
ESAIM: M2AN 52 (2018) 2433–2456 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2017025 www.esaim-m2an.org

MATHEMATICAL MODELING OF MICROTUBULE DYNAMIC INSTABILITY:
NEW INSIGHT INTO THE LINK BETWEEN GTP-HYDROLYSIS

AND MICROTUBULE AGING ?

Ayuna Barlukova1, Diana White2, Gérard Henry1, Stéphane Honoré3

and Florence Hubert1,∗

Abstract. Microtubules (MTs) are protein polymers that exhibit a unique type of behavior referred
to as dynamic instability. That is, they undergo periods of growth (through the addition of GTP-
tubulin) and shortening (through the subtraction of GDP-tubulin). Shortening events are very fast,
where this transition is referred to as a catastrophe. There are many processes that regulate MT
dynamic instability, however, recent experiments show that MT dynamics may be highly regulated by
a MTs age, where young MTs are less likely to undergo shortening events than older ones. In this
paper, we develop a novel modeling approach to describe how the age of a MT affects its dynamic
properties. In particular, we extend on a previously developed model that describes MT dynamics,
by proposing a new concept for GTP-tubulin hydrolysis (the process by which newly incorporated
GTP-tubulin is hydrolyzed to lower energy GDP-tubulin). In particular, we assume that hydrolysis is
mainly vectorial, age-dependent and delayed according to the GTP-tubulin incorporation into the MT.
Through numerical simulation, we are able to show how MT age affects certain properties that define
MT dynamics. For example, simulations illustrate how the aging process leads to an increase in the rate
of GTP-tubulin hydrolysis for older MTs, as well as increases in catastrophe frequency. Also, since it
has been found that MT dynamic instability is affected by chemotherapy microtubule-targeting agents
(MTAs), we highlight the fact that our model can be used to investigate the action of MTAs on MT
dynamics by varying certain model parameters.
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1. Introduction

Microtubules (MTs) are rigid protein polymers that self-assemble from α-β- tubulin heterodimers, helping to
form the cytoskeleton of all eukaryotic cells [24]. MTs are crucial to normal cell development, playing important
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roles in many cellular processes. Such processes include the regulation of substrate adhesion and cell polarity
during cell migration, and the segregation of chromosomes during cell division. Because of their role in cell
migration and cell division, MTs are a key contributor to cancer progression. As such, they are frequently used
as targets for many microtubule targeting agents (MTAs) used in cancer treatments.

MTs display a unique type of dynamical behavior, undergoing transitions between sustained periods of growth
and rapid shortening. This phenomenon is referred to as MT dynamic instability, and was first observed by
Mitchison and Kirschner in 1984 [29]. MTs have a polar structure, where the “-end” of a MT has the majority
of α-tubulin exposed and the “+end” of a MT has the majority of β-tubulin exposed. Dynamic instability is
observed in vitro with pure tubulin at both ends of the MT, suggesting that it is an intrinsic property of MTs.
It is also observed in cells, where it is regulated by many associated proteins at both ends of a MT [9,19,29].

Although MTs can be dynamic at both ends in vitro, we generally only consider modeling the +end dynamics,
since variations at this end are much faster and larger than those at the -end. Moreover, in vivo, MT -ends are
often capped (by capping proteins) or anchored at the nucleation site (which is referred to as the MT Organizing
Center), and so they are not always dynamic.

A MT polymerizes by the addition of free guanosine triphosphate (GTP)-tubulin heterodimers at its +end. As
GTP-tubulin is added to a MT, it is hydrolyzed (at some rate) to lower energy guanosine diphosphate (GDP)-
tubulin. In general, the majority of a MT is composed of GDP-tubulin, where only several layers of GTP-tubulin
exist at the growing +end. This small GTP region is referred to as the “GTP-cap”. The GTP-cap has long
been postulated to exist, but it is only recently that experiments have provided quantitative measurements of
its structure. This has been made possible by the discovery that end-binding proteins (EBs) have the ability to
bind to the GTP-cap by sensing the nucleotide state of tubulin at this location [1, 5, 27,35].

If a MT polymerizes at a rate larger than that of hydrolysis, the MT will continue to grow. However, if the
rate of hydrolysis is larger than the growth rate, the GTP-cap shortens. When the GTP-cap disappears the
MT depolymerizes very quickly. The transition to a state of depolymerization is called a catastrophe event. As
a MT shortens, it’s possible that is can transition back into a state of polymerization, before depolymerizing
completely. Such an event is called a rescue.

Over the past few decades, many stochastic and deterministic models for MT dynamic instability have been
proposed [2, 6, 7, 11, 12, 16, 17, 20, 22, 26, 32, 33, 36]. Stochastic models are used to describe MT dynamics at the
microscopic level, taking into consideration the addition and subtraction of individual tubulin dimers [7], while
deterministic models describe dynamics at a macroscopic level. Examples of such macroscopic models include
systems of differential equations that describe the time evolution of the length distributions for growing and
shortening MT populations [11,17].

The first stochastic description for MT dynamic instability was developed by Hill and Chen in 1984 [7]. Hill
and Chen used Monte Carlo kinetic simulations to describe dynamic instability at the extreme tip of a MT. They
called their model the “cap” model – the word “cap” comes from the resulting behavior found from simulations.
In particular, they found that below a critical concentration for tubulin, MTs exist in either one of two phases:
capped (by GTP) or uncapped (with no GTP). In the capped phase, the MT grows (with a fluctuating size
in cap), and in the uncapped phase the MT quickly depolymerizes. Although this model is useful at capturing
the qualitative description of MT dynamic instability found in experiment, it does not give a wholly accurate
quantitative description. From their simulations, Hill and Chen found a critical concentration which is about
one seventh of the experimental critical concentration determined by Mitchinson and Kirschner [29].

One of the first deterministic models describing MT dynamic instability was proposed by Dogterom and
Leibler in 1993 [11]. The model consists of a pair of partial differential equations (PDEs), used to describe
the time evolution of the length distributions for growing and shortening MTs. MT growth and shortening is
described as an advection process, where the rates of both growth and shortening are constant. Further, MTs
switch between growing a shortening states, where the switching rates correspond to the rescue and catastro-
phe frequencies. This approach is a good first approximation, and has been successfully used to qualitatively
describe MT behavior at the population level. In particular, this model has been used to accurately describe the
exponentially distributed array of MTs found centered at the centrosome in interphase cells [11]. One limitation
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of this model is that catastrophe and rescue frequencies are inputs to the model. The frequencies for which
MTs undergo catastrophe and rescue are quantities that help define the dynamic properties of MTs in vivo
and in vitro [37]. In this paper, we come up with mathematical descriptions for such quantities, and use these
quantities to compare simulation results with experiment.

A recent model for MT dynamic instability by Hinow et al. [17] describes MT growth and shortening using
a similar advection process as Dogterom and Leibler [11]. However, unlike the approach used in [11], Hinow
et al. suppose that the growth rate is dependent on the free tubulin concentration, a phenomenon that has been
observed in experiments [24]. The latter experiments have shown that when the free tubulin concentration is
low, MTs do not grow; at a lower threshold tubulin concentration, MTs grow at a rate that depends linearly
on the free tubulin concentration; finally, past an upper threshold for tubulin concentration, the MT growth
rate is constant [24]. In accordance with experiment, the model of Hinow et al. assumes that MT growth rates
increase linearly with increasing tubulin concentration. However, this model does not include critical tubulin
concentration thresholds under which MTs do not grow, and above which the MT growth rate saturates and is
thereafter independent of tubulin concentration.

Results from recent studies suggest that catastrophe events depend on MT “aging”. In [8,14,21,30,38], MT
aging is described as a multistep process caused by successive defects that propagate along a MT tip. From [30],
the number of steps is estimated to be between two and four. Further, it appears that the concentration of EB
along the GTP-cap region of the MT decreases with increasing age of a MT, where age is measured at the time
from a rescue event. These results indicate that the GTP-cap, which is recognized by EB proteins [1, 5, 27, 35],
also decreases with age. One additional feature of the Hinow model [17] is that it describes the time evolution of
MT GTP-cap lengths in growing MTs, as well as the length distributions for growing and shortening MTs. It is
for this reason that we choose the modeling framework of Hinow et al. [17] as a basis for our study. Specifically,
to incorporate MT aging into a description for MT dynamic instability, we require information about MT
GTP-cap size.

