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HIGHER ORDER TOPOLOGICAL DERIVATIVES FOR THREE-DIMENSIONAL
ANISOTROPIC ELASTICITY

Marc Bonnet1 and Rémi Cornaggia2

Abstract. This article concerns an extension of the topological derivative concept for 3D elasticity
problems involving elastic inhomogeneities, whereby an objective function J is expanded in powers of
the characteristic size a of a single small inhomogeneity. The O(a6) approximation of J is derived and
justified for an inhomogeneity of given location, shape and elastic properties embedded in a 3D solid of
arbitrary shape and elastic properties; the background and the inhomogeneity materials may both be
anisotropic. The generalization to multiple small inhomogeneities is concisely described. Computational
issues, and examples of objective functions commonly used in solid mechanics, are discussed.
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1. Introduction

Many practical (e.g. design or identification) problems of physics or engineering involve the optimization of
some objective function, whose definition often depends on the solution of a system of partial differential equa-
tions (PDE). The resulting need for efficient computational procedures for such PDE-constrained optimization
problems has in turn prompted the appearance and implementation of many treatments, involving e.g. param-
eter or shape sensitivity, model reduction, or surrogate approximate models based on asymptotic methods. The
latter category in particular includes the concept of topological derivative, which quantifies the perturbation
induced to a cost functional J by the virtual creation of an inhomogeneity occupying a region Ba(z) with a
vanishingly small characteristic radius a and a prescribed center located z inside the medium of interest. For
the case of a small elastic inhomogeneity embedded in a three-dimensional elastic solid, considered in this work,
the well known expansion

J(Ca) = J(C) + a3T (z) + o(a3)

holds [13, 21, 35], where J(Ca) denotes the value taken by the objective function of interest when the elastic
properties of the perturbed solid are described by the piecewise-constant elasticity tensor field Ca, such that
supp(Ca −C) = Ba(z) (C denoting the constant elasticity tensor for the background material). The topolog-
ical derivative T (z), which depends on the location z of the trial inhomogeneity and also on its shape and
on the elastic constants of both materials, can then be used e.g. to direct structural optimization algorithm
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towards optimal topologies, see e.g. [1,6,33], or for qualitative flaw identification, see e.g. [3,9,10,28]. Objective
functionals J used in such contexts depend on Ca implicitly through the displacement field ua arising in the
perturbed medium, i.e. have the form J(Ca) = J(ua). The displacement perturbation va := ua−u (u being the
displacement in the unperturbed medium undergoing the same applied excitation) is well known from previous
studies [5, 13] to verify va(x) = O(a3) for any x∈Ω, x �= z.

A natural extension of the concept of topological derivative consists in expanding J(Ca) to higher orders
in a, in order to formulate more accurate asymptotic approximations of J. Previous efforts in this direction
include [12] for inclusions or cracks in 2D conductive media, [11] for sound-hard obstacles in 3D acoustic media,
and [34] for expansions of the potential energy of 2D elastic solids. Higher-order topological expansions were in
particular shown in [11, 12] to allow computationally fast and quantitatively accurate flaw identification while
avoiding the need for initial guesses.

This article, which is a sequel of [11–13], is devoted to establishing higher-order topological expansions of
objective functionals for the case of a small elastic inhomogeneity embedded in a three-dimensional elastic solid.
Such expansions have the form

J(Ca) = J(C) + a3T3(z) + a4T4(z) + a5T5(z) + a6T6(z) + o(a6), (1.1)

involving higher-order topological derivatives T4(z), T5(z), T6(z) in addition to the already-known ordinary
topological derivative T3(z) = T (z). The distinguishing features of this work are as follows:

(a) The main result is an expansion having the form (1.1) for inhomogeneities of arbitrary shape, with both
elastic materials permitted to be anisotropic, and for a large class of objective functionals. The chosen order
O(a6) results from considering the minimization of least-squares cost functionals having the form J(ua) =∫
|ua−um|2 =

∫
|u+va−um|2 with given um. In such cases, a6T6(z) is the lowest order term of expansion (1.1)

to which the quadratic terms in va contribute. Analytical solutions for simple configurations, and evidence
from previous numerical experiments on flaw identification problems, have shown that in practice we often
have T6(z)> 0 (thanks to the positive contribution of the second-order derivative J ′′(u; va)) but T5(z)< 0,
implying that the O(a6) approximation (1.1) of J(Ca) has a minimum for a ∈ R+ whereas the O(a5)
approximation does not. We both derive the relevant high-order topological expansion (supplementing
previously-known results on T3(z) by giving complete expressions for functions T4(z), T5(z), T6(z)) and
provide its justification; the previously-mentioned investigations [11, 12, 34] addressed neither the general
three-dimensional elastic case nor the justification of expansions derived and implemented therein.

(b) Like in [11, 12], we introduce the adjoint solution associated with J prior to performing the expansion in
powers of a, allowing to establish the above expansion on the basis of (i) the expansion of the solution to
the underlying elastic transmission problem in Ba (higher-order inner expansion) and (ii) the leading-order
contribution to the solution on the support of the objective function density (leading outer expansion).

(c) Setting up the expansion (1.1) requires information on the asymptotic behavior of the elastic transmission
solution. The latter has been the subject of previous studies [4, 5] based on coupled boundary integral
equation formulations. This work instead adopts a volume integral equation (VIE) framework, which is a
natural setting for many inhomogeneity problems [19,27,36], including Eshelby’s celebrated articles [17,18].
Here, the fact that the geometrical support of the VIE is Ba facilitates the implementation and use of
coordinate rescaling commonly used in the derivation of asymptotic models and allows, in combination with
the adjoint solution approach, to focus the main efforts for both the derivation and the justification stage on
the inner part of the solution expansion (i.e. that supported on Ba). Moreover, the VIE framework allows
future extensions of this work to inhomogeneities with spatially-varying elastic properties.

We also mention that this work is a step towards setting up high-order topological expansions for the elastody-
namic case, intended as a tool for the numerical solution of inverse scattering problem, in the spirit of [12].

This article is organised as follows. Section 2 describes the elastostatic problem and the class of cost func-
tionals J undergoing expansion, introduces the governing volume integral equation (VIE) and the full-space
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transmission problems (FSTPs) that will serve as a basis for deriving the sought expansion, collects some facts
about elastic moment tensors, and sets notation. Then, the governing VIE for the elastostatic transmission
problem is expanded in Section 3, to obtain the first four terms of the inner expansion of the transmission
solution and recovering the known leading-order outer solution expansion. Section 4 is devoted to the derivation
and justification of the main result of this work, namely the O(a6) asymptotic expansion of J(Ca) and the
associated topological derivatives T3(z), . . . , T6(z) for a single inhomogeneity of arbitrary shape and anisotropic
elastic material embedded in a solid whose shape and (linearly elastic) material are also arbitrary (Theorem 4.1).
Simpler formulas are then obtained for the common case of a centrally-symmetric inhomogeneity (Sect. 4.2),
leading to explicit formulas for an ellipsoidal inhomogeneity (Sect. 4.3). Then, Section 5 is devoted to discussing
some computational issues, specializing the results of Section 4 to commonly-used objective functionals, and
briefly describing how Theorem 4.1 can be generalized to the case of multiple inhomogeneities with fixed lo-
cations. Finally, Sections 6 and 7 give the proof of two sub-results upon which Theorem 4.1 relies, namely
the well-posedness of the VIE formulation of elastostatic FSTPs (Prop. 2.2) and the justification of the inner
expansion of the transmission solution (Prop. 3.1).

2. Elastostatic problem and cost functional

Consider a homogeneous reference solid body occupying the bounded Lipschitz domain Ω ⊂ R3, with linearly
elastic material behavior characterized by the (possibly anisotropic) elasticity tensor C, which is symmetric and
positive definite as a linear operator acting on R3×3

sym; moreover, C is also assumed to be bounded (thereby
excluding the case of incompressible background materials). When the material is isotropic, C is given by

C = 2μ
(

1 + ν

1 − 2ν
J + K

)
, (2.1)

where μ > 0 is the shear modulus and 0 < ν <
1
2

is Poisson’s ratio3. The fourth-order tensors J ,K are

respectively defined by J = (1/3)I⊗I and K = I −J in terms of the second-order identity I (with Iij = δij)

and the fourth-order identity for symmetric tensors I (with Iijk� =
1
2
(δikδj� +δi�δjk)).

The solid is subjected to prescribed displacements uD and surface force densities tD, respectively applied
on the surfaces ΓD and ΓN such that ΓD ∪ΓN = ∂Ω, ΓD ∩ΓN = ∅ and |ΓD| �= 0. These excitations (which are
chosen for definiteness, as other choices are possible, see Rem. 2.1) give rise to the background displacement
field u∈H1(Ω) satisfying:

div (C :ε[u]) = 0 in Ω, u = uD on ΓD, t[u] = tD on ΓN, (2.2)

where ε[w] and t[w] denote the linearized strain tensor and the traction vector associated with a given dis-
placement w, respectively defined by

(a) ε[w] =
1
2
(∇w + (∇w)T), (b) t[w] = (C :ε[w])·n (2.3)

(with n the unit outward normal to Ω). In (2.2) and hereinafter, symbols ’·’ and ’ : ’ denote single and double
inner products, e.g. (E ·x)i = Eijxj and (C : E)ij = Cijk�Ek�, with Einstein’s convention of summation over
repeated indices implicitly used throughout; moreover, boldface symbols H1,L2 indicate classical Sobolev spaces
of vector- or tensor-valued fields (depending on context), e.g. H1(X) = H1(X ; R3) for some domain X ⊂R3.

The weak formulation corresponding to problem (2.2) is:

Find u ∈ V, 〈u,w〉CΩ = F (w), ∀w ∈V0, (2.4)

3The range 0 < ν <
1

2
corresponds to “usual” isotropic materials. The elasticity system is strongly elliptic for ν ∈ R \ [1/2, 1],

while the strain energy is positive definite for −1 < ν <
1

2
. Certain microstructured materials achieve −1 < ν < 0. See e.g. [37].
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where the notation 〈u,w〉CD, used throughout this article, stands for the bilinear elastic energy form associated
to given domain D⊂R3, elasticity tensor C and displacement fields u,w, i.e.:

〈u,w〉CD :=
∫

D

ε[u] :C :ε[w] dV =
∫

D

∇u :C :∇w dV (2.5)

(the second equality resulting from the minor symmetries of C), the linear form F associated to the loading is
defined by

F (w) =
∫

ΓN

tD ·w dS,

and the spaces V , V0 are V =
{

u∈H1(Ω), u = uD on ΓD

}
, V0 =

{
u∈H1(Ω), u = 0 on ΓD

}
.

