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Abstract. In this paper, we study the superconvergence behavior of discontinuous Galerkin methods
using upwind numerical fluxes for one-dimensional linear hyperbolic equations with degenerate variable
coefficients. The study establishes superconvergence results for the flux function approximation as
well as for the DG solution itself. To be more precise, we first prove that the DG flux function is
superconvergent towards a particular flux function of the exact solution, with an order of O(hk+2),
when piecewise polynomials of degree k are used. We then prove that the highest superconvergence

rate of the DG solution itself is O(hk+ 3
2 ) as the variable coefficient degenerates or achieves the value

zero in the domain. As byproducts, we obtain superconvergence properties for the DG solution and
the DG flux function at special points and for cell averages. All theoretical findings are confirmed by
numerical experiments.
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1. Introduction

In this paper, we study and analyze the discontinuous Galerkin (DG) method for the following one-dimensional
linear hyperbolic equation

ut + (αu)x = g(x, t), (x, t) ∈ [0, 2π] × (0, T ],
u(x, 0) = u0(x), x ∈ R,

(1.1)
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where u0(x), α(x) and g(x, t) are all smooth functions. Without loss of generality, we only consider periodic
boundary conditions. For simplicity, we assume that there are a finite number of zeros of α(x) on the whole
domain [0, 2π].

The DG method was first introduced by Reed and Hill [19] for solving the neutron transport problem, and
was later developed by Cockburn et al. [12, 14–16] for solving time dependent nonlinear equations. Since then,
the DG method has been intensively studied and successfully applied to various problems in a wide range of
applications. We refer to [13] and references cited therein for the development of DG methods.

Superconvergence of the DG method has been studied for many years. The first superconvergence result for
the DG solution can be found in [1]. Later, in [2], Adjerid and Massey showed a superconvergence rate of k+2 for
the DG solution at the downwind-biased Radau points for some ordinary differential equations, when piecewise
polynomials of degree k are used. In 2007, Celiker and Cockburn proved a (2k + 1)-th order superconvergence
for the numerical traces of the DG and hybridizable DG solutions when applied to steady state problems [9].
Later, Xie and Zhang proved that the same superconvergence rate of 2k + 1 holds for the DG approximation
at downwind points for singularly perturbed problems [20]. For time dependent problems, Cheng and Shu
in [11] proved that the DG solution for 1-D hyperbolic and convection-diffusion equations is superconvergent
towards a particular projection of the exact solution with an order of k+ 3

2 , and later this convergence rate was
improved to k + 2 in [21, 22] by Yang and Shu based on the duality arguments. Recently, Cao et al. revisited
the 1-D and 2-D hyperbolic problems and proved a (2k + 1)-th superconvergence rate for the DG solution at
downwind points and for cell averages by using the idea of correction functions, see. e.g., [6, 8]. We also refer
to [3, 4, 10, 17, 18, 24] as an incomplete list of references on the superconvergence of DG methods. Note that
almost all the superconvergence studies in the literature are based on problems with constant or non-degenerate
(variable or nonlinear) coefficients. To the best of our knowledge, there has been no superconvergence result of
the DG methods when they are applied to problems with general variable coefficients which may degenerate,
i.e. the coefficients either change signs or otherwise achieve the value zero in the domain.

This paper is concerned with the superconvergence properties of the DG method for the 1-D linear hyperbolic
equation (1.1) with α being any smooth function which may generate or have zeros in the considered domain. As
superconvergence has been extensively studied for the problem (1.1) with α = 1 (see, e.g., [8,11,21]), it is natural
to ask whether the superconvergence phenomenon still exists and the same superconvergence results still hold
for problems with variable coefficients. As we will see from the result of this paper, as well as the results in [18]
for the more complicated nonlinear case, if the variable or nonlinear coefficients are bounded away from zero, we
are able to obtain superconvergence results using the same methods as the constant coefficient case. However,
the approach used in such analysis breaks down when the coefficient changes signs or otherwise achieves the
value zero. In this work, we will prove that the superconvergence phenomenon of the DG methods for (1.1) still
exists when the coefficients degenerate, and the superconvergence rate may depend upon specific properties of
the variable coefficient function α. The highest superconvergence rate for the DG solution at some special points
is obtained, which is a half order higher than the optimal convergence rate. Our numerical examples demonstrate
that this highest superconvergence rate for the DG solution approximation is sharp in many situations. As we
may recall, these results are very different from the superconvergence results in [8] for the constant coefficient
problems. Another important result we establish in this work is the superconvergence for the flux function of
the DG methods. For the first time, we prove that the DG flux function is superconvergent towards a particular
flux function of the exact solution with an order of k + 2. This superconvergence result can be viewed as the
generalization of the result in [8, 21] for the constant coefficient problems. As byproducts, superconvergence
properties for the DG solution and the DG flux function at some special points (Radau points), as well as for
cell averages, are also obtained.

The contribution of this paper is to present and reveal the superconvergence behavior of the DG meth-
ods for possibly degenerate variable coefficient problems. On the one hand, we uncover the superconvergence
phenomenon of the DG methods for hyperbolic equations with variable coefficients, and prove that the su-
perconvergence rate may depend upon the property of the variable coefficient function. On the other hand,
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we establish the superconvergence results for the flux function of the DG methods, and extend the superconver-
gence results for constant coefficient problems to the general case. By doing so, we present a full picture for the
superconvergence properties and enrich the superconvergence theory of the DG method for linear hyperbolic
equations in one dimension. Furthermore, our current work is also part of an ongoing effort to develop DG
superconvergence results for degenerate nonlinear hyperbolic equations.

The key step of our superconvergence analysis is still based upon the idea of correction functions. That is, we
construct special functions to correct the error between the DG solution and specific projections of the exact
solution. However, the correction function here is not the same as that in [8] for constant coefficients, as the
correction function in [8] fails to work in cells where the variable coefficient either degenerates to zero or is very
close to zero. New techniques are developed in our analysis to guarantee the superconvergence results, especially
the superconvergence results for the DG solution itself.

To end this introduction, we would like to emphasize that the superconvergence analysis for linear hyperbolic
equations with degenerate variable coefficients is significant and meaningful. First, this is a necessary step
towards the analysis of nonlinear hyperbolic problems ut + f(u)x = 0, for which the wind direction f ′(u)
changes sign generically and the assumption made in Meng et al [18] for |f ′(u)| ≥ δ > 0 is quite artificial.
Second, the analysis is much more difficult than the case without sonic points, i.e., points at which f ′(u) = 0,
studied before in [8, 21]. The tools developed in this paper are expected to be useful in future analysis, e.g.,
for the analysis of nonlinear problems. Third, superconvergence for hyperbolic problems with sonic points is
important for adaptive computation for such problems, which arises in many applications such as computational
fluid dynamics and computational electro-magnetism.

The rest of the paper is organized as follows. In Section 2, we present DG schemes and discuss their stability
for linear hyperbolic equations with variable coefficients. Section 3 is dedicated to the superconvergence analysis
of the flux function of the DG methods. Using special correction functions, we obtain (k+2)-th order supercon-
vergence rate for flux function approximation. In Section 4, we study the superconvergence behavior of the DG
approximation itself, and reveal a very important fact that the superconvergence phenomenon exists for general
variable coefficient hyperbolic equations, and the superconvergence rate may depend upon specific properties of
the variable coefficient function. In Section 5, we provide numerical examples to support our theoretical findings.
Finally, concluding remarks and remarks for possible future work are presented in Section 6.

Throughout this paper, we adopt standard notations for Sobolev spaces such as Wm,p(D) on sub-domain
D ⊂ Ω equipped with the norm ‖ · ‖m,p,D and semi-norm | · |m,p,D. When D = Ω, we omit the index D; and if
p = 2, we set Wm,p(D) = Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D, and | · |m,p,D = | · |m,D.

2. The DG methods

2.1. Numerical schemes

Let Ω = [0, 2π] and 0 = x 1
2
< x 3

2
< . . . < xN+ 1

2
= 2π be N + 1 distinct points on the interval Ω. For all

positive integers r, we define Zr = {1, . . . , r} and denote by

τj =
(
xj− 1

2
, xj+ 1

2

)
, xj =

1
2

(
xj− 1

2
+ xj+ 1

2

)
, j ∈ ZN

the cells and cell centers, respectively. Let hj = xj+ 1
2
− xj− 1

2
, hj = hj/2 and h = max

j
hj . We assume that the

mesh is regular, i.e., the ratio between the maximum and minimum mesh sizes shall stay bounded during mesh
refinements.