According to the results of Mohan et al. [30], MT aging is a process that most likely exists due to fluctuations
in the GTP hydrolysis rate, rather than a change in GTP-tubulin addition (i.e., the MT growth rate) (see also
Fig. 2). Such results were also confirmed in cells, since the addition of MT targeting drugs cause decreases
in the concentration of EB1 along the growing ends of MTs, and work to induce MT catastrophes at concen-
trations that do not affect the MT growth rate [34]. Although hydrolysis is one of the primary mechanisms
involved in MT catastrophe, its’ mechanism has not yet been fully elucidated. Thus, a better description of
hydrolysis is needed to accurately describe MT dynamic instability. Many computational and analytical mod-
els of MT dynamic instability have been developed to describe how the hydrolysis process might work. Some
examples include: random hydrolysis, vectorial hydrolysis, or a combination of both random and vectorial hy-
drolysis [4, 16,17,32,33]. To complement our continuous modeling approach, we choose a vectorial description of
GTP-tubulin hydrolysis. However, we have extended on previous models by incorporating MT age-dependence,
as well as a delay that accounts for the incorporation of GTP-tubulin into a growing MT. More precisely, we
assume that the hydrolysis rate is an increasing piece-wise function of MT age. In particular, like [30] and as
illustrated in Figure 2, we assume that hydrolysis increases in two to four steps, where at each step the hydrol-
ysis is constant and higher in value than the previous step. Further, we assume that between each step, the
hydrolysis increases linearly over a short period of time ∆a. In this modeling framework, the MT age is defined
as either the time after a MT rescue, or the time from nucleation (for MTs that do not undergo a catastrophe).
We emphasize that our new modeling approach enables us to more precisely define MT catastrophe frequency
as described in biological experiments [18].

Our complete model, based on the approach of Hinow and al. [17], incorporates a system of transport equations
to describe time- and length- changes in populations of growing and shortening MTs (as well as changes in
the GTP-cap lengths for growing MTs), and a system of ordinary differential equations (ODEs) to describe
the time evolution of concentrations of free GTP and GDP-tubulin. We justify the use of an ODE system to
describe the evolution of free tubulin by assuming that free tubulin diffusion is much faster than the rate at
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which tubulin is incorporated back into a growing MT (thus, tubulin is distributed homogeneously throughout
the domain).

Extending on the approach described in [17], not only do we keep track of both MT and GTP-cap lengths, but
we also keep track of the MT “age”. The new variable “age” will allow us to take into account the dependence
of MT age on the GTP-tubulin hydrolysis process. Further, we incorporate a more realistic description for the
MT growth rate, one that includes the critical tubulin concentration threshold under which MTs do not grow,
and above which the MT growth rate saturates.

Our results show that the incorporation of MT age into our model does affect MT dynamics. Consistent
with experiment, results from simulations illustrate how the aging process leads to an increase in the rate of
GTP-tubulin hydrolysis for older MTs, as well as increases in catastrophe frequency.

Outline. First, in Section 2 of this paper, we describe the development of our modeling approach. Next, in
Section 3, we give details as to how we select our model parameters. In Section 4, we illustrate and analyze the
numerical results of our model and in Section 5 we discuss these results. Finally, in the appendix, we provide
a detailed description of the finite volume method presented in this paper. Here, we prove the our numerical
scheme ensures the preservation of tubulin at the discrete level.

2. Continuous model of MT dynamics

We propose a mathematical model of MT dynamic instability based on the continuous approach of Hinow
et al. [17]. The novelty of our approach is that each MT is characterized by the elapsed time since the last instance
of rescue or nucleation, a property we call “age”. The addition of age allows us to simulate the impact of MT aging
on MT dynamics. MT dynamics are generated by evolutions of the quantities of free GTP-tubulin (described
by t → p(t)) and free GDP-tubulin (described by t → q(t)), and by the evolution of the MT population. We
distinguish between growing and shrinking MT populations, where MTs in a state of depolymerization are
described by the density v(t, ·) and those that are in a state of growth are described by u(t, ·, ·, ·). MTs in
a state of depolymerization do not possess a GTP stabilizing cap, and so this population is described by one
space variable x, corresponding to the length of a MT. A growing MT is characterized by its length x, its
cap-size z, and its age a. Age has the dimension of time and starts from zero at the time a MT undergoes a
rescue or nucleation. The state space for this population is defined by Z = {(a, x, z) ∈ R3 : a > 0, x > z > 0}.

2.1. Model for growing MTs

The time evolution of MTs in a state of growing is described by the transport equation

ut + ua + divxz(B(t, a)u) = 0, B(t, a) =

(
γpol(p(t))

γpol(p(t))− γhydro(a)

)
, (2.1)

where the subscript xz of the divergence operator designates that it acts as a 2D operator, γpol(p) is the MT
growth rate (or rate of polymerization), and γhydro(a) is the rate of progression of the front the divides the GDP
and GTP-tubulin regions. We will refer to this rate as the hydrolysis rate. We denote the balance between these
two rates as R(t, a) = (γpol(p(t))− γhydro(a)), where this balance corresponds to the growth rate of a GTP-cap
at time t for a MT of age a.

We now consider the shape of the MT growth rate and hydrolysis curves. Figure 1(left) describes the MT
growth rate, which is known to be proportional to the GTP-tubulin concentration, saturating at high values of
tubulin concentration. We denote the saturating value as ps. Below a critical tubulin concentration, which we
denote by pc, this rate is zero. Thus, γpol can be represented by a piece-wise linear profile

γpol(p) = αpol ∗ (p > ps) +
(
αpol

p− pc
ps − pc

)
∗ (pc < p < ps), (2.2)

where the parameter αpol is the maximum MT growth rate.
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Figure 1. Left: illustration of the function describing the MT growth rate γpol. Right: illustra-
tion of the function describing the rate of hydrolysis γhydro.

In our model, aging of a MT is caused by the acceleration of hydrolysis during MT growth. Accordingly, the
function γhydro, illustrated in Figure 1(right), is chosen to be an increasing linear piece-wise function with two
layers γyoung

hydro and γold
hydro. The value γyoung

hydro is the smaller hydrolysis rate (for young MTs) and the value γold
hydro

is the higher hydrolysis rate (for old MTs).

γhydro(a) =
(
γyoung
hydro

a− ac
∆a

)
∗ (ac < a < ac +∆a) + γyoung

hydro ∗ (ac +∆a < a < as)

+
(

(γold
hydro − γ

young
hydro )

(a− as)
∆a

+ γyoung
hydro

)
∗ (as < a < as +∆a) + γold

hydro ∗ (as +∆a < a). (2.3)

The parameter ac is the necessary time for the first freshly incorporated GTP-tubulin, after a rescue event,
to be hydrolyzed to GDP-tubulin [23, 27, 31, 34]. It is at this time that the aging effect is initiated. Here, the
parameter ∆a is very small, and corresponds to the transition time between each stage of the aging effect. The
parameter as is defined as the age at which MTs undergo aging effects, resulting in an increase of the hydrolysis
rate up to the maximum value γold

hydro. It is clear from our age-dependent definition of hydrolysis, γhydro(a), that
older MTs with large GTP-caps lose their caps faster than younger MTs.

The domain in consideration, Z, for the concentration u(t, ·, ·, ·), has a prismatic form that is limited by the
surfaces Γ1 = {a > 0, x > 0, z = x}, Γ2 = {a > 0, x > 0, z = 0} and Γ3 = {a = 0, x > 0, z > 0}. We assume that
the equation (2.1) is endowed with a boundary condition when the inflow flux B̃ = (B(t, a), 1)T · ni is positive,
where ni is the internal normal vector to the surface Γi. On Γ1, we have B̃ ·n1 = γhydro(a) ≥ 0. Hence, there is
an inflow through the surface Γ1 that corresponds to freshly nucleated MTs that are composed of GTP-tubulin
dimers. On Γ1, the boundary condition takes the form

γhydro(a)u(t, a, x, x) = N (p(t))ψ(x)Θ(a), x ∈ [0,∞), a ∈ [0,∞), t ∈ [0,∞), (2.4)

where we define N (p) = µpν . Here, µ is a nucleation rate and ν is the number of GTP-tubulin dimers sufficient
for the nucleation of a single MT (here, we take ν = 2).