2.1. Transmission by a small inhomogeneity

An inhomogeneity Ba of small size a and shape B is then introduced in the medium, centered at a point z,
so that we note Ba = z + aB. It is characterized by the homogeneous elasticity tensor C�, also assumed to be
positive definite and bounded (thereby excluding voids, for which C� = 0, and incompressible inhomogeneities).

If isotropic, C� is of the form (2.1) with parameters μ� > 0, 0 < ν� <
1
2
. We set ΔC := C� −C. By analogy

with (2.4), the displacement ua for the perturbed solid solves the weak formulation

Find ua ∈ V, 〈ua,w〉Ca

Ω = F (w), ∀w ∈V0, (2.6)

where Ca = C + χ(Ba)ΔC is the (piecewise-constant) elasticity tensor field for the whole solid (χ(D) being
the characteristic function of a domain D ⊂ R3). Substracting (2.4) from (2.6), the perturbation displacement
va := ua−u is found to solve the weak formulation:

Find va ∈ V0, 〈va,w〉Ca

Ω = −〈u,w〉ΔC
Ba
, ∀w ∈V0. (2.7)

Remark 2.1. The excitation used in the definition (2.2) of the background displacement is chosen for the
sake of definiteness. Other types of excitations involving e.g. body forces, initial strains or stresses are also
permissible, provided they allow sufficient (C5, see proof of Thm. 4.1) interior regularity of u at the chosen
inhomogeneity site z (i.e. either z is outside the support of any internal excitation, or the latter has enough
smoothness at z).

2.2. Cost functional and adjoint problem

We consider objective functionals J(Ca) that depend on the trial inhomogeneity (i.e. on Ca) implicitly through
the solution ua of (2.6), of the form

J(Ca) = J(ua), with J(w) =
∫

Ωm
ΨΩ(x,w(x)) dVx +

∫
Γm

ΨΓ (x,w(x)) dSx, (2.8)

with the volume and surface densities ΨΩ : (Ωm ×R3) → R and ΨΓ : (Γm ×R3) → R assumed to be twice
differentiable in their second argument; moreover, the corresponding second-order derivatives of ΨΩ and ΨΓ are
assumed to have C0,γ regularity with respect to their second argument for some γ > 0. The supports Ωm, Γm

are open subsets of Ω and ΓN, respectively; moreover we assume that z �∈Ωm, implying that Ba∩Ωm = ∅ for a
small enough. Using Taylor expansions (with integral remainder) of ΨΩ, ΨΓ , the following expansion of J(ua)
about the background solution u therefore holds:

J(Ca) − J(C) = J ′(u; va) +
1
2
J ′′(u; va) +R(u; va) (2.9)
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with

J ′(u; va) =
∫

Ωm
∇2ΨΩ(·; u)·va dV +

∫
Γm

∇2ΨΓ (·; u)·va dS,

J ′′(u; va) =
∫

Ωm
∇22ΨΩ(·; u) :(va⊗va) dV +

∫
Γm

∇22ΨΓ (·; u) :(va⊗va) dS,

R(u; va) =
∫ 1

0

(1 − t)J ′′(u+ tva; va) dt− 1
2
J ′′(u; va)

where, for any function ψ having two arguments, ∇kψ denote its gradient with respect to its (possibly vector-
valued) kth argument and ∇k� its second-order gradient w.r.t. kth and �th arguments; moreover, the symbol ⊗
indicates the usual tensor product.

To evaluate the directional derivative J ′(u; va), it is convenient and customary to introduce the adjoint
solution û defined by the weak formulation

Find û ∈ V0, 〈û,w〉CΩ = J ′(u; w), ∀w ∈V0. (2.10)

Then, on setting w = û in (2.7) and w = va in (2.10), combining the resulting identities and exploiting the
symmetry of the energy bilinear form, one obtains the following reformulation of J ′(u; va):

J ′(u; va) = −〈û,u〉ΔC
Ba

− 〈û,va〉ΔC
Ba

= −〈û,ua〉ΔC
Ba
, (2.11)

which will facilitate subsequent asymptotic expansions by virtue of having Ba as its support.

2.2.1. Least-squares misfit cost functional.

This simple but important type of cost functional is commonly used for e.g. defect identification. It eval-
uates the misfit between a given displacement w and experimental values um recorded on a measurement
surface Γm ⊂ ΓN:

J(w) =
1
2

∫
Γm

|w − um|2 dS, (2.12)

corresponding to ΨΓ (x,w) =
1
2
|w−um(x)|2 (x∈ Γm). In this case, the expansion (2.9) is exact and holds with

J ′(u; va) =
∫

Γm
(u − um)·va dS, J ′′(u; va) =

∫
Γm

|va|2 dS, R(u; va) = 0

The case of interior measurements of displacements [23] recorded in a measurement region Ωm ⊂ Ω can be

accommodated in essentially identical fashion, setting ΨΩ(x,w) =
1
2
|w − um(x)|2 (x∈Ωm).

2.3. Small-inhomogeneity expansion

As mentioned in the Introduction, it is well known from previous studies that va(x) = O(a3) as a → 0 for
any fixed point x �= z. Therefore, if the expansion of J(Ca) is to include (as desired) the leading contribution
as a → 0 of J ′′(u; va), it must be performed up to order O(a6) at least. Establishing the sought expansion of
J(Ca) in a in turn necessitates an expansion of the transmission solution va. Since J ′(u,va) is formulated in
terms of integrals over the vanishing support Ba (see (2.11)), finding the expansion of va will be facilitated by
stating the transmission problem (2.7) as a volume integral equation (VIE) with support Ba, as shown now.
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2.4. Transmission problem: volume integral equation formulation

2.4.1. Elastostatic Green’s tensor

Let G = ek ⊗Gk be the elastostatic Green’s tensor associated to problem (2.2), with each vector Gk(ξ,x)
solving, for a given source point x∈Ω, the problem

div (C :∇1G
k(·,x)) + δxek = 0 in Ω, Gk(·,x) = 0 on ΓD, t[Gk(·,x)] = 0 on ΓN (2.13)

(where δx denotes the Dirac distribution supported at x, and the notation ∇1G follows the convention intro-
duced in (2.9) for functions having two arguments). The component Gij(ξ,x) of G(ξ,x) is therefore the jth
component of the displacement at ξ resulting from a unit point force applied at x along the ith direction. The
Green’s tensor can then be decomposed according to:

G(ξ,x) = G∞(ξ−x) + Gc(ξ,x) (2.14)

where G∞ = ek ⊗Gk
∞ is the (singular) full-space Green’s tensor (or fundamental tensor) satisfying

div (C :∇Gk
∞) + δek = 0 in R

3, |Gk
∞(r)| → 0 as |r| → ∞ (2.15)

while the complementary part Gc(·,x) = ek ⊗ Gk
c (·,x) is seen (using superposition) to be such that each

Gk
c solves an elastostatic boundary-value problem of the form (2.2) with boundary data uD = −Gk

∞(· − x),
tD = −t[Gk

∞(· − x)]. Therefore, Gc(·,x)∈C∞(Ω; R3,3) and is in particular bounded at ξ = x.
The fundamental tensor G∞ and its gradients are positively homogeneous functions: for any r ∈ R3\{0} and

λ> 0, we have

G∞(λr) = λ−1G∞(r), ∇G∞(λr) = λ−2∇G∞(r), ∇2G∞(r) = λ−3∇2G∞(λr)· (2.16)

In particular, G∞(r) and ∇G∞(r), having respectively O(r−1) and O(r−2) singularities at the origin, are both
L1(Ω) and L1

loc(R
3) (tensor-valued) functions. For an isotropic material, G∞ is the well-known Kelvin solution

given by:

G∞(r) =
1

16πμ(1 − ν)r
[(3 − 4ν)I + r̂⊗ r̂] , with r = |r| and r̂ =

r

r
·

2.4.2. Integral equation and representation for the perturbation displacement.

On applying the first of equations (2.13) to a test function w ∈ V0 ∩C1(ωx) (where ωx is a neighbourhood
of x) and applying the first Green’s identity to the resulting first term over Ω, the Green’s tensor is seen to
verify

〈G(·,x),w〉CΩ = w(x), x∈Ω, ∀w ∈V0∩C1(ωx). (2.17)

Setting (i) w = G(ξ,x) in the variational problem (2.7), (ii) w = va in (2.17), and (iii) subtracting the two
resulting equalities (the integrals arising from steps (i) and (ii) being well-defined for x ∈Ba∪ (Ω \Ba) due to
elliptic interior regularity for va and the fact that ∇G∞(·−x)∈C∞(Ω\{x}) and has an integrable singularity
at x), we obtain the governing volume integro-differential equation (VIE) for va:(

I + La

)
[va](x) = −La[u](x), x∈Ba ∪ (Ω\Ba) (2.18)

where I is the second-order identity and the linear integro-differential operator La is defined by

La[v](x) :=
〈
v,G(·,x)

〉ΔC
Ba

=
∫

Ba

∇1G(·,x) :ΔC :∇v dV. (2.19)

In (2.19) and hereinafter, the adopted notational convention for gradient components is such that (∇v)ik =
vi,k = ∂kvi and (∇G)ijk = Gij,k = ∂kGij .
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2.5. Free-space transmission problems

Free-space transmission problems (FSTPs) are auxiliary problems for a perfectly-bonded inhomogeneity
(B,C�) embedded in an infinite elastic medium. On using rescaled coordinates associated with the mapping
Ba = z+aB, which “sends to infinity” the boundary ∂Ω, asymptotic contributions to va as a→ 0 will be found
to solve FSTPs, making them play a crucial role in the sequel. Accordingly, some known definitions and results
pertaining to FSTPs are reviewed in this section for later reference, with useful additional notation introduced
in the process, and an auxiliary solvability result for the VIE formulation of a FSTP is given (Prop. 2.2).

