , defined in (1.12). As we can observe, the solution given by (1.7) is already
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Figure 1. Solution of ABE with ν = 10−2, c = 2 × 10−2 and θ = 1 at t = 104, using
scheme (1.7) discretized explicitly. We use EO (solid) and modified LF (dashed) numerical
fluxes for the nonlinearity, as well as EO without correcting factors (dotted), comparing the
solutions to the asymptotic profile (gray).
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Figure 2. Evolution of the norms of the difference between the asymptotic profile and the
solutions, multiplied by their corresponding rate t

1
2 (1− 1

p ). From left to right, L1, L2 and L∞
norms. We compare (1.7) (solid), modified LF numerical flux (dashed) and EO with FΔ

0 =
FΔ

1 = 1 (dotted).

quite close to uM . However, a non-suitable viscous numerical flux like, for instance, the modified Lax–Friedrichs
(e.g. [12], Chap. 3) can definitely modify the large-time behavior of the solution. In fact, in this case a viscosity
proportional to Δx2/Δt is being added to the equation of the asymptotic profile (see [14]), producing a more
diffused wave. Nevertheless, the discretization of the non-linear term is not the only one with the ability to
perturb the dynamics of the model. Let us emphasize that an inappropriate discretization of the non-local term
also leads to an incorrect asymptotic profile. Note that in Figure 1 we have the same scheme (1.7) but taking
FΔ

0 = FΔ
1 = 1, which produces a translated solution.

The convergence rates, given in (1.10), are shown in Figure 2. The graphic highlights the different perfor-
mances mentioned above. In fact, the solution given by (1.7) is the only one for which the norm is converging
to zero with the corresponding rates.

To conclude, let us remark again the importance of taking a well-behaving numerical flux. In this paper we
have proved that the asymptotic profile of (1.5) is a diffusive wave. Therefore, any sign-changing initial data
will lose its positive or negative part, depending on the sign of its mass. As in the case of the viscous Burgers
equation [19], simulations show that N-waves are intermediate states. Therefore, if the numerical viscosity
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Figure 3. Solution of ABE with ν = 10−4, c = 2 × 10−4 and θ = 1 at t = 100, using
scheme (1.7) discretized explicitly. We use Engquist–Osher (solid) and modified Lax–Friedrichs
(dashed) numerical fluxes for the nonlinearity.

is sufficiently large, the diffusion will become dominant much earlier than in the continuous model and destroy
these profiles. For instance, let us consider the case ν = 10−4 and c = 2×10−4. In Figure 3, we can observe that
at t = 100 the N-wave shape is not preserved if the modified Lax–Friedrichs flux is used, while Engquist–Osher
is able to keep the continuous dynamics. This numerical phenomenon was already observed in [14] in the context
of scalar conservation laws. It is interesting to see that the same pathology persist for viscous flows.

Appendix A. Auxiliary results

Here we prove some of the auxiliary results that we have used along the paper.

Lemma A.1. For any piecewise constant function w defined as in (1.6) and Δx > 0, the following holds:

‖w‖p(p+1)/(p−1)
p ≤ 4‖w‖2p/(p−1)

1 ‖d+
Δx|w|p/2‖2

2

for all p ∈ (1,∞).

Proof. First, let us define a piecewise linear function v as follows:

v(x) := wj
xj+1 − x

Δx
+ wj+1

x− xj

Δx
, x ∈ [xj , xj+1].

On the one hand, we know that
‖v‖2

∞ ≤ 2‖v‖2‖vx‖2. (A.1)

On the other hand, we have that:

‖v‖2
2 = Δx

∑
j∈Z

∫ 1

0

|wj(1 − x) + wj+1x|2 dx ≤ 1
2
Δx
∑
j∈Z

(|wj |2 + |wj+1|2
)

= ‖w‖2
2.

Moreover, it is easy to see that ‖vx‖2 = ‖d+
Δxw‖2. Therefore, we can obtain a similar inequality as (A.1) for w:

‖w‖2
∞ = ‖v‖2

∞ ≤ 2‖v‖2‖vx‖2 ≤ 2‖w‖2‖d+
Δxw‖2. (A.2)
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Applying this inequality to |w|p/2, we deduce:

‖w‖2p
∞ = ‖|w|p/2‖4

∞ ≤ 4‖|w|p/2‖2
2‖d+

Δx|w|p/2‖2
2 = 4‖w‖p

p‖d+
Δx|w|p/2‖2

2.

