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A FINITE VOLUME METHOD FOR UNDERCOMPRESSIVE SHOCK WAVES
IN TWO SPACE DIMENSIONS ∗
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Abstract. Undercompressive shock waves arise in many physical processes which involve multiple
phases. We propose a Finite Volume method in two space dimensions to approximate weak solutions
of systems of hyperbolic or hyperbolic-elliptic conservation laws that contain undercompressive shock
waves. The method can be seen as a generalization of the spatially one-dimensional and scalar approach
in [C. Chalons, P. Engel and C. Rohde, SIAM J. Numer. Anal. 52 (2014) 554–579]. It relies on a
moving mesh ansatz such that the undercompressive wave is represented as a sharp interface without
any artificial smearing. It is proven that the method is locally conservative and recovers planar traveling
wave solutions exactly. To demonstrate the efficiency and reliability of the new scheme we test it on
scalar model problems and as an application on compressible liquid-vapour flow in two space dimensions.
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1. Introduction

We consider weak solutions for systems of conservation laws. These systems are supposed to be equipped
with an entropy-entropy flux pair such that the entropy is strictly convex in a state space that is typically
split into two disjoint open subsets. As a consequence one has strict hyperbolicity in the complete state space.
Depending on the characteristic fields, weak solutions can contain undercompressive shock waves that connect
states in the two disjoint subsets. These can be still compatible with the entropy-entropy flux pair, i.e., they
satisfy an appropriate entropy inequality. While undercompressive waves might be essential in many applications
(see below) and consistent with the second law of thermodynamics, the entropy solution concept does not
ensure anymore well-posedness of associated initial boundary value problems. Well-posedness can be restored if
additional constraints are put on the undercompressive shock wave. If the constraints take the form of algebraic
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jump conditions these are denoted as kinetic relations. We refer to [24] for a comprehensive overview on well-
posedness results for hyperbolic problems with undercompressive waves.

Before we turn to the main issue of this paper, that is the numerical solution of hyperbolic systems with
undercompressive waves, let us mention some applications where undercompressive shock waves play a decisive
role. The dynamics of multiphase materials with phase change, it may be in fluids or likewise in solids, can
be modelled by hyperbolic conservation laws such that the phase boundaries are represented by undercompres-
sive shock waves. In this context kinetic relations have been introduced for the first time, see e.g. [1] for phase
transitions in solids and for a more general context including liquid-vapour phase [38]. Other examples can be
found in the modelling of thin films [2], pedestrians’ dynamics [11], sedimentary waves [21] or overshoot waves
for infiltration in porous media [39].

The numerical approximation of problems with undercompressive waves is a complex issue. Exact solutions
even for scalar, one-dimensional problems are typically neither monotone nor total-variation diminishing such
that standard approaches like the Finite Volume or Discontinuous Galerkin schemes with monotone numerical
fluxes can hardly be used. Undercompressive waves can occur as limit solutions of higher-order regularized
conservation laws when the regularization parameter vanishes. If the regularization parameter is substituted by
a mesh parameter a consistent discretization for problems with undercompressive shock waves can be motivated.
This type of schemes has been developed in e.g. [18, 25]. Alternatively, schemes can use the kinetic relation
directly such that the undercompressive shock wave is represented as a sharp interface and the whole problem
is understood as a free boundary value problem. The Glimm-type ansatz in [23], see also [7], belongs to this
class. Deterministic versions that use an extra tracking of the undercompressive waves have been introduced
in [4, 5, 29, 42]. The drawback of all these schemes is the fact that they are not conservative. Conservative
Finite Volume type methods have been suggested in [3]. These schemes use a special numerical flux close to an
undercompressive wave (and standard monotone fluxes away from the wave).

In [6] a conservative method has been suggested that relies also on the tracking idea but uses a moving mesh.
In contrast to the aforementioned methods convergence for quite general initial value problems has been shown.
Moreover the approach can be extended to the systems’ case and to multiple space dimensions. It is the main
objective of the paper at hand to pursue these generalizations for two space dimensions in the framework of the
Finite Volume method. The key ingredients are the use of moving meshes and exploiting the exact dynamics
across undercompressive waves. The moving mesh approach in this paper is different from standard uses where
the mesh is changed globally to reduce the error or to get aligned with appropriate transport directions (see
Section 3.1 for a more detailed discussion). Here we intend to track the mesh only locally around the discrete
interface and try to avoid any global changes of the mesh that effect the bulk domains. According to the choosen
solution concept, only phenomena where the interface consists of closed non-intersecting curves are treated. This
excludes the numerical treatment of interface - interface collision or phase extinction.

Let us finally note that there is not much numerical work for undercompressive shock waves in multiple
space dimensions, which is usually also restricted to specific applications. The evolution of phase boundaries in
solids is analyzed in [19,30] by a level set approach. In [13,14] the ghostfluid method is applied to compressible
liquid-vapour flow. The paper [20] is devoted to the tracking of undercompressive overshoot waves in porous
media where mixed phase volumes are allowed. Equally, mixed component cells appear in the moving-mesh
approach of [9] where the dynamics of compressible multicomponent flow are computed.

The paper’s content is structured in the following way. In Section 2 we introduce first a generic hyperbolic
two-phase model and present then some specific examples. The examples include a scalar model problem as well
as isothermal liquid-vapour flow. Next we present in Section 3 the geometric setting for a Finite Volume moving
mesh method and the complete numerical method to track undercompressive waves. Section 4 is devoted to
basic analytical statements, in particular it is shown that the new numerical method is locally conservative and
consistent with planar traveling waves. In Section 5 we validate the scheme carefully and present computations
for the examples introduced in Section 2. A short summary and some conclusions are given in Section 6.
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2. Mathematical models

In this section we present the mathematical problems which can be solved by the Finite Volume moving mesh
method which will be introduced in the subsequent Section 3. We start with a generic two-phase problem in
Section 2.1. In particular the numerical scheme is formulated in terms of this general problem. To illustrate the
generic problem and to prepare Section 5 on validation of the numerical method we give instances of the generic
two-phase problem in Section 2.2.

2.1. A generic two-phase problem

For two convex sets P−, P+ ⊂ R
m, m ∈ N, with P− ∩ P+ = ∅ let the state space U = P− ∪ P+ ⊂ R

m be
given. In the sequel we will identify the sets P−, P+ as ±-phases. We need also a mapping π that distinguishes
different phases and is defined by

π : U → {−, +},u �→
{
− if u ∈ P−,

+ if u ∈ P+.
(2.1)

Let flux functions f1, f2 ∈ C1(U , Rm) be given. Then we consider for some time T ∈ (0,∞) and DT = R
2×(0, T )

the initial value problem for a system of conservation laws with unknown

u = u(t,x = (x1, x2)T ) : [0, T ) × R
2 → P− ∪ P+, (2.2)

given by

ut + (f1(u))x1
+ (f2(u))x2

= 0 in DT , (2.3)

u(0, ·) = u0 in R
2. (2.4)

Thereby u0 : R
2 → U is the given initial function assumed to be bounded.

A function u ∈ L∞((0, T ) × R
2,U) is called a weak solution of the initial value problem (2.3), (2.4) in DT if∫ T

0

∫
R2

uφt + f1(u)φx1 + f2(u)φx2 dV dt = −
∫

R2
u0φ(0,x) dV

holds for all φ ∈ C∞
0 ([0, T )× R

2, R).
We furthermore assume that the system (2.3) is equipped with an entropy-entropy flux pair (η, (q1, q2)) :

U → R
3. Here the entropy function η ∈ C2(U , R) is strictly convex and the entropy fluxes qi ∈ C1(U , R), i = 1, 2,

satisfy the compatibility relation ∇ηT Dfi = ∇qT
i in U . The existence of an entropy pair implies

n1Df1(u) + n2Df2(u) is diagonalizable in R for all u ∈ U and all n=(n1, n2)T ∈ S1. (2.5)

Note that condition (2.5) renders the system (2.3) to be hyperbolic. A weak solution u ∈ L∞((0, T )×R
2,U) is

called an entropy solution of (2.3), (2.4) in DT if∫ T

0

∫
R2

η(u)φt + q1(u)φx1 + q2(u)φx2 dV dt ≥ −
∫

R2
η(u0)φ(0,x) dV (2.6)

holds for all φ ∈ C∞
0 ([0, T )× R

2, R), φ ≥ 0.
In this paper we are interested in entropy solutions u that split the plane R

2 for each time t ∈ [0, T ) in two
disjunct ±-phase domains D−(t), D+(t) and a curve Γ (t) such that for almost all x ∈ R

2

πu(t,x) = ± ⇒ x ∈ D±(t) (2.7)
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and Γ (t) = D−(t) ∩D+(t) hold. We call D±(t) the ±-phase domain and Γ (t) the sharp interface. For x ∈ Γ (t)
let n(t,x) ∈ S1 denote the normal vector of Γ (t) that points into D+(t). Let the function u : DT → U be
regular enough such that for (t,x) ∈ DT the traces

u±(t,x) := lim
ε→0,ε>0

u(t,x ± εn(t,x))

exist. Then we define the interfacial jump

[[u(t,x)]] = u+(t,x) − u−(t,x).

We denote by r(t,x) the speed of Γ (t) in direction n(t,x) = (n1(t,x), n2(t,x))T ∈ S1. Necessary conditions for
the function u to be a weak solution of (2.3), (2.4) are the Rankine−Hugoniot conditions

−r(t, ·) [[u(t, ·)]] + [[n1f1(u(t, ·)) + n2f2(u(t, ·))]] = 0. (2.8)

Additionally we require for some function K : P−×P+×R → R that the solution u satisfies the kinetic relation

K(u−(t, ·),u+(t, ·), r(t, ·)) = 0. (2.9)

We give in Section 2.2 examples for physically relevant kinetic relations. Let us summarize our notion of solution
for the overall free boundary problem in the following definition.