Define
Vh = {vh : vh|τj ∈ Pk(τj), j ∈ ZN}
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to be the finite element space, where Pk denotes the space of polynomials of degree at most k. The DG scheme
for (1.1) reads as: Find uh ∈ Vh such that for any vh ∈ Vh,

((uh)t, vh)j − (αuh, (vh)x)j + αûhv
−
h |j+ 1

2
− αûhv

+
h |j− 1

2
= (g, vh)j , (2.1)

where (u, v)j =
∫

τj
uvdx, v−h |j+ 1

2
and v+

h |j+ 1
2

denote the left and right limits of vh at the point xj+ 1
2
, respectively,

and ûh is the numerical flux, which is the discrete approximation to the trace of u on the boundary of each
interval. The choice of the numerical flux is of great importance to ensure the stability of the numerical scheme.
In this paper, we take the upwind flux defined by

ûh

∣∣
j+ 1

2
=

⎧⎪⎨
⎪⎩
uh

(
x+

j+ 1
2

)
, if αj+ 1

2
≤ 0,

uh

(
x−

j+ 1
2

)
, if αj+ 1

2
> 0,

j ∈ ZN (2.2)

where αj+ 1
2

= α(xj+ 1
2
).

2.2. Stability

Define
H1

h =
{
v : v|τj ∈ H1(τj), j ∈ ZN

}
,

and for all u, v ∈ H1
h, let

aj(u, v) = (ut, v)j − (αu, vx)j + αûv−|j+ 1
2
− αûv+|j− 1

2
, a(u, v) =

N∑
j=1

aj(u, v),

where û is the numerical flux taken as (2.2). Apparently, (2.1) can be rewritten as

aj(uh, vh) = (g, vh)j , ∀vh ∈ Vh, ∀j ∈ ZN .

For any periodic boundary condition v, a direct calculation from integration by parts yields

a(v, v) = (vt, v) +
1
2
(αxv, v) +

N∑
j=1

αj+ 1
2
({v} − v̂)j+ 1

2
[v]j+ 1

2
,

where (u, v) =
∑N

j=1(u, v)j , {v} = v++v−
2 , and [v] = v+ − v− denotes the jump of v. Thanks to the special

choice of the numerical flux, we have

N∑
j=1

αj+ 1
2
({v} − v̂)j+ 1

2
[v]j+ 1

2
≥ 0,

which yields

(vt, v) ≤ a(v, v) − 1
2
(αxv, v). (2.3)

Especially, by choosing v = uh in the above inequality, we get

((uh)t, uh) ≤ −1
2
(αxuh, uh) + (g, uh).

Then the stability of the numerical scheme is guaranteed by using the Gronwall inequality.
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To end this section, we would like to present another stability inequality, which will be used in our supercon-
vergence analysis later. Let

Aj(u, v) =
(
α2

j+ 1
2

+ α2
j− 1

2

)
aj(u, v), A(u, v) =

N∑
j=1

Aj(u, v), u, v ∈ H1
h.

Recalling the definition of aj(·, ·), we obtain from a direct calculation,

A(v, v) =
N∑

j=1

(
α2

j+ 1
2

+ α2
j− 1

2

)(
(vt, v)j − (αv, vx)j + αv̂v−|j+ 1

2
− αv̂v+|j− 1

2

)

=
N∑

j=1

((
α2

j+ 1
2

+ α2
j− 1

2

)(
(vt, v)j +

1
2
(αxv, v)j

)
+ 2α3

j+ 1
2
({v} − v̂)j+ 1

2
[v]j+ 1

2

)
+ I,

where

I =
N∑

j=1

(
α2

j+ 1
2
− α2

j− 1
2

)(
αj− 1

2

(
v+

2
− v̂

)
j− 1

2

v+
j− 1

2
+ αj+ 1

2

(
v−

2
− v̂

)
j+ 1

2

v−
j+ 1

2

)
.

Again, the special choice of the numerical flux in (2.2) ensures that

N∑
j=1

α3
j+ 1

2
({v} − v̂)j+ 1

2
[v]j+ 1

2
≥ 0.

Therefore, by defining

‖v‖α =
N∑

j=1

(
α2

j+ 1
2

+ α2
j− 1

2

) ∫
τj

v2(x)dx, ∀v ∈ H1
h, (2.4)

we have

1
2

d
dt

‖v‖2
α ≤ A(v, v) − I − 1

2

N∑
j=1

(
α2

j+ 1
2

+ α2
j− 1

2

)
(αxv, v)j

≤ |A(v, v)| + |α|1,∞
2

‖v‖2
α + |I|.

Noticing that |v̂j− 1
2
| ≤ ‖v‖0,∞,τj + ‖v‖0,∞,τj−1 , j ∈ ZN , we get

|I| � h

N∑
j=1

∣∣∣(αj+ 1
2

+ αj− 1
2

)(
αj− 1

2

(
‖v‖0,∞,τj + ‖v‖0,∞,τj−1

)

+αj+ 1
2

(‖v‖0,∞,τj + ‖v‖0,∞,τj+1

) )‖v‖0,∞,τj

∣∣∣ � h

N∑
j=1

(
α2

j+ 1
2

+ α2
j− 1

2

)
‖v‖2

0,∞,τj
.

Here and in the following, A � B denotes that A can be bounded by B multiplied by a constant independent
of the mesh size h. Consequently,

1
2

d
dt

‖v‖2
α � |A(v, v)| + ‖v‖2

α + h

N∑
j=1

(
α2

j+ 1
2

+ α2
j− 1

2

)
‖v‖2

0,∞,τj
, ∀v ∈ H1

h.



2218 W. CAO ET AL.

By the inverse inequality, we have for all vh ∈ Vh

‖vh‖0,∞,τj � h−
1
2 ‖vh‖0,τj , j ∈ ZN .

Then
d
dt

‖vh‖2
α � |A(vh, vh)| + ‖vh‖2

α, ∀vh ∈ Vh. (2.5)

3. Superconvergence for the DG flux function approximation

This section is dedicated to the superconvergence analysis for the DG flux function approximation. We shall
prove that the flux function of the DG method αuh is superconvergent with an order of k+2 towards a particular
flux function of the exact solution. It is this supercloseness that gives us the superconvergence properties of the
flux function at some special points as well as for the cell average.

We begin with some preliminaries.

3.1. Preliminaries

Let Lm and Lj,m be the standard Legendre polynomials of degreem on the interval [−1, 1] and τj , respectively.
That is,

Lj,m(x) = Lm(s), s = (x− xj)/hj ∈ [−1, 1].

For any function v ∈ H1
h, we define the primal function D−1

x v of v by

D−1
x v

∣∣
τj

=
1
h̄j

∫ x

x
j− 1

2

v(x)dx.

By the properties of Legendre polynomials and a scaling from τj to [−1, 1], we have

D−1
x Lj,m(x) =

∫ s

−1

Lm(s)ds =
1

m(m+ 1)
(s2 − 1)

d
ds
Lm(s) (3.1)

=
1

2m+ 1
(Lm+1 − Lm−1)(s) =

1
2m+ 1

(Lj,m+1 − Lj,m−1)(x). (3.2)

Given a function ψ, we denote by Rhψ and P±
h ψ the traditional L2 and Gauss−Radau projections of ψ,

respectively. That is,
(Rhψ, vh) = (ψ, vh), ∀vh ∈ Pk(τj),

and

(P+
h ψ, vh)j = (ψ, vh)j , ∀vh ∈ Pk−1(τj), P+

h ψ(x+
j− 1

2
) = ψ

(
x+

j− 1
2

)
, (3.3)

(P−
h ψ, vh)j = (ψ, vh)j , ∀vh ∈ Pk−1(τj), P−

h ψ(x−
j+ 1

2
) = ψ

(
x−

j+ 1
2

)
. (3.4)

In addition, we also define the Gauss–Lobatto projection Qhψ (for k ≥ 2) as follows

(Qhψ, vh) = (ψ, vh), ∀vh ∈ Pk−2(τj); Qhψ
(
x±

j+ 1
2

)
= ψ

(
x±

j+ 1
2

)
. (3.5)

While for k = 1, Qhψ is the interpolant of ψ satisfying the second condition of (3.5) only. The standard
approximation theory gives us, for p ≥ 1,

‖ψ − P+
h ψ‖0,p + ‖ψ − P−

h ψ‖0,p + ‖ψ −Rhψ‖0,p + ‖ψ −Qhψ‖0,p � hk+1|ψ|k+1,p. (3.6)
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With the above four projections, we define a particular projection Phψ of ψ by

Phψ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rhψ, if αj+ 1
2
≤ 0, αj− 1

2
> 0

P+
h ψ, if αj+ 1

2
≤ 0, αj− 1

2
≤ 0

P−
h ψ, if αj+ 1

2
> 0, αj− 1

2
> 0

Qhψ, if αj+ 1
2
> 0, αj− 1

2
≤ 0

. (3.7)

In each element τj , j ∈ ZN , we denote by rj,i, lj,i, gj,i, glj,i, i ∈ Zk+1 the right Radau, left Radau, Gauss,
and Gauss–Lobatto points of degree k + 1, respectively, That is, rj,i and lj,i are separately the zeros of the
right Radau polynomial Lj,k+1 − Lj,k and the left Radau polynomial Lj,k+1 + Lj,k, and gj,i are zeros of the
Legendre polynomial Lj,k+1, and glj,i are zeros of the Lobatto polynomial Lj,k+1 −Lj,k−1. Similarly, we denote
by l∗j,m,m ∈ Zk the interior left Radau points (the roots of Lj,k+1+Lj,k except the point x = xj− 1

2
); r∗j,m,m ∈ Zk

the interior right Radau points (the roots of Lj,k+1 − Lj,k except the point x = xj+ 1
2
); g∗j,m,m ∈ Zk the Gauss

points of degree k (i.e., the roots of Lj,k); and gl∗j,m,m ∈ Zk the k interior Gauss–Lobatto points (i.e., the roots
of Lj,k+2 − Lj,k except the two boundary points x = xj+ 1

2
, xj− 1

2
).