Thus, combining this with
‖w‖2p2/(p−1)

p ≤ ‖w‖2p
∞‖w‖2p/(p−1)

1 ,

we conclude
‖w‖p(p+1)/(p−1)

p ≤ 4‖w‖2p/(p−1)
1 ‖d+

Δx|w|p/2‖2
2.

�

Proof of Lemma 3.1. For the first assertion, we simply integrate (3.2) over the whole space domain. We observe
that all terms on the right hand side vanish, so

d
dt

∫
R

uμ(t, x)dx = 0, ∀t ≥ 0,

for all μ > 0 and, hence, the mass is conserved. Using the definition of uμ, we conclude∫
R

uμ(t, x)dx =
∫

R

uμ(0, x)dx =
∫

R

μu0
Δ(μx)dx =

∫
R

u0
Δ(x)dx.

For the contractivity we prove that for any u0, v0 ∈ L1(R), their corresponding solutions uμ and vμ satisfy

‖uμ − vμ‖1 ≤ ‖uμ
0 − vμ

0 ‖1. (A.3)

For the sake of clarity, let us define wμ = uμ − vμ. Clearly, wμ verifies

wμ
t (t, x) =

1
4

(
d+

Δx/μ

(
uμ(t, x)2

)
+ d−Δx/μ

(
uμ(t, x)2

)− d+
Δx/μ

(
vμ(t, x)2

)− d−Δx/μ

(
vμ(t, x)2

))
+Δxd+

Δx/μR

(
uμ

(
t, x− Δx

μ

)
, uμ(t, x)

)
−Δxd+

Δx/μR

(
vμ

(
t, x− Δx

μ

)
, vμ(t, x)

)
+ d−Δx/μ

(
d+

Δx/μw
μ(t, x)

)
+ μ2

N∑
m=1

ωmw
μ

(
t, x−m

Δx

μ

)
− μ2FΔ

0 w
μ(t, x) + μFΔ

1 d
+
Δx/μw

μ(t, x).

We multiply it by sign(wμ) and integrate it on all R. Using the definition of R in (3.3) and reordering the terms
we get

d
dt

∫
R

|wμ(x)|dx (A.4)

=
1
4

∫
R

d+
Δx/μ

(
uμ(x)2 + uμ

(
x− Δx

μ

)2

+ uμ(x)|uμ(x)| − uμ

(
x− Δx

μ

)
|uμ

(
x− Δx

μ

)
|) sign(wμ(x))dx

− 1
4

∫
R

d+
Δx/μ

(
vμ(x)2 + vμ

(
x− Δx

μ

)2

+ vμ(x)|vμ(x)| − vμ(x− Δx

μ
)|vμ(x− Δx

μ
)|
)

sign(wμ(x))dx

+
∫

R

d−Δx/μ(d+
Δx/μ(wμ(x))) sign(wμ(x))dx

+ μ2
N∑

m=1

ωm

∫
R

(
wμ

(
x−m

Δx

μ

)
− wμ(x)

)
sign(wμ(x))dx + μFΔ

1

∫
R

d+
Δx/μw

μ(t, x) sign(wμ(x))dx

= I1 + I2 + I3 + I4 + I5.
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For i = 0, 1, let us denote W±
i = {x ∈ R : ±wμ(x− iΔx) > 0} and W 0

i = {x ∈ R : wμ(x− iΔx) = 0}. Now we
can split the domains of the integrals into several parts, according to the sign of wμ. On the one hand, we have:

I1 + I2 = −1
4

∫
R

(
uμ(x)2 + uμ(x)|uμ(x)|)d−Δx/μ(sign(wμ(x)))dx

− 1
4

∫
R

(
uμ

(
x− Δx

μ

)2

− uμ

(
x− Δx

μ

) ∣∣∣∣uμ

(
x− Δx

μ

)∣∣∣∣
)
d−Δx/μ(sign(wμ(x)))dx

+
1
4

∫
R

(
vμ(x)2 + vμ(x)|vμ(x)|)d−Δx/μ(sign(wμ(x)))dx

+
1
4

∫
R

(
vμ

(
x− Δx

μ

)2

− vμ

(
x− Δx

μ

) ∣∣∣∣vμ

(
x− Δx

μ

)∣∣∣∣
)
d−Δx/μ(sign(wμ(x)))dx

= − μ

2Δx

∫
W−

0 ∩W+
1

(
uμ(x)2 + uμ(x)|uμ(x)| − vμ(x)2 − vμ(x)|vμ(x)|) sign(wμ(x))dx

− μ

2Δx

∫
W−

0 ∩W+
1

(
vμ

(
x− Δx

μ

)2

− vμ

(
x− Δx

μ

) ∣∣∣∣vμ

(
x− Δx

μ

)∣∣∣∣
− uμ

(
x− Δx

μ

)2

+ uμ

(
x− Δx

μ

)∣∣∣∣uμ

(
x− Δx

μ

)∣∣∣∣
)