Definition 2.1 (Sharp interface solution). Let a smooth curve Γ0 and disjunct domains D±,0 with R
2 =

D+,0 ∪ D−,0 ∪ Γ0 be given. Furthermore let u0 ∈ L∞(R2,U) be such that the range of u0|D±(0) is in P±.
Furthermore let an entropy-entropy flux pair (η, (q1, q2)) for (2.3) and a kinetic relation (2.9) be given.

Then a function u ∈ C0([0, T ); L∞(R2)), ±-phase domain families {D±(t)}t∈[0,T ) and a sharp-interface family
{Γ (t)}t∈[0,T ) are called an entropy-compatible sharp-interface solution of (2.3), (2.4) if the following
conditions are satisfied.

(i) For t = 0 we have D±(0) = D±,0, Γ (0) = Γ0 and for each t ∈ (0, T ) we have R
2 = D−(t) ∪ D+(t) ∪ Γ (t)

with disjunct two-dimensional ±-phase domains D±(t) and the curve Γ (t).
(ii) The condition (2.7) holds for almost all (t,x) ∈ DT .
(iii) The function u is an entropy solution of (2.3), (2.4) in DT .
(iv) For each t ∈ (0, T ) the function u satisfies the trace conditions (2.8), (2.9).

Remark 2.2.

• We have restricted ourselves in Definition 2.1 to smooth interface motion. However, the solution concept
allows for discontinuous solutions (shock waves) in the ±-phase domains. Note that condition (iv) gives an
additional implicit regularity requirement on the solution, i.e. the traces are supposed to exist.

• Definition 2.1 excludes several phenomena, for example the interface-interface interaction. In the case where
two interfaces interact we get at collision time t two phase domains, such that the interface curve defined by
the set Γ (t) = D−(t)∩D+(t) is not smooth and in particular conditions (2.8), (2.9) cannot be defined in the
classical sense (without having a properly defined normal). The same problem appears for phase extinctions,
where the interface curve shrinks to a singular point.
Entropy-compatible sharp-interface solutions are only defined on R

2. For bounded domains, the interface
- boundary interaction has to be prescribed by an additional condition like in the fluid mechanical case
Young’s law for contact angles in equilibria.

For our numerical approach the Riemann problem for the one-dimensional version of (2.3) will be important.
Fix some n ∈ S1 and define

f(u) = n1f1(u) + n2f2(u), u ∈ U . (2.10)
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Figure 1. Sketch of a Riemann pattern with phase transition wave with speed σ. The adjacent
states are u∓ ∈ P∓.

Then for states U± ∈ P±, the Riemann problem is the special initial value problem

wt + (f(w))x = 0 in (0,∞) × R , w(0, x) =

{
U− if x < 0,

U+ if x > 0,
(2.11)

with unknown w = w(t, x) ∈ U . It is a reasonable assumption that the exact entropy solution w of (2.11) is a
self-similar function that connects the left state U− and the right state U+ by at most m elementary waves (i.e.,
shock waves, contact waves, rarefaction waves, attached shock-rarefaction waves, each of them within either P−
or P+) and exactly one phase transition wave. The phase transition wave is a shock wave that connects a state
u− in P− with a state u+ in P+. Across this wave the conditions (2.8), (2.9) have to hold (see [24] for a general
theory and [8,10,16,26,29] for specific cases). The range of the function w is in P− left to the phase transition
and in P+ otherwise (see Fig. 1 for some illustration). In the following, we do not need to know the exact
Riemann problem solution but only the speed of the phase transition, as well as the two adjacent values. This
might be even given by an approximative solver [5,32]. To combine both cases we introduce the notation of an
interface solver.

Definition 2.3 (Interface solver). Let U± ∈ P± and f from (2.10) be given. For some kinetic relation (2.9) the
mapping Rf : P− × P+ → R × P− × P+ with

Rf (U−,U+) := (σ,u−,u+),

is called an interface solver for (2.3) if the following conditions hold.

(i) Rf is a continuous mapping.
(ii) The states u± ∈ P± and σ satisfy

−σ(u− − u+) + f(u−) − f(u+) = 0, K(u−,u+, σ) = 0. (2.12)

(iii) If there is a r ∈ R such that U−, U+ fulfill (2.12) with σ = r then Rf (U−,U+) = (r,U−,U+).

We call σ the speed of the interface.

2.2. Applications

In this section we present two examples for the generic two-phase problem from Section 2.1. These examples
are a scalar model problem as well as the isothermal Euler equations for compressible liquid-vapour flow. Both
models will be used for testing the new algorithm in Section 5.
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2.2.1. A scalar model problem

As an introductory example we will start with a simple scalar model problem, which consists of the cubic
flux f1(u) = u3 in x1-direction and zero flux f2(u) = 0 in x2-direction, i.e.

ut + (u3)x1 + (0)x2 = 0, u(0, ·) = u0. (2.13)

The model problem can be equipped with e.g. the entropy-entropy flux pair

η(u) =
1
2
u2, (q1(u), q2(u)) =

(
3
4
u4, 0

)
·

The ±-phases are identified with the regions of concavity/convexity of the cubic flux:

P− = (−∞, 0), P+ = (0,∞).

Shock waves that connect states in different phases can be undercompressive. The one-dimensional prob-
lem (2.11) that will appear at the phase boundary has always a flux of the shape n1u

3 for n1 ∈ [−1, 1] which is
either convex-concave or concave-convex. A suitable kinetic relation following [26] is given as

K(u−, u+, s) = u− − ϕ(u+) with ϕ(u) = −0.75u. (2.14)

For this kinetic relation and n ∈ S1 an interface solver Rn1f1+n2f2 can be computed as in [24] according to

Rn1f1+n2f2(U−, U+) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
a(ϕ(U+), U+,n), ϕ(U+), U+

)
if n1 < 0 and U− < ϕ#(U+),(

a(U−, ϕ−1(U−),n), U−, ϕ−1(U−)
)

if n1 ≥ 0 and a(U−, ϕ−1(U−),n) < a(U−, U+,n),(
a(U−, U+,n), U−, U+

)
otherwise,

with

ϕ#(u) = −0.25u and a(u−, u+,n) =

⎧⎨
⎩

n13(u−)2 if u− = u+

n1
(u−)3−(u+)3

u−−u+
otherwise.

(2.15)

2.2.2. Compressible liquid-vapour flow

The isothermal Euler equations with non-monotone pressure function govern the dynamics of ideal liquid-
vapour flow. The corresponding initial value problem for initial density function ρ0 and momentum function
m0 reads as ⎛

⎝ ρ
m1

m2

⎞
⎠

t

+

⎛
⎜⎜⎜⎜⎝

m1

m2
1

ρ
+ p(ρ)

m1m2

ρ

⎞
⎟⎟⎟⎟⎠

x1

+

⎛
⎜⎜⎜⎜⎝

m2

m1m2

ρ
m2

2

ρ
+ p(ρ)

⎞
⎟⎟⎟⎟⎠

x2

= 0 in DT ,

(ρ(0, ·),m(0, ·)) = (ρ0,m0) in R
2.

(2.16)

The unknowns are the density ρ = ρ(t,x) and the momentum m = m(t,x) = (m1(t,x), m2(t,x))T . The given
pressure function p is chosen in Van-der-Waals form

p : (0, B−1) → R
+, ρ �→ Rθ

ρ

1 − Bρ
− Aρ2, (2.17)

with positive constants A, B, θ, R > 0, where the fixed temperature θ is chosen in the subcritical regime such
that p is non-monotone (see Fig. 2). We denote by ρspinod

liq < ρspinod
vap the extreme values of the interval where
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ρ

p(ρ)

ρ
spinod
liq

ρ
spinod
vap

Figure 2. Pressure function p = p(ρ).

the pressure function p is decreasing. The density (as well as approximations of it) must not take values in the
interval (ρspinod

liq , ρspinod
vap ), i.e.

ρ : [0, T ) × R
2 →

(
0, ρspinod

liq

]
∪
[
ρspinod
vap , B−1

)
.

Therefore we define liquid and vapour phases according to

P− =
(
0, ρspinod

liq

]
× R

2, P+ =
[
ρspinod
vap , B−1

)
× R

2. (2.18)

The canonical entropy-entropy flux pair for the isothermal Euler equations is given as

η(ρ,m) = ρΨ(ρ) +
|m|2

2ρ
, q(ρ,m) = (q1(ρ,m), q2(ρ,m)) =

(
m1

ρ
(η + p(ρ)),

m2

ρ
(η + p(ρ))

)
,

with (the Helmholtz free energy Ψ defined from) Ψ ′(ρ) = p(ρ)
ρ2 . A suitable kinetic relation (see [38]) that will

also be used in the numerical computations is

K((ρ−,m−), (ρ+,m+), r) = μ(ρ−) + 0.5
(

m−
ρ−

· n− r

)2

− μ(ρ+) − 0.5
(

m+

ρ+
· n − r

)2

+ k∗j,

with the Gibb’s free energy μ given through μ′ = p′/ρ, relative mass flux j = ρ−(m−
ρ−

·n−r) and mobility k∗ > 0.
Actually it can be shown (see e.g. [32]) that this choice is accordance with the second law of thermodynamics
and fixes the amount of entropy condition across phase boundaries to be −k∗j2, namely

−r(η(ρ−,m−) − η(ρ+,m+)) + (q(ρ−,m−) · n− q(ρ+,m+) · n) = −k∗j2.

For the numerical tests we choose k∗ = 3.
The construction of an interface solver that allows for entropy compatible sharp-interface solutions has just

recently been established in full generality (see [10,41] for the framework). Since the details of the construction
are not important in the sequel we skip them refering to [41]. Note that we restrict ourselves in this presentation
to cases where surface tension is negligible (e.g. for temperature θ close to the critical temperature). However,
Riemann solvers that account for surface tension are available [32] and could also be used without altering the
concept of the algorithm.