Now we define a class of special points yj,i, zj,m, i ∈ Zk+1,m ∈ Zk in each element τj , j ∈ ZN as follows:

yj,i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gj,i, if αj+ 1
2
≤ 0, αj− 1

2
> 0

lj,i, if αj+ 1
2
≤ 0, αj− 1

2
≤ 0

rj,i, if αj+ 1
2
> 0, αj− 1

2
> 0

glj,i, if αj+ 1
2
> 0, αj− 1

2
≤ 0

, (3.8)

and

zj,m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gl∗j,m, if αj+ 1
2
≤ 0, αj− 1

2
> 0

r∗j,m, if αj+ 1
2
≤ 0, αj− 1

2
≤ 0

l∗j,m, if αj+ 1
2
> 0, αj− 1

2
> 0

g∗j,m, if αj+ 1
2
> 0, αj− 1

2
≤ 0

. (3.9)

We have the following approximation properties of Phψ at the special points yj,i, zj,m, (j, i,m) ∈ ZN ×
Zk+1 × Zk.

Lemma 3.1. Let ψ ∈W k+2,∞, and Phψ ∈ Vh be defined by (3.7). The following approximation properties hold
true.

• The numerical flux is exact, i.e.,
P̂hψ

∣∣
j+ 1

2
= ψj+ 1

2
, ∀j ∈ ZN . (3.10)

Here the numerical flux is defined by (2.2) with uh replaced by Phψ.
• The function value of Phψ is k + 2-th order superconvergent at the special points yj,i, (j, i) ∈ ZN × Zk+1

defined by (3.8), i.e.,
|(ψ − Phψ)(yj,i)| � hk+2|ψ|k+2,∞,τj . (3.11)

• The derivative value of Phψ is superconvergent at the special points zj,m, (j, i) ∈ ZN ×Zk, with a convergence
rate k + 1, where zj,m is defined by (3.9). That is,

|∂x(ψ − Phψ)(zj,m)| � hk+1|ψ|k+2,∞,τj . (3.12)
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Proof. For any j ∈ ZN , by (2.2) and (3.7), there holds for αj+ 1
2
> 0

P̂hψ
∣∣
j+ 1

2
= Phψ

(
x−

j+ 1
2

)
= P−

h ψ
(
x−

j+ 1
2

)
or Qhψ

(
x−

j+ 1
2

)
,

and for αj+ 1
2
≤ 0

P̂hψ
∣∣
j+ 1

2
= Phψ

(
x+

j+ 1
2

)
= P+

h ψ
(
x+

j+ 1
2

)
or Qhψ

(
x+

j+ 1
2

)
.

In both cases, we have, from the properties of P±
h ψ and Qhψ

P̂hψ
∣∣
j+ 1

2
= ψ

(
xj+ 1

2

)
.

Now we show (3.11)−(3.12). Using the result in [23] (see Thm. 2.1) and a scaling from [−1, 1] to τj , we have

(ψ −Qhψ)
∣∣
τj

=
∞∑

p=k

bj,p
2p+ 1

(Lj,p+1 − Lj,p−1), ∂x(ψ −Qhψ)
∣∣
τj

=
1
h̄j

∞∑
p=k

bj,p
2p+ 1

Lj,p

with

bj,p =
2pp!
(2p)!

(h̄j)p+1∂p+1
x u(ξj), ξj ∈ τj .

Then
|(ψ −Qhψ)(glj,i)| � hk+2|ψ|k+2,∞,τj , |∂x(ψ −Qhψ)(g∗j,m)| � hk+1|ψ|k+2,∞,τj .

On the other hand, it has been proved in [7, 8]

|(ψ − P−
h ψ)(rj,i)| + |(ψ − P+

h ψ)(lj,i)| � hk+2|ψ|k+2,∞,τj ,

|∂x(ψ − P−
h ψ)(l∗j,m)| + |∂x(ψ − P+

h ψ)(r∗j,m)| � hk+1|ψ|k+2,∞,τj .

Therefore, we only need to analyze the superconvergent approximation properties of the L2 projection Rhψ. To
this end, we suppose in each element τj ,

ψ
∣∣
τj

=
∞∑

p=0

aj,pLj,p, aj,p =
2p+ 1
hj

∫
τj

ψLj,pdx. (3.13)

By the definition of Rhψ, we easily obtain

(ψ −Rhψ)
∣∣
τj

=
∞∑

p=k+1

aj,pLj,p, ∂x(ψ −Rhψ)
∣∣
τj

=
∞∑

p=k+1

aj,p∂xLj,p.

By (3.1)−(3.2)

∂xLj,k+1(gl∗j,m) =
ck
hj

(Lj,k+2 − Lj,k)(gl∗j,m) = 0, m ∈ Zk,

where ck is a constant dependent on k. Then

(ψ −Rhψ)(gj,i) =
∞∑

p=k+2

aj,pLj,p(gj,i), ∂x(ψ −Rhψ)(gl∗j,m) =
∞∑

p=k+2

aj,p∂xLj,p(gl∗j,m).
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By denoting ψ(s, t) = ψ(x, t), s = (x−xj)/hj ∈ [−1, 1], we have, from the integration by parts and the properties
of Legendre polynomials,

aj,m =
(

2m+ 1
2

)
1

(2m)!

∫ 1

−1

ψ
dm

ds
(s2 − 1)mds

=
(

2m+ 1
2

)
(−1)i

(2m)!

∫ 1

−1

∂i
sψ
dm−i

ds
(s2 − 1)mds, i ≤ m.

Noticing that ∂i
sψ =

(
h̄j

)i
∂i

xψ, we have

|aj,m| � hi− 1
p |ψ|i,p,τj , 1 ≤ i ≤ m. (3.14)

Consequently,

|(ψ −Rhψ)(gj,i)| + hj

∣∣∂x(ψ −Rhψ)(gl∗j,m)
∣∣ �

∞∑
m=k+2

|aj,m| � hk+2|ψ|k+2,∞,τj .

This finishes the proof of (3.11)−(3.12). �

We end this subsection with the optimal error estimate for ‖uh − Phu‖0.

Lemma 3.2. Let u(·, t) ∈ Hk+2, ∀t ∈ [0, T ] be the solution of (1.1), and uh be the solution of (2.1) with the
initial solution uh(x, 0) = Phu0. Then

‖(uh − Phu)(·, t)‖0 � hk+1 sup
τ∈[0,t]

‖u(·, τ)‖k+2. (3.15)

Proof. In each element τj , j ∈ ZN , if Phu|τj = Rhu, P
±
h u, we have, from the orthogonality of Rhu, P

±
h u,

and (3.10)
aj(u− Phu, vh) = (ut − Phut, vh)j + ((α − αj)(u− Phu), ∂xvh)j ,

where αj = α(xj) is a constant. If Phu = Qhu, which indicates αj+ 1
2
αj− 1

2
≤ 0, then there exists at least one

point ξj ∈ τj such that α(ξj) = 0, and thus,

aj(u− Phu, vh) = (ut −Qhut, vh)j − ((α − α(ξj))(u −Qhu), ∂xvh).

Combining the above two equations, we have for all vh ∈ Vh and j ∈ ZN ,

aj(u− Phu, vh) � ‖ut − Phut‖0,τj‖vh‖0,τj + h‖u− Phu‖0,τj |vh|1,τj

� hk+1(‖u‖k+1,τj + ‖ut‖k+1,τj)‖vh‖0,τj , (3.16)

where in the last step, we have used (3.6) and the inverse inequality |vh|1,τj � h−1
j ‖vh‖0,τj for all vh ∈ Vh.

