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A POSTERIORI ERROR ANALYSIS FOR THE OPTIMAL CONTROL
OF MAGNETO-STATIC FIELDS

Dirk Pauly and Irwin Yousept

Abstract. This paper is concerned with the analysis and numerical investigations for the optimal
control of first-order magneto-static equations. Necessary and sufficient optimality conditions are es-
tablished through a rigorous Hilbert space approach. Then, on the basis of the optimality system, we
prove functional a posteriori error estimators for the optimal control, the optimal state, and the adjoint
state. 3D numerical results illustrating the theoretical findings are presented.
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1. Introduction

Let ∅ �= ω ⊂ Ω ⊂ R
3 be bounded domains with boundaries γ := ∂ω, Γ := ∂Ω. For simplicity, we assume that

the boundaries γ and Γ are Lipschitz and satisfy dist(γ, Γ ) > 0, i.e., ω does not touch Γ . Moreover, let material
properties or constitutive laws ε, μ : Ω → R

3×3 be given, which are symmetric, uniformly positive definite and
belong to L∞(Ω). These assumptions are general throughout the paper. In our context, Ω denotes a large “hold
all” computational domain. Therefore, without loss of generality, we may assume that Ω is an open, bounded
and convex set such as a ball or a cube. On the other hand, the subdomain ω ⊂ Ω represents a control region
containing induction coils, where the applied current source control is acting. We underline that our analysis
can be extended to the case, where ω is non-connected with finite topology.

For a given desired magnetic field Hd ∈ L2(Ω) and a given shift control jd ∈ L2(ω), we look for the optimal
applied current density in ω by solving the minimization problem

min
j∈J

F (j) :=
1
2

∫
Ω

|μ1/2(H(j) −Hd)|2 +
κ

2

∫
ω

|ε1/2(j − jd)|2, (1.1)

where H(j) = H satisfies the first-order linear magneto-static boundary value problem

rotH = επ(ζj + J) in Ω, (1.2)
div μH = 0 in Ω, (1.3)

n · μH = 0 on Γ, (1.4)
μH ⊥L2(Ω) HN,μ(Ω). (1.5)
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In the setting of (1.1), J denotes the admissible control set, which is assumed to be a non-trivial and closed
subspace of L2(ω). Moreover, κ > 0 is the control cost term, and J ∈ L2(Ω) represents a fixed external
current density. In (1.2), we employ the extension by zero operator ζ from ω to Ω as well as the L2

ε-orthonormal
projector π onto the range of ε−1-rotations, see (2.7). The precise definitions of these two operators will be given
in next section. Furthermore, HN,μ(Ω) denotes the kernel of (1.2)−(1.4), i.e., the set of all square integrable
vector fields H with rotH = 0, div μH = 0 in Ω and n ·μH = 0 on Γ , where n denotes the exterior unit normal
to Γ . Finally, (1.5) means that μH is L2(Ω)-orthogonal to the kernel HN,μ(Ω). This orthogonality condition is
required in order to obtain uniqueness. Let us also point out that (1.2)−(1.5) are understood in a weak sense.

Using a rigorous Hilbert space approach for the state and adjoint state equations, we derive necessary and
sufficient optimality conditions for (1.1). Note that we include two weight functions μ and ε in the objective
functional of the optimal control problem (1.1). They are required in order to obtain an optimality system
with a mathematical structure which is suitable for the Maxwell theory (see Thm. 5 and Rem. 6). Having
established a variational formulation for the corresponding optimality system, we adjust this formulation for
suitable numerical approximations and prove functional a posteriori error estimates for the error in the optimal
quantities based on the spirit of Repin [14, 24]. Finally, we propose a mixed formulation for computing the
optimal control j̄ and present some numerical results, which illustrate the efficiency of the proposed error
estimator.

To the best of the authors’ knowledge, this paper presents original contributions on the functional a pos-
teriori error analysis for the optimal control of first-order magneto-static equations. We are only aware of the
previous contributions [6, 30] on the residual a posteriori error analysis for optimal control problems based on
the second-order magnetic vector potential formulation. For recent mathematical results in the optimal control
of electromagnetic problems, we refer to [8, 9, 15, 16, 25, 26, 32–34].

2. Definitions and preliminaries

In our notation, we do not distinguish between scalar functions or vector fields. The standard L2(Ω) inner
product is denoted by 〈 · , · 〉Ω. L2

ε(Ω) denotes the standard Lebesgue space L2(Ω) equipped with the weighted
inner product 〈 · , · 〉Ω,ε := 〈ε · , · 〉Ω, and for the respective norms we write | · |Ω and | · |Ω,ε. All these definitions
extend to μ as well as to ω. The standard Sobolev spaces and the corresponding Sobolev spaces for Maxwell’s
equations are written as Hk(Ω) for k ∈ N0 and

R(Ω) := {E ∈ L2(Ω) : rotE ∈ L2(Ω)}, D(Ω) := {E ∈ L2(Ω) : divE ∈ L2(Ω)},

all equipped with the natural inner products and graph norms. Moreover, for the sake of boundary conditions,

we define the Sobolev spaces
◦
Hk(Ω) and

◦
R(Ω),

◦
D(Ω) as the closures of test functions or test vector fields from

◦
C∞(Ω) in the corresponding graph norms, generalizing homogeneous scalar (up to order k− 1), tangential, and
normal boundary conditions, respectively. A zero at the lower right corner of the Sobolev spaces indicates a
vanishing differential operator, e.g.,

R0(Ω) = {E ∈ R(Ω) : rotE = 0},
◦
D0(Ω) = {E ∈

◦
D(Ω) : divE = 0}.

Furthermore, we introduce the spaces of Dirichlet and Neumann fields by

HD,ε(Ω) :=
◦
R0(Ω) ∩ ε−1D0(Ω) = {E ∈

◦
R(Ω) : rotE = 0, div εE = 0},

HN,μ(Ω) := R0(Ω) ∩ μ−1
◦
D0(Ω) = {H ∈ μ−1

◦
D(Ω) : rotH = 0, div μH = 0}.

All the defined spaces are Hilbert spaces and all definitions extend to ω or generally to any domain as well. We
will omit the domain in our notations of the spaces, if the underlying domain is Ω.
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It is well known that the embeddings

◦
R ∩ ε−1D ↪→ L2, R ∩ ε−1

◦
D ↪→ L2 (2.1)

are compact, see [1, 7, 10, 22, 23, 27–29], being a crucial point in the theory for Maxwell’s equations. By the
compactness of the unit balls and a standard indirect argument, we get immediately that HD,ε and HN,μ are
finite dimensional and that the well known Maxwell estimates, i.e., there exists c > 0 such that

∀E ∈
◦
R ∩ ε−1D ∩HD,ε

⊥ε |E|Ω,ε ≤ c
(
| rotE|2Ω + | div εE|2Ω

)1/2
, (2.2)

∀H ∈ R ∩ μ−1
◦
D ∩HN,μ

⊥μ |H |Ω,μ ≤ c
(
| rotH |2Ω + | div μH |2Ω

)1/2
, (2.3)

hold, where ⊥ resp. ⊥ε denotes orthogonality in L2 resp. L2
ε. By the projection theorem and Hilbert space

methods, we have

L2
ε = ∇

◦
H1 ⊕ε ε

−1D0 =
◦
R0 ⊕ε ε

−1rotR, L2
μ = ∇H1 ⊕μ μ

−1
◦
D0 = R0 ⊕μ μ

−1rot
◦
R,

with closures in L2. Here, ⊕ resp. ⊕ε denotes the orthogonal sum in L2 resp. L2
ε. By Rellich’s selection theorem,

the ranges ∇
◦
H1 and ∇H1 are readily closed. Moreover,

◦
R =

◦
R0 ⊕ε

(◦
R ∩ ε−1rotR

)
, R = R0 ⊕μ

(
R ∩ μ−1rot

◦
R
)
, (2.4)

and so

rot
◦
R = rot

(◦
R ∩ ε−1rotR

)
, rotR = rot

(
R ∩ μ−1rot

◦
R
)

(2.5)

hold. Since obviously rotR ⊂ D0 ∩ HD,ε
⊥ and rot

◦
R ⊂

◦
D0 ∩ HN,μ

⊥, we obtain, by the Maxwell estimates (2.2)
and (2.3), that all ranges of rot are also closed, i.e.,

rot
◦
R = rot

◦
R = rot

(◦
R ∩ ε−1 rotR

)
, rotR = rotR = rot

(
R ∩ μ−1 rot

◦
R
)
.

Since ∇
◦
H1 ⊂

◦
R0 and ∇H1 ⊂ R0, we have

◦
R0 = ∇

◦
H1 ⊕ε HD,ε , R0 = ∇H1 ⊕μ HN,μ ,

and hence we get the general Helmholtz decompositions

L2
ε = ∇

◦
H1 ⊕ε HD,ε ⊕ε ε

−1 rotR, L2
μ = ∇H1 ⊕μ HN,μ ⊕μ μ

−1 rot
◦
R. (2.6)

Note that we have analogously rot
◦
R ⊂

◦
D0 and rotR ⊂ D0, and thus

ε−1D0 = ε−1 rotR ⊕ε HD,ε , μ−1
◦
D0 = μ−1 rot

◦
R ⊕μ HN,μ ,

which gives again the Helmholtz decompositions (2.6). At this point, we introduce two orthonormal projectors
onto the ranges of ε−1 rot and μ−1 rot |◦

R
by

π : L2
ε → ε−1 rotR ⊂ L2

ε,
◦
π : L2

μ → μ−1 rot
◦
R ⊂ L2

μ, (2.7)
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which will be used frequently especially for the solution theories. Note that the range of π resp.
◦
π equals ε−1 rotR

resp. μ−1 rot
◦
R, and we have π = id resp.

◦
π = id on ε−1 rotR resp. μ−1 rot

◦
R and π = 0 resp.

◦
π = 0 on

◦
R0

resp. R0. Moreover, by (2.4) and (2.5), we see that π
◦
R =

◦
R ∩ ε−1 rotR and

◦
πR = R ∩ μ−1 rot

◦
R. Furthermore,

rotπE = rotE and rot
◦
πH = rotH hold for E ∈

◦
R and H ∈ R. We also need the extension by zero operator

ζ : L2
ε(ω) −→ L2

ε

j �−→
{
j in ω

0 in Ω \ ω.

Note that as orthonormal projectors π : L2
ε → L2

ε and
◦
π : L2

μ → L2
μ are selfadjoint. On the other hand, the

adjoint of ζ is the restriction operator ζ∗ = · |ω : L2
ε → L2

ε(ω), and ζ∗ζ = id on L2
ε(ω). We emphasize that all

our definitions and results from this section extend to ω or other domains as well.
For a linear operator A, we denote by D(A), R(A) and N(A) the domain of definition, the range, and the

kernel or null space of A, respectively. Given two Hilbert spaces X, Y, and a densely defined and linear operator
A : D(A) ⊂ X → Y, we denote by A∗ : D(A∗) ⊂ Y → X for its Hilbert space adjont.