2.5.1. Definition and VIE formulation

We consider FSTPs defined as follows: given a background displacement field u, find the total field uB such
that

div (CB :∇uB) = div (C :∇u) in R
3, uB(ξ) − u(ξ) = O(|ξ|−2) as |ξ| → ∞, (2.20)

where CB = C + ΔCB with the elasticity perturbation tensor field ΔCB given by ΔCB = χ(B)ΔC. The given
decay condition at infinity for the perturbation vB := uB −u, which ensures uniqueness of the solution uB,
is known from representations of bounded elastostatic fields by volume or layer potentials, while a well-posed
variational formulation for problem (2.20) is based on enforcing the decay of vB by means of a weighted Sobolev
space ([16], Chap. XI.B).

By analogy with (2.18), problem (2.20) can then be recast in either of two equivalent VIE forms (a) and (b),
depending on whether the main unknown is chosen to be the restriction to B of uB (a) or vB (b):

(a)
(I + LB

)
[uB](x) = u(x), or (b)

(
I + LB

)
[vB](x) = −LB[u](x), x∈B ∪ (R3 \B), (2.21)

where the integral operator LB is defined, in terms of the full-space Green’s tensor G∞ (see (2.15)), by

LB[v] :=
∫
B

∇G∞(ξ−x) :ΔC :∇v(ξ) dVξ. (2.22)

Proposition 2.2. Assume that the background and inhomogeneity elasticity tensors C and C� are both positive
definite and bounded. The integro-differential operator I+LB : H1(B) → H1(B) of the volume integral equation
formulation (2.21) of the FSTP is invertible with bounded inverse.

Proposition 2.2 extends Theorem 1 of [22] (which focuses on the solvability of the related integral equa-
tion (6.1) for σ� :=ΔC :ε[uB], assuming isotropic materials) to general anisotropic materials. Its proof is given
in Section 6. We note in particular that the operator LB : H1(B) → H1(B) is not compact.

Equations (2.21) are hence well-posed, implying in particular that vB = 0 for any rigid-body background
displacement (for which LB[u] = 0). Moreover, we state the following reciprocity identity, whose proof is given
in Appendix A, and which will be used later:

Lemma 2.3. Let uB,u′
B solve the FSTP (2.20) with respective background displacements u,u′. With the no-

tation 〈· , ·〉ΔC
B as defined by (2.5), we have:〈

uB , u′ 〉ΔC
B =

〈
u′
B , u

〉ΔC
B .

2.5.2. Polynomial background displacement

The case where the background displacement u is polynomial plays an important auxiliary role in this study.
Any polynomial displacement of degree n may be set in the form

u(x) = E0 +
n∑

p=1

ϕp[Ep](x) with ϕp[Ep](x) :=
1
p
Ep •x⊗p, (2.23)
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where Ep are constant tensors of order p+1 that are assumed without loss of generality to be invariant under
any permutation of their last p−1 indices (as otherwise (2.23) yields the same displacement u upon replacing
each Ep by its average over all such permutations). In (2.23) and hereinafter, the notation A •B indicates,
for any tensors A,B of respective orders p, q, their m-fold inner product, with m := min(p, q) (i.e. the inner
product is effected over as many indices as possible), e.g. (A •B)ijk = Aijk�mnB�mn (again with Einstein’s
summation convention); moreover, the notation x⊗p is a shorthand for the tensor product x⊗ . . .⊗x of order p
(e.g. x⊗3 = x⊗x⊗x).

The form chosen in (2.23) for the homogeneous polynomials ϕp[Ep](x), together with the assumptions made
on Ep, is such that their strain tensor is ε

[
ϕp[Ep]

]
(x) = Es

p •x⊗p−1, with the superscript “s” indicating
symmetrization over the first two indices (e.g. Es

ijk = (Eijk + Ejik)/2). We then denote by U
(p)
B [Ep] the

solution to the FSTP (2.20) with given background displacement u = ϕp[Ep]. The displacement perturbation
V B[Ep] := UB[Ep]−ϕp[Ep] then satisfies the integral equation(

I + LB
)
V

(p)
B [Ep] = −LB

[
ϕp[Ep]

]
, in B. (2.24)

When B is an ellipsoid, it is well known [17, 18, 31] that the restriction to B of U
(p)
B [Ep] is polynomial with

degree p. For the cases p= 1 and p= 2, which will be used here, we have (see Appendix B)

ε
(
U

(1)
B [E1]

)
(x) = Es

1 − S1 :
(C +ΔC :S1

)−1 :ΔC :Es
1,

ε
(
U

(2)
B [E2]

)
(x) =

(
Es

2 − S2 •
[
(C̃ +ΔC :S2)−1 • (Δ̃C •Es

2)
] )

·x,
(2.25)

with the sixth-order version C̃ of C defined by C̃ijk�mn = Cij�mδkn (and similarly for Δ̃C), and where S1,S2

are known constant tensors (respectively of order 4 and 6) depending on B and C, called Eshelby tensors. The
latter are known in closed form if C is isotropic and in a few other cases [31]; moreover, they depend only on
the shape (i.e. aspect ratios) of B, not on its size (i.e. Si(λB,C) = Si(B,C) for i= 1, 2 and any λ> 0). If B is
a ball and C is isotropic, S1 and S2 are given in component form (with tensors I,J ,K as in (2.1)) by [31]

15(1−ν)S1
ijk� = 5(1+ν)Jijk� + (8−10ν)Kijk�, (2.26a)

35(1−ν)S2
ijk�mn = −2δijIkn�m + (7ν−1) (δijδkn + 2Iijkn)δ�m + 2(6−7ν) Iij�mδkn

+ (5−7ν) (δikIjn�m + δjkIin�m + δjnIik�m + δinIjk�m) (2.26b)

2.5.3. Elastic moment tensors

Elastic moment tensors (EMTs), which are analogs for elasticity of polarization tensors, play a central role in
asymptotic expansions involving small inhomogeneities, see e.g. [4, 13]. For integers p, q ≥ 1, let the EMT Apq

be the constant tensor of order p+q+2 such that〈
U

(p)
B [Ep] , ϕq[Eq]

〉ΔC
B = Ep •Apq •Eq (2.27)

for any constant tensors Ep and Eq of respective orders p+1 and q+1. Noting that the left-hand side of (2.27)
only depends on the partially-symmetrized versions Es

p,E
s
q of Ep,Eq (see Sect. 2.5.1), Apq is uniquely de-

fined by (2.27) upon enforcing minor symmetries mirroring those of Es
p,E

s
q, e.g. (A22)ijk�mn = (A22)ijkm�n =

(A22)jik�mn.
The practical evaluation of tensors Apq is made easier by applying the reciprocity identity of Lemma 2.3 to

(uB,u′
B) =

(
U

(p)
B [Ep],U

(q)
B [Eq]

)
and (u,u′) =

(
ϕp[Ep],ϕq[Eq]

)
, yielding

Ep •Apq •Eq = Eq •Aqp •Ep. (2.28)

Consequently, knowing the FSTP solution U
(m)
B [Em] with m := min(p, q) is enough for evaluating Apq.
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Remark 2.4. The definition of EMTs given in [4], which relies on layer potential representations for UB[Ep],
assumes (i) isotropic background and inhomogeneity materials and (ii) div (C :ε[ϕp(Ep)]) = 0. If in addition we
also have div (C :ε[ϕq(Eq)]) = 0, the present Apq and its counterpart M j

αβ of [4] (where α, β are multi-indices)
can be shown to be related through

Ep •Apq •Eq =
1
pq

(
Eq

)
β�

M j
αβ ·e�

(
Ep

)
αj

(for |α|= p, |β|= q, and summing over α, β, j, �)

3. Asymptotic behavior of perturbation displacement

The asymptotic behavior of va is now investigated, involving the expansion for a → 0 of integral equa-
tion (2.18). It is convenient for this purpose to convert the integrals over the vanishing inhomogeneity Ba

involved in (2.18) to integrals over the fixed region B. To this aim, points ξ ∈Ba, and the associated differential
volume element, are rescaled according to:

(a) ξ = z + aξ̄, (b) dVξ = a3 dV̄ξ̄, ξ ∈Ba, ξ̄ ∈B. (3.1)

Then, we define the isomorphism Pa : H1(Ba) → H1(B) associated with this coordinate rescaling, and its
inverse P−1

a , by

Pa[v](ξ̄) := v(z +aξ̄) and P−1
a [V ](ξ) := V

(
ξ−z

a

)
, ξ ∈Ba, ξ̄ ∈B. (3.2)

The following properties are then verified by Pa:

(a) ∇(Pa[v])(ξ̄) = aPa[∇v](ξ̄), (b) ∇(P−1
a [V ])(ξ) = a−1P−1

a [∇V ](ξ), ξ ∈Ba, ξ̄ ∈B. (3.3)

and

(a) ‖v‖L2(Ba) = a3/2
∥∥Pa[v]

∥∥
L2(B)

, (b) ‖∇v‖L2(Ba) = a1/2
∥∥∇(Pa[v])

∥∥
L2(B)

. (3.4)

3.1. Inner expansion

An inner expansion of va(x) for x∈Ba is sought in the form

va(x) ≈ aV 1(x̄) + a2V 2(x̄) + a3V 3(x̄) + a4V 4(x̄) (x̄∈B, x = z+ax̄∈Ba) (3.5)

in terms of functions V 1, . . .V 4 of the rescaled coordinates that have to be determined. More precisely, based
on the above ansatz, the approximation of va(x) for x∈Ba is sought in the form

va(x) = P−1
a [V a](x) + δa(x), with V a := aV 1 + a2V 2 + a3V 3 + a4V 4 (3.6)

where the remainder δa is “small”, in a sense that will be made precise later (see Prop. 3.1). To derive the
corresponding inner expansion of the total displacement field ua = u+va, we note that a Taylor expansion in
a yields

∇u(ξ) = gz + ag(2)
z ·ξ̄ +

a2

2
g(3)

z : ξ̄⊗2 +
a3

6
g(4)

z • ξ̄⊗3 +O(a4), (3.7)

having introduced for convenience the shorthand notations gz := ∇u(z) and g
(k)
z := ∇ku(z).
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3.1.1. Determination of the inner expansion

Aiming at finding governing problems for functions V 1, . . .V 4, we now proceed with expanding integral
equation (2.18) in powers of a, by using the rescaled coordinates (3.1a) and the ansatz (3.6) therein. To that
end, since G∞ and Gc behave differently in the limit a → 0, we introduce the decomposition La = L∞

a + Lc
a

induced on the integral operator La defined by (2.19) by the additive decomposition (2.14) of the Green’s tensor,
with

L∞
a [v](x) :=

∫
Ba

∇G∞(·−x) :ΔC :∇v dV, Lc
a[v](x) :=

∫
Ba

∇1GC(·,x) :ΔC :∇v dV. (3.8)

Equation (2.18) then becomes

(I + L∞
a )[va](x) = −L∞

a [u](x) − Lc
a[u+va](x), ∀x∈Ba ∪Ω\Ba (3.9)

We first note that the homogeneity property (2.16) implies

∇G∞(ξ−x) = a−2∇G∞(ξ̄− x̄).