Now we obtain, by choosing v = uh − Phu in (2.3), and using (3.10) and the orthogonality a(u − uh, vh) =
0, vh ∈ Vh,

d
dt

‖uh − Phu‖2
0 � a(u− Phu, uh − Phu) + ‖uh − Phu‖2

0

=
N∑

j=1

aj(u − Phu, uh − Phu) + ‖uh − Phu‖2
0.

Then (3.15) follows from (3.16), the Gronwall inequality and the fact that ‖ut‖k+1,∞ � ‖ux‖k+1,∞ when α(x)
and g(x, t) in (1.1) is sufficiently smooth. �
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3.2. Analysis

In this subsection, we will study the superconvergence properties of the DG flux function αuh towards the
particular flux function αPhu of the exact solution in the L2 norm. In light of (3.15) and the fact that

‖α(uh − Phu)‖0 � ‖uh − Phu‖α + h‖uh − Phu‖0 � hk+2 sup
t∈[0,T ]

‖u(·, t)‖k+2 + ‖uh − Phu‖α, (3.17)

where ‖ · ‖α is defined by (2.4), our superconvergence goal is reduced to the estimate of the error ‖uh −Phu‖α.

As indicated by (2.5), the error ‖(uh − Phu)(·, t)‖α for any time t > 0 is dependent on the initial error
and the term A(uh − Phu, uh − Phu), or equivalently the term A(u − Phu, uh − Phu) due to the orthogonality
A(u − uh, vh) = 0, vh ∈ Vh. However, as a direct consequence of (3.16),

A(u− Phu, uh − Phu) =
N∑

j=1

(α2
j+ 1

2
+ α2

j− 1
2
)aj(u− Phu, uh − Phu)

� hk+1‖u‖k+2‖uh − Phu‖α.

Then the standard error estimate only gives us the optimal convergence rate, i.e.,

‖(uh − Phu)(·, t)‖α � hk+1 sup
τ∈[0,t]

‖u(·, τ)‖k+2,

which is far from our superconvergence goal. Therefore, to improve the convergence rate, some extra term or
function is needed to correct the error A(u− Phu, vh), vh ∈ Vh based on the projection Phu defined in (3.7). In
other words, we need to construct a correction function w ∈ Vh such that uI = Phu− w and

A(u − uI , vh) = A(u− Phu, vh) +A(w, vh) � hk+1+l‖vh‖α, ∀vh ∈ Vh

for some l > 0. By doing so, we obtain the superconvergence result for αuh−αuI (or αuh−αPhu). Our analysis
is along this line. Consequently, the rest of this subsection is dedicated to the construction of the correction
function w.

For functions u, v ∈ H1
h, we define

b(u, v) =
N∑

j=1

bj(u, v), bj(u, v) = (ut, v)j − (αu, vx)j .

Apparently, we have from (3.10) and the definition of aj(·, ·),

bj(u − Phu, vh) = aj(u− Phu, vh), ∀vh ∈ Vh.

On the other hand, in light of the definition of Phu in (3.7), the whole domain Ω can be divided into four parts,
that is

Ω =
4⋃

i=1

Ωi,

where

Ω1 =
{
τj : αj− 1

2
> 0, αj+ 1

2
> 0
}
, Ω2 =

{
τj : αj− 1

2
≤ 0, αj+ 1

2
≤ 0
}
, (3.18)

Ω3 =
{
τj : αj− 1

2
≤ 0, αj+ 1

2
> 0
}
, Ω4 =

{
τj : αj− 1

2
> 0, αj+ 1

2
≤ 0
}
. (3.19)
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Then

A(u − Phu, vh) =
∑

τj∈Ω1

α̃2
j+ 1

2
bj(u− P−

h u, vh) +
∑

τj∈Ω2

α̃2
j+ 1

2
bj(u − P+

h u, vh)

+
∑

τj∈Ω3

α̃2
j+ 1

2
bj(u−Qhu, vh) +

∑
τj∈Ω4

α̃2
j+ 1

2
bj(u−Rhu, vh), (3.20)

where α̃2
j+ 1

2
= α2

j+ 1
2

+ α2
j− 1

2
.

3.2.1. The local correction function for bj(u− P−
h u, vh)

Noticing that (u− P−
h u)⊥P0, we have

D−1
x (u− P−

h u)
(
x−

j+ 1
2

)
=

1
h̄j

∫ x
j+ 1

2

x
j− 1

2

(u− P−
h u)(x)dx = 0 = D−1

x (u− P−
h u)

(
x+

j− 1
2

)
.

Then a direct calculation from integration by parts yields, for any vh ∈ Vh,

bj(u− P−
h u, vh) = (ut − P−

h ut, vh)j − (α(u − P−
h u), ∂xvh)j

= −h̄j(D−1
x (ut − P−

h ut), ∂xvh)j − ((α− ᾱj)(u− P−
h u), ∂xvh)j , (3.21)

where ᾱj is a constant satisfying
|ᾱj | = max

x∈τj

|α(x)|. (3.22)

With ᾱj , we now define a special function w1 ∈ Vh as follows.

ᾱj(w1, vh)j = −h̄j(D−1
x (ut − P−

h ut), vh)j − ((α − ᾱj)(u − P−
h u), vh)j , vh ∈ Pk−1,

w1(x−j+ 1
2
) = 0, ∀j ∈ ZN . (3.23)

Lemma 3.3. Let w1 ∈ Vh be defined by (3.23). Then

bj(u − P−
h u+ w1, vh) = (∂tw1, vh)j − ((α− ᾱj)w, ∂xvh)j , ∀vh ∈ Vh, (3.24)

where ᾱj is defined in (3.22). Moreover, if u(·, t) ∈W k+3,∞, t ∈ [0, T ], then

‖w1(·, t)‖0,τj + ‖∂tw1(·, t)‖0,τj � hk+ 5
2

k+3∑
l=0

‖∂l
xα‖0,∞,τj

‖α‖0,∞,τj

‖u(·, t)‖k+3,∞. (3.25)

Proof. First, (3.24) follows directly from (3.21) and (3.23). To estimate w1, we suppose w1 has the following
Legendre expansion in each τj

w1

∣∣
τj

=
k∑

m=0

cmLj,m(x).

By choosing vh = Lj,m,m ≤ k − 1 in (3.23), we get

ᾱjhj

2m+ 1
cm = −h̄j(D−1

x (ut − P−
h ut), Lj,m)j − ((α − ᾱj)(u− P−

h u), Lj,m)j .

Noticing that

‖D−1
x (ut − P−

h ut)‖0,∞,τj ≤ ‖ut − P−
h ut‖0,∞,τj

� hk+1‖∂k+1
x ut‖0,∞,τj � hk+1‖∂k+2

x (αu)‖0,∞,τj ,
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we have for all m ≤ k − 1,

|cm| � hk+2

ᾱj

(‖∂k+2
x (αu)‖0,∞,τj + ‖∂xα‖0,∞,τj‖∂k+1

x u‖0,∞,τj

)

� hk+2

ᾱj

k+2∑
l=0

‖∂l
xα‖0,∞,τj‖u‖k+2,∞.

Since w1(x−j+ 1
2
, t) = 0, then

|ck| =

∣∣∣∣∣
k−1∑
m=0

cm

∣∣∣∣∣ � hk+2

ᾱj

k+2∑
l=0

‖∂l
xα‖0,∞,τj‖u‖k+2,∞.

Consequently,

‖w1(·, t)‖2
0,τj

� h

k∑
m=0

c2m � h2k+5
k+2∑
l=0

‖∂l
xα‖2

0,∞,τj

ᾱ2
j

‖u(·, t)‖2
k+2,∞.

Similarly, taking time derivative on both sides of (3.23), the identity still holds. Then we follow the same
argument to derive

‖∂tw1(·, t)‖2
0,τj

� h2k+5
k+3∑
l=0

‖∂l
xα‖2

0,∞,τj

ᾱ2
j

‖u(·, t)‖2
k+3,∞.