3. Functional analytical setting

Let X, Y be two Hilbert spaces and let

A : D(A) ⊂ X → Y (3.1)

be a densely defined and closed linear operator with adjoint

A∗ : D(A∗) ⊂ Y → X. (3.2)

Equipping D(A) and D(A∗) with the respective graph norms makes them Hilbert spaces. By the projection
theorem, we have

X = N(A) ⊕R(A∗), D(A) = N(A) ⊕
(
D(A) ∩R(A∗)

)
, (3.3)

Y = N(A∗) ⊕R(A), D(A∗) = N(A∗) ⊕
(
D(A∗) ∩R(A)

)
, (3.4)

and

N(A∗)⊥Y = R(A), R(A) = A
(
D(A) ∩R(A∗)

)
, (3.5)

N(A)⊥X = R(A∗), R(A∗) = A∗(D(A∗) ∩R(A)
)
. (3.6)

Let us fix the crucial general assumption of this section: Suppose that the embedding

D(A) ∩R(A∗) ↪→ X (3.7)

is compact.

Lemma 3.1. Assume (3.7) holds. Then:

(i) R(A) and R(A∗) are closed.
(ii) ∃ cA > 0 ∀x ∈ D(A) ∩R(A∗) |x|X ≤ cA|Ax|Y.
(ii’) ∃ cA∗ > 0 ∀ y ∈ D(A∗) ∩R(A) |y|Y ≤ cA∗ |A∗y|X.
(iii) D(A∗) ∩R(A) is compactly embedded into Y.
(iii’) D(A) ∩R(A∗) ↪→ X ⇔ D(A∗) ∩R(A) ↪→ Y.
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Proof. First we show

∃ cA > 0 ∀x ∈ D(A) ∩R(A∗) |x|X ≤ cA|Ax|Y. (3.8)

Let us assume that this is wrong. Then, there exists a sequence (xn) ⊂ D(A) ∩ R(A∗) with |xn|X = 1 and
|Ax|Y → 0. Hence, (xn) is bounded in D(A) ∩ R(A∗) and we can extract a subsequence, again denoted by
(xn), with xn

X−→ x ∈ X. Since A is closed, x belongs to N(A) ∩ R(A∗) = {0}, a contradiction, because
1 = |xn|X → |x|X = 0.

Now, let y ∈ R(A), i.e., y ∈ A
(
D(A) ∩R(A∗)

)
by (3.5). Hence, there exists a sequence (xn) in D(A)∩R(A∗)

with Axn
Y−→ y. By (3.8), (xn) is a Cauchy sequence in D(A) and thus xn

D(A)−−−→ x ∈ D(A). Especially Axn → Ax
implies y = Ax ∈ R(A). Therefore, R(A) is closed. By the closed range theorem, (see e.g. [31], VII, 5), R(A∗)
is closed as well. This proves (i) and together with (3.8) also (ii) is proved.

Let (yn) be a bounded sequence in D(A∗) ∩ R(A). By (3.5), yn ∈ A
(
D(A) ∩ R(A∗)

)
and there exists a

sequence (xn) ⊂ D(A) ∩R(A∗) with Axn = yn. By (ii), (xn) is bounded in D(A) ∩R(A∗). Hence, without loss
of generality, (xn) converges in X. Then, for xn,m := xn − xm and yn,m := yn − ym we have

|yn,m|2Y = 〈Axn,m, yn,m〉Y = 〈xn,m,A∗yn,m〉X ≤ c|xn,m|X.

Therefore, (yn) is a Cauchy sequence in Y, showing (iii).
Now, (ii’) follows by (iii) analogously to the proof of (ii). (iii’) is clear by duality since (A,A∗) is a “dual

pair”, i.e., A∗∗ = Ā = A, where Ā denotes the closure of A. �

Remark 3.2. The best constants in Lemma 3.1 (ii) and (ii’) are even equal, i.e.,

1
cA

= inf
0�=x∈D(A)∩R(A∗)

|Ax|Y
|x|X

= inf
0�=y∈D(A∗)∩R(A)

|A∗y|X
|y|Y

=
1
cA∗

·

(See [19], Thm. 2 and also [17, 18]).

Since the decompositions (3.3) and (3.4) reduce A and A∗, we obtain that the adjoint of the reduced operator

A : D(A) := D(A) ∩R(A∗) ⊂ R(A∗) −→ R(A)
x �−→ Ax (3.9)

is given by the reduced adjoint operator

A∗ : D(A∗) := D(A∗) ∩R(A) ⊂ R(A) −→ R(A∗)
y �−→ A∗y.

(3.10)

We immediately get by Lemma 3.1 the following.

Lemma 3.3. It holds:

(i) R(A) = R(A) and R(A∗) = R(A∗).
(ii) A and A∗ are injective and A−1 : R(A) → D(A) and (A∗)−1 : R(A∗) → D(A∗) continuous.
(ii’) As operators on R(A) and R(A∗), A−1 : R(A) → R(A∗) and (A∗)−1 : R(A∗) → R(A) are compact.

Let us now transfer these results to Maxwell’s equations. We set X := L2
ε and Y := L2

μ. It is well known that

A : D(A) ⊂ L2
ε −→ L2

μ

E �−→ μ−1 rotE
, D(A) :=

◦
R, R(A) = μ−1 rot

◦
R,
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is a densely defined and closed linear operator with adjoint

A∗ : D(A∗) ⊂ L2
μ −→ L2

ε

H �−→ ε−1 rotH,
D(A∗) = R, R(A∗) = ε−1 rotR.

By e.g. the first compact embedding of (2.1), i.e.,
◦
R ∩ ε−1D ↪→ L2, we get (3.7), i.e.,

◦
R ∩ ε−1 rotR ⊂

◦
R ∩ ε−1D0 ⊂

◦
R ∩ ε−1D ↪→ L2

ε .

Hence, rot
◦
R and rotR are closed, and we obtain the Maxwell estimates

∀E ∈
◦
R ∩ ε−1 rotR |E|Ω,ε ≤ cA|μ−1 rotE|Ω,μ, (3.11)

∀H ∈ R ∩ μ−1 rot
◦
R |H |Ω,μ ≤ cA∗ |ε−1 rotH |Ω,ε. (3.12)

(3.3)−(3.6) provide partially the Helmholtz decompositions from the previous section, i.e,

L2
ε =

◦
R0 ⊕ε ε

−1 rotR,
◦
R =

◦
R0 ⊕ε

(◦
R ∩ ε−1 rotR

)
,

L2
μ = R0 ⊕μ μ

−1 rot
◦
R, R = R0 ⊕μ

(
R ∩ μ−1 rot

◦
R
)
,

R
⊥μ

0 = μ−1 rot
◦
R, μ−1 rot

◦
R = μ−1 rot

(◦
R ∩ ε−1 rotR

)
,

◦
R⊥ε

0 = ε−1 rotR, ε−1 rotR = ε−1 rot
(
R ∩ μ−1 rot

◦
R
)
.

The injective reduced operators A and A∗ are

A : D(A) ⊂ ε−1 rotR −→ μ−1 rot
◦
R

E �−→ μ−1 rotE
, D(A) :=

◦
R ∩ ε−1 rotR,

A∗ : D(A∗) ⊂ μ−1 rot
◦
R −→ ε−1 rotR

H �−→ ε−1 rotH
, D(A∗) = R ∩ μ−1 rot

◦
R

with
R(A) = R(A) = μ−1 rot

◦
R = R(

◦
π), R(A∗) = R(A∗) = ε−1 rotR = R(π).

The inverses

A−1 : μ−1 rot
◦
R →

◦
R ∩ ε−1 rotR, (A∗)−1 : ε−1 rotR → R ∩ μ−1 rot

◦
R,

A−1 : μ−1 rot
◦
R → ε−1 rotR, (A∗)−1 : ε−1 rotR → μ−1 rot

◦
R

are continuous and compact, respectively. We note again that both D(A) and D(A∗) are compactly embedded
into L2.

4. The optimal control problem

We start by formulating our optimal control problem (1.1)−(1.5) in a proper Hilbert space setting. As
mentioned in the introduction, the admissible control set J is assumed to be a non-trivial and closed subspace
of L2

ε(ω), see below (i), (ii), (iii) for some possible choices. For some given J ∈ L2
ε, Hd ∈ L2

μ and jd ∈ L2
ε(ω) let

us define

πω : L2
ε(ω) → J, (4.1)
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the L2
ε(ω) orthonormal projector onto J. Moreover, we introduce the norm ||| · ||| by

|||(Φ, φ)|||2 := |Φ|2Ω,μ + κ|φ|2ω,ε, (Φ, φ) ∈ L2
μ × L2

ε(ω),

and the quadratic functional F by

F : L2
ε(ω) −→ [0,∞)

j �−→ 1
2
|||(H(j) −Hd, j − jd)|||2

, (4.2)

i.e.,

F (j) =
1
2
|||(H(j) −Hd, j − jd)|||2 =

1
2
|H(j) −Hd|2Ω,μ +

κ

2
|j − jd|2ω,ε,

where H = H(j) is the unique solution of the magneto static problem (1.2)-(1.5), which can be formulated as

H ∈ R ∩
(
μ−1 rot

◦
R
)
, ε−1 rotH = π(ζj + J). (4.3)

We note that, by π(ζj + J) ∈ ε−1 rotR and by (2.5), i.e., rotR = rot
(
R ∩ μ−1 rot

◦
R
)
, (4.3) admits a unique

solution since
R0 ∩

(
μ−1 rot

◦
R
)

= R0 ∩ μ−1
◦
D0 ∩HN,μ

⊥μ = HN,μ ∩HN,μ
⊥μ = {0}.

Moreover, the solution operator, mapping the pair (j, J) ∈ L2
ε(ω) × L2

ε to H ∈ R ∩
(
μ−1 rot

◦
R
)
, is continuous

since by (2.3) or (3.12) (with generic constants c > 0)

|H |
R

=
(
|H |2Ω + | rotH |2Ω

)1/2 ≤ c|π(ζj + J)|Ω,ε ≤ c|ζj + J |Ω,ε ≤ c
(
|j|ω,ε + |J |Ω,ε

)
.