2.2.3. Compressible multifluid flow

We consider the dynamics of an isothermal mixture of several immiscible fluids. For two fluids in one space
dimension the Euler like equations are⎛

⎝ ρ1

ρ2

ρv

⎞
⎠

t

+

⎛
⎝ ρ1v

ρ2v
ρv2 + p

⎞
⎠

x

= 0 in DT . (2.19)
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The unknowns are the densities ρ1 = ρ1(t, x), ρ2 = ρ2(t, x) of the two fluids and the momentum ρv =
ρ(t, x)v(t, x). The density ρ of the mixture is given as ρ = ρ1 + ρ2. For the mixture of two perfect gases,
the pressure function is described by the ideal gas law

p = (R1ρ1 + R2ρ2)T,

where T is the temperature and R1, R2 two species dependent constants. The model at hand does in fact not
fit into the generic two-phase model, since there is no partitioning of the state space U into two phase domains.
Nevertheless, a typical Riemann wave pattern contains a contact discontinuity separating the two fluids [27].
This contact discontinuity can be understood as a limiting case of an undercompressive shock wave. The new
algorithm, that will be presented in Section 3, can be applied to (2.19) by replacing the interface solver from
Definition 2.3 by a solver, that returns velocity σ(= v) as well as left and right hand state U± at the contact
discontinuity. The exact tracking of the contact discontinuity then ensures, that no pressure oscillation appear
at the contact line.

3. A Finite Volume moving mesh method

The numerical method we will present in the following for solving two-phase problems (2.3) will be a combi-
nation of suitable Finite Volume methods on moving meshes motivated in Section 3.1.1 and an interface tracking
approach described in Section 3.1.2. Proceeding in this way dynamical remeshing of the mesh is required, that
will be introduced in Section 3.1.3. Finally the new Finite Volume moving mesh method for generic two-phase
problems is summarized in Section 3.2.

3.1. Moving meshes, tracking and remeshing

The basis of the new algorithm will be the Finite Volume moving mesh method for hyperbolic conservation
laws, since it enables us to keep track of the interface curve between the ±-phases if the motion of the mesh
edges is chosen appropriately.

One of the first works on Finite Volume moving mesh methods for conservation laws in one space dimension
was presented by Harten and Hyman [17]. They have chosen the motion of the mesh points in a way such that
the numerical diffusion (caused by averaging in the Godunov method) is minimized which results in a tracking
of the discontinuity for isolated shock waves or contact discontiuities. In [34] moving mesh methods were also
used, but the motion of the mesh was chosen with the aid of a so called monitor function which is a measure for
the numerical error. Points of the mesh obey a partial differential equation including the monitor function and
accumulate in regions with a high error. Analytical results including proofs of convergence for one-dimensional
moving mesh methods are presented in [33].

The extension of the method to the two-dimensional case was done in [36] and includes several numeri-
cal examples. Some extensions and applications of the two-dimensional moving mesh method were studied in
e.g. [12, 28, 31, 35].

The application of moving mesh schemes for the tracking of undercompressive shock waves has been done
in [42] for phase transitions in solid materials as well as in [6] for scalar conservation laws with convex-concave
flux functions. Both publications present a conservative scheme in (only) one space dimension.

In the following section we shortly review the moving mesh method in two space dimensions which we will
use later in order to resolve undercompressive shock waves.

3.1.1. Finite Volume schemes on moving meshes

Let for N ∈ N a time partition t0 = 0 < t1 < . . . < tN = T of [0, T ] be given. We fix some n ∈ {0, . . . , N −1}.
In order to motivate a Finite Volume scheme on moving meshes for conservation laws (2.3) we consider a prism-
like space-time cell [0, T ]× Ω ⊃ Kst = {(t,x) | tn ≤ t ≤ tn+1,x ∈ K(t)}, see Figure 3, with 0 ≤ tn < tn+1 ≤ T ,
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x1
tn

tn+1

t

x2
Kst

K(tn)

K(tnn+1)

n

s

Figure 3. Space-time cell Kst in [0, T ]× R
2.

K(t) := conv(p0(t),p1(t),p2(t)) for t ∈ [tn, tn+1] and time dependent points p0 = p0(t), p1 = p1(t), p2 =
p2(t) ∈ R

2 which evolve linearly in time with speed s0, s1, s2 ∈ R
2 according to

pl(t) = pl(tn) + (t − tn)sl (l = 1, 2, 3). (3.1)

Suppose that we have a function u ∈ C1([0, T ) × R
2,U), that satisfies (2.3) in the classical sense. Then, we

integrate equation (2.3) over the space-time cell Kst and get with f(u) := (f1(u), f2(u)) the relation

∫ tn+1

tn

∫
K(t)

ut dV dt +
∫ tn+1

tn

∫
∂K(t)

f(u) · n dA dt = 0.

We apply Reynolds’ transport theorem and get for the first term

∫ tn+1

tn

∫
K(t)

ut dV dt =
∫

K(tn+1)

u(tn+1, ·) dV −
∫

K(tn)

u(tn, ·) dV −
∫ tn+1

tn

∫
∂K(t)

(s · n)u dA dt. (3.2)

Here s : ∂K(t) → R
2 is the speed of a point x(t) = λpi(t) + (1 − λ)pj(t) ∈ ∂K(t) with i �= j ∈ {0, 1, 2} and

λ ∈ [0, 1], i.e. s(x) = λsi + (1 − λ)sj , and n(t) : ∂K(t) → S1 is the outer unit normal at the boundary of K(t).
This gives the conservation form of (2.3) on Kst, i.e.

∫
K(tn+1)

u(tn+1, ·) dV −
∫

K(tn)

u(tn, ·) dV +
∫ tn+1

tn

∫
∂K(t)

(f(u) − usT ) · n dA dt = 0. (3.3)

Based on the conservation form (3.3) on a space-time cell Kst we will derive a Finite Volume scheme on moving
meshes. Before doing that we state the definitions for a (fixed) mesh and a moving mesh.

Definition 3.1 (Mesh in R
2). Assume P3 being the set all 3-polygons with positive two-dimensional Hausdorff

measure |·|2. Let I ⊂ Z be an index set.
Then we call

τ = {Ki |Ki ∈ P3, i ∈ I}

a mesh of R
2 with index set I if the following conditions hold.

• R
2 =

⋃
i∈I Ki

• K̊i ∩ K̊j = ∅ ∀ i, j ∈ I, i �= j
• Either

∣∣Ki ∩ Kj

∣∣
1

= 0 or
∣∣Ki ∩ Kj

∣∣
1

> 0 ⇒ Ki ∩ Kj is a line segment between two common vertices of Ki

and Kj . Here |·|1 denotes the one-dimensional Hausdorff measure.
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We define Si,j = Ki ∩ Kj and call it edge, if |Si,j |1 > 0, i �= j. The index set of all edges is defined as

E ={(i, j) ∈ I × I | |Si,j |1 > 0}.

For i ∈ I, the index set of all neighbors of Ki is given as N(i) = {j ∈ I | |Si,j |1 > 0}. For each edge Si,j we
define ni,j ∈ S1 as the outer unit vector at Si,j w.r.t. Ki. The mesh width h and the smallest incircle diameter
k are defined as

h := max
(i,j)∈E

{|Si,j |1} and k := min
i∈I

{
2 |Ki|2
|∂Ki|1

}
·

In the sequel we will simply write |·| for the one- and two-dimensional Hausdorff measures |·|1 and |·|2, if the
meaning is clear from the context.

Definition 3.2 (Moving mesh). Let a mesh τ = {Ki |Ki ∈ P3, i ∈ I} on R
2 with an index set I and some

interval [t1, t2] be given. Assume that for each i ∈ I there is a continuous function

Φi : [t1, t2] → La(Ki, R
2), t �→ Φt

i,

with Φt1
i = id, such that the global function

Φt : R
2 → R

2, x �→ Φt
i(x) for x ∈ Ki

is well-defined and onto. Here La(Ki, R
2) denotes the space of affine mappings from Ki to R

2.
Then we call T = (τ, {Φi}i∈I) a moving mesh for [t1, t2]. For all t ∈ [t1, t2] the set

τ(t) := {Φt
i(Ki)}i∈I

is the moving mesh at time t with index set I. We define the time dependent elements Ki(t) and the time
dependent edges Si,j(t) of the moving mesh T = (τ, {Φi}i∈I) by

Ki(t) := Φt
i(Ki) and Si,j(t) := Φt

i(Si,j) = Φt
j(Si,j).

The equality Φt
i(Si,j) = Φt

j(Si,j) follows from the construction of Φt as a globally well-defined function.

Note that Definition 3.2 implies that the index set I remains invariant in time.
Suppose we have a moving mesh (τ, {Φi}i∈I) of R

2 with time dependent elements Ki(t), i ∈ I. Then we can
insert the set {(x, t) ∈ R

2 × [tn, tn+1] |x ∈ Ki(t)} as a space-time cell Kst into equation (3.3). We split the
boundary ∂Ki(t) for fixed t into edges Si,j(t), j ∈ N(i) and get the nth time step of a Finite Volume scheme
on moving meshes of the form∣∣Ki(tn+1)

∣∣un+1
i = |Ki(tn)|un

i − Δtn
∑

j∈N(i)

∣∣Si,j

(
tn+1/2

)∣∣ (gn
i,j(u

n
i ,un

j ) + hn
i,j(u

n
i ,un

j )
)
, (3.4)

where tn+1/2 = tn + 0.5Δtn. The time step in the scheme (3.4) is given as Δtn := tn+1 − tn, and the terms gn
i,j

and hn
i,j denote approximations of the average boundary fluxes

1
Δtn

1∣∣Si,j(tn+1/2)
∣∣
∫ tn+1

tn

∫
Si,j(t)

f(u) · ni,j dA dt and − 1
Δtn

1∣∣Si,j(tn+1/2)
∣∣
∫ tn+1

tn

∫
Si,j(t)

s · ni,ju dA dt,

respectively. The exact requirements to the flux terms gn
i,j and hn

i,j are stated in the following definition.