We define two Dirac-type non-negative functions Θ and ψ such that∫ ∞
0

Θ(a)da = 1 and
∫ ∞

0

xψ(x) = 1, (2.5)

with Θ and ψ supported on supp Θ = (0, a0) and supp ψ = (0, x0), respectively. The function ψ(x) defines the
normalized MT length distribution.

Through the boundary Γ2, MTs can either leave the domain if they undergo a catastrophe, or return to a
state of polymerization by undergoing a rescue. If there exists a pair (t, a) such that R(t, a) < 0, we say that
MTs are in a phase where catastrophes can occur. Similarly, if there exists a pair (t, a) such that R(t, a) > 0,
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MTs are in the phase where rescues can occur. In contrast to the model of Hinow et al. [17], we can have MTs
in two of these phases simultaneously, due to the addition of the aging effect. In the case of a catastrophe, the
flux B̃(t, a) · n2 = R(t, a) is negative, therefore we do not need boundary conditions for MTs that switch to a
state of depolymerization. In the case of a rescue event, the flux B̃(t, a) · n2 is positive when R(t, a) > 0. We
suggest that rescue events occur in a subset of the plane Γ2, defined as the narrow stripe (0, a0), as we assumed
in the previous case for the boundary condition on the surface Γ1. Also, this makes sense, as there is no flux
into the domain Z through the plane a = 0. To write the corresponding boundary condition, we make use of
the Dirac-type function Θ(a) and assume that MTs return to a state of polymerization with an age between
(0, a0).

R(t, a)u(t, a, x, 0) = Θ(a)λv(t, x), if R(t, a) > 0, t ∈ [0,∞), a ∈ [0,∞), x ∈ [0,∞) (2.6)

Here, λ characterizes the propensity for shrinking MTs to be rescued.
We remark that as B̃ ·n3 = 1 is positive on the face Γ3, then we do need to provide a condition on the inflow

through Γ3. Here, we impose u equal to zero such that

u(t, 0, x, z) = 0, t ∈ [0,∞), x ∈ [0,∞), z ∈ (0,∞). (2.7)

2.2. Models for shortening MTs, and the concentrations of free GTP- and GDP-tubulin

The equation for the density of shrinking MTs is given by

vt − γdepolvx = −
∫ ∞

0

R(t, a)u(t, a, x, 0)da = −Iv→u(t, x) + Iu→v(t, x), (2.8)

where the parameter γdepol is the rate of depolymerization of MTs,

Iv→u(t, x) =
∫ ∞

0

R(t, a)+u(t, a, x, 0)da and Iu→v(t, x) =
∫ ∞

0

R(t, a)−u(t, a, x, 0)da.

Superscripts + and − are used to denote the operators

x+ =
1
2

(x+ |x|) and x− =
1
2

(−x+ |x|) . (2.9)

The two terms on the right-hand side of (2.8) correspond to the influx of MTs undergoing catastrophes and/or
the outflux of MTs undergoing rescue events.

In [20], it was shown that fluctuations in GTP-tubulin concentration is an important consideration when
modeling MT dynamics. It is known that this quantity decreases due its consumption during MT growth and
the MT nucleation process. Also, this quantity increases due to the recycling reaction of GDP-tubulin into
GTP-tubulin. Thus, we say that the function p(t) satisfies the equation

pt = −γpol(p)Ip→u(t) + κq −N (p), (2.10)

where

Ip→u(t) =

∞∫
0

∞∫
0

x∫
0

u(t, a, x, z)dz dxda (2.11)

is the number of growing MTs, κ is the recycling rate of GDP- into GTP-tubulin (which we will continue to
refer to as the GDP/GTP recycling rate), and N (p) describes the uptake of GTP-tubulin due to nucleation.

The equation for free GDP-tubulin q(t) takes the form

qt = γdepolIv→q(t)− κq, (2.12)
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where the first term corresponds to an inflow of GDP-tubulin from shortening MTs (which are assumed to
only consist of GDP tubulin), and

Iv→q(t) =

∞∫
0

v(t, x)dx (2.13)

corresponds to the number of shortening MTs. The second term corresponds to GDP/GTP recycling. Here,
we assume that there is a constant supply of chemical energy, so that the GDP/GTP recycling rate κ remains
fixed for the entirety of each simulation.

2.3. Conservation of tubulin

From the model described by equations (2.1), (2.8), (2.10), and (2.12), one can show that the total amount
of tubulin in the system is conserved. A similar result was proven by Hinow et al. [17]. Lemma 2.1 describes
this property.

Lemma 2.1 (Conservation of tubulin). The total mass of tubulin in the system, that is a sum of free GTP-
and GDP-tubulin, and the mass of tubulin contained in MTs is given by

χ(t) = p(t) + q(t) + Lv(t) + Lu(t),

and is constant. That is, χ′(t) = 0. Here, Lv(t) =
∞∫
0

xv(t, x)dx is the total tubulin in shortening MTs and

Lu(t) =
∞∫
0

∞∫
0

x∫
0

xu(t, a, x, z)dz ; dxda is the total tubulin in growing MTs.

2.4. Mathematical expressions for experimental observations

Here, we describe mathematical expressions for quantities that can be observed experimentally. Such expres-
sions are important as they allow us to compare the results of our simulations with experimental results. The
quantities we consider here are: the number of MTs in growing and shortening states, the catastrophe frequency
(temporal and spatial-based), the average length of MTs in growing and shortening states, the average hydrolysis
rate, and the decoration time.

• The number of MTs in states of polymerization and depolymerization at time t are

Ip→v(t) and Iq→v(t).

These expressions are defined in equations (2.11) and (2.13).

• The average temporal-based catastrophe frequency (in min−1) is

F temp
cat (t) =

∞∫
0

t∫
0

1
a1R(t,a)<0u(t, a, x, 0)da dx

∞∫
0

t∫
0

1R(t,a)<0u(t, a, x, 0)dadx
·

where 1A stands for the characteristic function of the set A. In experiment, the average time-based catas-
trophe frequency can be defined as the total number of catastrophe events divided by the total time MTs
spend growing (averaged over a population of MTs).
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• The average spatial-based catastrophe frequency (in µm−1) is

F spa
cat (t) =

∞∫
0

t∫
0

1∫ a
0 γpol(t−a+s) ds

1R(t,a)<0u(t, a, x, 0)dadx

∞∫
0

t∫
0

1R(t,a)<0u(t, a, x, 0)da dx
·

Note that
∫ a
0
γpol(t−a+ s)ds is the increase in length of a MT at time t from time t−a (time from rescue).

Experimentally, the length-based catastrophe frequency is defined as the total number of catastrophe events
divided by the length to which MTs grow before undergoing a catastrophe.

• The average length of MTs in states of polymerization and depolymerization, and the average length of the
MT GTP-cap (in µm) are given by

Lav
u (t) =

Lu(t)
Ip→u(t)

, Lav
v (t) =

Lv(t)
Iq→v(t)

, and Lav
cap(t) =

∫∫∫
Z

zu(t, a, x, z)da dz dx

Ip→u(t)
,

where Lu(t) and Lv(t) are described in Lemma 2.1.
• The average rate of hydrolysis for the population of MTs in a state of polymerization (in µm min−1) is

γav
hydro(t) =

∫∫∫
Z

γhydro(a)u(t, a, x, z)dadz dx

Ip→u(t)
·

• The decoration time (in seconds) is

Tdeco(t) =
Lav

cap(t)
γpol(p(t))

·

In particular, the decoration time is the mean time required for GTP-tubulin to be hydrolyzed to GDP-
tubulin after incorporation into a MT [13]. In biological experiments [23,34] and in our simulations, such a
quantity is evaluated at steady-state.

3. Numerical details

In this section, we outline the numerical details of our modeling approach. A detailled description of the
scheme is given in appendix. In Section 3.1, we describe how to determine units for all model parameters.
Finally, in Section 3.2, we describe how to determine appropriate ranges for all model parameters.