Using this, together with rescaled coordinates (3.1a) and its consequences (3.1b) and (3.3a), in L∞
a , we find

that

L∞
a [w](x) = P−1

a LBPa[w](x) (3.10)

for any w ∈H1(Ba) and x ∈ Ba∪(R3 \Ba), with the integral operator LB defined by (2.22). Then, evaluating
L∞

a [va] and L∞
a [u] using (3.6), (3.7) and the above rescaling property (3.10), we obtain

PaL∞
a [va](x̄) = LB

[
aV 1 + a2V 2 + a3V 3 + a4V 4

]
(x̄) + PaL∞

a [δa](x̄) (3.11a)

PaL∞
a [u](x̄) = LB

[
aϕ1[gz] + a2ϕ2[g

(2)
z ] +

1
2
a3ϕ3[g

(3)
z ] +

1
6
a4ϕ4[g

(4)
z ]

]
(x̄) + o(a4) (3.11b)

having expressed the Taylor expansion (3.7) in terms of the vector-valued homogeneous polynomials ϕm intro-
duced in (2.23).

To expand Lc
a[va] and Lc

a[u], we note that ∇1Gc, being a smooth function in Ω×Ω, has the Taylor expansion

∇1G(ξ,x) = ∇1Gc(z, z) + a(∇11Gc(z, z)·ξ̄ + ∇12Gc(z, z)·x̄) + o(a),

where rescaled coordinates (3.1a) have been introduced and notations ∇1 etc. are as defined after (2.9). We
then obtain

PaLc
a

[
u+va

]
(x̄) = a3f (3)

z + a4
[
f (4)

z + Lz ·x̄
]
+ o(a4) (3.12)

with the constant vectors f (3)
z ,f (4)

z and the constant tensor Lz given by

f (3)
z =

∫
B

∇1Gc(z, z) :ΔC :
(
gz + ∇V 1(ξ̄)

)
dV̄ξ̄

f (4)
z =

∫
B

∇1Gc(z, z) :ΔC :
(
g(2)

z ·ξ̄ + ∇V 2(ξ̄)
)

dV̄ξ̄ +
∫
B

(∇11Gc(z, z)·ξ̄
)
:ΔC :

(
gz + ∇V 1(ξ̄)

)
dV̄ξ̄

Lz ·x̄ =
∫
B

(∇12Gc(z, z)·x̄
)
:ΔC :

(
gz + ∇V 1(ξ̄)

)
dV̄ξ̄
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The desired equations for V 1, . . .V 4 then result from setting to zero the O(a) to O(a4) terms arising in (3.9),
with the help of (3.11a,b) and (3.12). First, the O(a) and O(a2) equations are

(I + LB)[V 1](x̄) = −LB
[
ϕ1[gz ]

]
(x̄), x̄∈B, (3.13a)

(I + LB)[V 2](x̄) = −LB
[
ϕ2[g

(2)
z ]

]
(x̄), x̄∈B. (3.13b)

They are seen to correspond to the FSTPs (2.24) with polynomial background displacements ϕ1[gz] and ϕ2[g
(2)
z ],

respectively, so that V 1 and V 2 are well defined; they are given by

V 1 = V
(1)
B [gz], V 2 = V

(2)
B [g(2)

z ]. (3.14)

Then, the O(a3) and O(a4) equations are found to be

(I + LB)[V 3](x̄) = −1
2
LB

[
ϕ3[g

(3)
z ]

]
(x̄) − f (3)

z , x̄∈B, (3.15a)

(I + LB)[V 4](x̄) = −1
6
LB

[
ϕ4[g

(4)
z ]

]
(x̄) − f (4)

z − Lz ·x̄, x̄∈B, (3.15b)

where f (3)
z , f (4)

z , Lz , given by (3.12), depend on V 1 and V 2 and can be given a more compact form by
using (3.14) and the elastic moment tensors defined by (2.27), to obtain

f (3)
z = ∇1Gc(z, z) :A11 :gz ,

f (4)
z = (∇1Gc(z, z) :A12) • g(2)

z + ∇11Gc(z, z) • (A21 :gz),

Lz ·x̄ =
(∇12Gc(z, z)·x̄

)
:A11 :gz

Equations (3.15a,b) also correspond to FSTPs with polynomial background displacements, and we find

V 3 =
1
2
V

(3)
B [g(3)

z ] − f (3)
z , (3.16)

V 4 =
1
6
V

(4)
B [g(4)

z ] − U
(1)
B [Lz](x̄) − f (4)

z . (3.17)

Finally, using (3.14) and (3.16) in (3.6), the proposed inner approximation V a of va is completely specified.

3.1.2. Justification of the inner expansion

To justify the order of approximation between the exact displacement perturbation va and its above-defined
inner expansion V a, we need to determine the asymptotic behavior of the inner approximation error δa := va −
P−1

a [V a] as a→ 0. To this aim, the inner approximation order and error are now evaluated in terms of H1(Ba)
norms, as this will provide the relevant estimates for subsequent estimation of the cost functional expansion error
(Sect. 4). We note that the highest-order term v4 := P−1

a [a4V 4] in the inner approximation of va is, by virtue
of (3.4a,b), such that ‖v4‖L2(Ba) = a11/2‖V 4‖L2(B) =O(a11/2) and ‖∇v4‖L2(Ba) = a9/2‖∇V 4‖L2(B) =O(a9/2),
so that ‖v4‖H1(Ba) = O(a9/2). The justification of the inner approximation (3.6), (3.14), (3.16) then rests on
showing that ‖δa‖H1(Ba) = o(a9/2), which the following estimate achieves:

Proposition 3.1 (Error estimate for the inner approximation of displacement). Assume that the background
and inhomogeneity elasticity tensors C and C� are both positive definite and bounded. There exists a1> 0 and a
constant C > 0 independent of a such that

‖δa‖H1(Ba) ≤ Ca11/2 for all a < a1. (3.18)
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Proof. Setting va = P−1
a V a +δa in integral equation (2.18) according to definition (3.6) of the inner approxi-

mation, the expansion error δa is found to satisfy an integral equation of the form (I+La)[δa](x) = γa(x). The
proof of estimate (3.18), whose details (together with the precise expression of γa) are deferred to Section 7,
then consists in (i) proving that the inverse operator (I +La)−1 : H1(Ba) → H1(Ba) exists and is bounded
independently of a for any small enough a and (ii) estimating ‖γa‖H1((Ba). The assumptions made on C and
C� guarantee the bounded invertibility of LB (see Prop. 2.2), which is used in the proof given in Section 7. �

3.2. Outer expansion

We now turn to the expansion of va(x) for x∈Ω, x �= z (outer expansion), assuming a small enough to have
x /∈ Ba. In this case, va(x) is given by (2.18) used as integral representation:

va(x) = −La[ua](x) x∈Ω \Ba. (3.19)

Since x �∈ Ba, ξ �→ G(ξ,x) is smooth for ξ ∈ Ba, and one therefore has ∇1G(ξ,x) = ∇1G(z,x) + O(a);
moreover, the inner expansion (3.5) truncated to leading order gives ∇ua(ξ) = gz + P−1

a [∇V 1](ξ) + O(a).
Using this, together with the rescaling (3.1), in (3.19) yields the leading-order outer expansion

va(x) = a3vout(x; z) + O(a4), with vout(x; z) := −∇1G(z,x) :A11 :gz (x∈Ω, x �= z), (3.20)

which holds pointwise and is known from many previous studies, e.g. [5]. Expansion (3.20) also holds pointwise
on ∂Ω if ∂Ω is C1,1 (which ensures continuity up to ∂Ω of x �→ G(z,x) = GT(x, z) by e.g. [29], Thm. 4.18).
Such additional smoothness requirement on ∂Ω is avoided by the following version of the outer expansion:

Lemma 3.2. Let D � Ω be an open subset of Ω such that z ∈ D, and assume a is small enough to have
dist(Ba, ∂D)> 0. Then: ‖va − a3vout‖H1(Ω\D) = O(a4).

Proof. Let D′ � D be an open subset of D such that Ba � D′, and define w := (va−a3vout)θ in Ω (with θ a
smooth cut-off function, independent of a, equal to 1 in Ω \D and vanishing in D′). Let b := −div

(C :ε[w]
)
.

Then, since div
(C :ε[va]

)
= div

(C :ε[vout]
)

= 0 in Ω−D, we have supp(b) ⊂ D\D′. Expansion (3.20) hold
pointwise in D\D′, and so does the corresponding expansion of ∇va by virtue of ξ �→ ∇2G(ξ,x) being smooth
for ξ ∈Ba, implying that ‖b‖L2(Ω) = ‖b‖L2(D\D′) = O(a4). The Lemma therefore follows from the Lax-Milgram
theorem applied to the problem −div

(C :ε[w]
)
= b with boundary conditions w = 0 on ΓD, t[w] = 0 on ΓN. �

4. Misfit function expansion

Exploiting and collecting the results established thus far, we are now in a position to formulate and justify the
O(a6) expansion of J(Ca) for a single inhomogeneity (see Sect. 5.3 for the case of multiple inhomogeneities with
fixed locations). The most general form of the proposed expansion, valid for a small inhomogeneity of arbitrary
shape, is first given in Theorem 4.1, which is the main result of this work. Then, this result is specialized to the
sub-class of centrally-symmetric inclusions (Sect. 4.2), which includes the important special cases of ellipsoidal
and spherical inhomogeneities for which explicit forms of the expansion coefficients can be given (Sect. 4.3).