Then (3.25) follows. The proof is complete. �

3.2.2. The local correction function for bj(u− P+
h u, vh)

Since P+
h u shares almost the same properties with P−

h u, the correction function for the term bj(u−P+
h u, vh)

is similar to that for bj(u− P−
h u, vh), which is defined as follows. In each element τj , let w2 ∈ Vh satisfy

ᾱj(w2, vh)j = −h̄j(D−1
x (ut − P+

h ut), vh)j − ((α − ᾱj)(u − P+
h u), vh)j , vh ∈ Pk−1(τj),

w2(x+
j− 1

2
) = 0, j ∈ ZN . (3.26)

Here ᾱj is given in (3.22). Following the same argument as in Lemma 3.3, we get

bj(u − P+
h u+ w2, vh) = (∂tw2, vh)j − ((α− ᾱj)w2, ∂xvh)j , (3.27)

‖w2(·, t)‖0,τj + ‖∂tw2(·, t)‖0,τj � hk+ 5
2

k+3∑
l=0

‖∂l
xα‖0,∞,τj

‖α‖0,∞,τj

‖u(·, t)‖k+3,∞. (3.28)

3.2.3. The global correction function for b(u− Phu, vh)

Now we are ready to define the global correction function on the whole domain. Let w ∈ Vh be the correction
function such that

w =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, αj+ 1
2
≤ 0, αj− 1

2
> 0,

w2, αj+ 1
2
≤ 0, αj− 1

2
≤ 0,

w1, αj+ 1
2
> 0, αj− 1

2
> 0,

0 αj+ 1
2
> 0, αj− 1

2
≤ 0,

(3.29)

where w1, w2 are separately defined in (3.23) and (3.26).

We have the following properties of the correction function w.
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Lemma 3.4. Let u(·, t) ∈ W k+3,∞, ∀t ∈ [0, T ] be the solution of (1.1), and w ∈ Vh be the correction function
defined by (3.29). Then

ŵ(xj+ 1
2
, t) = 0, j ∈ ZN , ‖w(·, t)‖α + ‖∂tw(·, t)‖α � hk+2‖u(·, t)‖k+3,∞, (3.30)

and
A(u− Phu+ w, vh) � hk+2‖u‖k+3,∞‖vh‖α, ∀vh ∈ Vh. (3.31)

Proof. By the definition of w in (3.29), (3.23) and (3.26), we can easily obtain ŵ(xj+ 1
2
, t) = 0, j ∈ ZN . The

second inequality of (3.30) follows from (3.25) and (3.28).

Let uI = Phu− w. Recall the definition of A(·, ·), we immediately get

A(w, v) =
N∑

j=1

α̃2
j+ 1

2
((wt, v)j − (αw, vx)j) =

2∑
i=1

∑
τj∈Ωi

α̃j+ 1
2
bj(wi, v), (3.32)

which yields, together with (3.20), (3.24), and (3.27),

A(u − uI , vh) =
∑

τj∈Ω3∪Ω4

α̃2
j+ 1

2
bj(u − Phu, vh) +

∑
τj∈Ω1∪Ω2

α̃2
j+ 1

2

(
(wt, vh)j − ((α− ᾱj)w, ∂xvh)j

)
,

where α̃2
j+ 1

2
and ᾱj is the same as in (3.20) and (3.22) respectively, and Ωi, i ∈ Z4 are defined by (3.18).

For any τj ∈ Ω3 ∪Ω4, noticing that αj+ 1
2
αj− 1

2
≤ 0, then there exists at least one zero of α on τj . Then

‖α‖0,∞,Ω3∪Ω4 � h‖α‖1,∞,Ω3∪Ω4 � h,

and thus
α̃2

j+ 1
2

= α2
j+ 1

2
+ α2

j− 1
2

� h2, τj ∈ Ω3 ∪Ω4.

Since α is smooth, there are a finite number of zeros of α on the whole domain Ω, which indicates the number
of elements in Ω3∪Ω4 is upper bounded independent of h. Then by (3.16) and the Cauchy–Schwartz inequality,∣∣∣∣∣∣

∑
τj∈Ω3∪Ω4

α̃2
j+ 1

2
bj(u− Phu, vh)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

τj∈Ω3∪Ω4

α̃2
j+ 1

2
aj(u− Phu, vh)

∣∣∣∣∣∣
� hk+1

⎛
⎝ ∑

τj∈Ω3∪Ω4

α̃2
j+ 1

2
‖u‖2

k+2,τj

⎞
⎠

1
2

‖vh‖α � hk+2‖u‖k+2‖vh‖α.

Plugging the above inequality into the formula of A(u − uI , vh), we get for all vh ∈ Vh

|A(u− uI , vh)| � hk+2‖u‖k+2‖vh‖α + (‖wt‖α + ‖w‖α)(‖vh‖α + h‖∂xvh‖α)
� hk+2‖u‖k+3,∞‖vh‖α,

where in the last step, we have used (3.30) and the inverse inequality. �

Remark 3.5. Since the number of elements in the domain Ω3 ∪ Ω4 is upper bounded independent of h, the
terms

∑
τj⊂Ω3

bj(u−Qhu, vh) and
∑

τj⊂Ω4
bj(u−Rhu, vh) in the formula (3.20) are of high order, which means

the correction function is not necessary in the case Phu = Qhu or Rhu. This is why we take w|τj = 0 in those
elements τj ∈ Ω3 ∪Ω4.
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3.3. The superconvergence result

Now we are ready to present the superconvergence properties of the DG flux function approximation.

Theorem 3.6. Let u(·, t) ∈ W k+3,∞, ∀t ∈ [0, T ] be the solution of (1.1), and uh be the solution of (2.1) with
the initial solution uh(x, 0) = Phu0, where Phu0 is defined by (3.7). Then

ef =

⎛
⎝ N∑

j=1

∫
τj

α2(uh − Phu)2(x, t)dx

⎞
⎠

1
2

� hk+2 sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞. (3.33)

Proof. Let uI = Phu−w. By choosing vh = uh − uI in (2.5) and using the estimates in (3.30)−(3.31), we have

‖(uh − uI)(·, t)‖2
α � ‖(uh − uI)(·, 0)‖2

α +
∫ t

0

A(u− uI , uh − uI)dt

� ‖w(·, 0)‖2
α + thk+2 sup

τ∈[0,t]

‖u(·, τ)‖k+3,∞‖(uh − uI)(·, τ)‖α.

Then
‖(uh − uI)(·, t)‖α � hk+2 sup

τ∈[0,t]

‖u(·, τ)‖k+3,∞,

and thus

‖(uh − Phu)(·, t)‖α � hk+2 sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞ + ‖w(·, t)‖α

� hk+2 sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞.

Then (3.33) follows from (3.17). �

Remark 3.7. The result in Theorem 3.6 indicates that the flux function αuh of the DG method is supercon-
vergent with an order of k + 2 towards the particular flux function αPhu of the exact solution. When α is a
constant, Phu is reduced to the traditional Gauss–Radau projection P−

h u (or P+
h u, dependent on the sign of α).

Then (3.33) implies that the DG solution is super-close to the Gauss–Radau projection of the exact solution,
with a convergence order of k + 2, which is consistent with the superconvergence result established in [8, 21].
In other words, the result (3.33) extends the superconvergence result in [8,21] for constant coefficient problems
to the general case. As we shall demonstrate in our numerical experiments, α in (3.33) can not be removed to
assure the (k + 2)th order superconvergence rate for a general hyperbolic equations with possibly degenerate
variable coefficients.

We next study the superconvergence properties for the flux function of the DG method at some special points
and for cell averages. As a direct consequence of (3.33), (3.10)−(3.12), we have the following superconvergence
results.

Corollary 3.8. Suppose all the conditions of Theorem 3.6 hold. Then

ef,c + ef,r � hk+2 sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞, ef,l � hk+1 sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞,
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where

e2f,c =
1
N

N∑
j=1

(
1
hj

∫
τj

(α(u − uh))(x, t)dx

)2

,

e2f,l =
1
Nk

N∑
j=1

k∑
i=1

(α∂x(u− uh))2(zj,m, t),

e2f,r =
1

N(k + 1)

N∑
j=1

k+1∑
i=1

(α(u − uh))2(yj,i, t)

with yj,i and zj,m are defined by (3.8)−(3.9).

Proof. In each element τj , if Phu = Rhu, P
±
h u, then∫

τj

α(u − Phu)dx =
∫

τj

(α − αj)(u− Phu)dx � hk+2‖u‖k+1,∞.

If Phu|τj = Qhu, there exists a point ξj ∈ τj such that α(ξj) = 0, then the above inequality still holds. Therefore,

⎛
⎝ 1
N

N∑
j=1

(
1
hj

∫
τj

α(u − Phu)dx

)2
⎞
⎠

1
2

� hk+2‖u‖k+1,∞,

which yields, together with (3.33) and the triangle inequality,

⎛
⎝ 1
N

N∑
j=1

(
1
hj

∫
τj

(αu − αuh)(x, t)dx

)2
⎞
⎠

1
2

� hk+2 sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞, ∀t ∈ (0, T ].