3.1. Parameter units

In our model, quantities for GTP- and GDP-tubulin (p and q) have units of measure in µM (micromole per
liter), while MT length x and GTP-cap size z are measured in µm (micrometer). For simulations, we must
convert these quantities to similar units of measure. In particular, we convert µM to µm · L−1. In 1µmol of
tubulin there are 10−6 ×NA = 6.022× 1017 molecules of tubulin, where NA is the Avagadro constant.

Here, we approximate a MT as a single protofilament. To use the parameters of kinetics measured for a MT
with 13 protofilaments, we assume that a unit of length in the model is given by

lunit = 8.12× 10−3/13 = 6.2462× 10−4[µm],

where 8.12 nm is the approximate length of one dimer. Thus, the factor of conversion from µmol to µm is

conv = (6.022× 1017 × lunit) = 3.76× 1014 µm · L−1, (3.1)
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Table 1. List of parameters and their values used as model input.

Parameter Values Meaning Source
pc 0–3 µM Critical tubulin concentration [28]
ps 12–18 µM Saturation tubulin concentration [This paper]
αpol 25–40 µm

µM·min
Growth rate parameter [34],[This paper]

ac 1.2–9 s The age at which MTs undergo the first hydrolysis [23]
after tubulin incorporation

as 12–60 s The age at which MTs undergo a maximum hydrolysis effect [34]

∆a 6×10−3 s Time between the minimum and maximum aging effect [This paper]
γ

young
hydro 3-7 µm

min
Hydrolysis rate of young MT (normal hydrolysis rate) [This paper]

γold
hydro 4–10 µm

min
Hydrolysis rate of old MTs (i.e. aging effect) [This paper]

γdepol 3–36 µm
min

Rate of depolymerization [34]
λ 3–10 1

min
Rescue rate [18]

µ 5.9× 10−3 1
µM·min

Nucleation parameter [17]

κ 0.5–10 1
min

GDP/GTP recycling rate [17]

and estimates the number of MTs contained within a cell of MT concentration equal to 1µM. We assume that
the range of a MT length is between 20 and 100µm [15]. By using the factor of conversion (3.1), this range can
be expressed as a concentration between 3.76× 1012 − 1.88× 1013 MTs per liter.

To make an assessment of the concentration of MTs, consider a cell of cylindrical form with radius 10µm
and height 2µm. The volume of such a cell is

π × 102 × 2µm3 = 600µm3 = 6× 10−16m3 = 6× 10−13 L.

Thus, within this volume a concentration of tubulin equal to 1µM corresponds to approximately 2− 10 MTs.

3.2. Choice of parameter ranges

The dynamics of the system is driven by the set of parameters

pc, ps, αpol, ac, as, ∆a, γ
young
hydro , γ

old
hydro, γdepol, λ, µ, κ.

These parameters, as well as their range of values and meaning are listed in Table 1.
From biological observations of MTs dynamics, it is possible to define ranges for some of the model parameters

described in Table 1. In particular, values for the parameters pc, γdepol, as, and ac can be found in the literature.
The other parameters can be estimated by obtaining appropriate values for quantities that can be directly
compared with experiment. These quantities include the MT growth rate, catastrophe frequencies, and the
length of the EB1-GTP cap at equilibrium [18]. From here on, we refer to these quantities as the simulated
observables.

The rate of depolymerization γdepol is directly linked to the shortening rate, where its range (in the absence
of drugs) is between 3− 36 µm min−1 [34].

The range for pc is described in [28] and is found to be between 0–3 µm L−1. The other parameters that
define γpol (see Eq. (2.2)), are not found experimentally. However, we do have information for the MT growth
rate at equilibrium γpol(p∞). In particular, in one study (which we will use to calibrate our model), this rate
is found to be between 3–7 µm min−1 [34]. To obtain desired MT growth rates (as we will show later in the
Results Section), we choose αpol to be between 25–40 µm min−1 µM−1 and ps to be between 12− 18 µm L−1.

For the parameters defining the rate of hydrolysis γhydro (recall Eq. (2.3)) we choose ac to be between
0.02 − 0.15 min [23]. The parameter as can be estimated using data taken from kymographs (see Fig. 2,
Ref. [34]), and ranges between 12− 60 seconds. A kymograph is used to show the growth trajectory of a single
MT in vitro, and is read from top to bottom. We see that each MT (shown in the left and center panel of Fig. 2)
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2µm

10s

Figure 2. Kymographs that highlight growth and shortening of a single MT. MT tips are
highlighted by green fluorescent protein (GFP) tagged EB3 [34]. Left: a kymograph of a GFP
EB3-tip tracking assay in the absence of drugs. Experimental conditions are: GFP EB3: 75 µM,
cowtubulin: 15 µM, KCl: 50 µM, temp: 37◦C. Center: a kymograph in the presence of a low
concentration of paclitaxel 100 µM. A time-dependent decrease of the EB-stabilizing cap is
observed. Right: a graphical illustration of the kymographs shown in (left) and (center).

grows at a relatively constant rate, while undergoing a number of shortening events. The left panel of Figure 2
illustrates a MT in a control setting [34], while the center panel illustrates a MT growing in the presence of
paclitaxel, a MT stabilizing drug. Here, you can see that the MT grows to a longer length over a shorter period
of time in the presence of paclitaxel. The right panel is a cartoon illustration used to highlight the change in
the slope of the MT growth curve when paclitaxel is added.

Numerical simulations show that the mean rate of hydrolysis is very close to the equilibrium growth rate.
Thus, we calibrate γyoung

hydro and γold
hydro according to the growth rates given in the literature [34]. That is, we

choose the ranges 3− 7 µm min−1 and 4− 10 µm min−1 for γyoung
hydro and γold

hydro, respectively.
The parameter λ (propensity of rescue) is not directly linked to the rescue frequency as estimated in biological

experiments [18]. We adjust this parameter to be 5−10 min−1 by obtaining a value for the catastrophe frequency
at equilibrium that is similar to experiment [34].

The value of µ = 5.9× 10−3µM−1 min−1 is taken from [17]. Also, we examine a wide range of values for the
GDP/GTP recycling parameter κ, choosing values between 0.5− 10 min−1.

4. Results

First, in Section 4.1, we describe results of MT dynamics using parameters similar to those found in exper-
imental settings. We show that our simulation results are consistent with experiment and refer to this test as
our control. Then, in Section 4.2, we vary model parameters to show which parameters play a significant role
in altering MT dynamics.

4.1. A control test: in silico observations

The values for model parameters used in our reference test (simulated control test) are listed in Table 2.
As a comparison to experiment, we list simulated values for the MT growth rate and the spatial and temporal
catastrophe frequencies in Table 3, alongside their corresponding experimental values determined by Pagano
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Table 2. Parameters for the “control” test.

Parameter pc ps αpol ac as δa γyoung
hydro γold

hydro

SI units µM µM µm min−1µM−1 s s s µm min−1 µmmin−1

Value 2 15 32 6 60 6×10−3 3.7 4.3

Parameter γdepol λ µ κ

SI units µm min−1 min−1 µM−1min−1 min−1

Value 19 5 5.9e-3 2.4

Table 3. Comparison of model output with experimental data.

γpol(p
∞) γdepol F temp

cat F spa
cat

SI units [µm min−1µM−1] [µm min−1] [min−1] [µm−1]
Experimental control [34] 3.87 19.09 1.72 0.42
Simulated “control” test 3.23 19(fixed) 1.88 0.58

et al. [34]. From this table, we see that the output of the control test is consistent with biological observations.
As stated previously, the parameters as, γdepoly, as well as the initial condition of the simulation are the taken
from the experiment of Pagano et al. [34]. All other model parameter inputs were not directly taken from the
experiment of Pagano et al. [34], since they were not recorded. However, we selected each parameter from a
range of values that have been recorded in similar experiments. Values were selected to calibrate our model, so
that our model output matches that of Pagano et al. [34].