sign
(
wμ

(
x− Δx

μ

))
dx

− μ

2Δx

∫
W+

0 ∩W−
1

(
uμ(x)2 + uμ(x)|uμ(x)| − vμ(x)2 − vμ(x)|vμ(x)|) sign(wμ(x))dx

− μ

2Δx

∫
W+

0 ∩W−
1

(
vμ

(
x− Δx

μ

)2

− vμ

(
x− Δx

μ

) ∣∣∣∣vμ

(
x− Δx

μ

)∣∣∣∣
− uμ

(
x− Δx

μ

)2

+ uμ

(
x− Δx

μ

)∣∣∣∣uμ

(
x− Δx

μ

)∣∣∣∣
)

sign
(
wμ

(
x− Δx

μ

))
dx

− μ

4Δx

∫
W 0

1

(
uμ(x)2 + uμ(x)|uμ(x)| − vμ(x)2 − vμ(x)|vμ(x)|) sign(wμ(x))dx

− μ

4Δx

∫
W 0

0

(
vμ

(
x− Δx

μ

)2

− vμ

(
x− Δx

μ

) ∣∣∣∣vμ

(
x− Δx

μ

)∣∣∣∣
− uμ

(
x− Δx

μ

)2

+ uμ

(
x− Δx

μ

)∣∣∣∣uμ

(
x− Δx

μ

)∣∣∣∣
)

sign
(
wμ

(
x− Δx

μ

))
dx.

Using that (
b(b+ |b|) − a(a+ |a|)) sign(b− a) ≥ 0, ∀a, b ∈ R,

and that (
a(a− |a|) − b(b− |b|)) sign(b− a) ≥ 0, ∀a, b ∈ R,

we conclude that I1 + I2 ≤ 0. On the other hand, since∫
R

wμ

(
x−m

Δx

μ

)
sign(wμ(x))dx ≤

∫
R

|wμ(x)|dx, ∀m ∈ Z,

it is immediate that

I3 =
μ2

Δx2

∫
R

(
wμ

(
x− Δx

μ

)
+ wμ

(
x+

Δx

μ

)
− 2wμ(x)

)
sign(wμ(x))dx ≤ 0.



2396 L.I. IGNAT AND A. POZO

Moreover, for the same reason, we deduce that I4 ≤ and I5 ≤ 0. Therefore, from (A.4) we get that

d
dt

∫
R

|wμ(x)|dx ≤ 0, (A.5)

This guarantees the contractive property (A.3). �

Proof of Lemma 3.4. Let us consider the Fourier transform of w as

ŵ(ξ) =
∫

R

e−ixξw(x)dx, ξ ∈ R,

and the discrete Fourier transform of the sequence {wj}j∈Z as

[

w(ξ) = Δx
∑
j∈Z

wje−ijΔxξ , ξ ∈
[
− π

Δx
,
π

Δx

]
·

It is also clear that for a piecewise constant function w defined as in (1.6)

ŵ(ξ) =
2 sin( ξΔx

2 )
ξΔx

[

w(ξ) and d̂+
Δxw(ξ) =

eiξΔx − 1
Δx

ŵ(ξ).

Now, we know that

‖|D|sw‖2
2 =

∫
R

|ξ|2s|ŵ(ξ)|2dξ =
∫ π/Δx

−π/Δx

|ξ|2s|ŵ(ξ)|2dξ +
∑
j 	=0

∫ (2j+1)π/Δx

(2j−1)π/Δx

|ξ|2s|ŵ(ξ)|2dξ. (A.6)