4.1. Inhomogeneity of arbitrary shape

Theorem 4.1. For a single inhomogeneity, characterized by its geometrical support Ba := z +aB and elastic-
ity tensor C� and embedded in the three-dimensional reference medium Ω with elasticity tensor C, the O(a6)
expansion of any objective function J(Ca) of format (2.8) with densities ΨΩ(x,w), ΨΓ (x,w) that are twice
differentiable in their second argument with second-order derivatives having C0,γ regularity for some γ > 0 is

J(Ca) = J(C) + a3T3(z) + a4T4(z) + a5T5(z) + a6T6(z) + o(a6)
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with the topological derivatives T3, . . . T6 given by

T3(z) = −gz :A11 : ĝz (4.1a)

T4(z) = −gz :A12 • ĝ(2)
z − ĝz :A12 • g(2)

z (4.1b)

T5(z) = −1
2
gz :A13 • ĝ(3)

z − g(2)
z •A22 • ĝ(2)

z − 1
2
ĝz :A13 • g(3)

z (4.1c)

T6(z) = −1
6
gz :A14 • ĝ(4)

z − 1
2
g(2)

z •A23 • ĝ(3)
z − 1

2
ĝ(2)

z •A23 • g(3)
z − 1

6
ĝz :A14 • g(4)

z

+ gz :A11 :∇12Gc(z, z) :A11 : ĝz +
1
2
J ′′(u; vout) (4.1d)

In the above formulas, the elastic moment tensors Apq (p = 1, 2, q = 1, 2, 3, 4) are defined by (2.27) in terms
of solutions U

(p)
B to free-space transmission problems with polynomial background displacement of degree p

(see Sect. 2.5.2), the function vout is given by (3.20), and Gc is the complementary Green’s tensor introduced
in (2.14).

Proof. The proof proceeds by separately expanding in powers of a each term of expansion (2.9) of J(Ca). For
the first term, using (2.11), we have

J ′(u; va) =
〈
û,ua

〉ΔC
Ba

=
〈
û , u+P−1

a [V a]
〉ΔC

Ba
+

〈
û, δa

〉ΔC
Ba

(4.2a)

with Pa as defined by (3.2). The first term in the right-hand side of (4.2a) is first expanded to order O(a6)
by (i) expressing the integral using the rescaling (3.1) for the coordinate ξ and the differential element dVξ

(see (3.1)), (ii) using definition (3.6) of V a, expansion (3.7) for Pa[∇u] and the corresponding expansion for
Pa[∇û], (iii) using expressions (3.14) and (3.16) for V 1, . . . ,V 4, to obtain〈

û , u+P−1
a [V a]

〉ΔC
Ba

= a3

∫
B

[
∇U

(1)
B [g(1)

z ] + a∇U
(2)
B [g(2)

z ] +
a2

2
∇U

(3)
B [g(3)

z ] + a3
( 1

6
∇U

(4)
B [g(4)

z ] − ∇U
(1)
B [Lz]

)]
:ΔC :

[
ĝz + aĝ(2)

z ·ξ̄ +
a2

2
ĝ(3)

z : ξ̄⊗2 +
a3

6
ĝ(4)

z • ξ̄⊗3
]

dV̄ξ̄ + o(a6)

(where we used the fact that in (3.16) the last terms of V 3 and V 4 are constant in ξ̄). Expanding the inner
product of sums into a sum of inner products, retaining only contributions of order at most O(a6) and noting
that each resulting summand has the form (2.27), we obtain〈

û,ua

〉ΔC
Ba

= a3
(
gz :A11 : ĝz

)
+ a4 − gz :A12 • ĝ(2)

z + ĝz :A12 • g(2)
z

)
+ a5

( 1
2
gz :A13 • ĝ(3)

z + g(2)
z •A22 • ĝ(2)

z +
1
2
ĝz :A13 • g(3)

z

)
+ a6

( 1
6
ĝz :A14 • g(4)

z +
1
2
ĝ(2)

z •A23 • g(3)
z +

1
2
g(2)

z •A23 • ĝ(3)
z +

1
6
gz :A14 • ĝ(4)

z

− gz :A11 :∇12Gc(z, z) :A11 : ĝz

)
+ o(a6), (4.2b)

where the reciprocity relations (2.28) for the elastic moment tensors Apq have also be used wherever appro-
priate. Moreover, the second term in the right-hand side of (4.2a) admits the following estimate by virtue of
Proposition 3.1 and the Cauchy−Schwarz inequality:∣∣〈û, δa〉ΔC

Ba

∣∣ ≤ ‖ΔC :∇û‖L2(Ba)‖∇δa‖L2(Ba) ≤ Ca3/2a11/2 ≤ Ca7. (4.2c)
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Then, the second term of (2.9) admits, as a consequence of the outer expansion (3.20), the expansion

J ′′(u; va) = a6J ′′(u; vout) + o(a6) (4.2d)

Finally, the remainder R(u; va) in (2.9) can be put in the form (considering only the surface integral com-
ponent of J for brevity)

R(u; va) =
∫

Γm

{∫ 1

0

(1 − t)
[∇22ΨΓ (x; u(x)+ tva(x)) − ∇22ΨΓ (x; u(x))

]
dt

}
:
(
va⊗va

)
(x; z) dSx

The C0,γ assumption on ∇22ΨΓ then yields

|R(u; va)| ≤ C‖va‖2+γ
L2+γ(∂Ω)

≤ C‖va‖2+γ
H1(Ω)

≤ Ca6+3γ = o(a6) (4.2e)

for a small enough, where we have used the fact that the trace mapping defines a continuous H1(Ω) → Lp(∂Ω)
operator for 1 ≤ p ≤ 4 (e.g. [15], Thm. 6.6−5), and then invoked Lemma 3.2. The theorem finally follows by
using (4.2a–e) in (2.9) and grouping all contributions of like orders. Similar arguments, using the pointwise
expansion (3.20), apply for components of J defined as integrals over subsets of Ω, if any. �
Remark 4.2. Theorem 4.1 uses Ep •Apq •Eq with Ep = gp

z, Eq = ĝq
z, for which div (C :ε[ϕp(Ep)]) = 0, div (C :

ε[ϕq(Eq)]) = 0. It can thus also be formulated (for isotropic materials) using the EMTs of [4] (see Rem. 2.4).

4.2. Centrally symmetric inhomogeneity

Centrally symmetric inhomogeneity shapes constitute an important category, encompassing many simple
shapes such as balls, ellipsoids or cuboids while producing significantly simpler asymptotic expansions as a
consequence of the following Lemma:
Lemma 4.3. Let B be centrally symmetric, i.e. x∈B =⇒ −x∈B. Let the symmetry operator S be defined by
Sw(x) = −w(−x) for any vector function w : B → R3. If equation (I + LB)[uB] = u holds (i.e. uB solves the
FSTP (2.20) with data u), then (I + LB)[SuB] = Su also holds.

Proof. Let x̄ ∈ B. We write the integral equation (I + LB)[uB] = u at the collocation point −x (since by
symmetry assumption −x ∈ B) and set ξ = −y for the integration variable of the integral operator LB, to
obtain

SuB(x) −
∫
B

∇G∞(−y + x) :ΔC :∇uB(−y) dVy = Su(x).

Then, upon noting that (i) ∇G∞(−y + x) = −∇G∞(y −x) by (2.16) and (ii) the definition of S implies that
∇(SuB)(y) = ∇(uB)(−y), the above equality yields the desired equation (I + LB)[SuB] = Su satisfied by
SuB. �

If B is centrally symmetric, for any integer m, we have Sϕm[Em] = (−1)mϕm[Em] (because ϕm[Em] is
a homogeneous polynomial of degree m) and SU

(m)
B [Em] = (−1)mU

(m)
B [Em] (by Lemma 4.3). On the other

hand,
〈
Su , Sv

〉ΔC
B =

〈
u , v

〉ΔC
B holds for any u,v ∈ H1(B). Consequently, recalling definition (2.27), the

EMTs verify Apq = (−1)p+qApq, implying

Apq = 0 whenever p+q is odd, (4.3)

and expressions (4.1a) reduce to

T3(z) = −gz :A11 : ĝz (4.4a)

T4(z) = 0 (4.4b)

T5(z) = −1
2
gz :A13 • ĝ(3)

z − g(2)
z •A22 • ĝ(2)

z − 1
2
ĝz :A13 •g(3)

z (4.4c)

T6(z) = gz :A11 :∇12Gc(z, z) :A11 : ĝz +
1
2
J ′′(u; vout) (4.4d)
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Remark 4.4. Property (4.3) implies that f (4)
z = 0 in expression (3.16) of V 4 if B is centrally-symmetric.

4.3. Ellipsoidal or spherical inhomogeneity

Ellipsoids are centrally-symmetrical shapes for which the ε
[
up(Ep)

]
are polynomials, see (2.25) for the cases

p = 1, 2 of relevance here. As a result, the following closed-form expressions for the elastic moment tensors Apq

can be derived from their definition (2.27):

A11 = |B|C : (C +ΔC :S1)−1 :ΔC, A13 = |B|−1A11⊗M , A22 = C̃M • (C̃ + Δ̃C •S2)−1 • Δ̃C (4.5)

where M , the geometrical inertia tensor of B, is given by

M =
∫
B

ξ̄⊗ ξ̄ dV̄ ,

Δ̃C and Δ̃C are defined as in (B.2) and C̃M is defined by (C̃M )ijk�mn = Cij�mMkn. Formulas (4.5) are then used
in expressions (4.4a,d) for the topological derivatives.

If B is in fact the unit sphere, M = (4π/15)I, so that T5(z) is given by

T5(z) = − 1
10
Δ∇u(z) :A11 : ĝz − g(2)

z •A22 • ĝ(2)
z − 1

10
Δ∇û(z) :A11 :gz .

If, in addition, the background medium is isotropic, the closed-form expressions (2.26a,b) may be used in (4.5)
for the Eshelby tensors S1, S2.

5. Discussion

5.1. Computational considerations

The practical evaluation of the topological derivatives T3 to T6 relies on the following ingredients:

(a) Background and adjoint solutions: each needs to be computed just once, irrespective of the number of
inhomogeneity sites z considered. As T5 involves derivatives of u and û of order up to three (and T6

derivatives of order up to four if B is not centrally symmetric), suitable solution or post-processing methods
are needed. One possibility is to use integral representation formulas for u(z), û(z), since they can be
differentiated at any order.