Definition 3.3 (Numerical and geometrical flux functions). Let (τ, {Φi}i∈I) be a moving mesh for the time
interval [tn, tn+1] and denote by si,j the speed of the midpoint of the edge Si,j .

Then the functions gn
i,j = gn

i,j(u,v) and hn
i,j = hn

i,j(u,v) are called numerical flux and geometrical flux func-
tion for the system (2.3) if they are Lipschitz continuous in both arguments and fulfill the following properties.
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• Consistency: ∀u ∈ U ∀ i ∈ I ∀ j ∈ N(i) :

gn
i,j(u,u) = f(u) · ni,j(tn+1/2) and hn

i,j(u,u) = −ni,j(tn+1/2) · si,j u, (3.5)

• Conservation: ∀u,v ∈ U ∀ i ∈ I ∀ j ∈ N(i) :

gn
i,j(u,v) + hn

i,j(u,v) = −
(
gn

j,i(v,u) + hn
j,i(v,u)

)
. (3.6)

Common choices for the numerical flux are for example the Lax−Friedrichs flux, the Godunov-(type) flux or
the Roe flux, see e.g. [22]. The geometrical flux hn

i,j can be treated exactly the same as the numerical flux with
the corresponding flux function f(u) = −u(si,j)T .

Formula (3.4) together with a numerical and geometrical flux function will define an iteration step of the
Finite Volume scheme.

Definition 3.4 (Finite Volume step on moving meshes). Let T = (τ, {Φi}) be a moving mesh with index set I
for the time interval [tn, tn+1] and let {un

i ∈ U}i∈I be a set with elements in U . The mapping

FVS : ({un
i }i∈I , T ) �→ {un+1

i }i∈I

is called Finite Volume step for (2.3), if the values un+1
i are computed from formula (3.4) with a numerical flux

function gn
i,j and a geometrical flux function hn

i,j . Furthermore we have for n = 0

u0
i =

1
|Ki(0)|

∫
Ki(0)

u0 dV. (3.7)

The resulting Finite Volume scheme on moving meshes is summarized in the following algorithm.

Algorithm 1 (Finite Volume scheme on moving meshes for (2.3), (2.4)).
1: procedure Finite Volume Scheme(u0, T, T )
2: t0 = 0, n = 0
3: {u0

i }i∈I =
{

1
|Ki(0)|

∫
Ki(0)

u0 dV
}

i∈I
� Initial values

4: while tn < T do

5: Δtn = min
i∈I

(
|Ki(tn)| · |∂Ki(tn)|−1 · λ∞(un

i )−1
)

� CFL condition

6: {un+1
i }i∈I = FVS({un

i }i∈I , T ) � Finite Volume Step
7: tn+1 = tn + Δtn, n = n + 1

By λ∞(u) we denote the absolute value of the biggest eigenvalue of Df1 and Df2. The choice of the time step
Δtn in line 6 ensures that the CFL condition holds. With that scheme, we can define the approximate solution
computed within Algorithm 1 as a piecewise constant function.

Definition 3.5. Let bounded initial data u0, and a moving mesh T = (τ, {Φi}i∈I) on [0, T ] be given.
Then, we define the numerical approximation uh given by Algorithm 1 as piecewise constant function on the

time dependent elements Ki(t), that is

uh(t, x) = un
i if t ∈ [tn, tn+1) and x ∈ Ki(t).

The following Lemmas 3.6, 3.8 and 3.9 state conservation and invariance properties of the Finite Volume
scheme 1. Since the new Algorithm 2 for undercompressive shock waves presented within this paper will consist
of a Finite Volume scheme for a certain choice of a moving mesh, we can reuse these Lemmata later on in order
to prove properties of the new Algorithm 2.
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Lemma 3.6 (Conservation property). Consider Algorithm 1 for the initial value problem (2.3), (2.4). Assume
that (uh(tn, ·) − u0) ∈ L1(R2) holds for each n ∈ {0, . . . , N}.

Then, Algorithm 1 is conservative for each n ∈ {0, . . . , N}, i.e.

∫
R2

(uh(tn, ·) − u0) dV = 0.

Proof. Substracting the local averages u0
i from (3.4) and summing up with respect to i ∈ I, the conservation

properties (3.6) give the statement. �

The next lemma is independent of the numerical scheme and a preparation for the proof of Lemma 3.8 below.
It states how the change of cell measures of a moving mesh can be computed via the velocity of the boundary
points.

Lemma 3.7 (Discrete Reynolds’ transport theorem). Let a moving mesh (τ, {Φi}) be given and Ki ∈ τ , Ki(t) =
Φt

i(Ki).
Then we have for each n ∈ {0, . . . , N} and i ∈ I

∣∣Ki(tn+1)
∣∣− |Ki(tn)| =

∫ tn+1

tn

∫
∂Ki(t)

s · n dA dt, (3.8)

where n is the outer unit normal vector of Ki(t) and s = s(t,x) = d
dtΦ

t
i(x) is the speed of a boundary point

x ∈ ∂Ki.

Proof. The statement can be obtained by setting u as a constant function in (3.2). �

Lemma 3.8 (Invariance of constant initial datum). Consider the Finite Volume Algorithm 1 on a moving mesh
(τ, {Φi}i∈I) for the system of hyperbolic conservation laws (2.3). Suppose that the initial data u0 ∈ U is constant.

Then, we have uh(t,x) ≡ u0 for all times t ∈ [0, T ] and x ∈ R
2.

Proof. This property can be shown by induction. Since the initial values un
0 are computed as in (3.7) the desired

property is fulfilled for n = 0. For all n > 0 we use the scheme (3.4) to compute un+1
i , where we assume un

i ≡ u0

for all Ki(tn), i ∈ I. Then the consistency properties (3.5) imply

∣∣Ki(tn+1)
∣∣un+1

i = |Ki(tn)|u0 − Δtn
∑

j∈N(i)

∣∣∣Si,j(tn+1/2)
∣∣∣ f(u0) · ni,j(tn+1/2)

+ Δtn
∑

j∈N(i)

∣∣∣Si,j(tn+1/2)
∣∣∣ni,j(tn+1/2) · si,j u0.

(3.9)

We know that the speed of the boundary points is constant in time and linear in space while the normal vector
is constant in space and linear in time (restricted on Si,j). Using an appropriate rotation matrix R ∈ R

2×2 the
normal vector ni,j can be represented by

ni,j(t) =
1

|Si,j(t)|
R(pi,j

1 (t) − pi,j
2 (t)).
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Then we compute

Δtn
∣∣∣Si,j(tn+1/2)

∣∣∣ni,j(tn+1/2) · si,j =R
(
Δtnpi,j

1 (tn+1/2) − Δtnpi,j
2 (tn+1/2)

)
· si,j

=R
∫ tn+1

tn

pi,j
1 (t) − pi,j

2 (t) dt · si,j

=
∫ tn+1

tn

|Si,j(t)|ni,j(t) dt · si,j

=
∫ tn+1

tn

∫
Si,j(t)

s · ni,j dA dt.

(3.10)

Using equality (3.10) and
⋃

j∈N(i)

Si,j(t) = ∂Ki(t) in (3.9) gives us

∣∣Ki(tn+1)
∣∣un+1

i = |Ki(tn)|u0 − Δtn f(u0)
∫

∂Ki(tn+1/2)

n(tn+1/2) dA︸ ︷︷ ︸
=0

+u0

∫ tn+1

tn

∫
∂Ki(t)

s · n dA dt︸ ︷︷ ︸
(3.8)
= |Ki(tn+1)|−|Ki(tn)|

=
∣∣Ki(tn+1)

∣∣u0,

and we get immediately the result un+1
i ≡ u0 for all Ki(tn+1), i ∈ I. �

The next lemma prepares the core result Theorem 4.4 on our new Finite Volume moving mesh algorithm for
two-phase problems. As long as the mesh can be aligned with the interface associated to a planar sharp interface
solution of (2.3), (2.4) the numerical solution will reproduce this solution exactly. In Theorem 4.4 it is shown
that such a mesh will be constructed within the algorithm.

Lemma 3.9 (Planar wave consistency, No. 1).
Let an entropy-compatible sharp-interface solution of (2.3), (2.4) be given as

u(t,x) =

{
uL ∈ P− if x · ν + ct < 0,

uR ∈ P+ if x · ν + ct > 0,
Γ (t) = {x ∈ R

2 |x · ν + ct = 0}

for a fixed constant c ∈ R, a unit vector ν ∈ S1 and the initial state u0 = u(0, ·). Let a moving mesh (τ, {Φi})
be given such that Γ (t) is exactly represented in the sense that

∃ E ⊂ E :
⋃

(i,j)∈E
Si,j(0) = Γ (0) and Φt

i|Γ (0)∩Ki
(x) = x + ctν ∀ i ∈ I. (3.11)

Assume that interface solvers Rf ·n with n ∈ S1 of (2.3) are given and that uh is the numerical approximation
given by Algorithm 1 computed with the following choice of numerical fluxes

gn
i,j(u,v) :=

⎧⎪⎪⎨
⎪⎪⎩

f(U(u,v)) · ni,j if u ∈ P−,v ∈ P+,

f(U(v,u)) · ni,j if u ∈ P+,v ∈ P−,

g̃n
i,j(u,v) otherwise,

hn
i,j(u,v) :=

⎧⎪⎪⎨
⎪⎪⎩
−σ(u,v)U(u,v) if u ∈ P−,v ∈ P+,

+σ(v,u)U(v,u) if u ∈ P+,v ∈ P−,

h̃n
i,j(u,v) otherwise,

(3.12)
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where the values σ(u,v), U(u,v) and V(u,v) are obtained from the interface solver Rf ·ni,j :

(σ(u,v),U(u,v),V(u,v)) = Rf ·ni,j (u,v)

and g̃n
i,j, h̃n

i,j are arbitrary numerical and geometrical fluxes in the sense of Definition 3.3.
Then u is resolved exactly by uh independent of the mesh parameter, i.e. uh = u a.e.