For all numerical simulations that follow, we choose initial conditions p(0) = 15 µM, q(0) = 0, v(0, ·) = 0,
and u(0, ·, ·, ·) = 0. We choose these conditions since in most in vitro experiments, MTs are grown in systems
comprised of purely free GTP-tubulin [3, 10, 25]. Also, in all numerical tests carried out, including the control
test, nucleation of MTs is switched off (i.e., µ = 0) at t = 15 min to avoid the influence of this parameter in our
analysis. Switching off nucleation also makes sense from a biological point of view, as it is often the case that
nucleation stops in in vitro experiments after some time when much of free GTP-tubulin is used up (after the
polymer mass increases to a sufficiently high value).

The other simulated observables of MT dynamics at the equilibrium state, such as the average rate of hydrol-
ysis, the average GTP-cap length and the GTP-tubulin decoration time, as well as the simulated observables
summarized in Table 3 (the MT growth rate and the catastrophe frequencies), are summarized in the first rows
of Tables 4 and 5.

Figure 3 corresponds to the simulation output for our control test. The curves from Figures 3a, 3c, 3d and 3f
show that the system reaches an equilibrium state after a short period of time. Figure 3b illustrates that the
average lengths of both growing and shortening MT populations are less than 50 µm, and the average GTP cap
becomes very small, reaching an equilibrium during the second part of simulation (t > 15 min). This agrees with
experimental data [15,35]. In Figure 3f, we illustrate the decoration time. We split the graph into two pieces to
more easily visualize the results (i.e., the values in the first part of the simulation are much larger than those
in the second part of the simulation). The value at equilibrium (approximately 10 s), is close to what has been
observed experimentally [34].

In Figure 3e, we plot three curves that correspond to the rate of MT polymerization, the average rate of
GTP hydrolysis, and the ratio of the temporal to spatial catastrophe frequencies (which we denote as Temp-to-
Spa frequency ratio). The two curves that correspond to the growth rate and the Temp-to-Spa frequency ratio
coincide for much of the simulation, as we expected, confirming our choice of formulae for both frequencies.

Also, from Figure 3e, we observe a relationship between the rate of polymerization and the rate of hydrolysis.
That is, the relative difference (γpol−γav

hydro)/γpol between the mean growth rate and the mean rate of hydrolysis
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Table 4. Changes in simulated observables: growth rate and GTP hydrolysis rate at steady-state.

γpol(p
∞) γav

hydro

γav
hydro−γpol
γpol

simulated ctrl 3.23 3.65 13%

param changed

from ctrl value change value change value
ac = 1.2 ↓ 3.43 ↑ 6.2% 3.89 ↑ 6.6% 13.4%
ac = 9 ↑ 3.13 ↓ -3.1% 3.54 ↓ -3.0% 13.1%
as = 12↓ 3.47 ↑ 7.1% 3.94 ↑ 7.9% 13.5%

γold
hydro = 7.3 ↑ 3.53 ↑ 9.3% 4.00 ↑ 9.6% 13.3%
γyoung
hydro = 6.7 ↑
γold
hydro = 7.3 ↑ 5.34 ↑ 65.3% 6.04 ↑ 65.5% 13.1%
as = 12 ↓

γold
hydro = 7.3 ↑ 5.30 ↑ 64.0% 6.0 ↑ 64.3% 13.2%

γdepol = 9 ↓ 2.81 ↓ –13% 3.59 ↓ -1.6% 27.8%
γdepol = 29 ↑ 3.48 ↑ 7.7% 3.79 ↑ 3.8 % 8.9%
λ = 10 ↑ 2.67 ↓ –17.3% 3.37 ↓ -7.7% 26.2%
λ = 3 ↓ 3.57 ↑ 10.5% 3.86 ↑ 5.7% 8.1%

αpol = 25 ↓ 3.23 0% 3.65 0% 13.0%
αpol = 40 ↑ 3.23 0% 3.65 0% 13.0%
ps = 4 ↓ 3.23 0% 3.65 0% 13.0%
ps = 4 ↓
αpol = 5 ↓ 3.23 0% 3.65 0% 13.0%

κ = 10 ↑ 3.22 0% 3.65 0% 13.3%
κ = 0.5 ↓ 3.23 0% 3.66 0% 13.3%

appears to be small and almost constant (see values in Tab. 4), suggesting some kind of regulation of one
parameter by the other.

4.2. Influence of the parameter variation on MT dynamics

After completing the model calibration, we study the influence of each parameter on MT dynamics. As stated
previously, the first row in Tables 4 and 5 correspond to the simulated observables obtained from our control
test. Each of the following rows of Tables 4 and 5 correspond to a numerical test where we change one or multiple
values of the parameters from its control value at t = 15 min. The list of parameter changes (an increase or
decrease) are given in the first column, while each row shows the results of the parameter changes (changes
from control values are shown as percent changes). Using the information in Tables 4 and 5, we are able to
distinguish which parameter (or group of parameters) has a strong effect on MT dynamics.

In Table 4, we show how changes in various model parameters (increases and decreases) affect both the MT
growth rate γpol and the hydrolysis rate γav

hydro at equilibrium. The changes in the parameters of ac, as and in
the rates γyoung

hydro and γold
hydro result in the change in average GTP-hydrolysis rate which is expected. Interestingly,

the relative difference between average GTP-hydrolysis rate and the growth speed is affected very little (as
shown in the last column of Tab. 4) for these cases. This result suggests that the growth rate is regulated by the
resulting average GTP hydrolysis rate. The relative difference between these two values (as shown in the last
column of Tab. 4) is affected very little by changes in most of the parameters, except for changes to the rate of
MT depolymerization γdepol and the propensity of rescues λ. Here, it is shown that, this difference significantly
decreases when the rate of depolymerization decreases or the rescue frequency increases.

The results of Table 5 show that changes to the parameter of critical age ac have a significant influence on
MT dynamics. In particular, a decrease in this parameter to 1.2s (from 6s) increases the time based catastrophe
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Figure 3. Numerical output of the model. (a) Time evolution of the total amount of tubulin
in growing MTs, (t → Lu(t)) and shortening MTs (t → Lv(t)), total length of GDP zone in
growing MT population u, total amount of free GTP-tubulin (t → p(t)), and of free GDP-
tubulin (t → q(t)); (b) evolution of averaged lengths for both populations of MTs and the
average length of the GDP zone; (c) the temporal catastrophe frequency over time; (d) the
spatial catastrophe frequency over time; (e) the growth rate of MTs, the Temp-to-Spa frequency
ratio, and the average rate of GTP hydrolysis; (f) the MT decoration time (split in two pieces).
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Table 5. Changes in simulated observables: transition frequencies, length of the GTP-cap and
decoration time at steady-state.

F temp
cat , [min−1] F spa

cat , [µm−1] Lav
cap,[µm] Tdeco, [s]

simulated ctrl 1.88 0.58 0.45 8.46

param changed

from ctrl value change value change value change value change
ac = 1.2 ↓ 3.03 ↑ 61,2% 0.88 ↑ 51.7% 0.25 ↓ –44.4% 4.39↓ —-48.1%
ac = 9 ↑ 1.61 ↓ –14.4% 0.51 ↓ –12% 0.53 ↑ 17.8% 10.20 ↑ 20.6%
as = 12 ↓ 1.89 0.5% 0.54 ↓ –7% 0.46 2.2% 7.96 ↓ –5.9%

γold
hydro = 7.3 ↑ 2.20 ↑ 17% 0.62 ↑ 7% 0.50 ↑ 11.1% 8.44 ↓ –0.2%
γyoung
hydro = 6.7 ↑
γold
hydro = 7.3 ↑ 2.38 ↑ 26.6% 0.45 ↓ –22.4% 0.54 ↑ 20% 6.09 ↓ –28%
as = 12 ↓

γold
hydro = 7.3 ↑ 1.84 ↓ –2.1% 0.35 ↓ –39.7% 0.63 ↑ 40% 7.18 ↓ –15.1%

γdepol = 9 ↓ 2.96 ↑ 57.4% 1.05 ↑ 81% 0.33 ↓ –26.7% 6.99 ↓ –17.4%
γdepol = 29 ↑ 1.54 ↓ –18% 0.44 ↓ –24.1% 0.49 ↑ 8.9% 8.49 ↑ 0.4%
λ = 10 ↑ 2.57 ↑ 36.7% 0.96 ↑ 65.5% 0.42 ↓ –6.7% 9.48 ↑ 12%
λ = 3 ↓ 1.54 ↓ –18% 0.43 ↓ –25.9% 0.48 ↑ 6.7% 7.53 ↓ –11%

αpol = 25 ↓ 1.88 0% 0.58 0% 0.45 0% 8.46 0%
αpol = 40 ↑ 1.88 0% 0.58 0% 0.46 2.2% 8.46 0%
ps = 4 ↓ 1.88 0% 0.58 0% 0.46 2.2% 8.47 0%
ps = 4 ↓
αpol = 5 ↓ 1.88 0% 0.58 0% 0.45 0% 8.46 0%

κ = 10 ↑ 1.88 0% 0.58 0% 0.45 0% 8.47 0.1%
κ = 0.5 ↓ 1.87 –0.5% 0.58 0% 0.46 2.2% 8.45 –0.1%

frequency (F temp
cat ) by 61% and the spatial based catastrophe (F spa

cat ) by 52%. Also, we see a decrease in the
GTP-tubulin decoration time by 48 %, while the growth rate γpol(p∞) and the hydrolysis rate γav

hydro are not
significantly affected. We conclude that this parameter is likely to play an important role in regulating MT
dynamic instability.