On the other hand, since Phu− uh ∈ Vh, the inverse inequality holds true. Then

|(Phu− uh)(x)| � ‖Phu− uh‖0,∞,τj � h−
1
2 ‖Phu− uh‖0,τj , ∀x ∈ τj ,

and thus,⎛
⎝ 1
N(k + 1)

N∑
j=1

k+1∑
i=1

(αPhu− αuh)2(yj,i, t)

⎞
⎠

1
2

�

⎛
⎝h−1

N

N∑
j=1

k+1∑
i=1

α2(yj,i)‖Phu− uh‖2
0,τj

⎞
⎠

1
2

� ‖Phu− uh‖α + h‖Phu− uh‖0 � hk+2 sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞.

Similarly, we have⎛
⎝ 1
Nk

N∑
j=1

k∑
i=1

(α∂x(Phu− uh))2(zj,i, t)

⎞
⎠

1
2

� ‖∂x(Phu− uh)‖α + h‖∂x(Phu− uh)‖0

� h−1‖Phu− uh‖α + ‖Phu− uh‖0

� hk+1 sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞.

Then the desired results follow from (3.11)−(3.12) and the triangle inequality. �
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4. Superconvergence for the DG solution

In this section, we will study the superconvergence properties for the DG solution itself. That is, we prove
the superconvergence for the DG solution uh to a particular projection of the exact solution u.

In light of (3.33), the DG solution is superconvergent to the particular projection Phu with an order of
k + 2 for a class of functions |α| ≥ δ > 0. However, as α(x) changes signs or otherwise achieves the value zero,
we cannot deduce superconvergence result for the error ‖uh − Phu‖0 directly from (3.33). The standard error
estimate also yields only the optimal convergence rate, just as indicated by (3.15). Therefore, new analysis tools
or techniques are needed to improve the estimate of the convergence rate.

We have assumed the smooth function α(x) has only a finite number of zeros on the domain Ω. For simplicity,
we suppose α has only one zero on Ω. Without loss of generality, we let α(0) = 0. At the zero x = 0, we assume
there exists a positive integer m such that

α(0) = ∂xα(0) = . . . = ∂m−1
x α(0) = 0, ∂m

x α(0) 
= 0. (4.1)

Let
m′ = min(m, k + 3), (4.2)

and i0 be a positive integer such that xi0− 1
2
≤ h

1
m′ ≤ xi0+ 1

2
. Now we slightly modify our correction functions

by

w̄i

∣∣
τj

=

⎧⎪⎨
⎪⎩

0, τj ⊂ ω⊥
m =

[
0, xi0− 1

2

]
,

wi, τj ⊂ ωm =
[
xi0+ 1

2
, 2π
]
,

(4.3)

where wi, i ∈ Z2 are defined by (3.23), (3.26), respectively. Then the global correction function w̄ is defined as
follows.

w̄ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, αj+ 1
2
≤ 0, αj− 1

2
> 0,

w̄2, αj+ 1
2
≤ 0, αj− 1

2
≤ 0,

w̄1, αj+ 1
2
> 0, αj− 1

2
> 0,

0 αj+ 1
2
> 0, αj− 1

2
≤ 0.

(4.4)

Lemma 4.1. Let u(·, t) ∈ W k+3,∞, t ∈ [0, T ] be the solution of (1.1), and α be a sufficiently smooth function
satisfying (4.1) at its zero point x = 0. Let w̄i, i ∈ Z2 be the correction functions defined by (4.3). Then

2∑
i=1

(‖w̄i(·, t)‖0 + ‖∂tw̄i(·, t)‖0) � hk+1+ 1
2m′ ‖u(·, t)‖k+3,∞. (4.5)

Here m′ is given in (4.2). Moreover, there holds

b(u− Phu+ w̄, vh) � hk+1+ 1
2m′ ‖u‖k+3,∞‖vh‖0, vh ∈ Vh. (4.6)

Proof. Let

y0 = min
(

2π,
(m+ 1)|∂m

x α(0)|
2|maxx∈Ω ∂

m+1
x α(x)|

)
·

For any x ∈ τj ⊂ [xi0+ 1
2
, y0], by Taylor expansion, there exists a x̄ ∈ (0, x) such that

|α(x)| =
∣∣∣∣∂m

x α(0)xm

m!
+
∂m+1

x α(x̄)xm+1

(m+ 1)!

∣∣∣∣ ≥ 1
2
|∂m

x α(0)|xm

m!
≥ 1

2
|∂m

x α(0)|
m!

|xi0− 1
2
|m.
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If m ≤ k + 3, we have, from (3.25) and (3.28),

‖∂twi‖0,ωm + ‖wi‖0,ωm �

⎛
⎝ ∑

τj∈ωm

1
‖α‖2

0,∞,τj

⎞
⎠

1
2

hk+ 5
2 ‖u‖k+3,∞

�

⎛
⎜⎝ ∑

τj∈[x
i0+ 1

2
,y0]

1
|xj− 1

2
|2m

⎞
⎟⎠

1
2

hk+ 5
2 ‖u‖k+3,∞ + c0h

k+2‖u‖k+3,∞.

where c0 = max
x∈[y0,2π]

1
α2(x) is a constant independent of the mesh size h.

If m > k + 3, by Taylor expansion and (4.1),

∣∣∂l
xα(x)

∣∣ =
∣∣∣∣∂m

x α(x̄)xm−l

(m− l)!

∣∣∣∣ �
∣∣∣xj+ 1

2

∣∣∣m−l

, ∀x ∈ τj ⊂ [xi0+ 1
2
, y0], l ≤ k + 3 < m,

where x̄ ∈ (0, x). By (3.25) and (3.28), we get

‖wi‖0,ωm + ‖∂twi‖0,ωm �

⎛
⎝ ∑

τj∈ωm

k+3∑
l=0

‖∂l
xα‖2

0,∞,τj

‖α‖2
0,∞,τj

⎞
⎠

1
2

hk+ 5
2 ‖u‖k+3,∞

�

⎛
⎜⎝ ∑

τj∈[x
i0+ 1

2
,y0]

k+3∑
l=0

|xj+ 1
2
|2(m−l)

|xj− 1
2
|2m

⎞
⎟⎠

1
2

hk+ 5
2 ‖u‖k+3,∞ + c0h

k+2‖u‖k+3,∞

�

⎛
⎜⎝ ∑

τj∈[x
i0+ 1

2
,y0]

1
|xj− 1

2
|2(k+3)

⎞
⎟⎠

1
2

hk+ 5
2 ‖u‖k+3,∞ + hk+2‖u‖k+3,∞.

Then in both cases,

‖wi‖0,ωm + ‖∂twi‖0,ωm �

⎛
⎜⎝ ∑

τj∈[x
i0+ 1

2
,y0]

1
|xj− 1

2
|2m′

⎞
⎟⎠

1
2

hk+ 5
2 ‖u‖k+3,∞ + hk+2‖u‖k+3,∞.

Let xi0− 1
2
≤ h

1
m′ ≤ xi0+ 1

2
≤ . . . ≤ xr− 1

2
≤ y0 ≤ xr+ 1

2
, where 1 ≤ i0 ≤ r ≤ N . Since the mesh is quasi-uniform,

we get xi+ 1
2

= cih, which yields

c(i0 − 1)h ≤ h
1

m′ ≤ ci0h.

Then

∑
τj∈[x

i0+1
2

,y0]

1
|xj− 1

2
|2m′ �

r∑
j=i0

1
|jh|2m′ � 1

h2m′

∫ N

i0

1
x2m′ dx � i0

(i0h)2m′ � h−3+ 1
m′ .

Therefore,
‖∂tw̄i‖0 + ‖w̄i‖0 = ‖∂twi‖0,ωm + ‖wi‖0,ωm � hk+1+ 1

2m′ ‖u‖k+3,∞, i = 1, 2.

This finishes the proof of (4.5).
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Recall the definition of w̄1 in (4.3) and the equation (3.24), we have

∣∣b(u− P−
h u+ w̄1, vh)

∣∣ =

∣∣∣∣∣∣
∑

τj∈ω⊥
m

bj(u − P−
h u, vh) +

∑
τj∈ωm

(∂tw1, vh)j − ((α − ᾱj)w1, vhx)j

∣∣∣∣∣∣
� hk+1‖u‖k+2,∞‖vh‖0,1,ω⊥

m
+ (‖w1‖0,ωm + ‖∂tw1‖0,ωm)‖vh‖0

� hk+1+ 1
2m′ ‖u‖k+3,∞‖vh‖0.

Following the same arguments, we obtain

|b(u− P+
h u+ w̄2, vh)| � hk+1+ 1

2m′ ‖u‖k+3,∞‖vh‖0.