Proof. Again, this proof can be done by induction. First, it is clear that the initial data is resolved exactly by
the approximation uh(0, ·), since the discontinuity in u0 is covered by the set of mesh edges E . This implies

either x · ν ≤ 0 ∀x ∈ Ki(0), or x · ν ≥ 0 ∀x ∈ Ki(0).

Therefore, the initial data {u0
i }i∈I reads

u0
i =

1
|Ki(0)|

∫
Ki(0)

u0 dV =

{
uL if ∀x ∈ Ki(0) : x · ν ≤ 0,

uR if ∀x ∈ Ki(0) : x · ν ≥ 0.

We assume that uh(tn, ·) = u(tn, ·) is valid. Before proving the induction uh(tn+1, ·) = u(tn+1, ·), we first have
to show that (3.12) are valid choices for the numerical and geometrical fluxes, i.e. they fulfill the consistency
properties (3.5) and the conservation property (3.6).

The consistency is valid, since

gn
i,j(u,u) = g̃n

i,j(u,u), hn
i,j(u,u) = h̃n

i,j(u,u)

and g̃n
i,j and h̃n

i,j are consistent.
The conservation for values u,v in the same phase follows again from the conservation of g̃n

i,j and h̃n
i,j . For

u ∈ P−, v ∈ P+ (and vice versa) the conservation is also true, since

gn
i,j(u,v) + hn

i,j(u,v) = f(U(u,v)) · ni,j − σ(u,v)U(u,v)

= − (f(U(u,v)) · nj,i + σ(u,v)U(u,v))

= −
(
gn

j,i(v,u) + hn
j,i(v,u)

)
.

The induction uh(tn+1, ·) = u(tn+1, ·) will be shown as follows: the Finite Volume step (3.4) is either∣∣Ki(tn+1)
∣∣un+1

i = |Ki(tn)|uL − Δtn
∑

j∈N(i),(i,j)∈E

∣∣∣Si,j(tn+1/2)
∣∣∣ (gn

i,j(uL,uR) + hn
i,j(uL,uR)

)
− Δtn

∑
j∈N(i),(i,j)/∈E

∣∣∣Si,j(tn+1/2)
∣∣∣ (gn

i,j(uL,uL) + hn
i,j(uL,uL)

)
or ∣∣Ki(tn+1)

∣∣un+1
i = |Ki(tn)|uR − Δtn

∑
j∈N(i),(i,j)/∈E

∣∣∣Si,j(tn+1/2)
∣∣∣ (gn

i,j(uR,uR) + hn
i,j(uR,uR)

)
− Δtn

∑
j∈N(i),(i,j)∈E

∣∣∣Si,j(tn+1/2)
∣∣∣ (gn

i,j(uR,uL) + hn
i,j(uR,uL)

)
,

since un
i is either equal to uL or uR. This means that if we show the equalities

gn
i,j(uL,uR) + hn

i,j(uL,uR)=gn
i,j(uL,uL) + hn

i,j(uL,uL) (3.13)
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and

gn
i,j(uR,uL) + hn

i,j(uR,uL)=gn
i,j(uR,uR) + hn

i,j(uR,uR) (3.14)

for (i, j) ∈ E the scheme can be reduced for each un
i to the case of constant initial data (either u0 ≡ uL or

u0 ≡ uR) as in Lemma 3.8 and we get the desired property un
i = uL/R ⇒ un+1

i = uL/R.
From the assumptions, we know that uL and uR fulfill (2.12) with σ = c. Therefore, the interface solver

Rf ·ni,j gives

Rf ·ni,j (uL,uR) = (σ(uL,uR),U(uL,uR),V(uL,uR)) = (c,uL,uR) ,

and the numerical and geometrical flux functions can be rewritten as

gn
i,j(uL/R,uR/L) = f(U(uL,uR)) · ni,j = f(uL) · ni,j , (3.15)

and

hn
i,j(uL/R,uR/L) = ∓σ(uL,uR)U(uL,uR) = ∓cuL. (3.16)

The speed of the interface points x ∈ Si,j , (i, j) ∈ E is

s(x) =
d
dt

Φt
i(x) = cν, (3.17)

and the normal vector at edges Si,j(t), (i, j) ∈ E is

ni,j =

{
ν if un

i ∈ P−,un
j ∈ P+,

−ν if un
i ∈ P+,un

j ∈ P−,
(3.18)

since the edges are moved along {x ∈ R
2 |x · ν + ct = 0}. It follows for edges (i, j) ∈ E

hn
i,j(uL/R,uL/R)

(3.5)
= −si,j · ni,j(tn+1/2)uL/R

(3.17), (3.18)
= −cν · (±ν)uL/R = ∓cuL/R. (3.19)

The equality (3.13) then follows as

gn
i,j(uL,uR) + hn

i,j(uL,uR)
(3.15), (3.16)

= f(uL) · ni,j − cuL
(3.5), (3.19)

= gn
i,j(uL,uL) + hn

i,j(uL,uL).

Equation (3.14) follows similarly with the usage of the Rankine−Hugoniot conditions (2.12)1

gn
i,j(uR,uL) + hn

i,j(uR,uL)
(3.15), (3.16)

= f(uL) · ni,j + cuL

(3.18)
= f(uL) · ni,j − cν · ni,juL

(2.12)1= f(uR) · ni,j − cν · ni,juR

(3.18)
= f(uR) · ni,j + cuR

(3.5), (3.19)
= gn

i,j(uR,uR) + hn
i,j(uR,uR). �

To introduce the complete algorithm for the approximation of a sharp interface solution for (2.3), (2.4) we
connect the moving mesh method with a special tracking for the phase boundary.
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Figure 4. Motion of the interface curve: Mesh at time t = tn (left figure) and at time t = tn+1.

3.1.2. Interface Tracking

The previous Lemma 3.9 motivates the following procedure. If we move interface edges in a way such that
the position of the phase transition is tracked, we can on the one hand treat the interface separately, e.g. like
in equations (3.12) in the case π(u) �= π(v), and on the other hand we do not have any smearing across this
curve due to averaging. The second property is crucial for computations of any generic two-phase system from
Section 2 with splitted state space U = P− ∪ P+ with P− ∩ P+ = ∅, since it ensures the desired property
uh ∈ P− ∪P+. The computation of the approximate location of the interface is illustrated in Figure 4 and will
define the moving mesh T = (τ, {Φi}) we will need as an input for the Finite Volume step in Definition 3.4.

Therefore we introduce formally, in addition to a mesh, the set of interface edges.

Definition 3.10 (Interface edges, approximate interface). Let a fixed mesh τ be given with index set I and a
set {ui ∈ U}i∈I . We define the interface edge indices as

E = E(τ, {ui}i∈I) = {(i, j) ∈ E |π(ui) �= π(uj)}

and the approximate interface

Γh = Γh(τ, {ui}i∈I) =
⋃

(i,j)∈E(τ,{ui})
Si,j .

An approximate interface is called admissible if it consists of one or more closed curves without any
(self-)intersections.

Remark 3.11. The closedness of interfaces is only demanded in order to ease the formulation of the algorithm.
Nevertheless, non-closed curves are a relevant case and appear in the numerical examples in Section 5. There
we will detail the necessary algorithmical changes.

We know that if we have an admissible approximate interface Γh(τ, {ui}i∈I) each vertex that is part of the
interface curve has exactly two incident edges in the mesh τ . Let an interface solver R for (2.3) and an admissible
approximate interface at time tn be given. The evolution of the approximate interface is computed with the
following procedure. For each interface edge Si,j , (i, j) ∈ E with ui ∈ P− and uj ∈ P+ we consider the Riemann
problem (2.11) in direction of the normal vector ni,j = (n(1)

i,j , n
(2)
i,j )T

wt +
(
n

(1)
i,j f1(w) + n

(2)
i,j f2(w)

)
x

= 0, w(0, x) =

{
ui if x < 0,

uj if x > 0,
(3.20)
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and denote by σi,j , Ui,j , Vi,j the corresponding values of the interface solver

(σi,j(ui,uj),Ui,j(ui,uj),Vi,j(ui,uj)) = R
n

(1)
i,j f1+n

(2)
i,j f2

(ui,uj). (3.21)

Suppose pi,k (i ∈ I, k = 1, 2, 3) being the kth vertex of Ki in a mesh τ and being part of the approximate
interface Γh. Then pi,k has exactly two incident edges in the mesh, which separate two phases, since Γh is a set
of closed, non-intersecting curves. We call these two incident edges Si,j and Si′,j′ , see Figure 4. We define the
speed of pi,k as the weighted average speed computed at Si,j and Si′,j′

si,k :=
ni,jσi,j(ui,uj) |Si,j | + ni′,j′σi′,j′ (ui′ ,uj′) |Si′,j′ |

|Si,j | + |Si′,j′ |
(3.22)

and the time dependent point pi,k(t) as

pi,k(t) := pi,k(tn) + (t − tn)si,k.

The moving mesh is then defined as (τ, {Φi}i∈I) with

Φt
i(x) := x + (t − tn)

(
si,3 + λi,1(x)(si,1 − si,3) + λi,2(x)(si,2 − si,3)

)
, (3.23)

where λi,1(x), λi,2(x) denote the barycentric coordinates of x in Ki, i.e.

(λi,1, λi,2) = (pi,1 − pi,3,pi,2 − pi,3)−1(x − pi,3).

We want to stress that even if only points of the interface are moved we get time dependent edges that are
not necessarily interface edges, see Figure 4. Therefore, numerical fluxes for the term −s · ni,ju are required at
interface edges as well as at non-interface edges.

Definition 3.12 (Interface motion function). Let τ be a mesh with index set I and let {ui ∈ U}i∈I be a set
with elements in U such that the approximate interface Γh(τ, {ui}) is admissible. Let also a time tn and a time
step Δtn be given.