We note that the unique solution is given by H := H(j) := (A∗)−1π(ζj + J) depending affine linearly and
continuously on j ∈ L2

ε(ω).
Now, our optimal control problem (1.1)−(1.5) reads as follows: Find j̄ ∈ J, such that

F (j̄) = min
j∈J

F (j), (4.4)

subject to H(j) ∈ R ∩
(
μ−1 rot

◦
R
)

and ε−1 rotH(j) = π(ζj + J). Another equivalent formulation using the
Hilbert space operators from the previous section and R(π) = ε−1 rotR = R(A∗) is: Find j̄ ∈ J, such that

F (j̄) = min
j∈J

F (j), (4.5)

subject to H(j) ∈ D(A∗) and A∗H(j) = π(ζj + J). Our last formulation is: Find j̄ ∈ J, such that

F (j̄) = min
j∈J

F (j), F (j) =
1
2
|(A∗)−1π(ζj + J) −Hd|2Ω,μ +

κ

2
|j − jd|2ω,ε. (4.6)

Let us now focus on the formulation (4.6). Since (A∗)−1π(ζj + J) ∈ R(A) = R(
◦
π) and j ∈ R(πω) = J, we

have

F (j) =
1
2
|(A∗)−1π(ζj + J) − ◦

πHd|2Ω,μ +
κ

2
|j − πωjd|2ω,ε +

1
2
|(1 − ◦

π)Hd|2Ω,μ +
κ

2
|(1 − πω)jd|2ω,ε,

and hence we may assume from now on without loss of generality

Hd =
◦
πHd ∈ R(A) = R(

◦
π) = μ−1 rot

◦
R, J = πJ ∈ R(A∗) = R(π) = ε−1 rotR,

jd = πωjd ∈ R(πω) = J. (4.7)
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Lemma 4.1. The optimal control problem (4.6) admits a unique solution j̄ ∈ J. Moreover, j̄ ∈ J is the unique
solution of (4.6), if and only if j̄ ∈ J is the unique solution of F ′(j̄) = 0.

Proof. (A∗)−1πζ is linear and continuous and F is convex and differentiable. Since ∅ �= J is a closed subspace,
the assertions follow immediately. �

Let us compute the derivative. Since (A∗)−1πζ is linear and continuous we have for all j, h ∈ L2
ε(ω)

F ′(j)h = 〈(A∗)−1π(ζj + J) −Hd, (A∗)−1πζh〉Ω,μ + κ〈j − jd, h〉ω,ε

= 〈ζ∗πA−1((A∗)−1π(ζj + J) −Hd) + κ(j − jd), h〉ω,ε

= 〈ζ∗A−1((A∗)−1π(ζj + J) −Hd) + κ(j − jd), h〉ω,ε.

Hence, for all j, h ∈ J, we have

F ′(j)h = 〈ζ∗A−1((A∗)−1π(ζj + J) −Hd) + κ(j − jd), πωh〉ω,ε

= 〈πωζ
∗A−1((A∗)−1π(ζj + J) −Hd) + κπω(j − jd), h〉ω,ε

= 〈πωζ
∗A−1((A∗)−1π(ζj + J) −Hd) + κ(j − jd), h〉ω,ε.

In view of this formula and Lemma 4.1, we obtain the following necessary and sufficient optimality system:

Theorem 4.2. j̄ ∈ J is the unique optimal control of (4.6), if and only if (j̄, H̄, Ē) ∈ J×D(A∗)×D(A) is the
unique solution of

j̄ = jd −
1
κ
πωζ

∗Ē, Ē = A−1(H̄ −Hd), H̄ = (A∗)−1π(ζj̄ + J). (4.8)

Remark 4.3. The optimality system (4.8) is equivalent to the following linear system: Find (j̄, H̄, Ē) in J ×
(R ∩ μ−1 rot

◦
R) × (

◦
R ∩ ε−1 rotR) such that

rot H̄ = επζj̄ + εJ, rot Ē = μ(H̄ −Hd) in Ω,

div μH̄ = 0, div εĒ = 0 in Ω,

n · μH̄ = 0, n× Ē = 0 on Γ,

μH̄ ⊥HN,μ , εĒ ⊥HD,ε

and j̄ = jd − 1
κπωζ

∗Ē.

Note that in Theorem 4.2, i.e., in (4.8), and in Remark 4.3 the set of equations define the optimality system,
consisting of the state and adjoint state equation and providing the optimal control j̄ by the adjoint state Ē.

Now, we have different options to specify the projector πω : L2
ε(ω) → J. The only restriction is that the

admissible control set J = πω L2
ε(ω) is a non-trivial and closed subspace of L2

ε(ω). Let us recall suitable Helmholtz
decompositions for L2

ε(ω)

L2
ε(ω) = R0(ω) ⊕ε ε

−1 rot
◦
R(ω) = ∇H1(ω) ⊕ε ε

−1
◦
D0(ω)

= ∇H1(ω) ⊕ε HN,ε (ω) ⊕ε ε
−1 rot

◦
R(ω). (4.9)

For example, we could choose

(i) πω = idL2
ε(ω) and hence J = L2

ε(ω),

(ii) πω : L2
ε(ω) → ε−1 rot

◦
R(ω) ⊂ L2

ε(ω), the L2
ε(ω)-orthonormal projector onto ε−1 rot

◦
R(ω) in the Helmholtz

decompositions (4.9), and hence J = ε−1 rot
◦
R(ω),
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(iii) πω : L2
ε(ω) → ε−1

◦
D0(ω) ⊂ L2

ε(ω), the L2
ε(ω)-orthonormal projector onto ε−1

◦
D0(ω) in the Helmholtz decom-

positions (4.9), and hence J = ε−1
◦
D0(ω).

For physical and numerical reasons the best choice is (iii), i.e.,

πω : L2
ε(ω) → ε−1

◦
D0(ω) =: J, (4.10)

which will be assumed from now on, and means that the admissible control space J consists of vector fields
j ∈ J such that εj is solenoidal in ω and tangential at γ. We note that all our subsequent results hold for the
choice (ii) as well.

Now, we derive a suitable equation for the adjoint state Ē. By Theorem 4.2, Ē and our optimal control
j̄ = jd − κ−1πωζ

∗Ē satisfy for all Φ ∈ D(A)

〈AĒ,AΦ〉Ω,μ = 〈H̄ −Hd,AΦ〉Ω,μ = 〈A∗H̄, Φ〉Ω,ε − 〈Hd,AΦ〉Ω,μ

= 〈πζj̄, Φ〉Ω,ε + 〈J, Φ〉Ω,ε − 〈Hd,AΦ〉Ω,μ. (4.11)

Note that, in case of Φ ∈ D(A) ⊂ R(A∗) = R(π), we can skip the projector π, i.e.,

〈πζj̄, Φ〉Ω,ε = 〈ζj̄, πΦ〉Ω,ε = 〈ζj̄, Φ〉Ω,ε = 〈j̄, ζ∗Φ〉ω,ε = 〈jd, ζ∗Φ〉ω,ε −
1
κ
〈πωζ

∗Ē, ζ∗Φ〉ω,ε.

Hence, for all Φ ∈ D(A), it holds that

〈AĒ,AΦ〉Ω,μ +
1
κ
〈πωζ

∗Ē, πωζ
∗Φ〉ω,ε = 〈jd, ζ∗Φ〉ω,ε + 〈J, Φ〉Ω,ε − 〈Hd,AΦ〉Ω,μ. (4.12)

Remark 4.4. The variational formulation (4.12) admits a unique solution E in D(A) depending continuously
on J , Hd and jd, i.e., |E|D(A) ≤ c(|Hd|Ω + |jd|ω + |J |Ω). This is clear by the Lax–Milgram lemma, since the left
hand side is coercive over D(A), i.e., by Lemma 3.1 (ii) for all E ∈ D(A)

|AE|2Ω,μ + κ−1|πωζ
∗E|2ω,ε ≥ |AE|2Ω,μ ≥ c|E|2D(A).

For numerical reasons, it is not practical to work in D(A) = D(A)∩R(A∗). On the other hand, it is important
to get rid of π since the numerical implementation of π is a difficult task. Fortunately, due to the choice of J

we have:

Lemma 4.5. πζπω = ζπω

Note that this lemma would fail with the option (i) for πω and J as the space ζεπω L2
ε(ω) would, e.g., not

consist of solenoidal vector fields in general.

Proof. Let j ∈ R(πω) = ε−1
◦
D0(ω). Then, for any ballB withΩ ⊂ B we have ζεj ∈

◦
D0 and hence ζBζεj ∈

◦
D0(B),

where ζB denotes the extension by zero from Ω to B. As B is simply connected, there are no Neumann fields in

B yielding
◦
D0(B) = rot

◦
R(B). Thus, there exists E ∈

◦
R(B) with rotE = ζBζεj. But then the restriction ζ∗BE

belongs to R and we have rot ζ∗BE = ζ∗B rotE = ζεj showing ζj ∈ ε−1 rotR = R(π). Hence, πζj = ζj, finishing
the proof. �

Utilizing Lemma 4.5 and j̄ ∈ R(πω) we obtain πζj̄ = ζj̄. Therefore, (4.11) turns into

∀Φ ∈ D(A) 〈AĒ,AΦ〉Ω,μ − 〈ζj̄, Φ〉Ω,ε = 〈J, Φ〉Ω,ε − 〈Hd,AΦ〉Ω,μ
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or equivalently with 〈ζj̄, Φ〉Ω,ε = 〈j̄, ζ∗Φ〉ω,ε

∀Φ ∈ D(A) 〈AĒ,AΦ〉Ω,μ +
1
κ
〈πωζ

∗Ē, ζ∗Φ〉ω,ε = 〈jd, ζ∗Φ〉ω,ε + 〈J, Φ〉Ω,ε − 〈Hd,AΦ〉Ω,μ.

Hence, we obtain the following symmetric variational formulation for Ē ∈ D(A)

∀Φ ∈ D(A) 〈AĒ,AΦ〉Ω,μ +
1
κ
〈πωζ

∗Ē, πωζ
∗Φ〉ω,ε = 〈ζjd + J, Φ〉Ω,ε − 〈Hd,AΦ〉Ω,μ. (4.13)

By 〈πωζ
∗Ē, πωζ

∗Φ〉ω,ε = 〈ζπωζ
∗Ē, Φ〉Ω,ε and (4.13) we get immediately

AĒ +Hd ∈ D(A∗), A∗(AĒ +Hd) = ζ

(
jd −

1
κ
πωζ

∗Ē

)
+ J.