(b) Polarization tensors: each needs to be computed just once for given inhomogeneity shape and material prop-
erties. Their computation requires knowing the FSTP solutions U

(1)
B ,U

(2)
B . The latter are known explicitly

for ellipsoidal inhomogeneities, except for the need to (i) evaluate Eshelby tensors given by integrals for
anisotropic background properties, and (ii) solve numerically a small matrix system for computing U

(2)
B

via (2.25). For non-ellipsoidal inhomogeneities, one needs to solve numerically the FSTPs (2.24) for p= 1, 2.
(c) Derivatives of either the Green’s tensor G(·, z) or its complementary part Gc(·, z) are needed for the

evaluation of T6.

The three fields u, û,G(·, z) involved in T3 to T6 are defined on the same (background) configuration.

5.1.1. Evaluations of contributions related to the Green’s tensor

Item (c) above deserves elaboration. If an infinite medium is considered (Ω = R3), then of course G = G∞
and Gc = 0. In a few other cases, in particular that of a semi-infinite elastic medium with a traction-free plane
surface, the Green’s tensor G is known in closed form. In most situations, however, contributions of G(·, z)
or Gc(·, z) to the topological derivative T6 will have to be computed numerically. We now briefly discuss the
implications of this requirement.

First, the derivatives ∇1G(z, ·) are involved, through (3.20), in J ′′(u; vout); this looks inconvenient as all
Green’s tensors with source points on Γm and Ωm are a priori needed. However, we note that the well-known
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symmetry property G(z,x) = GT(x, z) implies the property ∇1G(z,x) = ∇2G
T(x, z). This allows to evaluate

J ′′(u; vout) for given z by means of the Green’s tensor having z as source point. Using the additive decompo-
sition (2.14) in (2.13), the complementary Green’s tensor Gc(·, z) = ek ⊗Gk

c is found by solving problems

div (C :∇1G
k
c (·, z)) = 0 in Ω, Gk

c (·, z) = −Gk
∞(·−z) on ΓD, t[Gk

c (·, z)] = −t[Gk
∞(·−z)] on ΓN.

In fact, the derivatives Hk�(·, z) := ∂z�
Gc(·, z) can be found as solutions to problems obtained by differentiating

the above problem w.r.t. the coordinates of z (a legitimate operation since z acts therein as a parameter):

div (C :∇1H
k�(·, z)) = 0 in Ω,

{
Hk�(·, z) = ∂�G

k
∞(·−z) on ΓD,

t[Hk�(·, z)] = t[∂�G
k
∞(·−z)] on ΓN.

(5.1)

Problems (5.1) are ordinary elastostatic problems with smooth boundary data (since z ∈ Ω). Then, T6(z)
also involves the second-order derivative ∇12Gc(z, z), which can be evaluated using first-order derivatives of
ξ �→ Hk�(ξ, z) at ξ = z.

If the expansion of J(Ca) is to be evaluated for many inhomogeneity sites z, the induced need to solve many
problems of the form (5.1) becomes impractical. One possible remedy then consists in using a (truncated)
separable representation of G∞(ξ−z), of the form

G∞(ξ−z) =
p∑

q=1

αq(ξ)⊗βq(z) + εp

(such representations are provided by e.g. multipole expansions [20] or the sparse cardinal sine decomposition
of [2], with bounds on the truncation error εp available). Then, the computational effort associated with solving
problems of type (5.1) becomes O(p) irrespective of the number of inhomogeneity sites z.

5.2. Examples of cost functionals

In addition to the least-squares data misfit functional (2.12), important examples also include the potential
energy and reciprocity- or energy-based functionals.

5.2.1. Potential energy

The potential energy Epot(Ca) of the solid containing a small inhomogeneity is

Epot(Ca) =
1
2

∫
ΓD

t[ua]·uD dS − 1
2

∫
ΓN

tD ·ua dS.

By combining weak-form identities satisfied by ua and u (or, equivalently, by observing that the adjoint solution

for J = Epot is û =
1
2
u), the potential energy perturbation is found to be given by

Epot(Ca) − Epot(C) =
1
2
〈
u,ua

〉ΔC
Ba

The O(a6) expansion of Epot(Ca) − Epot(C) is then easily found from using (4.2b) with û = u.

5.2.2. Reciprocity gap

Some flaw identification methods, based on the concept of reciprocity gap functional (RGF) [7], rely on the
availability of the complete Cauchy data on the boundary. For instance, considering the identification of an
inhomogeneity defined by z, Ba and C� from complete knowledge of both ua and t[ua] on ∂Ω, the relevant
RGF is a linear functional R : X → R defined by

R[w] =
∫

∂Ω

(
t[ua]·w − ua ·t[w]

)
dS
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with X :=
{

w ∈H1(Ω), div (C :ε[w]) = 0
}
. Besides, combining the weak formulations obeyed by ua (with w

as test function) and w (with ua as test function), one easily finds

R[w] =
〈
w,ua

〉ΔC
Ba
,

whereupon (4.2b) can again be used to obtain the O(a6) expansion.

5.2.3. Energy error

Energy-based functionals [25] can also be used for e.g. material or flaw identification from overdetermined
boundary data. Let ΓN = So ∪ Sno, assuming that a measurement uobs of the displacement induced in the
solid by the excitation (uD, tD) is available on So. For a solid containing a trial flaw Ba, one can then define
“Neumann” and “Dirichlet” displacement fields uN

a and uD
a that differ only by their boundary data on So, by

Find uN
a ∈ V0,

〈
uN

a ,w
〉Ca

Ω
= F (w) ∀w ∈ V0

Find uD
a ∈ V0 s.t. ua = uobs on So,

〈
uD

a ,w
〉Ca

Ω
= F (w) ∀w ∈ V0 s.t. w = 0 on So

A discrepancy between uN
a and uD

a then reveals that the flaw is not correctly identified, and can be defined in
terms of the energy error functional

E(Ca) =
〈
uN

a −uD
a , uN

a −uD
a

〉Ca

Ω

It was shown in [13] that

E(Ca) − E(C) =
1
2
〈
uD, uD

a

〉ΔC
Ba

− 1
2
〈
uN, uN

a

〉ΔC
Ba

with the background fields uN,uD defined as above with Ca = C. Then, the O(a6) approximation of E(Ca)−E(C)
is easily found by using (4.2b) with (û,ua) = (uD,uD

a ) and (û,ua) = (uN,uN
a ).

5.3. Multiple inhomogeneities

All developments presented so far are valid only for the case of a single a-dependent inhomogeneity Ba. We
now present, in an abbreviated way, how Theorem 4.1 can be modified to accommodate multiple vanishing
inhomogeneities with fixed locations, focusing on the case of two such inhomogeneities (the generalization to
three or more being then straightforward). Accordingly, let B′

a := z′ + aB′ define the support of a second
inhomogeneity, whose material is characterized by the elasticity tensor C�′; Ba and B′

a are then scaled by the
same length parameter a.

For collocation points x ∈ Ba, the VIE (2.18) becones(
I + La

)
[va](x) + L′

a[v′
a](x) = −La[u](x) − L′

a[u](x), x∈Ba, (5.2)

where v′
a is the restriction of ua−u to B′

a and

L′
a[v] :=

∫
B′

a

∇G1(ξ,x) :ΔC′ :∇v(ξ) dVξ,

The VIE formulation for the double-inhomogeneity case then consists of equation (5.2) together with its coun-
terpart obtained by reversing the roles of Ba and B′

a.
Using an ansatz of the form (3.6) for each inhomogeneity, the coupling term L′

a[v′
a](x) has a O(a3) leading

contribution, resulting from an outer expansion essentially identical to that of Section 3.2. The lowest-order
coefficients V 1,V 2 are therefore still defined by equations (3.13a,b) (with similar equations holding for V ′

1,V
′
2

on B′), and are not influenced by the second inhomogeneity. The expansion of L′
a[u+v′

a](x) is in fact formally
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identical to that of Lc
a[u+va](x), replacing Gc(ξ,x) with G(ξ,x) and with all other quantities therein now

referring to B′
a, so that we have

PaL′
a

[
u+va

]
(x̄) = a3f

(3)
z,z′ + a4

[
f

(4)
z,z′ + Lz,z′ ·x̄

]
+ o(a4)

where f
(3)
z,z′ and f

(4)
z,z′ are constant vectors, with expressions similar to those of f (3)

z ,f (4)
z , that we leave unspecified

for brevity, and with
Lz,z′ ·x̄ =

(∇11Gc(z′, z)·x̄
)
:A′

11 :gz′ .

The effect of the coupling on V a thus manifests itself through replacing f (3)
z , f (4)

z , Lz with f (3)
z +f

(3)
z,z′ , f (4)

z +

f
(4)
z,z′ , Lz +Lz,z′ in (3.16) (and the symmetric replacements to obtain governing equations for V ′

3,V
′
4). The

expansion of cost functionals is insensitive to the new constants f
(3)
z,z′ and f

(4)
z,z′ appearing in V a (since inner

expansion contributions to J(Ca) depend only on ∇V a and ∇V ′
a). By suitable modifications to the derivation

of (4.2b), the topological derivatives Tp(z, z′) for the dual-inhomogeneity configuration are obtained in terms
of the topological derivatives Tp(z) and T ′

p (z′) for a single inhomogeneity located at z or z′, as given by
Theorem 4.1, as

T3(z, z′) = T3(z) + T ′
3 (z′), T4(z, z′) = T4(z) + T ′

4 (z′), T5(z, z′) = T5(z) + T ′
5 (z′)

T6(z, z′) = T6(z) + T ′
6 (z′) + 2gz :A11 :∇11G(z′, z) :A′

11 :gz′ + J ′′(u; vout,v
′
out)

In particular, we see that the coupling between inhomogeneities affects only the O(a6) term (and those be-
yond that one) in the expansion of J(Ca), despite being present in contributions of orders O(a3) and O(a5),
respectively, in the inner and outer expansions of the displacement field.