The mapping

IMF : (tn, Δtn, τ, {un
i }i∈I) �→ (τ, {Φi}i∈I)

is called interface motion function, if Φi, i ∈ I, is computed from formulas (3.21), (3.22) and (3.23).

With the interface motion function from Definition 3.12 we could now define directly the final algorithm.
However, the motion of the interface described in Section 3.1.2 may cause narrow or even degenerate cells, see
Figure 5. Therefore, we will define in an additional post-processing step a new mesh, where the triangles will
have a better volume to perimeter ratio. This post-processing step will be called remeshing.

3.1.3. Remeshing

Definition 3.13 (Remeshing). Let τ and τ̂ be meshes with index sets I and Î, respectively such that I � Î =
I \ Î ∪ Î \ I is finite and Ki = K̂i for all i ∈ I ∩ Î. Let {ui ∈ U}i∈I , {ûî ∈ U}î∈Î be sets with elements from U
such that Γh(τ, {ui}) and Γh(τ̂ , {ûî}) are admissible approximate interfaces. An operator

RS : (τ, {ui}i∈I) �→ (τ̂ , {ûî}î∈Î)

is called remeshing operator with respect to the constants C > c > 0 if the following conditions hold.

• The (incircle) diameters are bounded according to

c ≤ k(τ̂ ) ≤ h(τ̂ ) ≤ C. (3.24)
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Figure 5. Remeshing technique: Extract of a mesh τ (with piecewise constant data uh) in the
left figure and mesh τ̂ (with piecewise constant data ûh) in the right figure.

• The approximate interface Γh is invariant under remeshing, that is

Γh(τ, {ui}i∈I) = Γh(τ̂ , {ûi}i∈Î). (3.25)

• Conservation of mass is fullfilled according to

∑
i∈I\Î

∑
î∈Î\I

∣∣∣Ki ∩ K̂î

∣∣∣ (ui − ûî) = 0, and ui = ûi ∀ i ∈ I ∩ Î . (3.26)

• The fixing criterion

∑
i∈I\Î

∑
î∈Î\I

∣∣∣Ki ∩ K̂î

∣∣∣ |ui − ûî|
2 −→ min. (3.27)

Remark 3.14.

• Condition (3.24) is a condition to the new mesh τ̂ and ensures, that narrow triangles are avoided. Con-
ditions (3.26) and (3.27) are conditions to the new data ûh defined on the new mesh, whereas (3.25) is a
compatibility condition to both mesh τ̂ and data {ûi}i∈I and ensures, that the position of the interface is
not altered by the remeshing.

• The remeshing operator is neither unique, nor does it exist for arbitrary choices of constants C, c. We will
use conditions (3.25) and (3.27) for proving the properties of the scheme in Section 4 but for the numerical
computations we will omit these conditions in cases where the remeshing operator does not exist. This
includes the case, where the curvature of the approximate interface is increasing (e.g. a shrinking circle).
The cases with topology changes (interface - boundary interaction, interface - interface interaction) and
phase extinction are not covered by the following Algorithm 2.

• If c ≤ k(τ) and C ≥ h(τ) a trivial remeshing operator is given as RS(τ, {ui}) = (τ, {ui}). Contrary, if one
wants to construct a new mesh τ̂ with improved mesh width to incircle diameter ratio h(τ̂ )/k(τ̂) one has to
chose the constants c and C as c ≥ k(τ) and C ≤ h(τ). This means that a non-trivial remeshing is necessary.

Now we are in the position to prove one of the major results. Using the remeshing operator from Definition 3.13
we are able to guarantee that there occurs no phase smearing in our new algorithm.

Lemma 3.15. Suppose a mesh τ is given with values {ui ∈ P− ∪ P+}i∈I .
Then the resulting values {ûî}î∈Î of a remeshing step defined as in Definition 3.13 are all in P− or P+,

that is

∀ î ∈ Î : ûî ∈ P− ∪ P+.
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tn+1

tn

Figure 6. Illustration of the evolution of the moving mesh including one Finite-Volume step
and Remeshing. Narrow elements are resolved by the remeshing step.

Proof. For all i ∈ I ∩ Î we have the equality ûi = ui ∈ P− ∪ P+. For all other indices in I � Î the variational
problem (3.27) under the constraint (3.26) has the Lagrangian

L(û, λ) =
∑

î∈Î\I

∑
i∈I\Î

∣∣∣Ki ∩ K̂î

∣∣∣ |ui − ûî|
2 + λ

∑
î∈Î\I

∑
i∈I\Î

∣∣∣Ki ∩ K̂î

∣∣∣ (ui − ûî),

with û = (ûî)̂i∈Î\I and the Lagrange multiplier λ ∈ R. Taking the derivative with respect to ûî gives

0 =
dL

dûî

(û, λ) =
∑

i∈I\Î

∣∣∣Ki ∩ K̂î

∣∣∣ 2(ui − ûî) − λ
∑

i∈I\Î

∣∣∣Ki ∩ K̂î

∣∣∣ =
∑

i∈I\Î

∣∣∣Ki ∩ K̂î

∣∣∣ 2ui − 2
∣∣∣K̂î

∣∣∣ ûî − λ
∣∣∣K̂î

∣∣∣ ,
which gives the expression for ûî

ûî =
∑

i∈I\Î

(
|Ki ∩ K̂î|

|K̂î|
ui

)
− λ

2
· (3.28)

Rewriting the constraint (3.26) and inserting (3.28) gives the equation

0 =
∑

i∈I\Î

∑
î∈Î\I

|Ki ∩ K̂î|(ui − ûî) =
∑

i∈I\Î

|Ki|ui −
∑

î∈Î\I

|K̂î|ûî =
∑

i∈I\Î

|Ki|ui −
∑

i∈I\Î

|Ki|ui

︸ ︷︷ ︸
=0

+
∑

î∈Î\I

|K̂î|

︸ ︷︷ ︸
	=0

λ

2
,

which implies that λ = 0. Therefore, we get

ûî =
∑
i∈I

|Ki ∩ K̂î|
|K̂î|

ui ∀ î ∈ Î . (3.29)

Recall that the new approximate interface Γh(T̂ ) coincides with the approximate interface Γh(T ) by condi-
tion (3.25). Thus the non-vanishing terms in sum (3.29) form a convex combination of values ui either all in
P− or all in P+. Since P− and P+ are both convex, we get ûî ∈ P− ∪ P+, as desired. �
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3.2. The complete Finite Volume moving mesh algorithm

Now we are able to formulate the complete algorithm, that consists of an interface tracking realized with
moving meshes, suitable Finite Volume schemes and a remeshing step. Due to the remeshing step we will get
for each time interval [tn, tn+1) a new (moving) mesh. We will denote by τn meshes with index sets In and by
T n = (τn, {Φi}i∈In) moving meshes for time intervals [tn, tn+1]. By T n(t) we denote the fixed mesh that results
from the evolution of the moving mesh at time t, i.e.

T n(t) := {Φt
i(Ki) | i ∈ In, Ki ∈ τn}.

With this notation the new algorithm can be stated.

Algorithm 2 (Tracking-Type Algorithm).
1: procedure Tracking-Type Algorithm(u0, T, τ0)
2: t0 = 0, n = 0
3: {u0

i }i∈I0 =
{

1
|Ki(0)|

∫
Ki(0)

u0 dV
}

i∈I0
� Initial values

4: while tn < T do

5: Δtn = 0.9
σ min

i∈In

(
1
2 |Ki(tn)| · |∂Ki(tn)|−1 ,

√
1
6 |Ki(tn)|

)
� Time step restriction

6: T n = IMF(tn, Δt, τn, {un
i }i∈In) � Compute Interface Motion

7: {ûn+1
i }i∈In = FVS({un

i }i∈In , T n) � Apply Finite Volume Scheme
8: ({un+1

i }i∈In+1 , τn+1) = RS({ûn+1
i }i∈In , T (tn+1)) � Remesh

9: tn+1 = tn + Δt, n = n + 1

Note that the time step restriction of line 5 will be justified by the stability properties that will be derived in
Lemmata 4.1, 4.2 below.

We conclude the section with a formal definition of the approximate solution as discrete counterpart of the
sharp-interface solution from Definition 2.1.

Definition 3.16. Let bounded initial data u0, a time T > 0 and a (fixed) mesh τ0 be given and assume that
T n are the moving meshes and {un

i }i∈In the values computed within Algorithm 2.
Then, we define the numerical approximation uh given by Algorithm 2 as piecewise constant function on the

time dependent elements Ki(t), that is

uh(t, x) = un
i if t ∈ [tn, tn+1) and x ∈ Ki(t) for i ∈ In

and the approximate interface Γh as

Γh(t) = Γh(T n(t), {un
i }i∈In) if t ∈ [tn, tn+1).

4. Properties of the scheme

In this section basic properties of the Finite Volume moving mesh algorithm will be shown. These properties
show the advantages of the moving mesh ansatz, e.g. the conservation property of the algorithm or the exact
resolution of planar two-phase waves.

First of all, we have to show the well-posedness of Algorithm 2. The Algorithm might fail due to two reasons.
First, the motion of the interface points might lead to a degeneration of the mesh, i.e. the mesh defined within
Algorithm 2 might not fulfill the properties given in Definition 3.2. This failure will be excluded with Lemma 4.1.
Second, the time steps Δtn might be decreasing such that the given final time T is never reached. Lemma 4.2
will show that under a certain a priori condition to the data computed within the Algorithm, the time step has
a lower bound and thus the algorithm terminates.
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Lemma 4.1 (Mesh does not degenerate). Let (τ, {Φi}i∈I) be a moving mesh and assume that an upper bound
to the maximum speed of the mesh points σ > sup{

∥∥ d
dtΦ

t
i(x)

∥∥ | i ∈ I,x ∈ Ki} ≥ 0 exists. If the time step is
chosen according to

0 < Δtn ≤ 1
σ

min

(
p
|Ki(tn)|
|∂Ki(tn)| ,

√
1 − p

3
|Ki(tn)|

)
(4.1)

for a constant 0 < p < 1, then the mesh elements do not degenerate, which means

∀ t ∈ [tn, tn+1] ∀ i ∈ I : |Ki(t)| > 0.