Also, in Table 5, we show that an increase in the parameter γold
hydro changes only the temporal frequency of

catastrophe by a significant amount (17%) (the impact on other parameter values is much smaller). However, if
we change this parameter simultaneously with γyoung

hydro or as, more significant changes are noted. In particular,
if we increase the parameter γold

hydro while increasing γyoung
hydro or decreasing as, we see that almost all simulated

observables change to a large extent. Also, in Table 5, we see significant changes in γpol(p∞) and γav
hydro, but

the value of the relative difference between γpol and γav
hydro remains at 13% (similar to the control test).

From Tables 4 and 5, we show that changes in the parameters that define the rate of polymerization (ps
and αpol), as well as changes to the GDP/GTP recycling rate κ, do not change the simulated observables
at equilibrium. From Figure 4, we can see that changes to these parameters at t = 15 min reorganize the
distribution of tubulin in growing MTs, as well as the free tubulin mass, except for the case when αpol = 5 and
ps = 4 (see Fig. 4d). We first consider the case where we change the slope of the function γpol on the segment
(pc, ps) (see Fig. 1). These changes are illustrated in Figures 4a–4c. In the case of αpol = 25 (see Fig. 4a), the
slope of γpol is decreased, and we can see from Table 6 that the total polymerized tublin mass of both growing
and shortening MT populations is decreased at the steady state (recall the steady-state illustrated in Fig. 3a).
This results in an increase in the concentration of free GTP-tubulin, induced by depolymerizing MTs. However,
this does not result in a change in the value of p∞, or a change in the values of the other simulated observables
(from the control test). When we increase the slope of γpol, by setting αpol = 40 (see Fig. 4b) or by setting
ps = 4 (see Fig. 4c), the concentration of free GTP-tubulin decreases at equilibrium (see Tab. 6). However,
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Figure 4. Total tubulin mass in MT populations u (Lu) and v (Lv), GDP-tubulin in growing
MTs, free GTP-tubulin p, and free GDP-tubulin q for the cases where changing model parame-
ters does not strongly influence simulated observables: (a) αpol = 25; (b) αpol = 40; (c) ps = 4;
(d) αpol = 5, ps = 4; (e) κ = 0.5; (f) κ = 10.
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Table 6. Numerical tests and tubulin concentrations at steady-state.

L∞u L∞v p∞ q∞

simulated ctrl 9.81 1.57 3.31 0.31

param changed

from ctrl value change value change value change value change
αpol = 25 ↓ 9.50 ↓ –3.2% 1.52 ↓ –3.2% 3.68 ↑ 11.2% 0.30 ↓ –3.2%
αpol = 40 ↑ 10.04 ↑ 2.34% 1.61 ↑ 2.5% 3.05 ↓ -7.9% 0.31 0%
ps = 4 ↓ 10.75 ↑ 9.6% 1.72 ↑ 9.6% 2.20 –33.5% 0.32 ↓ 3.2%
ps = 4 ↓
αpol = 5 ↓ 9.83 ↑ 0.2% 1.57 0% 3.29 ↓ –0.6% 0.31 0%
κ = 0.5 ↓ 8.90 ↓ -9.28% 1.40 ↓ –10.8% 3.31 0% 1.37 ↑ 341.9%
κ = 10 ↑ 10.01 ↑ 2.0% 1.60 ↑ 1.9% 3.31 0% 0.07 ↓ –77.4%

like in the previous case, the growth rate and the other simulated observables do not change from their control
values. In the case where αpol = 5 and ps = 4, the slope of γpol on the segment (pc, ps) remains unchanged.
Thus, the system dynamics are the same as those of the control test, as we expected.

For each of the cases described in the previous paragraph, the concentration of free GDP-tubulin does not
change much from the control case. In contrast, if we change the value of the recycling parameter κ, changes in
the concentration of free GDP-tubulin are more pronounced (see Figs. 4e and 4f). However, there is little change
to the other simulated observables. From Table 6, we see that the change of the GDP-tubulin concentration q
is due to either an increase or a decrease in the total polymerized tubulin mass, and not as a result of changes
in the concentration of free GTP-tubulin p. In particular, the concentration p is maintained at its control value,
as is the MT growth rate.

Decreasing of rate of depolymerization γdepol or increasing the propensity of rescue λ leads to a decrease in
the growth rate γpol(p∞) by –13% and –17%, respectively. However, in both these cases, the hydrolysis rate
γav
hydro remains nearly fixed (to its control value). This leads to large increases for both time and space-based

catastrophe frequency.

5. Discussion and conclusions

In this paper, we developed a novel modeling approach to describe how MT dynamics are affected by the
process of MT aging. Extending on the work of Hinow et al. [17], we incorporated a new variable to describe
the age of growing MTs. By doing so, we were able to define mathematical expressions for the temporal and
spatial catastrophe frequency of MTs. Such expressions are important, since these frequencies can be observed
experimentally. Thus, we can use these expressions to compare our simulated results with real data. Further, we
were able to use known values for these quantities to calibrate other unknown parameters in our model. Data
used in our model calibration was based on in vitro data from [34], verifying that our model can reproduce
biologically realistic results.

The introduction of an aging effect in the hydrolysis rate had significant consequences on MT dynamics.
Here, MT age is defined as either the time after a MT rescue, or the time from nucleation, where it is assumed
that the hydrolysis rate is an increasing function of MT age. In particular, simulations with decreasing as (the
age at which MTs undergo aging effects, resulting in an increase in hydrolysis) alone resulted in increases in the
growth rate, the rate of hydrolysis, and the time-based catastrophe frequency. Also, increasing γold

hydro resulted
in increases to both catastrophe frequencies, and the hydrolysis rate.

Interestingly, if we varied both as and γold
hydro together (decreasing as and increasing γold

hydro), a stronger increase
in the MT growth rate and hydrolysis rate was observed. However, unlike the case where we vary each parameter
alone, both catastrophe frequencies are decreased.
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Moreover, the ratio of the temporal to the spatial catastrophe frequency coincides with the growth rate
of MTs, a result that was expected, providing more evidence that our modeling framework provides a good
description of MT dynamics. Also, we found that the equilibrium values for the average rate of hydrolysis and
the MT growth rate are connected in such a way that changes in the rate of hydrolysis cause changes in the
resulting growth rate at equilibrium. This result provides evidence that MT growth and hydrolysis may work
to regulate one another.

As stated in the introduction, one of the future objectives of this project is to understand the affect of MTAs
on MT dynamics. The study performed here on the influence of the parameters is a first step in understanding
this effect. As an example, when we decrease the parameter ac (the time it takes for newly added GTP-tubulin
to be hydrolyzed to GDP-tubulin), there is a significant increase in both the time- and space-based catastrophe
frequencies, as well as an increase in the hydrolysis rate. Also, there is a significant decrease in the MT cap
length, and the decoration time. These changes are consistent to what is observed when MT destabilizing drugs
(such as vinblastine) act on MTs [30]. This results suggests that the action of such a drug may work by acting
on the MT aging process.