Therefore, if Hd ∈ D(A∗), then AĒ ∈ D(A∗) and we obtain in Ω the strong equation

A∗AĒ +
1
κ
ζπωζ

∗Ē = ζjd + J − A∗Hd. (4.14)

Translated to the pde language (4.13) and (4.14) read as follows: Ē ∈
◦
R ∩ ε−1 rotR with

∀Φ ∈
◦
R 〈rot Ē, rotΦ〉Ω,μ−1 +

1
κ
〈πωζ

∗Ē, πωζ
∗Φ〉ω,ε = 〈ζjd + J, Φ〉Ω,ε − 〈Hd, rotΦ〉Ω (4.15)

or, if Hd ∈ R,

rotμ−1 rot Ē +
1
κ
εζπωζ

∗Ē = εζjd + εJ − rotHd. (4.16)

Theorem 4.6. For j̄ ∈ L2
ε(ω) the following statements are equivalent:

(i) j̄ ∈ J is the unique optimal control of the optimal control problem (4.6).
(ii) j̄ is the unique solution of the optimality system

j̄ = jd −
1
κ
πωζ

∗Ē, Ē = A−1(H̄ −Hd), H̄ = (A∗)−1(ζj̄ + J).

We note ζj̄ = πζj̄ by Lemma 4.5 and j̄ ∈ J.
(iii) j̄ = jd − κ−1πωζ

∗Ē and Ē ∈ D(A) satisfies (4.13), i.e.,

∀Φ ∈ D(A) 〈AĒ,AΦ〉Ω,μ +
1
κ
〈πωζ

∗Ē, πωζ
∗Φ〉ω,ε = 〈ζjd + J, Φ〉Ω,ε − 〈Hd,AΦ〉Ω,μ.

By (iii), (4.13) is uniquely solvable.

Proof. By Theorem 4.2, we have (i)⇔(ii). Moreover, (ii)⇒(iii) follows from the previous considerations. Hence,
it remains to show (iii)⇒(ii). For this, let j := jd − κ−1πωζ

∗E ∈ J with E ∈ D(A) satisfying

∀Φ ∈ D(A) 〈AE,AΦ〉Ω,μ +
1
κ
〈πωζ

∗E, πωζ
∗Φ〉ω,ε = 〈ζjd + J, Φ〉Ω,ε − 〈Hd,AΦ〉Ω,μ.

Hence
H := AE +Hd ∈ D(A∗) ∩R(A) = D(A∗), A∗H = ζ(jd − κ−1πωζ

∗E) + J.

Thus, E ∈ D(A) solves AE = H −Hd and H ∈ D(A∗) solves A∗H = ζj+J . Therefore, E = A−1(H −Hd) and
H = (A∗)−1(ζj + J), and so the tripple (j, E,H) solves the optimality system (ii), yielding j = j̄. �
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5. Suitable variational formulations

Let us summarize the results optained so far in pde-formulation and introduce some new notation. We recall
our choice (4.10), i.e.,

πω : L2
ε(ω) → ε−1

◦
D0(ω) = J,

and the related Helmholtz decomposition

L2
ε(ω) = ∇H1(ω) ⊕ε J. (5.1)

In view of Lemma 4.5, the optimal control problem reads as follows:

F (j̄) = min
j∈J

F (j), F (j) =
1
2
|||(H(j) −Hd, j − jd)|||2 =

1
2
|H(j) −Hd|2Ω,μ +

κ

2
|j − jd|2ω,ε, (5.2)

subject to

H(j) ∈ R ∩
(
μ−1 rot

◦
R
)
, ε−1 rotH(j) = πζj + J = ζj + J,

where the external current density J , the desired magnetic field Hd and the shift control jd satisfy

J ∈ R(π) = ε−1 rotR, Hd ∈ R(
◦
π) = μ−1 rot

◦
R, jd ∈ R(πω) = J.

We note that H = H(j) solves the system

rotH = ε(ζj + J) in Ω,

div μH = 0 in Ω,

n · μH = 0 on Γ,

μH ⊥HN,μ ,

in a standard weak sense.
From now on, we assume that Ω is a bounded convex domain. Since Ω is convex, it has a connected boundary.

For this reason, every Dirichlet field vanishes, i.e., HD,ε = {0}, which is important for our variational formula-
tions, as we will see later. Also, note that every Neumann field vanishes as well, i.e., HN,μ = {0}, because every
convex domain is simply connected. We also recall Theorem 4.2, Remark 4.3, (4.10), and Theorem 4.6, which
we summarize in the following strong pde-formulation:

Theorem 5.1. For j̄ ∈ L2
ε(ω) the following statements are equivalent:

(i) j̄ ∈ J is the unique optimal control of the optimal control problem (4.5).
(ii) j̄ is the unique solution of the optimality system

j̄ = jd − κ−1πωζ
∗Ē, rot Ē = μ(H̄ −Hd), rot H̄ = ε(ζj̄ + J)

with unique Ē ∈
◦
R ∩ ε−1 rotR and H̄ ∈ R ∩ μ−1 rot

◦
R.

(iii) j̄ = jd − κ−1πωζ
∗Ē, and Ē is the unique solution of Ē ∈

◦
R ∩ ε−1 rotR satisfying

∀Φ ∈
◦
R 〈rot Ē, rotΦ〉Ω,μ−1 + κ−1〈πωζ

∗Ē, πωζ
∗Φ〉ω,ε = 〈ζjd + J, Φ〉Ω,ε − 〈Hd, rotΦ〉Ω .

According to Remark 4.4, the variational formulation

∀Φ ∈
◦
R ∩ ε−1 rotR 〈rotE, rotΦ〉Ω,μ−1 + κ−1〈πωζ

∗E, πωζ
∗Φ〉ω,ε = 〈ζjd + J, Φ〉Ω,ε − 〈Hd, rotΦ〉Ω
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admits a unique solution E ∈
◦
R ∩ ε−1 rotR depending continuously on the right hand side data, i.e.,

|E|
R
≤ c(|Hd|Ω + |jd|ω + |J |Ω). The crucial point for applying the Lax–Milgram lemma is the Maxwell esti-

mate (3.11), i.e.,

∀E ∈
◦
R ∩ ε−1 rotR |E|Ω,ε ≤ ĉm,Ω| rotE|Ω,μ−1 , ĉm,Ω := cm,t,Ω,ε,μ−1 := cA. (5.3)

Recently, the first author could show that, since Ω is convex, the upper bound

ĉm,Ω ≤ ε μ cp,Ω

holds, see [17–19]. Here, cp,Ω denotes the Poincaré constant, i.e., the best constant in

∀u ∈ H1
⊥ := H1 ∩ R

⊥ |u|Ω ≤ cp,Ω|∇u|Ω (5.4)

with the well known upper bound

cp,Ω ≤ dΩ

π
, dΩ := diam(Ω),

see [2, 21]. By the assumptions on ε and μ, there exist ε, ε > 0 such that for all E ∈ L2(Ω)

ε−1|E|Ω ≤ |E|Ω,ε ≤ ε|E|Ω, ε−1|E|Ω,ε ≤ |εE|Ω ≤ ε|E|Ω,ε.

We note |E|Ω,ε = |ε1/2E|Ω and |ε1/2E|Ω,ε = |εE|Ω. For the inverse ε−1, we have the inverse estimates, i.e., for
all E ∈ L2(Ω)

ε−1|E|Ω ≤ |E|Ω,ε−1 ≤ ε|E|Ω , ε−1|E|Ω,ε−1 ≤ |ε−1E|Ω ≤ ε|E|Ω,ε−1 .

We introduce the corresponding constants μ, μ > 0 for μ. We emphasize that the Helmholtz decompositions

L2
ε = ∇

◦
H1 ⊕ε ε

−1 rotR,
◦
R = ∇

◦
H1 ⊕ε (

◦
R ∩ ε−1 rotR), (5.5)

L2
μ = ∇H1 ⊕μ μ

−1 rot
◦
R, R = ∇H1 ⊕μ (R ∩ μ−1 rot

◦
R) (5.6)

hold since by the convexity of Ω

HD,ε = {0}, HN,μ = {0}, rotR = D0, rot
◦
R =

◦
D0.

Moreover,

R(π) = π L2
ε = ε−1 rotR, π

◦
R =

◦
R ∩ ε−1 rotR,

R(
◦
π) =

◦
π L2

μ = μ−1 rot
◦
R,

◦
πR = R ∩ μ−1 rot

◦
R

and for E ∈
◦
R and H ∈ R we have

rotπE = rotE, rot
◦
πH = rotH. (5.7)

Finally, we equip the Sobolev spaces
◦
H1 and H1

⊥ with the norm |∇ · |Ω,ε as well as R and
◦
R with the norm

| · |
R

:=
(
| · |2Ω,ε + | rot · |2Ω,μ−1

)1/2.
From now on, let us focus on the variational formulation of Theorem 5.1 (iii).
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5.1. A saddle-point formulation

For numerical purposes, it is useful to split the condition Ē ∈
◦
R ∩ ε−1 rotR into Ē ∈

◦
R and εĒ ∈ rotR.

Thanks to the vanishing Dirichlet fields, we have

rotR = D0 = (∇
◦
H1)⊥,

which is a easy implementable condition. Then, Theorem 5.1 (iii) is equivalent to: Find Ē ∈
◦
R such that

∀Φ ∈
◦
R 〈rot Ē, rotΦ〉Ω,μ−1 + κ−1〈πωζ

∗Ē, πωζ
∗Φ〉ω,ε = 〈ζjd + J, Φ〉Ω,ε − 〈Hd, rotΦ〉Ω , (5.8)

∀ϕ ∈
◦
H1 〈Ē,∇ϕ〉Ω,ε = 0. (5.9)

Mixed formulations for this kind of systems are well understood (see e.g. [4], Sect 4.1). Let us define two

continuous bilinear forms a :
◦
R ×

◦
R → R, b :

◦
R ×

◦
H1 → R and two continuous linear operators A :

◦
R →

◦
R′,

B :
◦
R →

◦
H1′ as well as a continuous linear functional f ∈

◦
R′ by

∀Ψ, Φ ∈
◦
R AΨ(Φ) := a(Ψ, Φ) := 〈rotΨ, rotΦ〉Ω,μ−1 + κ−1〈πωζ

∗Ψ, πωζ
∗Φ〉ω,ε,

∀Ψ ∈
◦
R, ϕ ∈

◦
H1 BΨ(ϕ) := b(Ψ, ϕ) := 〈Ψ,∇ϕ〉Ω,ε,

∀Φ ∈
◦
R f(Φ) := 〈ζjd + J, Φ〉Ω,ε − 〈Hd, rotΦ〉Ω .

Then, (5.8)-(5.9) read: Find Ē ∈
◦
R, such that

∀Φ ∈
◦
R a(Ē, Φ) = f(Φ), (5.10)

∀ϕ ∈
◦
H1 b(Ē, ϕ) = 0 (5.11)

or equivalently AĒ = f and BĒ = 0, i.e., Ē ∈ N(B) and AĒ = f . In matrix-notation, this is nothing but[
A
B

]
Ē =

[
f
0

]
.

Theorem 5.2. The variational problem (5.10) and (5.11) is uniquely solvable. The unique solution is the

adjoint state Ē ∈
◦
R ∩ ε−1D0.