6. Proof of Proposition 2.2

To establish the bounded invertibility of the integro-differential operators I+LB, and later that of the integro-
differential operator I +La (see Sect. 7), it is useful to reformulate the VIE (2.21) as an integral equation with
σ� := ΔC : ∇uB as unknown (σ� being the equivalent stress associated with the FSTP), as done recently for
similar purposes in [22]. Towards this goal, we apply the operator ΔC : ε = ΔC : ∇ to the integro-differemtial
equation (2.21a). The FSTP then becomes reformulated as

(a) A[σ�](x) = ΔCB :ε[u](x), (b) uB(x) = u(x) − M[σ�](x), x∈R
3 (6.1)

where the volume potential M acting on tensor-valued densities σ� ∈ L2
comp(R3; R3×3

sym) is defined by

M[σ�](x) = div
∫

R3
G∞(ξ−x)·σ�(ξ) dV̄ξ̄ = −

∫
R3

∇G∞(ξ−x) :σ�(ξ) dV̄ξ̄.

and the singular integral operator A is defined in terms of M by

A = I −ΔCB :ε[M] (6.2)

The potential M can be shown to verify div
(C : ε[M(σ�)]

)
= −div σ�, so that the density σ� has

the physical meaning of a pre-stress. Since ∇G∞ ∈ L1
loc(R

3; R3×3×3), the potential M is well-defined as a
L2

comp(R3; R3×3
sym) → L2

loc(R
3) operator by virtue of Young’s convolution theorem ([14], Thm. 4.15).

The operator σ� �→ ε
[M(σ�)

]
can be given a representation in terms of a singular integral operator involving

the kernel H∞, defined in component notation by

(H∞)ijk� =
1
4
(Gik,j� +Gi�,jk +Gjk,i� +Gj�,ik), (6.3)
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and whose singularity at the origin is not integrable (see e.g. [22], Sect. 4). Definition (6.3) of H∞ as the
symmetrized version of ∇∇G∞ is consistent with the symmetry of σ� (by assumption) and of ε

[M(σ�)
]
. The

precise singular integral operator form of σ� �→ ε
[M(σ�)

]
will not be needed here.

From the formulation (6.1,b) of the FSTP and since u �→ ΔCB :ε[u] is a continuous H1(B) → L2(B) mapping,
Proposition 2.2 requires proving that (i) M : L2(B) → H1(B) is bounded and (ii) A : L2(B) → L2(B) is
invertible with bounded inverse. Step (i) is a known result on elastic volume potentials that can be obtained
from the theory of pseudodifferential operators (see e.g. [24], Thm. 6.1.12); we nevertheless give a proof as some
of its ingredients will then be used for step (ii).

Step (i): boundedness of M : L2(B) → H1(B).

We already know that M : L2
comp(R3; R3×3

sym) → L2
loc(R

3) is bounded, so only need to show the boundedness
of ε[M] : L2

comp(R
3; R3×3

sym) → L2
loc(R

3).
The kernel ∇G∞ defines a tempered distribution (since ∇G∞ is locally summable and belongs to the

class of slowly growing functions), making the convolution M[σ�] =
(
ε[G∞]

)
� σ� well defined for any σ� ∈

L2
comp(R3; R3×3

sym). Therefore, ε[M](σ�) = H∞ �σ� also holds in the sense of distributions. Moreover, under the
present conditions, the distributional version of the Fourier convolution theorem applies:

F
[
ε[M](σ�)

]
(ρ) = F

[
H∞ � σ�

]
(ρ) = F [H∞](ρ) :F [σ�](ρ)

with the Fourier transform F defined such that F [f ](ρ) =
∫

R3 e
−2πix·ρf(x) dVx whenever f ∈L1(R3). Moreover,

Ĥ(ρ) := F [H∞](ρ) is given for ρ �= 0 by the well-known expression

Ĥijk�(ρ) = −1
4
[
Qj�(ρ)ρiρk +Qi�(ρ)ρjρk +Qjk(ρ)ρiρ� +Qik(ρ)ρjρ�,

]
(6.4)

where Q(ρ) = N (ρ)−1 and N(ρ) is the (symmetric, positive definite) acoustic tensor defined by Nik(ρ) =
Cijk�ρjρ� [31]. In particular, Ĥ(ρ) is C∞(R3 \ {0}) and homogeneous with degree 0 in ρ, i.e. Ĥ(ρ) = Ĥ(ρ̂)
(with ρ̂ := ρ/|ρ|). It is therefore bounded in R3, and the boundedness of ε[M] : L2

comp(R
3; R3×3

sym) → L2
loc(R

3)
follows with the help of Plancherel’s theorem:∥∥ε[M](σ�)

∥∥
L2(R3)

=
∥∥F(

ε[M](σ�)
)∥∥

L2(R3)
=

∥∥Ĥ :F [σ�]
∥∥

L2(R3)
≤ C

∥∥F [σ�]
]∥∥

L2(R3)
= C‖σ�‖L2(R3)

Remark 6.1. The definition (6.4) of Ĥ requires C to be nonzero (making N(ρ) well-defined and invertible by
virtue of the positive definiteness of C) and bounded (making Q(ρ) also bounded for given ρ).

Step (ii): Bounded invertibility of A : L2(B) → L2(B).

The (tensor-valued) symbol Ψ (x, ρ̂) of the singular integral operator A defined by (6.2) is given in terms of
F [H∞] by ([30], Sect. 11.1)

Ψ (x, ρ̂) = I −ΔCB(x) :Ĥ(ρ̂),

and can be given a 6×6 matrix representation
[
Ψ (x, ρ̂)

]
6×6

. Moreover, the identity[I +ΔCB(x) :Ĥ�
]
:
[I −ΔCB(x) :Ĥ

]
= I

holds [19], where Ĥ� is defined by (6.4) with C replaced by C� and as a consequence of

Ĥ� :ΔC :Ĥ = ΔC :
(
Ĥ� − Ĥ

)
,

which can be checked by straightforward algebra using (6.4). This identity shows that the symbol tensor Ψ (x, ρ̂)
is invertible with its inverse given by Ψ−1(x, ρ̂) = I +ΔCB(x) :Ĥ�(ρ̂) (a corresponding invertibility result of
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course holding for the symbol matrix
[
Ψ (x, ρ̂)

]
6×6

). We can then rely on the following result from Mikhlin’s
theory for singular integral equations:

Lemma 6.2 ([30], Chap. 14, Theorem 5.2). Let A be a singular matrix operator and
[
Ψ (x, ρ̂)

]
n×n

its n×n
symbol matrix. If the moduli of the minors

D1 = Ψ11(x, ρ̂), D2 =
∣∣∣∣Ψ11(x, ρ̂) Ψ12(x, ρ̂)
Ψ21(x, ρ̂) Ψ22(x, ρ̂)

∣∣∣∣ , . . . , Dn =

∣∣∣∣∣∣∣
Ψ11(x, ρ̂) . . . Ψ1n(x, ρ̂)

...
...

Ψn1(x, ρ̂) . . . Ψnn(x, ρ̂)

∣∣∣∣∣∣∣
are all bounded from below by a positive constant almost everywhere for (x, ρ̂) ∈ R3 × Ŝ, the operator A is
Fredholm with index 0 (as defined in e.g. [29], Chap. 2 or [32]).

Since (i) ρ̂ �→
[
Ψ (x, ρ̂)

]
6×6

is (together with all its minors) continuous on the (compact) unit sphere and
(ii) x �→

[
Ψ (x, ρ̂)

]
6×6

is piecewise-constant, the invertibility of
[
Ψ (x, ρ̂)

]
6×6

for each (x, ρ̂) guarantees that
all minors involved in Lemma 6.2 are nonzero and bounded away from zero (possibly after applying a suitable
column permutation to

[
Ψ (x, ρ̂)

]
6×6

). The condition of Lemma (6.2) being fulfilled, the operator A is bounded
and Fredholm with index 0.

The solution to the FSTP (2.20) is known to be unique, and solves problem (6.1); conversely, the property
div

(C :ε[M(σ�)]
)

= −div σ� and the decay at infinity of M[σ�] imply that any solution of (6.1) solves (2.20).
Problem (6.1) therefore has at most one solution. Concluding, as a Fredholm operator with index 0, A :
L2(B; R3×3

sym) → L2(B; R3×3
sym) is invertible with bounded inverse (by virtue of e.g. [29], Thm. 2.1 and Cor. 2.2).

7. Proof of Proposition 3.1

As a consequence of equation (2.18) satisfied by va, the inner expansion error δa := va−P−1
a [V a] ∈ H1(Ba)

solves the integral equation(
I + La

)
[δa] = γa, with γa = −La[u] −

(
I + La

)P−1
a [V a]. (7.1)

Proposition 3.1 follows directly from the following two Lemmas.

Lemma 7.1. Assume that the background and inhomogeneity elasticity tensors C and C� are both positive
definite and bounded. The integro-differential operator I + La : H1(Ba) → H1(Ba) is invertible. Moreover,
there exists a1> 0 such that (I +La)−1 is bounded uniformly in a for all a≤ a1.

Lemma 7.2. The right-hand side γa of equation (7.1) satisfies ‖γa‖H1(Ba) = O(a11/2).

7.1. Proof of Lemma 7.1

We invoke the decomposition La = L∞
a + Lc

a induced by the decomposition G = G∞ +Gc of the Green’s
tensor, see (3.8). Recalling that L∞

a = P−1
a LBPa, let Ha := I + P−1

a LBPa denote the leading term in the
expansion of I + La in powers of a, such that I + La = Ha + Lc

a.
In a first step, we show bounded invertibility of Ha : H1(Ba) → H1(Ba) for sufficiently small a, uniformly

in a. Invertibility of Ha results from Proposition 2.2 and L∞
a = P−1

a LBPa. To estimate ‖(L∞
a )−1‖, we consider

the equation Ha[ua] = u, for some given background displacement u ∈ H1(Ba). This equation is equivalent
to (I +LB)Pa[ua] = Pa[u], so can be solved using steps (6.1a,b), wherein operators A−1 and M are known
to be bounded (Sect. 6). Step (6.1a) gives ‖∇Paua‖L2(Ba) ≤ ‖∇Pau‖L2(Ba) for some C > 0. Using (3.4), this
implies

‖∇ua‖L2(Ba) ≤ ‖∇u‖L2(Ba) (7.2a)
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Then, Step (6.1b) yields ‖Paua‖L2(B) ≤ ‖Pau‖L2(B) + C‖∇Pau‖L2(B) for some C > 0, which implies (in-
voking (3.4) again) ‖ua‖L2(B) ≤ ‖u‖L2(B) + C‖∇u‖L2(B). Choosing a0 such that Ba � Ω for any a ≤ a0, we
therefore have

‖ua‖L2(Ba) ≤ max(1, a0C)‖u‖H1(Ba) for any a≤ a0 (7.2b)

Summing inequalities (7.2a,b), we find that there exists C0 such that ‖∇ua‖H1(Ba) ≤ C0‖∇u‖H1(Ba), i.e. that
H−1

a = P−1
a (I +LB)−1Pa : H1(Ba) → H1(Ba) is bounded uniformly in a, for a≤ a0.