In future work, we will perform a similar analysis, so as to gain further insight into which model parameters
might be directly affected by the addition of other MTAs. Also, as a future consideration, we will explore ways
to extend our model to include a mathematical expression for time-based rescue, as this is also a quantity that
is calculated in experiments, and is altered by the addition of MTAs.

Appendix A. Finite volume discretization

Here, we propose a finite volume approximation for the system of equations (2.1), (2.8), (2.10), (2.12) that
preserves the total tubulin mass at a discrete level. In Section A.2, we describe approximations for the ODEs
that describe the time evolution of the concentrations of GTP and GDP-tubulin, and in Sections A.3 and A.4, we
describe approximations for the transport equations describing shorting MTs v and growing MTs u, respectively.
We made a special attention to the approximation of integral terms in Section A.5. We then show that these
approximations lead to the conservation of tubulin mass in Section A.6. In last Section A.7, we focus on the
adaptative time steps that we choose.

A.1. Discretization and unknowns

Time discretization

Let 0 = t0 < . . . < tn < . . . tNt = T be a discretization of ]0, T [. We note dtn = tn+1 − tn and choose dtn to
ensure the L∞ stability of our scheme (see Sect. A.7 for more details).

Age discretization

We introduce the sequence (ank ) defined as follow:

ank+1 − ank = dtn−k := εnk , with an0 = 0

and εn+1
k+1 = εnk , ∀k ≥ 1.

The 1D discretization

We introduce a mesh T in [0, xmax] consisting of open intervals Ki =](i− 1)h, ih[, i = 1, . . . , Nx of the length
h. Let xi =

(
i− 1

2

)
h be the center of the cell Ki.

The 2D discretization

Let M be a mesh of the domain {(x, z) ∈ R2 such that 0 ≤ z ≤ x ≤ xmax}. Denote by Mij i = 1, . . . , Nx,
j = 1, . . . , i the elements of the meshM. The mesh is composed of both triangles (cells Mii, i = 1, . . . , Nx) and
squares (cells Mij , i = 2, . . . , Nx, j = 1, . . . , i− 1) as shown in Figure A.1. We denote a generic edge of any cell
by σ ∈ EM , where EM is the set of all edges of the control volume M and by PM the center of the cell.
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h

MNxNx

M22

Mii

Mij

Boundary of Catastrophe and Rescue : z = 0

Boundary of Nucleation : z = x

z

M11

MNx1 x

PMij

Figure A.1. Notations for the mesh M.

Note that we choose xmax sufficiently large so that for t < T , the support of the exact solutions u(t, .) and
v(t, .) is included in [0, xmax)2 and [0, xmax) respectively.

Unknowns

The objectif of our numerical scheme is to define sequences (pn)n, (qn)n, (vni )n,i and (unk,i,j)n,k,i,j in such a
way that pn, qn, vni and unk,i,j approximate respectively the solutions of the continuous model p at time tn, q at
time tn, v at (tn, xi) and u at (tn, ank , PMij

).

A.2. Approximation of ODEs

We approximate equations (2.10) and (2.12) in time using an explicit Euler strategy. In particular, the time
evolution of the quantity of free GTP-tubulin p is given by

pn+1 = pn − dtn(γpol(pn)Inu→p + κqn −N (p)), p0 = p(0). (A.1)

The discrete equation for the quantity of free GDP tubulin q will be of the form

qn+1 = qn + dtn(γdepolI
n
v→q − κqn), q0 = q(0). (A.2)

The quantities Inu→p and Inv→q are approximations of the integral terms Iu→p and Iv→q in equations (2.10) and
(2.12) that will be given later.

A.3. Approximation of the PDE for the density v(t, x)

We use an Euler explicit scheme in time and an upwind strategy in size x that leads to

vn+1
i = vni +

dtn γdepol

h
(vni+1 − vni ) + dtn(In,iu→v − In,iv→u). (A.3)

Approximations In,iu→v and In,iv→u for the integral terms
∫
Ki
Iv→u(tn, x) and

∫
Ki
Iu→v(tn, x) of catastrophes and

rescues will be defined later. The initial condition is given by v0
i = v(0, xi). We assume that vnNx

= 0 for all
0 ≤ n ≤ Nt. This boundary condition make sense while the domain in size is sufficiently large with respect to
T .
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A.4. Approximation of the PDE for the density u(t, a, x, z)

We use an Euler explicit scheme in time and an upwind strategy in size (x, z) and a semi-lagrangian approach
in age. Note that in case of constant time steps, this strategy simply leads to an upwind strategy. In case of
adaptative time step, this semi-lagragian approach enable us to be more accurate in the frequency estimation
for a very low cost.

Let Rnk = R(tn, ank ) for all n and k. Assume that there exists a Θ∗ such that a0 < Θ∗ < dtn for all n. We can
thus approximate Θ(ank ) given in (2.5) by

Θnk =

{
0, if k ≥ 2,

1/εn1 , if k = 1,
(A.4)

and so
∑
k ε

n
kΘ

n
k = 1.

The scheme reads for Mij , i = 2, . . . , Nx, j = 1, . . . , i− 1, k = 2, . . . , n

un+1
kij = unk−1ij −

dtn
h
γpol(pn)(unk−1ij − unk−1i−1j)−

dtn
h

(Rnk−1)−(unk−1ij − unk−1ij+1)

− dtn
h

(Rnk−1)+(unk−1ij − unk−1ij−1), (A.5)

and for Mii, i = 1, . . . , Nx, k = 2, . . . , n

un+1
kii = unk−1ii −

2dtn
h

γpol(pn)unk−1ii −
2dtn
h

(Rnk−1)−unk−1ii (A.6)

+
2dtn
h

(Rnk−1)+unk−1ii−1 +
2dtn
h

γhydro(ank−1)unk−1ii+1. (A.7)

with the convention unki0 = 0, unkii+1 = 0 for all n, i = 1, . . . , Nx, k = 2, . . . , n. The scheme is endowed by
boundary conditions on the “age boundary” a = 0

un1ij = 0, n ≥ 0, i = 1, . . . , Nx, j = 1, . . . , i, (A.8)

on the “catastrophe/rescue boundary” z = 0 as Rn1 > 0 for all n,

Rn1u
n
1i0 = λvni Θ

n
1 , for i = 1 . . . , Nx, (A.9)

and on the “nucleation boundary” z = x

γhydro(an1 )un1ii+1 = N (pn)ψ(xi)Θn1 . (A.10)

A.5. Approximation of integral terms

Going back to the discrete equations (A.1), (A.2) and (A.3), we provide the approximation of the integral
terms by the following expressions

Inu→p =
Nx∑
i=1

i∑
j=1

h2Unij , where Unij =
n∑
k=1

εnku
n
kij, (A.11)

Inv→q =
Nx∑
i=1

hvni −
h

2
vn1 , (A.12)

In,iu→v =
n∑
k=1

εnk (Rnk )−unki1, (A.13)

In,iv→u =λvni . (A.14)
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A.6. Conservation of the total tubulin at the discrete level

Let Lnu be a total amount of tubulin (both α and β tubulin) contained in growing MTs, and Lnv be a total
amount of GDP tubulin contained in shortening MTs. Then

Lnv = h

Nx∑
i=1

xiv
n
i , Lnu = h2

Nx∑
i=1

i∑
j=1

xiU
n
ij .

Remark A.1. To preserve the total amount of tubulin in the system on a discrete level, approximations of
the integral terms Iu→p and Iv→q have been chosen with corrections in the sum of diagonal cells (i.e. i = j) in
(A.11) and for the first segment (i.e. i = 1) in (A.12).

Total amount of tubulin in the system is written as

χn = Lnu + Lnv + pn + qn,

We state the theorem for the conservation law of tubulin mass on a discrete level.

Theorem A.2. There exists N0 such that χn = χ0 for all n ≤ N0.

Note that if we choose xmax sufficiently large with respect to T , then n0 = Nt.
Before the proof of the Theorem 1, let us formulate several auxiliary lemmas. The following lemma is given

to serve for convenience in writing.