Proof. (5.11) is equivalent to E ∈ ε−1D0 = ε−1 rotR. Thus, unique solvability is clear by Theorem 5.1 (iii).
However, for convenience, we present also another proof. For

E ∈ N(B) =
◦
R ∩ ε−1D0

we have by (5.3)

a(E,E) ≥ | rotE|2Ω,μ−1 ≥ (1 + ĉ2m,Ω)−1|E|2
R
, (5.12)

i.e., a is coercive over N(B). This shows uniqueness and that there exists a unique E ∈ N(B), such that

∀Φ ∈ N(B) a(E,Φ) = f(Φ)
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holds. But then, this relation holds also for all Φ ∈
◦
R, i.e., (5.10) holds, which proves existence. For this, let

us decompose
◦
R � Φ = Φ∇ + Φ0 ∈ ∇

◦
H1 ⊕ε N(B) by (5.5). Then, by rotΦ∇ = 0 and πωζ

∗Φ∇ = 0 since
ζ∗Φ∇ ∈ ∇H1(ω), see (5.1), as well as ζjd + J ∈ ε−1D0 = R(π) by Lemma 4.5, we have

a(E,Φ) = 〈rotE, rotΦ〉Ω,μ−1 + κ−1〈πωζ
∗E, πωζ

∗Φ〉ω,ε

= 〈rotE, rotΦ0〉Ω,μ−1 + κ−1〈πωζ
∗E, πωζ

∗Φ0〉ω,ε = a(E,Φ0) = f(Φ0) = f(Φ).

Theorem 5.1 shows E = Ē. �

For numerical reasons, we look at the following modification of (5.10)–(5.11), defining a variational problem

with a well known saddle-point structure: Find (Ē, ū) ∈
◦
R ×

◦
H1, such that

∀Φ ∈
◦
R a(Ē, Φ) + b(Φ, ū) = f(Φ), (5.13)

∀ϕ ∈
◦
H1 b(Ē, ϕ) = 0. (5.14)

We note that b(Φ, ū) = BΦ(ū) = B∗ū(Φ) with B∗ :
◦
H1 →

◦
R′. So, (5.13) and (5.14) may be written equivalently

as AĒ + B∗ū = f and BĒ = 0, i.e., Ē ∈ N(B) and AĒ + B∗ū = f . In matrix-notation this is[
A B∗

B 0

] [
Ē
ū

]
=
[
f
0

]
.

Lemma 5.3. For any solution (E, u) ∈
◦
R ×

◦
H1 of (5.13)–(5.14), i.e., of

∀Φ ∈
◦
R a(E,Φ) + b(Φ, u) = f(Φ),

∀ϕ ∈
◦
H1 b(E,ϕ) = 0,

it holds that u = 0.

Proof. For ϕ ∈ H1 we have πωζ
∗∇ϕ = 0 as in the proof of the previous theorem since ζ∗ϕ ∈ H1(ω) and

ζ∗∇ϕ = ∇ζ∗ϕ ∈ ∇H1(ω). Setting Φ := ∇u ∈
◦
R0, we get πωζ

∗Φ = 0 and hence a(E,Φ) = f(Φ) = 0. But then
0 = b(Φ, u) = |∇u|2Ω,ε, yielding u = 0. �

Now, it is clear that (Ē, 0), where Ē is the unique solution of (5.10) and (5.11), solves (5.13) and (5.14). On
the other hand, any solution (Ē, ū) of (5.13) and (5.14) must satisfy ū = 0, and hence Ē in turn solves (5.10)
and (5.11). This shows:

Theorem 5.4. The variational formulation or saddle-point problem (5.13) and (5.14) admits the unique solu-
tion (Ē, 0).

Remark 5.5. Alternatively, we can prove the unique solvability of (5.13) and (5.14) by a standard saddle-point

technique, (e.g. by [4], Cor. 4.1). We have already shown that a is coercive over N(B) =
◦
R ∩ ε−1D0, see (5.12).

Moreover, as ∇
◦
H1 =

◦
R0 ⊂

◦
R, we have for 0 �= ϕ ∈

◦
H1 with Φ := ∇ϕ ∈

◦
R0

sup
Φ∈

◦
R

b(Φ,ϕ)
|Φ|

R
|ϕ|◦

H1

≥ b(∇ϕ,ϕ)
|∇ϕ|

R
|∇ϕ|Ω,ε

=
|∇ϕ|2Ω,ε

|∇ϕ|2Ω,ε

= 1 ⇒ inf
0�=ϕ∈

◦
H1

sup
Φ∈

◦
R

b(Φ,ϕ)
|Φ|

R
|ϕ|◦

H1

≥ 1.

By Lemma 5.3 we see that ū = 0.
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5.2. A double-saddle-point formulation

Now, we get rid of the unpleasant projector πω in our variational saddle-point formulation, yielding another
(double) saddle-point structure. For this, we assume for a moment that ω is additionally connected, i.e., a
bounded Lipschitz sub-domain of Ω. Let us decompose some ξ ∈ L2

ε(ω) by (5.1), i.e.,

ξ = −∇v + ε−1ξ0 ∈ ∇H1(ω) ⊕ε J, J = ε−1
◦
D0(ω).

To compute ξ0, we can choose v ∈ H1
⊥(ω) := H1(ω) ∩ R

⊥ as the unique solution of the variational problem

∀φ ∈ H1
⊥(ω) κ d(v, φ) := 〈∇v,∇φ〉ω,ε = −〈ξ,∇φ〉ω,ε. (5.15)

Then, πωξ = ε−1ξ0 = ξ + ∇v and therefore for E,Φ ∈
◦
R with ξ := ζ∗E

a(E,Φ) = 〈rotE, rotΦ〉Ω,μ−1 + κ−1〈πωζ
∗E, πωζ

∗Φ〉ω,ε = 〈rotE, rotΦ〉Ω,μ−1 + κ−1〈πωζ
∗E, ζ∗Φ〉ω,ε

= 〈rotE, rotΦ〉Ω,μ−1 + κ−1〈ζ∗E, ζ∗Φ〉ω,ε︸ ︷︷ ︸
=: ã(E,Φ)

+ κ−1〈∇v, ζ∗Φ〉ω,ε︸ ︷︷ ︸
=: c(Φ, v)

.

Hence, the saddle-point problem (5.13)−(5.14) can be written as the following variational double-saddle-point

problem: Find (Ē, ū, v̄) ∈
◦
R ×

◦
H1 × H1

⊥(ω) such that

∀Φ ∈
◦
R ã(Ē, Φ) + b(Φ, ū) + c(Φ, v̄) = f(Φ), (5.16)

∀ϕ ∈
◦
H1 b(Ē, ϕ) = 0, (5.17)

∀φ ∈ H1
⊥(ω) c(Ē, φ) + d(v̄, φ) = 0. (5.18)

As before, the continuous bilinear forms ã :
◦
R ×

◦
R → R, c :

◦
R ×H1

⊥(ω) → R and d : H1
⊥(ω)×H1

⊥(ω) → R induce

bounded linear operators Ã :
◦
R →

◦
R′, C :

◦
R → H1

⊥(ω)′ and D : H1
⊥(ω) → H1

⊥(ω)′ in the following sense:

∀Ψ, Φ ∈
◦
R ÃΨ(Φ) := ã(Ψ, Φ) := 〈rotΨ, rotΦ〉Ω,μ−1 + κ−1〈ζ∗Ψ, ζ∗Φ〉ω,ε,

∀Ψ ∈
◦
R, φ ∈ H1

⊥(ω) CΨ(φ) := c(Ψ, φ) := κ−1〈ζ∗Ψ,∇φ〉ω,ε,

∀ψ, ψ ∈ H1
⊥(ω) Dψ(φ) := d(ψ, φ) := κ−1〈∇ψ,∇φ〉ω,ε.

We note that c(Φ, v̄) = CΦ(v̄) = C∗v̄(Φ) with C∗ : H1
⊥(ω) →

◦
R′. So, (5.16)-(5.18) may be written equivalently as

ÃĒ + B∗ū + C∗v̄ = f , BĒ = 0 and CĒ + Dv̄ = 0, i.e., Ē ∈ N(B) and ÃĒ + B∗ū+ C∗v̄ = f , CĒ + Dv̄ = 0. In
matrix-notation, this is ⎡

⎣Ã B∗ C∗

B 0 0
C 0 D

⎤
⎦
⎡
⎣Ēū
v̄

⎤
⎦ =

⎡
⎣f0

0

⎤
⎦. (5.19)

Note that we have formally
Ē = (Ã − C∗D−1C)−1f

and formally in the strong sense

Ã ∼= rotΩ μ−1
◦

rotΩ + κ−1ζεζ∗, Ã∗ = Ã,

B ∼= − divΩ ε, B∗ ∼= ε
◦
∇Ω,

C ∼= −κ−1
◦

divωεζ
∗, C∗ ∼= κ−1ζε∇ω,

D ∼= −κ−1
◦

divωε∇ω, D∗ = D̃, f ∼= ε(ζjd + J) − rotHd.
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Here, the
◦· and ·Ω, · ω indicate the boundary conditions and the domains, where the operators act, respectively.

Theorem 5.6. The variational formulation or double-saddle-point problem (5.16)−(5.18) admits the unique
solution (Ē, 0, v̄) with ∇v̄ = (πω − 1)ζ∗Ē. Moreover, j̄ = jd − κ−1πωζ

∗Ē = jd − κ−1(ζ∗Ē + ∇v̄) defines the
optimal control.

Proof. Since πωζ
∗Ē = ζ∗Ē + ∇v̄, if and only if v̄ ∈ H1

⊥(ω) and

∀φ ∈ H1
⊥(ω) c(Ē, φ) + d(v̄, φ) = 0,

we have

∀Φ ∈
◦
R a(Ē, Φ) + b(Φ, ū) = f(Φ),

if and only if πωζ
∗Ē = ζ∗Ē + ∇v̄ and

∀Φ ∈
◦
R ã(Ē, Φ) + b(Φ, ū) + c(Φ, v̄) = f(Φ),

if and only if v̄ ∈ H1
⊥(ω) and

∀Φ ∈
◦
R ã(Ē, Φ) + b(Φ, ū) + c(Φ, v̄) = f(Φ),

∀φ ∈ H1
⊥(ω) c(Ē, φ) + d(v̄, φ) = 0.