Proof. The size of a triangle Ki(t) can be computed with formula (3.8) and we get

|Ki(t)| = |Ki(tn)| +
∫ t

tn

∫
∂Ki(t)

s · n dA dt ≥ |Ki(tn)| −
∫ t

tn

∫
∂Ki(t)

‖s‖2 dA dt

≥ |Ki(tn)| − σ

∫ t

tn

∫
∂Ki(t)

dA dt = |Ki(tn)| − σ

∫ t

tn

|∂Ki(t)| dt.

The boundary ∂Ki(t) consists of three edges, that grow each at most with 2σ, thus

|∂Ki(t)| ≤ |∂Ki(tn)| + 6σ(t − tn),

and |Ki(t)| can further be estimated under the time step restriction (4.1) as

|Ki(t)| ≥ |Ki(tn)| − σ

∫ t

tn

|∂Ki(tn)| + 6σ(t − tn) dt > |Ki(tn)| − p |Ki(tn)| − (1 − p) |Ki(tn)| = 0. �

With an additional and natural a priori assumption on the data {un
i } we can show that not only the mesh does

not degenerate but also the Algorithm terminates after a finite amount of time iterations.

Lemma 4.2 (Algorithm 2 terminates). Suppose that the conditions of Lemma 4.1 are fulfilled with equality
in (4.1) and that there is a bounded set K ⊂ P− ∪ P+ such that for each time step the computed values {un

i }
stay in K. Then, Algorithm 2 terminates.

Proof. Remeshing ensures c ≤ k = mini∈I(2 |Ki(tn)|·|∂Ki(tn)|−1) with (3.24) and also πc2 < |Ki(tn)|. Therefore
the time step can be estimated as

Δtn =
1
σ

min
i∈I

(
p
|Ki(tn)|
|∂Ki(tn)| ,

√
1 − p

3
|Ki(tn)|

)
≥ c

σ
min

(
p

2
,

√
1 − p

3
π

)
=: c̃(p) > 0.

This ensures that the Algorithm has at most �T/c̃(p)� iterations. �

The next lemma will show the conservation property, which does not hold for e.g. the ghost fluid method for
two-phase problems [15, 30].

Lemma 4.3 (Conservation property). Consider the tracking-type Algorithm 2 for the problem (2.3), (2.4) with
bounded initial datum. Assume that the numerical approximation uh is such that (uh(tn, ·)−u0) ∈ L1(R2) holds
for each n ∈ {0, . . . , N}.

Then we have for each n ∈ {0, . . . , N} the conservation property∫
R2

(uh(tn, ·) − u0) dV = 0.
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Proof. The conservation property of the Finite Volume scheme on moving meshes is stated in Lemma 3.6. The
remeshing step RS is conservative, see (3.26), such that Algorithm 2 is conservative. �

The final theorem of this section will present a property that is valid due to the moving mesh ansatz, similar
to Lemma 3.9. It ensures the exact and sharp resolution of the entropy-compatible sharp-interface solution
in the case of a single planar phase transition, independent of the coarsity of the mesh. Note that, unlike in
Lemma 3.9, the moving mesh and thus the motion of the interface points is not prescribed, but given through
Algorithm 2.

Theorem 4.4 (Planar wave consistency, No. 2). Let an entropy-compatible sharp-interface solution
of (2.3), (2.4) be given as

u(t,x) =

{
uL ∈ P− if x · ν + ct < 0,

uR ∈ P+ if x · ν + ct > 0,
D±(t) = {x ∈ R

2 |x · ν + ct ≶ 0}

for a fixed constant c ∈ R, a unit vector ν ∈ S1 and the initial state u0 = u(0, ·). Let for the initial time t = 0 a
mesh τ0 be given, such that the interface curve Γh(τ0, {u0

i }i∈I) coincides with the sharp interface of the problem
Γ (0) = {x ∈ R

2 |x · ν = 0}. Assume that interface solvers Rf ·n, n ∈ S1, of (2.3) are given and that uh is the
numerical approximation given by Algorithm 2 computed with the following choice of numerical fluxes

gn
i,j(u,v) =

⎧⎪⎪⎨
⎪⎪⎩

f(U(u,v)) · ni,j if u ∈ P−,v ∈ P+,

f(U(v,u)) · ni,j if u ∈ P+,v ∈ P−,

g̃n
i,j(u,v) otherwise,

hn
i,j(u,v) =

⎧⎪⎪⎨
⎪⎪⎩
−σ(u,v)U(u,v) if u ∈ P−,v ∈ P+,

+σ(v,u)U(v,u) if u ∈ P+,v ∈ P−,

h̃n
i,j(u,v) otherwise,

where the values σ(u,v), U(u,v) and V(u,v) are obtained from the interface solver

(σ(u,v),U(u,v),V(u,v)) = Rf ·ni,j (u,v)

and g̃n
i,j, h̃n

i,j are arbitrary numerical and geometrical fluxes, respectively.
Then u is resolved exactly by uh independent of the coarsity of the mesh, i.e. uh = u a.e.

Proof. The statement is an extension of the one in Lemma 3.9. However, the motion of the interface points is
not prescribed but computed within Algorithm 2. Additionally, we have to take the remeshing step into account.
Therefore, we show first that the time dependent points are computed as in Lemma 3.9, i.e. as Φt

i(x) = x+ ctν.
Secondly, we show that the remeshing does not change the approximate solution uh in this setting but only its
underlying mesh.

(a) Time dependent points. Assume that at a fixed time tn the exact position of the interface curve is
covered by edges of the mesh τn

∃ En ⊂ En :
⋃

(i,j)∈En

Sn
i,j = {x ∈ R

2 |x · ν + ctn = 0}.

By induction we know that the interface curve at time tn separates the values uL and uR, i.e. we have for
all (i, j) ∈ En : un

i = uL and un
j = uR, or vice versa. It follows that at each interface edge, the normal vector
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is ni,j = ν. Therefore the corresponding one-dimensional Riemann problem is the one associated with the flux
function f1ν1 + f2ν2 and initial data uL and uR. The interface solver gives

Rf1ν1+f2ν2(uL,uR) = (σi,j(uL,uR),Ui,j(uL,uR),Vi,j(uL,uR)) = (c,uL,uR), (4.2)

since the exact solution consists out of a single phase transition with velocity c in ν-direction. The time dependent
point is then computed with (3.23) as

x(t) = x(tn) + (t − tn)
(

cν |Si,j | + cν |Si′,j′ |
|Si,j | + |Si′,j′ |

)
= x(tn) + (t − tn)cν = x(0) + tcν.

(b) Remeshing. The remeshing gives a new triangulation τ̂ with new values {ûn
î
}î∈Î given as in (3.29), that

is ûn
î

=
∑

i∈I(|Ki ∩ K̂î|)/|K̂î|un
i . All values un

i with non-zero coefficient |Ki ∩ K̂î|/|K̂î| are either uL or uR and
this convex combination simplifies to either ûn

î
= uL or ûn

î
= uR.

The calculations in (a) show that the interface motion function IMF from Definition 3.12 gives a time
dependent mesh that fulfills the assumption (3.11) from Lemma 3.9. Therefore, all assumptions from Lemma 3.9
are valid and the lemma is applicable. The remeshing step does not affect the numerical approximation uh but
only the underlying mesh as shown in (b). Thus the induction from Lemma 3.9 can be continued for each time
step and we get uh = u a.e. �

5. Numerical results

We will conclude this work with numerical examples for the scalar cubic model problem and isothermal
Euler equations. We perform the computations on the bounded domain Ω := (−1, 1)2 in all cases. Appropriate
boundary conditions are given for each test case.

The realization of the interface tracking and the remeshing operator was done with the 2D Triangula-
tion package [40] of the C++ library CGAL, Computational Geometry Algorithms Library [37]. Its Con-
strained Delaunay triangulation 2 class in combination with the hierarchy structure was extended to imple-
ment the moving mesh. This class manages a triangulation that is almost Delaunay except for a set of given
constraints (in our case: prescribed edges of the interface curve) and it provides methods for the insertion,
removal and motion of points. With this realization we omit condition (3.25) in cases where the remeshing is
not possible, e.g., when a circular interface is shrinking and we have to coarsen the approximate interface. In
order to investigate the robustness of the remeshing algorithm, we check conditions (3.24) and (3.26) via stating
the maximum mesh width maxn h(τn), the minimal incircle diameter minn k(τn) as well as the average ratio
r = n−1

∑
n

h(τn)
k(τn) . The maximum mesh width and the minimal incircle diameter correspond to the constants

C > 0 and c > 0 of condition (3.24). The smaller r, the better is the triangulation (to be more precise: the
sequence of triangulations) in the sense that the triangles are of similar size and small inner angles are avoided.
The optimal value for r is 3√

3
≈ 1.73 which is obtained by a triangulation with equilateral triangles only.

5.1. Conservation laws with a cubic flux function

We will start with the model problem from Section 2.2.1 using all notations from this section. The initial data
u0 is chosen as a jump function with non-planar phase interface: u0(x) = uL = 1 ∈ P+ if 0.1 sin(11x2)+x1 > 0,
and uR = −0.75 ∈ P− otherwise. It can be checked that the Rankine−Hugoniot condition (2.8) and the kinetic
relation from (2.14) are satisfied with (see (2.15))

r = 0.8125 = a(uR, uL, (−1, 0)T ).