Lemma A.3. The discrete equation (A.5) for the square cells Mij, i = 2, . . . , Nx, j = 1, . . . , i− 1, k = 1, . . . , n
can be rewritten for Un+1

ij given in (A.11) in the form

Un+1
ij = Unij −

dtn
h
γpol(pn)(Unij − Uni−1j)−

dtn
h

n∑
k=1

εnk (Rnk )−(unkij − unkij+1)

− dtn
h

n∑
k=1

εnk (Rnk )+(unkij − unkij−1).. (A.15)

The discrete equation (A.7) for the triangular cells Mii, i = 1, . . . , Nx, k = 1, . . . , n can be rewritten for Un+1
ii

in the form

Un+1
ii = Unii −

2dtn
h

γpol(pn)Unii −
2dtn
h

n∑
k=1

εnk (Rnk )−unkii +
2dtn
h

n∑
k=1

εnk (Rnk )+unkii−1

+
2dtn
h

εn1γhydro(dtn)un1ii+1. (A.16)

Lemma A.4. The difference between tubulin mass in growing MTs at the (n+ 1)th and nth time steps is given
by the right-hand side of

Ln+1
u − Lnu = ∆u− +∆u+ +∆u,pol +∆u,nucl, (A.17)

where the following notations are used

∆u− = −hdtn
Nx∑
i=1

xiI
n,i
u→v, ∆u+ = hdtnλ

Nx∑
i=1

xiv
n
i ,

∆u,pol = dtnγpol(pn)Inu→p, ∆u,nucl = dtnN (pn).
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Proof. We group terms of the difference Ln+1
u −Lnu in the following way and reduce them to ∆u−, ∆u+, ∆u,pol.

The expression for the tubulin mass contained in MTs that undergo catastrophe is given on the left side of
the following expression and further it is transformed to ∆u−

−hdtn
Nx∑
i=1

i∑
j=1

n∑
k=2

εnk (Rnk )−xi(unkij − unkij+1) = −hdtn
n∑
k=2

εnk (Rnk )−
Nx∑
i=1

i∑
j=1

xi(unkij − unkij+1)

= −hdtn
n∑
k=2

εnk (Rnk )−
Nx∑
i=1

xiu
n
ki1 = −hdtn

Nx∑
i=1

xi

n∑
k=2

εnk (Rnk )−unki1

= −hdtn
Nx∑
i=1

xiI
n,i
u→v = ∆u−,

The expression for the quantity of tubulin polymerized in MTs undergoing rescue has the following form that
we reduce to ∆u+

− hdtn

Nx∑
i=2

i−1∑
j=1

xi

n∑
k=1

εnk (Rnk )+(unkij − unkij−1)−
Nx∑
i=1

xi

n∑
k=1

εnk (Rnk )+unkii−1


= −hdtn

n∑
k=1

εnk (Rnk )+

Nx∑
i=2

i−1∑
j=1

xi(unkij − unkij−1)−
Nx∑
i=1

xiu
n
kii−1


= −hdtn

n∑
k=1

εnk (Rnk )+
(
Nx∑
i=2

xi(unkii−1 − unki0)−
Nx∑
i=1

xiu
n
kii−1

)

= hdtn
n∑
k=1

εnk (Rnk )+
Nx∑
i=1

xiu
n
ki0 = hdtnεn1 (Rn1 )+

Nx∑
i=1

xiu
n
1i0

= hdtn
Nx∑
i=1

xiλv
n
i = ∆u+.

Taking advantage of Lemma 2, we calculate the tubulin contained in MTs in polymerization state using the
equations (A.15) and (A.16)

−hdtnγpol(pn)

Nx∑
i=2

i−1∑
j=1

xi(Unij − Uni−1j) +
Nx∑
i=1

xiU
n
ii


= −hdtnγpol(pn)

Nx−1∑
j=1

Nx∑
i=j+1

xiU
n
ij −

Nx−1∑
j=1

Nx−1∑
i=j

xi+1U
n
ij +

Nx∑
i=1

xiU
n
ii


We sum the first and the last terms and add to the second term

∑Nx

j=1 xNx+1U
n
Nx j

that we imply to be zero. Note
that due to the finite propagation speed of the transport equation ∃N0 : ∀n ≤ N0, U

n
Nx j

= 0, ∀j. Recalling
that xi+1 − xi = h we get

− hdtnγpol(pn)

Nx∑
i=1

Nx∑
i=j

xiU
n
ij −

Nx∑
j=1

Nx∑
i=j

xi+1U
n
ij

 = h2dtnγpol(pn)
Nx∑
i=1

i∑
j=1

Unij

= dtnγpol(pn)Inu→p = ∆u,pol,
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The expression of the tubulin mass polymerized in nucleated MTs has the following form and reduced to
∆u,nucl

h2

2

Nx∑
i=1

εn1xi
2dtn
h

γhydro(dtn)un1i i+1 = dtn hN (pn)
Nx∑
i=1

xiψi = dtnN (pn) = ∆u,nucl.

The lemma is proved. �

Lemma A.5. The difference between tubulin mass contained in shortening MTs at the nth and (n+ 1)th time
steps is given by

Ln+1
v − Lnv = ∆v,γdepol +∆v,u+ +∆v,u−. (A.18)

where

∆v,γdepol = −dtnγdepolI
n
v→q, ∆v,u+ = −hdtnλ

Nx∑
i=1

xiv
n
i ,

∆v,u− = hdtn
Nx∑
i=1

xiI
n,i
u→v.

Proof. We write out each term of the difference Ln+1
v −Lnv and transform them to ∆v,γdepol , ∆v,u+, ∆v,w−, and

∆v,u−.
The expression for the quantity of tubulin in depolymerizing MTs can be reduced in the following way

dtnγdepol

(
Nx+1∑
i=2

vni xi−1 −
Nx∑
i=1

vni xi

)
= dtnγdepol

(
Nx∑
i=2

vni (xi−1 − xi)

+vnNx+1xNx
− vn1 x1

)
= dtnγdepol

(
−h

Nx∑
i=2

vni + vnNx+1xNx
− vn1 x1

)

= dtnγdepol

(
−h

Nx∑
i=1

vni +
h

2
vn1

)
= −dtnγdepolI

n
v→q = ∆v,γdepol .

The expression for the tubulin mass contained in MTs undergoing rescue has the following form

−hdtnλ
Nx∑
i=1

xiv
n
i = ∆v,u+,

The quantity of the tubulin contained in MTs undergoing catastrophe is calculated as the following

hdtn
n∑
k=1

εnk (Rnk )−
Nx∑
i=1

xiu
n
ki1 = h dtn

Nx∑
i=1

xiI
n,i
u→v = ∆v,u−.

The lemma is proved. �

Proof of the theorem 1. We rewrite the equations for free GTP-tubulin pn+1 and for free GDP-tubulin qn+1 in
following way

pn+1 − pn = ∆p,u +∆p,q +∆p,nucl, (A.19)

where ∆p,u = −dtnγpol(pn)Inu→p, ∆p,q = dtnκqn, ∆p,nucl = −dtnN (pn),

qn+1 − qn = ∆q,γdepol +∆q,p, (A.20)
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where ∆q,γdepol = dtnγdepolI
n
v→q, ∆q,p = −dtnκqn.

Now, we consider the difference χn+1−χn that is the difference between the total tubulin mass of the system
at the (n+ 1)th and nth time instant and take advantage of the terms from the right sides of equations (A.17)–
(A.20). Gathering them in the following way,

χn+1 − χn = (∆u,nucl +∆p,nucl) + (∆u− +∆v,u−) + (∆u,pol +∆p,u)
+ (∆v,γdepol +∆q,γdepol) + (∆u+ +∆v,u+) + (∆p,q +∆q,p),

where the terms are zero in each parenthesis. Therefore, we proved that the total tubulin mass in the system
on a discrete level remains constant over time. �

A.7. Time step

The computations are carried out with adaptive time step that is a maximal time step for which the scheme
is L∞−stable. In particular, we have

dtn ≤ min
(

h

γpol(pn) + max
2≤k≤n+1

|Rnk−1|
,

h

2(γpol(pn) + max
2≤k≤n+1

(Rnk−1)−)
,

h

(γdepol + λ)
,

pn

N (pn) + γpol(pn)Inu→p
, 1/κ

)
(A.21)
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