Hence, the unique solvability follows immediately by Theorem 5.4. �

Remark 5.7. As in Remark 5.5, we give an alternative proof using the double-saddle-point structure of the
problem. We rearrange the equations and variables in (5.19) equivalently as⎡

⎣Ã C∗ B∗

C D 0
B 0 0

⎤
⎦
⎡
⎣Ēv̄
ū

⎤
⎦ =

⎡
⎣f0

0

⎤
⎦

and obtain [
Â B̂∗

B̂ 0

] [
(Ē, v̄)
ū

]
=
[
f̂
0

]
, Â :=

[
Ã C∗

C D

]
, B̂ := [B 0], B̂∗ =

[
B∗

0

]
, f̂ =

[
f
0

]
.

Now, Â :
◦
R × H1

⊥(ω) →
(◦
R × H1

⊥(ω)
)′, B̂ :

◦
R × H1

⊥(ω) →
◦
H1′, B̂∗ :

◦
H1 →

(◦
R × H1

⊥(ω)
)′ and f̂ ∈

(◦
R × H1

⊥(ω)
)′.

For bilinear forms this means: Find
(
(Ē, v̄), ū

)
∈
(◦
R × H1

⊥(ω)
)
×

◦
H1, such that

∀ (Φ, φ) ∈
◦
R × H1

⊥(ω) â
(
(Ē, v̄), (Φ, φ)

)
+ b̂
(
(Φ, φ), ū

)
= f̂

(
(Φ, φ)

)
, (5.20)

∀ϕ ∈
◦
H1 b̂

(
(Ē, v̄), ϕ

)
= 0, (5.21)

where for (Ψ, ψ), (Φ, φ) ∈
◦
R × H1

⊥(ω) and ϕ ∈
◦
H1

Â(Ψ, ψ)
(
(Φ, φ)

)
= â

(
(Ψ, ψ), (Φ, φ)

)
:= ã(Ψ, Φ) + c(Φ,ψ) + c(Ψ, φ) + d(ψ, φ),

B̂∗ϕ(Ψ, ψ) = B̂(Ψ, ψ)(ϕ) = b̂
(
(Ψ, ψ), ϕ

)
:= b(Ψ, ϕ),

f̂
(
(Φ, φ)

)
:= f(Φ).
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Now, we can prove the unique solvability of (5.20) and (5.21) by the same standard saddle-point tech-

nique from ([4], Cor. 4.1). As a is coercive over N(B) =
◦
R ∩ ε−1D0, see (5.12), so is â over the kernel

N(B̂) = N(B) × H1
⊥(ω) = (

◦
R ∩ ε−1D0) × H1

⊥(ω). More precisely, for all (E, v) ∈ N(B̂) and δ ∈ (0, 1)

â
(
(E, v), (E, v)

)
= ã
(
(E, v), (E, v)

)
+ 2c(E, v) + d(v, v)

= | rotE|2Ω,μ−1 + κ−1|ζ∗E|2ω,ε + 2κ−1〈ζ∗E,∇v〉ω,ε + κ−1|∇v|2ω,ε

= | rotE|2Ω,μ−1 + κ−1|ζ∗E + ∇v|2ω,ε

≥ (1 + ĉ2m,Ω)−1|E|2
R

+ δκ−1|ζ∗E + ∇v|2ω,ε

≥ 1
1 + ĉ2m,Ω

| rotE|2Ω,μ−1 +
1

1 + ĉ2m,Ω
|E|2Ω,ε −

δ

κ
|ζ∗E|2ω,ε +

δ

2κ
|∇v|2ω,ε

≥ 1
1 + ĉ2m,Ω

| rotE|2Ω,μ−1 +
( 1
1 + ĉ2m,Ω

− δ

κ

)
|E|2Ω,ε +

δ

2κ
|∇v|2ω,ε.

Hence, α â
(
(E, v), (E, v)

)
≥ |E|2

R
+ |v|2

H1
⊥(ω)

= |(E, v)|2
R×H1

⊥(ω)
for δ sufficiently small with some α > 0. Then,

as before, for 0 �= ϕ ∈
◦
H1 with Φ := ∇ϕ ∈

◦
R0 and now also φ := 0

sup
(Φ,φ)∈

◦
R×H1

⊥(ω)

b̂
(
(Φ, φ), ϕ

)
|(Φ, φ)|

R×H1
⊥(ω)

|ϕ|◦
H1

= sup
(Φ,φ)∈

◦
R×H1

⊥(ω)

b(Φ,ϕ)
|(Φ, φ)|

R×H1
⊥(ω)

|ϕ|◦
H1

≥ b(∇ϕ,ϕ)
|∇ϕ|

R
|∇ϕ|Ω,ε

=
|∇ϕ|2Ω,ε

|∇ϕ|2Ω,ε

= 1

and thus

inf
0�=ϕ∈

◦
H1

sup
(Φ,φ)∈

◦
R×H1

⊥(ω)

b̂
(
(Φ, φ), ϕ

)
|(Φ, φ)|

R×H1
⊥(ω)

|ϕ|◦
H1

≥ 1.

Therefore, (5.20) and (5.21) is uniquely solvable. This is equivalent to (5.16)−(5.18). Moreover by (5.18) we see
∇v̄ = (πω − 1)ζ∗Ē. Hence, (Ē, ū) is the unique solution of (5.13) and (5.14) and Lemma 5.3 shows ū = 0.

Remark 5.8. We emphasize that (5.18) holds for all φ ∈ H1(ω) as well, since only ∇φ and ∇v̄ occur. Hence, we
can also search for v̄ ∈ H1(ω), where in this case v̄ is uniquely determined up to constants. This shows also that
we can skip again the additional assumption of a connected ω. Then, v̄ is uniquely defined just up to constants in
the connected subdomains of ω, but this does not change the uniqueness of the orthogonal Helmholtz projector
πωζ

∗Ē = ζ∗Ē + ∇v̄.
Finally, we write down the double-saddle-point problem (5.16) and (5.18) in a more explicit form: Find

(Ē, ū, v̄) ∈
◦
R ×

◦
H1 × H1(ω), such that

∀Φ ∈
◦
R 〈rot Ē, rotΦ〉Ω,μ−1 + κ−1〈ζ∗Ē, ζ∗Φ〉ω,ε (5.22)

+〈Φ,∇ū〉Ω,ε + κ−1〈ζ∗Φ,∇v̄〉ω,ε = 〈ζjd + J, Φ〉Ω,ε − 〈Hd, rotΦ〉Ω ,

∀ϕ ∈
◦
H1 〈Ē,∇ϕ〉Ω,ε = 0, (5.23)

∀φ ∈ H1(ω) κ−1〈ζ∗Ē,∇φ〉ω,ε + κ−1〈∇v̄,∇φ〉ω,ε = 0. (5.24)

Or altogether: Find (Ē, ū, v̄) ∈
◦
R ×

◦
H1 × H1(ω), such that for all (Φ,ϕ, φ) ∈

◦
R ×

◦
H1 × H1(ω)

〈rot Ē, rotΦ〉Ω,μ−1 + κ−1〈ζ∗Ē, ζ∗Φ〉ω,ε + 〈Φ,∇ū〉Ω,ε + κ−1〈ζ∗Φ,∇v̄〉ω,ε (5.25)
+ 〈Ē,∇ϕ〉Ω,ε + κ−1〈ζ∗Ē,∇φ〉ω,ε + κ−1〈∇v̄,∇φ〉ω,ε + 〈Hd, rotΦ〉Ω − 〈ζjd + J, Φ〉Ω,ε = 0.
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The unique optimal control is

j̄ = jd − κ−1πωζ
∗Ē = jd − κ−1(ζ∗Ē + ∇v̄) ∈ ε−1

◦
D0(ω) = J.

Note that ζj̄ ∈ ε−1
◦
D0 and that v̄ ∈ H1(ω) is only unique up to constants in connected parts of ω.

6. Functional a posteriori error analysis

We will derive functional a posteriori error estimates in the spirit of Repin [12, 14, 20, 24]. Especially, for a
precomputed discrete or good-guess approximation j̃ ∈ L2

ε(ω) we are interested in estimating the error of the

optimal control j̄ − j̃. Let us assume that some Ẽ ∈
◦
R and ṽ ∈ H1(ω) are given by some numerical method or

just as a good guess. Then

Ẽ ∈
◦
R, j̃ := jd − κ−1(ζ∗Ẽ + ∇ṽ) ∈ L2

ε(ω), H̃ := μ−1 rot Ẽ +Hd ∈ μ−1
◦
D0 (6.1)

may be considered as approximations of the adjoint state, the optimal control and the optimal state

Ē ∈
◦
R ∩ ε−1D0, j̄ ∈ ε−1

◦
D0(ω), H̄ ∈ R ∩ μ−1

◦
D0,

respectively. We note that

j̄ − j̃ = κ−1(ζ∗Ẽ + ∇ṽ − πωζ
∗Ē) = κ−1

(
ζ∗(Ẽ − Ē) + ∇(ṽ − v̄)

)
∈ R(ω),

H̄ − H̃ = μ−1 rot(Ē − Ẽ) ∈ μ−1
◦
D0,

and hence

κ rot(j̄ − j̃) = rot ζ∗(Ẽ − Ē) = ζ∗ rot(Ẽ − Ē) = μζ∗(H̃ − H̄) ∈ rotR(ω).

If jd ∈ R(ω), then j̄ ∈ R(ω) ∩ ε−1
◦
D0(ω) and j̃ ∈ R(ω).

First, we will focus on the variational formulation (5.10), i.e., (5.8). We note that

〈Hd, rotΦ〉Ω = 〈rotHd, Φ〉Ω

holds for Φ ∈
◦
R and Hd ∈ R, giving two options for putting Hd in our estimates depending on its regularity.

6.1. Upper bounds

For all Φ ∈
◦
R and all Ψ ∈ R, we have by (5.8) that

〈rot(Ē − Ẽ), rotΦ〉Ω,μ−1 + κ−1〈πωζ
∗(Ē − Ẽ), πωζ

∗Φ〉ω,ε

= −〈μHd + rot Ẽ, rotΦ〉Ω,μ−1 + 〈jd − κ−1πωζ
∗Ẽ, ζ∗Φ〉ω,ε + 〈J, Φ〉Ω,ε

= −〈μH̃, rotΦ〉Ω,μ−1 + 〈ζjd + J − κ−1ζπωζ
∗Ẽ, Φ〉Ω,ε

= 〈μ(Ψ − H̃), rotΦ〉Ω,μ−1 + 〈ζjd + J − κ−1ζπωζ
∗Ẽ − ε−1 rotΨ, Φ〉Ω,ε.