Therefore the exact entropy-compatible sharp-interface solution u of (2.13) will propagate the initial data in
x1-direction with velocity r:

u(t,x) =

{
uL if 0.1 sin(11x2) + x1 > r t,

uR else.
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(a) Initial state. (b) t = 0.6, 1916 elements. (c) t = 0.6, 4044 elements. (d) t = 0.6, 16254 elements.

Figure 7. Plot of exact initial state and approximate sharp interface solution u for different
mesh sizes. The numbers of elements refer to the mesh at final time t = 0.6. For the last example
(d) we get minn k(τn) = 0.00439, maxn h(τn) = 0.0435 and r = 7.324.

Table 1. Experimental orders of convergence (EOC) for the cubic flux problem (t = 0.1).

|T (t)| h(T (t)) t−1
∫ t

0
h(T (s)) ds k(T (t)) ‖(uh − u)(t, ·)‖L1(Ω) EOC(t)

774 0.2005 0.2076 0.0215 2.3628 × 10−2 1.85
1764 0.1322 0.1341 0.0185 1.0919 × 10−2 1.89
3988 0.0887 0.0906 0.0075 5.1381 × 10−3 1.89
9166 0.0626 0.0606 0.0097 2.6562 × 10−3 1.88

20 272 0.0390 0.0400 0.0070 1.0918 × 10−3 1.80
46 024 0.0270 0.0270 0.0045 5.6278 × 10−4 1.26
102 790 0.0192 0.0183 0.0029 3.6766 × 10−4

The boundary conditions are chosen as absorbing boundary conditions, i.e. no wave is emitted from the boundary
inside of the domain Ω. Since the interface curve is not closed, we need a special treatment of the interface
vertices located at the boundary of the domain. The velocity si,k of an interface vertex pi,k is then prescribed
by the velocity computed at the only incident interface edge Si,j by si,k := ni,jσi,j(ui,uj) replacing (3.22).
If the new position pi,k + Δtsi,k departs from ∂Ω we subsequently project it onto the boundary in tangential
direction of the interface curve.

The numerical results are depicted in Figure 7, where we observe the expected transport behaviour. With u
we compute L1-errors and the (experimental) orders of convergence, see Table 1. The errors and the orders listed
in Table 1 show that we obtain convergence with order around 1.8. This appears to be better than the expected
value 1.0. The reason is probably that the classical computation of a convergence order is not appropriate here,
as one has to assume convergence with decreasing mesh width, which is time dependent and discontinuous due
to the interface tracking and the remeshing steps. Finally, note that the exact solution is not planar such that
Theorem 4.4 does not apply and we do not get u = uh.

5.2. Isothermal Euler equations in two space dimensions

In this section we will present numerical results for the two-dimensional isothermal Euler equations (2.16)
and Van-der-Waals pressure (2.17) with constants A = 3, B = 1

3 , θ = 0.85 and R = 8
3 . Contrary to the cubic

flux problem we have now a state space that is separated by an interval, the unstable spinodal region, into two
sets, cf. (2.18). The one-dimensional problem (3.20) in normal direction n = (n1, n2)T resulting out of (2.16)
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(a) Initial states ρ0 and m0 = (m1,0, m2,0).
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(b) Approximate solutions ρh and mh at time t = 4.

Figure 8. Numerical solution for an isolated liquid-vapour phase transition with 264 − 288
elements, minn k(τn) = 0.0519, maxn h(τn) = 0.349 and r = 4.365.

is given by

⎛
⎝ ρ

m1

m2

⎞
⎠

t

+

⎛
⎜⎜⎜⎜⎝

m1n1 + m2n2

m2
1

ρ
n1 + p(ρ)n1 +

m1m2

ρ
n2

m2
2

ρ
n2 + p(ρ)n2 +

m1m2

ρ
n1

⎞
⎟⎟⎟⎟⎠

x

= 0. (5.1)

A combination of the second and third line of (5.1) leads to a system with two-dimensional state space using
the projected momentum mp = m · n = m1n1 + m2n2 as unknown. In fact, the used interface solver from [41]
applies to this system which readily can be used to design an interface solver for (5.1).

Example 5.1 (Planar shock wave).
We start with a validation example and take initial conditions that drive a planar moving phase bound-

ary as entropy-compatible sharp-interface solution. At the boundary we apply absorbing boundary conditions.
Precisely, the initial conditions are

(ρ0, m1,0, m2,0)(x) =

{
(0.234,−0.127,−0.002) x1 < 0,

(1.812, 0.173,−0.002) x1 > 0,

such that the entropy-compatible sharp-interface solution is (ρ, m1, m2)(t,x) = u0(x1 − 0.19 t, x2). For a single
phase boundary, we know due to Theorem 4.4 that the Finite Volume moving mesh algorithm 2 will return the
exact solution. Theorem 4.4 does not account for inevitable rounding errors. To check the influence of roundoffs
the numerical approximations can be seen in Figure 8. They show the minor effects of roundoffs and illustrate
the statement of Theorem 4.4. Most notably, we observe that the algorithm does not introduce any values in
the spinodal region (ρspinod

liq , ρspinod
vap ).

Example 5.2 (Single bubble).
Next, we continue with an example which involves more intricate geometric dynamics of the interface. This

time, the initial condition consists of a vapour bubble surrounded by the fluid in liquid phase. We make the
choice

(ρ0, m1,0, m2,0)(x)(x) =

{
(1.7, 0, 0) ‖x‖2

2 < 0.15,

(0.3, 0, 0) else
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(a) Initial state. (b) t=0.4 (c) t=0.8 (d) t=1.2

Figure 9. Numerical solution for a bubble in non-equilibrium state. The first line displays
density, the second line momentum (refering to the arrows) and absolute value of momentum
(refering to the color bar). The initial mesh has 45 138 elements. The number of triangles of the
meshes during the runtime of the algorithm was 45 092 to 45 188 triangles which is a remarkably
small range. The remeshing routine gives minn k(τn) = 0.00142, maxn h(τn) = 0.0278 and
r = 7.876.

for the initial state and use reflecting boundary conditions. The result of the Finite Volume moving mesh algo-
rithm 2 for that problem is depicted in Figure 9. One observes an oscillating bubble with decreasing amplitude of
the oscillation. The oscillation appears due to the reflecting boundary condition and not due to surface tension
effects which are not considered in the mathematical model.

Example 5.3 (Shock wave hitting a phase transition).
As a last example we want to show the interaction of a phase transition and classical waves. We take as

initial condition a vapour bubble surrounded by liquid in Maxwell equilibrium together with a discontinuity at
the left, which will result in a classical wave propagating to the right, i.e. in direction of the bubble.

(ρ0, m1,0, m2,0)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρMaxw
vap = 0.3207, 0, 0)

∥∥x − (0.3, 0)T
∥∥2

2
< 0.1,

(ρMaxw
liq = 1.8071, 0, 0)

∥∥x − (0.3, 0)T
∥∥2

2
> 0.1 and x1 > −0.5,

(1.7010,−0.4, 0) else.

Maxwell equilibria ρMaxw
vap and ρMaxw

liq are characterized by equal pressure and Gibbs free energy. They are
supposed to provide stable static solutions. At the boundary we choose reflecting boundary conditions.

The results of the computation in Figure 10 show the effect of the classical wave on the phase transition.
After it has reached the approximate interface, the phase transition states are not Maxwell equilibria anymore
and the interface starts moving. Also, after the collision one can see the reflected waves. We know from (2.6)
that for entropy-compatible sharp-interface solutions u the total entropy may not increase in time. Taking into
account the boundary condition this means here that the quantity

S[u(t, ·)] =
∫

Ω

η(u(t, ·)) dV +
∫ t

0

∫
∂Ω

n1q1(u) + n2q2(u) dA ds (5.2)
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(a) Initial state. (b) t=0.6 (c) t=0.8 (d) t=1.0

Figure 10. Numerical solution for a shock moving towards a phase transition in Maxwell
equilibrium. The initial mesh has 45 162 elements. The number of elements during runtime was
45 100 to 45 162. This is again a small range which underlines the effectivity of the remeshing
routine. The sizes of the elements is characterized by minn k(τn) = 0.00180, maxn h(τn) =
0.0261 and r = 7.111.

0 0.2 0.4 0.6 0.8 1
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T1, maxt∈[0,1) h(T1) = 0.1013

T2, maxt∈[0,1) h(T2) = 0.0493

T3, maxt∈[0,1) h(T3) = 0.0250

Figure 11. Evolution of S[uh(t, ·)] from (5.2).

is non-increasing. We therefore check this property for the approximate solution uh. It can be seen in Figure 11
that the new algorithm leads to a perfectly monotone decreasing total entropy.

6. Conclusions

We have presented a moving mesh method to approximate weak solutions of conservation laws that contain
undercompressive shocks. The approach generalizes earlier work on the scalar one-d̃imensional case to systems in
two spatial dimensions. Basic invariance properties of the exact solutions are shown to transfer to the numerical
scheme.

The conceptional approach can be extended to the three-dimensional case in a straightforward manner,
however becomes intricate due to the complexitiy of the three-dimensional remeshing. From the practical point
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of view it would be extremely interesting to extend the approach to other examples with undercompressive
waves which would only require to construct case-dependent Riemann solvers.

A higher order method of the algorithm is possible but requires some changes. First, the interface curve is part
of the unknowns. A higher order approximation would require a higher order polynomial for the representation of
the interface, i.e. elements with curved edges. Second, at the interface not a single Riemann problem in normal
direction has to be solved but the higher order evaluation of the surface integral in (3.3) requires multiple
evaluations of interface solvers.
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[22] D. Kröner, Numerical schemes for conservation laws. Wiley-Teubner Series Advances in Numerical Mathematics. John Wiley
and Sons Ltd., Chichester (1997).

[23] P.G. LeFloch, Propagating phase boundaries: formulation of the problem and existence via the Glimm method. Arch. Rational
Mech. Anal. 123 (1993) 153–197.

[24] P.G. LeFloch, Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves. Lecture in
Mathematics. ETH Zürich, Birkhäuser, Basel (2002).
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