For each j �= 0, we have

∫ (2j+1)π/Δx

(2j−1)π/Δx

|ξ|2s|ŵ(ξ)|2dξ =
∫ (2j+1)π/Δx

(2j−1)π/Δx

|ξ|2s| [

w(ξ)|2
∣∣∣∣∣∣
2 sin

(
ξΔx

2

)
ξΔx

∣∣∣∣∣∣
2

dξ

=
∫ π/Δx

−π/Δx

∣∣∣ξ + 2j
π

Δx

∣∣∣2s

| [

w(ξ)|2
∣∣∣∣∣2 sin( ξΔx

2 + jπ)
(ξ + 2j π

Δx )Δx

∣∣∣∣∣
2

dξ

=
∫ π/Δx

−π/Δx

∣∣∣∣ 2
Δx

sin
(
ξΔx

2

)∣∣∣∣2s

| [

w(ξ)|2
∣∣∣∣ 2
Δx

sin
(
ξΔx

2

)∣∣∣∣2−2s ∣∣∣ξ + 2j
π

Δx

∣∣∣2s−2

dξ

≤
∫ π/Δx

−π/Δx

|ξ|2s| [

w(ξ)|2 |ξ|2−2s∣∣ξ + 2j π
Δx

∣∣2−2s dξ

≤ 1
|2|j| − 1|2−2s

∫ π/Δx

−π/Δx

|ξ|2s| [

w(ξ)|2dξ.

Therefore, replacing this in (A.6) and using that 0 < s < 1
2 , we get

‖|D|sw‖2
2 ≤

∫ π/Δx

−π/Δx

|ξ|2s|ŵ(ξ)|2dξ +
∑
j 	=0

1
|2|j| − 1|2−2s

∫ π/Δx

−π/Δx

|ξ|2s| [

w(ξ)|2dξ

=
∫ π/Δx

−π/Δx

|ξ|2s

∣∣∣∣∣2 sin( ξΔx
2 )

ξΔx

∣∣∣∣∣
2

| [

w(ξ)|2dξ +
∑
j 	=0

1
|2|j| − 1|2−2s

∫ π/Δx

−π/Δx

|ξ|2s| [

w(ξ)|2dξ

�
∫ π/Δx

−π/Δx

|ξ|2s| [

w(ξ)|2dξ.
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On the other hand, using analogous arguments, we also have

‖d+
Δxw‖2

2 =
∫

R

∣∣∣∣eiξΔx − 1
Δx

∣∣∣∣2 |ŵ(ξ)|2dξ =
∫

R

∣∣∣∣eiξΔx − 1
Δx

∣∣∣∣2
∣∣∣∣∣2 sin( ξΔx

2 )
ξΔx

∣∣∣∣∣
2

| [

w(ξ)|2dξ

�
∫ π/Δx

−π/Δx

∣∣∣∣eiξΔx − 1
Δx

∣∣∣∣2 | [

w(ξ)|2dξ �
∫ π/Δx

−π/Δx

|ξ|2 | [

w(ξ)|2dξ

Finally, we conclude

‖w‖2
Hs(R) =

∫
R

(1 + |ξ|2s)|ŵ(ξ)|2dξ =
∫

R

|ŵ(ξ)|2dξ +
∫

R

|ξ|2s|ŵ(ξ)|2dξ

�
∫ π/Δx

−π/Δx

| [

w(ξ)|2dξ +
∫ π/Δx

−π/Δx

|ξ|2s| [
w(ξ)|2dξ

�
∫ π/Δx

−π/Δx

(1 + |ξ|2s)| [

w(ξ)|2dξ

�
∫ π/Δx

−π/Δx

(1 + |ξ|2)| [
w(ξ)|2dξ � (‖w‖2

2 + ‖d+
Δxw‖2

2). �

Lemma A.2. Given any a ∈ (0, 1) and b ∈ C with |b| = 1, the following inequality holds:∣∣∣∣∣
N∑

m=1

am(bm − 1) +

(
N∑

m=1

mam

)(
1
b
− 1
)∣∣∣∣∣ ≤ |b− 1|2 a

(1 − a)3
·

Proof. Using that |b| = 1, we have:∣∣∣∣∣
N∑

m=1

am(bm − 1) +

(
N∑

m=1

mam

)(
1
b
− 1
)∣∣∣∣∣ =

∣∣∣∣∣
N∑

m=1

amb(bm − 1) −
(

N∑
m=1

mam

)
(b− 1)

∣∣∣∣∣
= |b− 1|

∣∣∣∣∣
N∑

m=1

am
m−1∑
k=0

(bk+1 − 1)

∣∣∣∣∣ = |b− 1|2
∣∣∣∣∣∣

N∑
m=1

am
m−1∑
k=0

k∑
j=0

bj

∣∣∣∣∣∣
≤ 1

2
|b− 1|2

∞∑
m=1

m(m+ 1)am = |b− 1|2 a

(1 − a)3
. �
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