Since J, ε−1 rotΨ ∈ ε−1 rotR = R(π) as well as ζπωζ
∗Ẽ = πζπωζ

∗Ẽ and ζjd = ζπωjd = πζπωjd = πζjd by
Lemma 4.5, we see that

R(π) � ζjd + J − κ−1ζπωζ
∗Ẽ − ε−1 rotΨ = π(ζjd + J − κ−1ζπωζ

∗Ẽ − ε−1 rotΨ).
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Thus,

〈rot(Ē − Ẽ), rotΦ〉Ω,μ−1 + κ−1〈πωζ
∗(Ē − Ẽ), πωζ

∗Φ〉ω,ε

= 〈μ(Ψ − H̃), rotΦ〉Ω,μ−1 + 〈ζjd + J − κ−1ζπωζ
∗Ẽ − ε−1 rotΨ, πΦ〉Ω,ε. (6.2)

As πΦ ∈
◦
R ∩ ε−1 rotR with rotπΦ = rotΦ by (5.7) we get by (5.3)

|πΦ|Ω,ε ≤ ĉm,Ω| rotΦ|Ω,μ−1 . (6.3)

Therefore, by (6.2), it follows that

〈rot(Ē − Ẽ), rotΦ〉Ω,μ−1 + κ−1〈πωζ
∗(Ē − Ẽ), πωζ

∗Φ〉ω,ε ≤ M+,rot,πω (Ẽ, H̃ ;Ψ)| rotΦ|Ω,μ−1 , (6.4)

and M+,rot,πω(Ẽ, H̃ ;Ψ) can be replaced by M̃+,rot,πω (Ẽ;Ψ), if Hd ∈ R, since ε−1 rotHd ∈ R(π). Here we
introduce the following upper bounds.

Definition 6.1. For Ẽ ∈ L2
ε resp. Ẽ ∈ R, H̃ ∈ L2

μ, and Ψ ∈ R resp. Ψ +Hd ∈ R we define the upper bounds

M+,rot,πω(Ẽ, H̃ ;Ψ) := |H̃ − Ψ |Ω,μ + ĉm,Ω|ζjd + J − κ−1ζπωζ
∗Ẽ − ε−1 rotΨ |Ω,ε,

M̃+,rot,πω (Ẽ;Ψ) := | rot Ẽ − μΨ |Ω,μ−1 + ĉm,Ω|ζjd + J − κ−1ζπωζ
∗Ẽ − ε−1 rot(Ψ +Hd)|Ω,ε.

Inserting Φ := Ē − Ẽ ∈
◦
R into (6.4) yields for all Ψ ∈ R that

||Ē − Ẽ||rot ≤ M+,rot,πω(Ẽ, H̃ ;Ψ), (6.5)

where we define the half norm || · ||rot for all Φ ∈ R by

||Φ||2rot := | rotΦ|2Ω,μ−1 +
1
κ
|πωζ

∗Φ|2ω,ε.

To estimate the possibly non-solenoidal part of the error, we decompose Ẽ by the Helmholtz decomposi-
tion (5.5)

Ẽ = ∇ϕ̃+ πẼ ∈ ∇
◦
H1 ⊕ε (

◦
R ∩ ε−1 rotR), rotπẼ = rot Ẽ.

Then, for all Φ ∈ ε−1D

|∇ϕ̃|2Ω,ε = 〈Ẽ,∇ϕ̃〉Ω,ε = 〈Ẽ − Φ,∇ϕ̃〉Ω,ε − 〈div εΦ, ϕ̃〉Ω ≤ M+,div(Ẽ;Φ)|∇ϕ̃|Ω,ε

and hence
|∇ϕ̃|Ω,ε ≤ M+,div(Ẽ;Φ), M+,div(Ẽ;Φ) := |Ẽ − Φ|Ω,ε + ĉp,Ω| div εΦ|Ω.

Here, ĉp,Ω := cp,◦,Ω,ε is the Poincaré constant in the Poincaré inequality

∀ϕ ∈
◦
H1 |ϕ|Ω ≤ ĉp,Ω|∇ϕ|Ω,ε. (6.6)

We recall that
ĉp,Ω ≤ εcp,◦,Ω, cp,◦,Ω < cp,Ω ≤ dΩ

π
.

As Ē already belongs to
◦
R ∩ ε−1 rotR, we have Ē − Ẽ = π(Ē − Ẽ) − ∇ϕ̃ and obtain by orthogonality and

by (5.7), (6.3) for all Ψ ∈ R and all Φ ∈ ε−1D

|Ē − Ẽ|2Ω,ε = |∇ϕ̃|2Ω,ε + |π(Ē − Ẽ)|2Ω,ε ≤ M2
+,div(Ẽ;Φ) + ĉ2m,Ω| rot(Ē − Ẽ)|2Ω,μ−1 ,

||Ē − Ẽ||2 ≤ M2
+,div(Ẽ;Φ) + ĉ2m,Ω||Ē − Ẽ||2rot,
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where || · || is defined by

||Φ||2 := |Φ|2Ω,ε +
ĉ2m,Ω
κ

|πωζ
∗Φ|2ω,ε, Φ ∈ L2

ε .

Let us underline the norm equivalence for Φ ∈ R

|Φ|2
R
≤ ||Φ||2

R
= |Φ|2Ω,ε + | rotΦ|2Ω,μ−1 +

1 + ĉ2m,Ω
κ

|πωζ
∗Φ|2ω,ε

≤
(

1 +
1 + ĉ2m,Ω

κ

)
|Φ|2Ω,ε + | rotΦ|2Ω,μ−1 ≤

(
1 +

1 + ĉ2m,Ω
κ

)
|Φ|2

R
,

where || · ||
R

is defined by

||Φ||2
R

:= ||Φ||2 + ||Φ||2rot, Φ ∈ R,

i.e., ||Φ||2
R

= |Φ|2Ω,ε + | rotΦ|2Ω,μ−1 +
1 + ĉ2m,Ω

κ
|πωζ

∗Φ|2ω,ε.

Lemma 6.2. Let Ẽ ∈
◦
R. Then, for all Φ ∈ ε−1D and all Ψ ∈ R, it holds that

||Ē − Ẽ||2 ≤ ĉ2m,Ω||Ē − Ẽ||2rot + M2
+,div(Ẽ;Φ),

||Ē − Ẽ||2
R
≤ (1 + ĉ2m,Ω)||Ē − Ẽ||2rot + M2

+,div(Ẽ;Φ),

||Ē − Ẽ||rot ≤ M+,rot,πω(Ẽ, H̃;Ψ),

where

M+,rot,πω(Ẽ, H̃;Ψ) = |H̃ − Ψ |Ω,μ + ĉm,Ω|ζjd + J − κ−1ζπωζ
∗Ẽ − ε−1 rotΨ |Ω,ε,

M+,div(Ẽ;Φ) = |Ẽ − Φ|Ω,ε + ĉp,Ω| div εΦ|Ω,

and M+,rot,πω can be replaced by M̃+,rot,πω , if Hd ∈ R.

Remark 6.3. We note that, by the convexity of Ω, all appearing constants admit computable (explicitly given
guaranteed values) upper bounds

ĉp,Ω ≤ εcp,◦,Ω, ĉm,Ω ≤ ε μ cp,Ω, cp,◦,Ω < cp,Ω ≤ dΩ

π
·

Setting Φ := Ē ∈ ε−1D0, we get
M+,div(Ẽ; Ē) = |Ē − Ẽ|Ω,ε.

For Ψ := H̄ ∈ R we see μH̄ = rot Ē + μHd and ε−1 rot H̄ = ζjd + J − κ−1ζπωζ
∗Ē and thus

M+,rot,πω(Ẽ, H̃ ; H̄) = |H̄ − H̃ |Ω,μ +
ĉm,Ω
κ

|πωζ
∗(Ē − Ẽ)|ω,ε ≤ cκ||Ē − Ẽ||rot

by μ(H̄ − H̃) = rot(Ē − Ẽ) and with

cκ :=

(
1 +

ĉ2m,Ω
κ

)1/2

·

For Hd ∈ R and defining Ψ := H̄ −Hd ∈ R we see

M̃+,rot,πω(Ẽ, H̄ −Hd) = M+,rot,πω(Ẽ, H̃ ; H̄).
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Remark 6.4. In Lemma 6.2, the upper bounds are equivalent to the respective norms of the error. More
precisely, it holds

||Ē − Ẽ||rot ≤ inf
Ψ∈R

M+,rot,πω(Ẽ, H̃;Ψ) ≤ M+,rot,πω(Ẽ, H̃ ; H̄) ≤ cκ||Ē − Ẽ||rot,

||Ē − Ẽ||2
R
≤ (1 + ĉ2m,Ω) inf

Ψ∈R

M2
+,rot,πω

(Ẽ, H̃;Ψ) + inf
Φ∈ε−1D

M2
+,div(Ẽ;Φ)

≤ (1 + ĉ2m,Ω)M2
+,rot,πω

(Ẽ, H̃ ; H̄) + M2
+,div(Ẽ; Ē)

≤ c2κ(1 + ĉ2m,Ω)||Ē − Ẽ||2rot + |Ē − Ẽ|2Ω,ε ≤ c2κ(1 + ĉ2m,Ω)||Ē − Ẽ||2
R
.

If Hd ∈ R, the majorant inf
Ψ∈R

M+,rot,πω(Ẽ, H̃;Ψ) can be replaced by inf
Ψ∈R

M̃+,rot,πω(Ẽ;Ψ) and the terms

M+,rot,πω(Ẽ, H̃ ; H̄) by M̃+,rot,πω(Ẽ, H̄ −Hd).

In Lemma 6.2, the upper bounds are explicitly computable except of the unpleasant projector πω. Moreover,
so far we can estimate only the terms

Ē − Ẽ, rot(Ē − Ẽ), πωζ
∗(Ē − Ẽ),

but we are manly interested in estimating the error of the optimal control j̄ − j̃, where

κ(j̄ − j̃) = −πωζ
∗Ē + ζ∗Ẽ + ∇ṽ = ζ∗(Ẽ − Ē) + ∇(ṽ − v̄).

We note

|∇(v̄ − ṽ)|ω,ε ≤ κ|j̄ − j̃|ω,ε + |ζ∗(Ē − Ẽ)|ω,ε. (6.7)

To attack these problems, we note that the projector πω is computed by (5.15) as follows: For ξ ∈ L2
ε(ω) we

solve the weighted Neumann Laplace problem

∀φ ∈ H1
⊥(ω) 〈∇v,∇φ〉ω,ε = −〈ξ,∇φ〉ω,ε

with v = vξ ∈ H1
⊥(ω). Then, πωξ = ξ+∇v. Now, for ṽ ∈ H1(ω) as well as for all φ ∈ H1(ω) and all Υ ∈ ε−1

◦
D(ω)

we have

〈∇(v − ṽ),∇φ〉ω,ε = 〈Υ − ξ −∇ṽ,∇φ⊥〉ω,ε + 〈div εΥ, φ⊥〉ω ≤
(
|Υ − ξ −∇ṽ|ω,ε + ĉp,ω| div εΥ |ω

)
|∇φ|ω,ε,

where φ⊥ ∈ H1
⊥(ω) with ∇φ = ∇φ⊥. Here, ĉp,ω := cp,ω,ε is the Poincaré constant in the Poincaré inequality

∀φ ∈ H1
⊥(ω) |φ|ω ≤ ĉp,Ω|∇φ|ω,ε (6.8)

and we note
ĉp,ω ≤ εcp,ω,

where cp,ω ≤ dω/π if ω is convex. Hence, putting φ := v − ṽ gives

|∇(v − ṽ)|ω,ε ≤ |ξ + ∇ṽ − Υ |ω,ε + ĉp,ω| div εΥ |ω.