Noticing that

b(u− Phu+ w̄, vh) =
∑

τj∈Ω1

bj(u− P−
h u+ w̄1, vh) +

∑
τj∈Ω2

bj(u− P+
h u+ w̄2, vh)

+
∑

τj∈Ω3

bj(u−Qhu, vh) +
∑

τj∈Ω4

bj(u−Rhu, vh),

and the fact that the number of elements in Ω3 ∪Ω4 is upper bounded independent of h, we have (4.6) and the
proof is complete. �

Theorem 4.2. Let u(·, t) ∈ W k+3,∞, t ∈ [0, T ] be the solution of (1.1), and uh be the solution of (2.1) with
the initial solution uh(x, 0) = Phu0, where Phu0 is defined by (3.7). Suppose α is a sufficiently smooth function
satisfying the condition (4.1) at its zero point x = 0. Then

eu = ‖(uh − Phu)(·, t)‖0 � hk+1+ 1
2m′ sup

τ∈[0,t]

‖u(·, τ)‖k+3,∞.

Here m′ is the same as in (4.2).

Proof. Let uI = Phu− w̄. By choosing v = uI − uh in (2.3), and using the initial discretization,

‖(uI − uh)(·, t)‖2
0 � ‖(uI − uh)(·, 0)‖2

0 +
∫ t

0

a(uh − uI , uh − uI)dt

= ‖w̄(·, 0)‖2
0 +

∫ t

0

a(u − uI , uh − uI)dt

�
(
hk+1+ 1

2m′ sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞

)2

+
∫ t

0

a(u− uI , uh − uI)dt.

By (3.10) and (3.30), we have

ûI

(
xj+ 1

2

)
= P̂hu

(
xj+ 1

2

)
= u

(
xj+ 1

2

)
, j ∈ ZN .

Then

|a(u− uI , vh)| = |b(u− Phu+ w̄, vh)| � hk+1+ 1
2m′ ‖u‖k+3,∞‖vh‖0,

which yields
‖(uI − uh)(·, t)‖0 � hk+1+ 1

2m′ sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞.
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Then
‖(Phu− uh)(·, t)‖0 � ‖(uh − Phu)(·, t)‖0 + ‖w̄(·, t)‖0 � hk+1+ 1

2m′ sup
τ∈[0,t]

‖u(·, τ)‖k+3,∞.

The proof is complete. �

Remark 4.3. The result of Theorem 4.2 reveals the superconvergence behavior of the DG solution for hyper-
bolic equations with variable coefficients. As indicated by the above Theorem, the highest superconvergence rate
of the DG approximation itself is hk+ 3

2 when the coefficient α(x) degenerates or has zeros in the domain. This is
very different from the constant coefficient problems. As we may recall, the highest superconvergence rate of the
DG methods for hyperbolic problems with constant coefficients is 2k+1. The above Theorem also demonstrates
a very important fact that we can always expect the superconvergence phenomenon for the DG approximation
no matter what α is, although the local error may not be superconvergent. The worst superconvergence rate is
k + 1 + 1

2(k+3) , which is 1
2(k+3) order higher than the optimal convergence rate k + 1.

Denote by eu,c, eu,r, eu,l the errors for the cell average, function value errors at the special points yj,i and
derivative errors at points zj,m, respectively, where yj,i and zj,i are defined in (3.8)−(3.9). To be more precise,

e2u,c =
1
N

N∑
j=1

(
1
h

∫
τj

(u − uh)(x, t)dx

)2

,

e2u,l =
1
Nk

N∑
j=1

k∑
i=1

(∂x(u− uh))2(zj,i, t),

e2u,r =
1

N(k + 1)

N∑
j=1

k+1∑
i=1

(u − uh)2(yj,i, t).

We have the following superconvergence results for the above errors.

Corollary 4.4. Suppose all the conditions of Theorem 4.2 hold. Then

eu,c + eu,r � hk+1+ 1
2m′ sup

τ∈[0,t]

‖u(·, τ)‖k+3,∞, eu,l � hk+ 1
2m′ sup

τ∈[0,t]

‖u(·, τ)‖k+3,∞,

where m′ is defined in (4.2).

Remark 4.5. As the number of elements in Ω3 ∪Ω4 is upper bounded independent of h, if we slightly modify
the definition of Phu in the domain Ω3 ∪ Ω4, e.g., if we replace Rhu or Qhu by P−

h u, the superconvergence
results in Theorems 3.6 and 4.2 still hold. Similarly, the superconvergent points (Gauss and Gauss–Lobatto
points) in Ω3 ∪Ω4 can also be replaced by any other points, for example, the Radau points.

Remark 4.6. One of the main advantages of DG methods is the complete freedom in changing the polynomial
degrees in each element independent of that in the neighbors (p adaptivity), which is not shared by the typical
finite element methods. As the same with the h-adaptivity, the key ingredient in the procedure of the p adaptivity
is the construction of the a posterior error estimates (to determine which elements should be approximated by
a higher order polynomial). As demonstrated in [5], the superconvergence results for the DG solution can be
used to construct residual-based a posterior DG error estimates. Similarly, we expect that the superconvergence
result established in this paper can be applied to the construction of the a posterior DG error estimates for
hyperbolic problems with sonic points.
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5. Numerical results

In this section, we present numerical examples to verify our theoretical findings. In our numerical experiments,
we shall test the superconvergence phenomena of the DG flux function approximation as well as the DG
solution itself, and measure several errors between the numerical solution and the exact solution, which are
given in Theorems 3.6 and 4.2, and Corollaries 3.8 and 4.4. All our examples are tested by polynomials Pk with
k = 1, 2, 3.

Example 5.1. We consider the following equation with the periodic boundary condition

ut + (sin(x)u)x = g(x, t), (x, t) ∈ [0, 2π] × (0, 0.1],

u(x, 0) = esin(x).

The function g(x, t) is chosen such that the exact solution to this problem is

u(x, t) = esin(x−t).

Noticing that, at the zeros x = 0, π (the zero at x = 2π is the same as that at x = 0 because of periodicity) of
α = sin(x),

∂xα(x) = cos(x) 
= 0, x = 0, π,

which indicates that (4.1) holds with m = 1. Then

m′ = min(m, k + 3) = 1.

We use the fourth order Runge−Kutta method in time and take �t = 0.01hmin to reduce the time dis-
cretization error. Uniform meshes are obtained by equally dividing the interval [0, 2π] into N subintervals,
N = 2j, j = 9, . . . , 13. We compute the numerical solution at time T = 0.1.

Listed in Table 1 are the various errors for the flux function approximation, which are given in Theorem 3.6
and Corollary 3.8. We observe from Table 1 a (k + 2)-th order superconvergence rate for ef (the error for the
flux function approximation), and ef,r (the function value error at the superconvergent points); and a (k+1)-th
order for the error ef,l (the derivative error at the superconvergent points). These superconvergence results are
consistent with the theoretical findings in Theorem 3.6 and Corollary 3.8. As for the cell average (ef,c), the
convergence rate is k + 2 for k = 1. While for k = 2, 3, it seems that the convergence rate can reach k + 5

2 for
k = 2, 3, a half order higher than the theoretical estimate.

In Table 2, we compute several types of errors between the DG solution uh and the exact solution. Table 2
demonstrates a superconvergence rate of k+ 3

2 for eu, eu,c, eu,r, and (k+ 1
2 )-th order for the derivative error eu,l,

which confirms our theoretical results in Theorem 4.2 and Corollary 4.4.

Example 5.2. We consider the following equation with the periodic boundary condition

ut + (sin2(x)u)x = g(x, t), (x, t) ∈ [0, 2π]× (0, 0.1],

u(x, 0) = esin(x),

We choose g(x, t) such that the exact solution to this problem is

u(x, t) = esin(x−t).

In this case,
α(x) = ∂xα(x) = 0, ∂2

xα(x) 
= 0, x = 0, π.