The second step consists in writing I +La = Ha

[
I + H−1

a Lc
a

]
and showing that I + H−1

a Lc
a is invertible

using Neumann series for a small enough. Since Lc
a is an integral operator with C∞(Ω×Ω) kernel ∇Gc, its

norm can be readily estimated using the Cauchy−Schwarz inequality:

‖Lc
a[v]‖2

H1(Ba) ≤
(
‖∇2Gc‖2

L2(Ba×Ba) + ‖∇12Gc‖2
L2(Ba×Ba)

)
‖ΔC :ε[v]‖2

L2(Ba)

≤ a6C2
C‖∇v‖2

L2(Ba) ≤ a6C2
C‖v‖2

H1(Ba),

so that ‖Lc
a‖ ≤ a3CC. Consequently, for any c < 1 there exists an inclusion size a1 such that ‖H−1

a Lc
a‖ ≤ c < 1

for any a≤ a1, namely:
a1 = min

(
a0, c

1/3(C0CC)−1/3
)

As a result, for any a< a0, I + H−1
a Lc

a is invertible by Neumann series, with bounded inverse:

‖(I + H−1
a Lc

a)−1‖ ≤ 1
1 − ‖H−1

a Lc
a‖

≤ 1
1−c

Concluding, I+La : H1(Ba) → H1(Ba) is invertible, with its inverse given by (I+La)−1 =
[
I +HaLc

a

]−1H−1
a

and bounded uniformly in a, for all a < a1.

7.2. Proof of Lemma 7.2

The right-hand side γa defined by (7.1) is evaluated by recalling that V 1, . . .V 4 are given in (3.14), (3.16)
(or, equivalently, satisfy Eqs. (3.13a,b), (3.15a,b)), applying wherever necessary the inverse mapping P−1

a , and
rearranging contributions, to obtain

γa(x) = −M[
ΔC :F 0

]
(x) −

4∑
m=1

〈
F m , Hm(x, ·)

〉ΔC
Ba

(7.3a)

∇γa(x) = −∇M[
ΔC :F 0

]
(x) −

4∑
m=1

∇〈
F m , Hm(x, ·)

〉ΔC
Ba

(7.3b)

with
F 0(ξ) = ∇u(ξ) −

(
gz + g(2)

z ·(ξ−z) +
1
2
g(3)

z : (ξ−z)⊗2 +
1
6
g(4)

z • (ξ−z)⊗3
)
,

F 1(ξ) = ∇u(ξ) −
(

gz + g(2)
z ·(ξ−z)

)
,

F 2(ξ) =
a2

2
P−1

a ∇V
(3)
B [g(3)

z ](ξ) + a3
( 1

6
P−1

a ∇V
(4)
B [g(4)

z ](ξ) − P−1
a ∇U

(1)
B [Lz](ξ)

)
,

F 3(ξ) = gz + P−1
a ∇V

(1)
B [gz](ξ),

F 4(ξ) = g(2)
z ·(ξ−z) + aP−1

a ∇V
(2)
B [g(2)

z ](ξ),
and with the smooth kernels Hm defined by

H1(ξ,x) = H2(ξ,x) = ∇1Gc(ξ,x)
H3(ξ,x) = ∇1Gc(ξ,x) − ∇1Gc(z, z) − a

(∇11Gc(z, z)·ξ̄ + ∇12GC(z, z)·x̄
)

H4(ξ,x) = ∇1Gc(ξ,x) − ∇1Gc(z, z).
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We begin by noting that the estimates

‖F 0‖L2(Ba) = O(a11/2), ‖F 1‖L2(Ba) = O(a7/2), ‖F 2‖L2(Ba) = O(a7/2),

‖F 3‖L2(Ba) = O(a3/2), ‖F 4‖L2(Ba) = O(a5/2)

hold (the first two by virtue of F 0 and F 1 being remainders of Taylor expansions of the background solution
u, which by assumption has continuous derivatives of sufficient order in Ba, see Rem. 2.1).

The known boundedness of M (see Sect. 6) then implies, for some constant C > 0, that∥∥M[
ΔC :F 0

]∥∥
H1(Ba)

≤ C‖F 0‖L2(Ba) = O(a11/2)

Moreover, the kernels Hm(x, ξ) being smooth functions for (x, ξ) ∈ Ba × Ba, the corresponding integrals
in (7.3a,b), interpreted as evaluations of integral operators for L2(Ba) densities F m, are estimated as∥∥〈

F m , Hm(x, ·)
〉ΔC

Ba

∥∥
L2(Ba)

≤ Cm‖F m‖L2(Ba)‖Hm‖L2(Ba×Ba)∥∥〈
F m , ∇1Hm(x, ·)

〉ΔC
Ba

∥∥
L2(Ba)

≤ Cm‖F m‖L2(Ba)‖∇1Hm‖L2(Ba×Ba)

for some constant Cm > 0, while the kernels themselves verify

‖H1,2‖L2(Ba×Ba) = O(a3), ‖H3‖L2(Ba×Ba) = O(a5), ‖H4‖L2(Ba×Ba) = O(a4),

‖∇1H1,2,4‖L2(Ba×Ba) = O(a3), ‖∇1H3‖L2(Ba×Ba) = O(a4),

the estimates for H3,H4 and ∇1H3 stemming from their satisfying |H3(x, ξ)| ≤ Ca2, |H4(x, ξ)| ≤ Ca and
|∇1H3(x, ξ)| ≤ Ca, respectively, for (x, ξ)∈Ba ×Ba as remainders of Taylor expansions of the C∞(Ba×Ba)
function Gc.

Using all the previous estimates in (7.3a,b), we finally obtain

‖γa‖H1(Ba) ≤ Ca11/2

for some constant C > 0, which completes the proof of the lemma.

Appendix A. Proof of Lemma 2.3

Using (2.20), vB := uB −u satisfies div
(CB : ε[vB]

)
+ div

(
ΔCB :ε[u]

)
= 0. Taking the dot product of this

equality with v′
B := u′

B−u′, integrating over R3 (which is permitted since vB,v′
B decay as O(|ξ|−2) for |ξ| → ∞

while ΔCB has compact support) and using the first Green identity yields〈
v′
B, vB

〉CB
R3 +

〈
v′
B, u

〉ΔC
B =

〈
v′
B, vB

〉CB
R3 +

〈
u′
B, u

〉ΔC
B −

〈
u′, u

〉ΔC
B = 0.

The above identity with the roles of (u,uB,vB) and (u′,u′
B,v

′
B) reversed also holds by the same arguments.

The reciprocity identity then follows from subtracting both identities together with the symmetry of 〈 · , · 〉CB
R3

and 〈 · , · 〉ΔC
R3 .

Appendix B. Eshelby solutions for ellipsoidal inhomogeneities

Let B be an ellipsoid. Then, explicit derivations [8,17,18,31] show that if σ� is polynomial in x with degree
p, the restriction in B of the resulting displacement field M[σ�](x) is polynomial with degree p+1. This in
turn allows to show that FSTPs for ellipsoidal inhomogeneities and polynomial background displacements have
solutions whose restriction to B is polynomial [17, 31], as recalled in Section 2.5.2.
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In particular, for densities σ� of the form σ�(ξ) = C : (B1+B2·ξ), where B1 and B2 are constant second-order
and third-order tensors, respectively, we have

ε
[M[σ�]

]
(x) = −S1(B,C) :B1 −

(S2(B,C) •B2

)
·x (B.1)

in terms of the (known, constant) Eshelby tensors S1,S2 [31] (see formulas (2.26a) when B is a ball).

Now, consider the FSTP in the form (2.21a) for a background displacement u(x) = E1 ·x +
1
2
E2 : (x⊗x),

whose strain is thus given by ε[u](x) = Es
1 + Es

2 ·x (the superscript “s” again indicating symmetrization w.r.t.
the first two indices). Identity (B.1) suggests to seek uB−u in polynomial form, assuming the existence of tensors
B�

1 and B�
2 such that uB−u = M[σ�] with σ�(ξ) = C : (B�

1 + B�
2 ·ξ); this approach, known as the equivalent

inclusion method [17,26,31], means that the displacement perturbation induced by an ellipsoidal inhomogeneity
is equated to the displacement field created in a homogeneous body by the eigenstrain ε� := B�

1 +B�
2·ξ applied

in B. Equation (2.21a) requires setting σ�(ξ) = −ΔC :ε[uB](ξ), implying

ΔC :ε[uB](ξ) = −C : (B�
1 + B�

2 ·ξ).

Then, evaluating ΔC :ε[uB](ξ) using equation (B.1) yields

ΔC :ε[uB](ξ) = ΔC :
[
Es

1 + Es
2 ·ξ + S1 :B�

1 + (S2 •B�
2)·ξ

]
Equating the above two expressions of ΔC :ε[uB](ξ) for any ξ ∈B yields the equations

(a)
(C +ΔC :S1

)
:B�

1 = −ΔC :Es
1, (b)

( C̃ +ΔC :S2
)
•B�

2 = −Δ̃C •Es
2, (B.2)

with notations C̃ and Δ̃C defined as in (2.25). Solving (B.2a) for B�
1 (with E1 given) and (B.2b) for B�

2 (with
E2 given), see Lemma B.1 below, and recalling the above ansatz for uB−u, one obtains formulas (2.25)

Lemma B.1. Equations (B.2a) and (B.2b) each have a unique solution such that B�
1 = B�

1
s and B�

2 = B�
2
s.

Proof. Assume the existence of B�
1 such that C : B�

1 = −ΔC : S1 : B�
1. Defining w := M[C : B�

1], we have
ε
[M[ΔC :ε(w) ]

]
= ε

[M(ΔC :S1 :B�
1)

]
= −ε

[M(C :B�
1)

]
= −S1 :B�

1, implying

ε[w] + ε
[M(ΔC :ε[w] )

]
= S1 :B�

1 − S1 :B�
1 = 0

Therefore, w solves equation (2.21a) for a strain-free background displacement u, in which case w = u, i.e. w
is strain-free, which requires B�

1
s = 0 since S1 is known [26] to be invertible. A similar argument applies for

equation (B.2b). �
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