Then (4.1) holds with m = 2.
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Table 1. Various types of errors for the DG flux function approximation with α = sin(x).

k N ef Order ef,c Order ef,r Order ef,l Order
256 6.96e-07 – 2.12e-07 – 2.97e-07 – 6.12e-05 –
512 8.72e-08 3.00 2.71e-08 2.97 3.71e-08 3.00 1.53e-05 2.00

1 1024 1.09e-08 3.00 3.42e-09 2.98 4.61e-09 3.00 3.82e-06 2.00
2048 1.37e-09 3.00 4.30e-10 2.99 5.80e-10 3.00 9.54e-07 2.00
4096 1.71e-10 3.00 5.39e-11 3.00 7.25e-11 3.00 2.39e-07 2.00
256 2.97e-09 – 5.87e-11 – 2.29e-09 – 4.39e-07 –
512 1.86e-10 4.00 2.13e-12 4.78 1.43e-10 4.00 5.48e-08 3.00

2 1024 1.16e-11 4.00 8.25e-14 4.69 8.95e-12 4.00 6.85e-09 3.00
2048 7.28e-13 4.00 3.37e-15 4.61 5.60e-13 4.00 8.57e-10 3.00
4096 4.55e-14 4.00 1.42e-16 4.56 3.50e-14 4.00 1.07e-10 3.00
256 8.29e-12 – 2.89e-13 – 7.50e-12 – 2.33e-09 –
512 2.57e-13 5.01 7.14e-15 5.34 2.35e-13 4.99 1.46e-10 4.00

3 1024 7.92e-15 5.02 1.66e-16 5.43 7.30e-15 5.01 9.06e-12 4.01
2048 2.45e-16 5.01 3.71e-18 5.48 2.27e-16 5.01 5.64e-13 4.00
4096 7.62e-18 5.00 8.21e-20 5.50 7.08e-18 5.00 3.52e-14 4.00

Table 2. Various types of errors for the DG solution approximation with α = sin(x).

k N eu Order eu,c Order eu,r Order eu,l Order
256 1.64e-06 – 2.74e-07 – 4.93e-07 – 1.09e-04 –
512 2.69e-07 2.60 3.70e-08 2.89 7.43e-08 2.73 3.37e-05 1.70

1 1024 4.57e-08 2.56 5.11e-09 2.86 1.19e-08 2.65 1.09e-05 1.63
2048 7.90e-09 2.53 7.37e-10 2.79 1.97e-09 2.59 3.67e-06 1.58
4096 1.38e-09 2.52 1.12e-10 2.72 3.38e-10 2.55 1.26e-06 1.54
256 1.14e-08 – 5.70e-10 – 6.76e-09 – 1.51e-06 –
512 9.44e-10 3.59 4.87e-11 3.55 5.42e-10 3.64 2.48e-07 2.60

2 1024 8.06e-11 3.55 4.27e-12 3.51 4.53e-11 3.58 4.22e-08 2.56
2048 7.00e-12 3.53 3.77e-13 3.50 3.88e-12 3.54 7.31e-09 2.53
4096 6.13e-13 3.51 3.33e-14 3.50 3.38e-13 3.52 1.28e-09 2.51
256 6.18e-11 – 3.87e-12 – 3.95e-11 – 1.61e-08 –
512 2.75e-12 4.49 1.72e-13 4.49 1.75e-12 4.49 1.43e-09 3.50

3 1024 1.22e-13 4.49 7.60e-15 4.50 7.76e-14 4.50 1.26e-10 3.50
2048 5.42e-15 4.50 3.36e-16 4.50 3.43e-15 4.50 1.11e-11 3.50
4096 2.40e-16 4.50 1.48e-17 4.50 1.51e-16 4.50 9.85e-13 3.50

To reduce the time discretization error, we use the fourth order Runge−Kutta method in time and take
�t = 0.001 hmin. We compute the same errors as in Example 1 on the same uniform meshes at time t = 0.1.
The computational results for the flux function approximation and for the DG solution approximation itself are
given in Tables 3 and 4, respectively.

From Table 3, we observe similar results as in Example 1 for the flux function approximation, which confirms
the theoretical results in Theorem 3.6 and Corollary 3.8. Again, we observe that the convergence rate of ef,c

(the errors for the cell averages) for k = 2, 3 is better than the estimate given in Corollary 3.8, in fact it seems
to be one order higher than the theoretical result k + 2.

Table 4 demonstrates several types of errors and the corresponding convergence rates for the DG solution.
The superconvergence phenomena can be observed in this case. Moreover, as indicated by Theorem 4.2 and
Corollary 4.4, the superconvergence rate is lower than the one in Example 1 (highest superconvergence rate) due
to the different properties of α at its zero point. As we may see from Table 4, the superconvergence rate of eu and
eu,r is asymptotically close to our theoretical result k + 1 + 1

4 , and the superconvergence rate of the derivative
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Table 3. Various types of errors for the DG flux function approximation with α = sin2(x).

k N ef Order ef,c Order ef,r Order ef,l Order
256 7.24e-07 – 2.25e-07 – 2.87e-07 – 5.94e-05 –
512 9.06e-08 3.00 2.88e-08 2.97 3.59e-08 3.00 1.48e-05 2.00

1 1024 1.13e-08 3.00 3.64e-09 2.98 4.49e-09 3.00 3.71e-06 2.00
2048 1.42e-09 3.00 4.58e-10 2.99 5.61e-10 3.00 9.27e-07 2.00
4096 1.77e-10 3.00 5.74e-11 3.00 7.01e-11 3.00 2.32e-07 2.00
256 3.10e-09 – 6.82e-11 – 2.26e-09 – 4.26e-07 –
512 1.93e-10 4.00 2.20e-12 4.95 1.41e-10 4.00 5.30e-08 3.00

2 1024 1.21e-11 4.00 7.25e-14 4.92 8.85e-12 4.00 6.62e-09 3.00
2048 7.56e-13 4.00 2.43e-15 4.90 5.53e-13 4.00 8.27e-10 3.00
4096 4.73e-14 4.00 8.33e-17 4.87 3.46e-14 4.00 1.03e-10 3.00
256 8.00e-12 – 1.81e-13 – 7.33e-12 – 2.26e-09 –
512 2.49e-13 5.00 3.50e-15 5.69 2.29e-13 5.00 1.41e-10 4.00

3 1024 7.72e-15 5.00 6.86e-17 5.67 7.13e-15 5.00 8.80e-12 4.00
2048 2.40e-16 5.00 1.26e-18 5.77 2.22e-16 5.00 5.49e-13 4.00
4096 7.50e-18 5.00 2.19e-20 5.84 6.94e-18 5.00 3.43e-14 4.00

Table 4. Various types of errors for the DG solution approximation with α = sin2(x).

k N eu Order eu,c Order eu,r Order eu,l Order
256 1.51e-06 – 2.78e-07 – 5.08e-07 – 1.13e-04 –
512 2.15e-07 2.81 3.55e-08 2.97 6.79e-08 2.90 3.08e-05 1.88

1 1024 3.25e-08 2.72 4.48e-09 2.99 9.49e-09 2.84 8.78e-06 1.81
2048 5.40e-09 2.59 5.62e-10 2.99 1.44e-09 2.72 2.73e-06 1.69
4096 9.86e-10 2.45 7.04e-11 3.00 2.45e-10 2.56 9.42e-07 1.53
256 2.26e-08 – 4.34e-10 – 1.24e-08 – 3.15e-06 –
512 2.13e-09 3.40 2.75e-11 3.98 1.13e-09 3.46 6.00e-07 2.39

2 1024 2.10e-10 3.34 1.87e-12 3.87 1.08e-10 3.38 1.19e-07 2.33
2048 2.13e-11 3.30 1.33e-13 3.82 1.08e-11 3.33 2.44e-08 2.29
4096 2.19e-12 3.28 9.65e-15 3.78 1.10e-12 3.29 5.04e-09 2.27
256 6.09e-11 – 1.25e-12 – 3.82-11 – 1.74e-08 –
512 3.05e-12 4.32 4.49e-14 4.80 1.88e-12 4.35 1.75e-09 3.31

3 1024 1.56e-13 4.30 1.60e-15 4.81 9.42e-14 4.32 1.80e-10 3.29
2048 8.01e-15 4.28 5.72e-17 4.80 4.81e-15 4.29 1.86e-11 3.27
4096 4.17e-16 4.27 2.07e-18 4.79 2.48e-16 4.27 1.94e-12 3.26

error eu,l is asymptotically close to k + 1
4 . The convergence rate of the error for the cell average is again better

than the theoretical result given in Corollary 4.4.

6. Conclusion remarks

We demonstrated the superconvergence behavior of the DG method for 1-D linear hyperbolic equations with
variable coefficients when upwind fluxes are used. We first prove that the flux function αuh of the DG method is
superconvergent with an order of k+2 towards the flux function αPhu of the exact solution under the L2 norm,
with a suitably chosen projection Phu of the exact solution u. We then established superconvergence for the flux
function approximation at some special points and for cell averages. These results extend the superconvergence
results for constant coefficients to a more general situation. We then study the superconvergence behavior of
the DG solution itself and reveal that the superconvergence phenomena do exist for the DG methods applied
to hyperbolic equations with possibly degenerate variable coefficients. Contrary to the constant coefficient
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problems, the convergence rate may change according to the specific property of α. The highest superconvergence
rate that can be achieved is k+ 3

2 , half an order higher than the optimal convergence rate. Numerical examples
are provided to validate the theoretical findings and to show their sharpness in many situations. Finally, we
would like to mention that the superconvergence techniques established in this work can extend to the Dirichlet
boundary condition; all superconvergence results still hold true in that case. Our on-going work includes the
superconvergence study of the DG methods for possibly degenerate nonlinear hyperbolic equations.
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