Especially for ξ := ζ∗Ẽ with πωζ
∗Ẽ = ζ∗Ẽ + ∇v we obtain immediately

κ(j̃ − j̄) = πωζ
∗(Ē − Ẽ) + ∇(v − ṽ),

κ2|j̄ − j̃|2ω,ε = |πωζ
∗(Ē − Ẽ)|2ω,ε + |∇(v − ṽ)|2ω,ε,

|∇(v − ṽ)|ω,ε ≤ |ζ∗Ẽ + ∇ṽ − Υ |ω,ε + ĉp,ω| div εΥ |ω =: M+,πω(Ẽ, ṽ;Υ ).
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We remark πωζ
∗Ē = ζ∗Ē + ∇v̄ giving

ζ∗(Ē − Ẽ) = πωζ
∗(Ē − Ẽ) + ∇(v − v̄),

|ζ∗(Ē − Ẽ)|2ω,ε = |πωζ
∗(Ē − Ẽ)|2ω,ε + |∇(v̄ − v)|2ω,ε.

This shows

|∇(v − ṽ)|ω,ε, |πωζ
∗(Ē − Ẽ)|ω,ε ≤ κ|j̄ − j̃|ω,ε,

|∇(v̄ − v)|ω,ε, |πωζ
∗(Ē − Ẽ)|ω,ε ≤ |ζ∗(Ē − Ẽ)|ω,ε

and thus (6.7) follows again. We note that as

κ rot(j̄ − j̃) = ζ∗ rot(Ẽ − Ē) = μζ∗(H̃ − H̄)

and hence
κ| rot(j̄ − j̃)|ω,μ−1 = |ζ∗ rot(Ē − Ẽ)|ω,μ−1 = |ζ∗(H̄ − H̃)|ω,μ

we can even estimate j̄ − j̃ in R(ω). More precisely,

κ|j̄ − j̃|2ω,ε + κ2| rot(j̄ − j̃)|2ω,μ−1 ≤ κ|j̄ − j̃|2ω,ε + |H̄ − H̃|2Ω,μ

= κ−1|πωζ
∗(Ē − Ẽ)|2ω,ε + κ−1|∇(v − ṽ)|2ω,ε + | rot(Ē − Ẽ)|2Ω,μ−1

≤ ||Ē − Ẽ||2rot + κ−1M2
+,πω

(Ẽ, ṽ;Υ ).

Next, we find a computable upper bound for the term |ζjd + J − κ−1ζπωζ
∗Ẽ − ε−1 rotΨ |Ω,ε in the majorant

M+,rot,πω(Ẽ, H̃ ;Ψ), simply by inserting πωζ
∗Ẽ = ζ∗Ẽ + ∇ṽ + ∇(v − ṽ), yielding

|ζjd + J − κ−1ζπωζ
∗Ẽ − ε−1 rotΨ |Ω,ε ≤ |ζjd + J − κ−1ζ(ζ∗Ẽ + ∇ṽ) − ε−1 rotΨ |Ω,ε + κ−1|∇(v − ṽ)|ω,ε

≤ |ζj̃ + J − ε−1 rotΨ |Ω,ε + κ−1M+,πω(Ẽ, ṽ;Υ ).

Putting all together shows:

Lemma 6.5. Let Ẽ ∈
◦
R and ṽ ∈ H1(ω). Furthermore, let j̃ := jd − κ−1(ζ∗Ẽ + ∇ṽ) ∈ L2

ε(ω) as well as

H̃ := μ−1 rot Ẽ +Hd ∈ μ−1
◦
D0. Then, for all Φ ∈ ε−1D, all Ψ ∈ R and all Υ ∈ ε−1

◦
D(ω), it holds that

|∇(v̄ − ṽ)|ω,ε ≤ |ζ∗(Ē − Ẽ)|ω,ε + min
{
κ|j̄ − j̃|ω,ε,M+,πω(Ẽ, ṽ;Υ )

}
,

κ| rot(j̄ − j̃)|ω,μ−1 = |ζ∗(H̄ − H̃)|ω,μ ≤ |H̄ − H̃ |Ω,μ = | rot(Ē − Ẽ)|Ω,μ−1 ,

κ|j̄ − j̃|2ω,ε + |H̄ − H̃|2Ω,μ ≤ ||Ē − Ẽ||2rot + κ−1M2
+,πω

(Ẽ, ṽ;Υ ),

||Ē − Ẽ||2 ≤ ĉ2m,Ω||Ē − Ẽ||2rot + M2
+,div(Ẽ;Φ),

||Ē − Ẽ||2
R
≤ (1 + ĉ2m,Ω)||Ē − Ẽ||2rot + M2

+,div(Ẽ;Φ),

||Ē − Ẽ||rot ≤ M+,rot,πω (Ẽ, H̃ ;Ψ) ≤ M+,rot(H̃, j̃;Ψ) + κ−1ĉm,ΩM+,πω(Ẽ, ṽ;Υ ),

where

M+,rot(H̃, j̃;Ψ) := |H̃ − Ψ |Ω,μ + ĉm,Ω|ζj̃ + J − ε−1 rotΨ |Ω,ε,

M+,div(Ẽ;Φ) = |Ẽ − Φ|Ω,ε + ĉp,Ω| div εΦ|Ω,
M+,πω(Ẽ, ṽ;Υ ) = |ζ∗Ẽ + ∇ṽ − Υ |ω,ε + ĉp,ω| div εΥ |ω.

If Hd ∈ R, M+,rot can be replaced by M̃+,rot with

M̃+,rot(Ẽ, j̃;Ψ) := | rot Ẽ − μΨ |Ω,μ−1 + ĉm,Ω|ζj̃ + J − ε−1 rot(Ψ +Hd)|Ω,ε.
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For Υ := πωζ
∗Ē = ζ∗Ē + ∇v̄ ∈ ε−1

◦
D0(ω) we have

M+,πω(Ẽ, ṽ;πωζ
∗Ē) = κ|j̄ − j̃|ω,ε ≤ |ζ∗(Ē − Ẽ)|ω,ε + |∇(v̄ − ṽ)|ω,ε.

For Ψ := H̄ ∈ R we have ε−1 rot H̄ = ζj̄ + J yielding

M+,rot(H̃, j̃; H̄) = |H̄ − H̃|Ω,μ + ĉm,Ω|j̄ − j̃|ω,ε

≤ | rot(Ē − Ẽ)|Ω,μ−1 + ĉm,Ωκ
−1
(
|ζ∗(Ē − Ẽ)|ω,ε + |∇(v̄ − ṽ)|ω,ε

)
.

Again, for Hd ∈ R we get M̃+,rot(Ẽ, j̃; H̄ −Hd) = M+,rot(H̃, j̃; H̄).
A main consequence from the third and the last estimates in the above lemma is the following a posteriori

error estimate result.

Theorem 6.6. Let Ẽ ∈
◦
R and ṽ ∈ H1(ω). Furthermore, let j̃ := jd − κ−1(ζ∗Ẽ + ∇ṽ) ∈ L2

ε(ω) as well as

H̃ := μ−1 rot Ẽ +Hd ∈ μ−1
◦
D0. Then

|||(H̄ − H̃, j̄ − j̃)||| =
(
|H̄ − H̃ |2Ω,μ + κ|j̄ − j̃|2ω,ε

)1/2

≤ M+,rot(H̃, j̃;Ψ) + (κ−1ĉm,Ω + κ−1/2)M+,πω(Ẽ, ṽ;Υ )

holds for all Ψ ∈ R and all Υ ∈ ε−1
◦
D(ω).

Remark 6.7. In Lemma 6.5 and Theorem 6.6, the upper bounds are equivalent to the respective norms of the
error. More precisely, it holds

|||(H̄ − H̃, j̄ − j̃)||| ≤ inf
Ψ∈R

M+,rot(H̃, j̃;Ψ) + (κ−1ĉm,Ω + κ−1/2) inf
Υ∈ε−1

◦
D(ω)

M+,πω(Ẽ, ṽ;Υ )

≤ M+,rot(H̃, j̃; H̄) + (κ−1ĉm,Ω + κ−1/2)M+,πω(Ẽ, ṽ;πωζ
∗Ē)

≤ |H̄ − H̃ |Ω,μ + (ĉm,Ω + 21/2ckκ
1/2)|j̄ − j̃|ω,ε

≤ |H̄ − H̃ |Ω,μ + 3ckκ1/2|j̄ − j̃|ω,ε

≤ (1 + 9c2k)
1/2|||(H̄ − H̃, j̄ − j̃)|||.

Moreover, there exists a constant c > 0, which can be explicitly estimated as well, such that

c−1
(
|H̄ − H̃|2Ω,μ + |Ē − Ẽ|2Ω,ε + |∇(v̄ − ṽ)|2ω,ε

)
≤ inf

Ψ∈R

M2
+,rot(H̃, j̃;Ψ) + inf

Φ∈ε−1D

M2
+,div(Ẽ;Φ) + inf

Υ∈ε−1
◦
D(ω)

M2
+,πω

(Ẽ, ṽ;Υ )

≤ c
(
|H̄ − H̃ |2Ω,μ + |Ē − Ẽ|2Ω,ε + |∇(v̄ − ṽ)|2ω,ε

)
.

If Hd ∈ R, the majorant inf
Ψ∈R

M+,rot(H̃, j̃;Ψ) can be replaced by inf
Ψ∈R

M̃+,rot(Ẽ, j̃;Ψ) and the term

M+,rot(H̃, j̃; H̄) by M̃+,rot(Ẽ, j̃; H̄ −Hd).

By Lemma 6.5, we have fully computable upper bounds for the terms

|j̄ − j̃|ω,ε, | rot(j̄ − j̃)|ω,μ−1 , |πωζ
∗(Ē − Ẽ)|ω,ε

and
|Ē − Ẽ|Ω,ε ≤ ||Ē − Ẽ||, | rot(Ē − Ẽ)|Ω,μ−1 ≤ ||Ē − Ẽ||rot,

i.e., for the terms
|j̄ − j̃|

R(ω)
, |Ē − Ẽ|

R
≤ ||Ē − Ẽ||

R
, |πωζ

∗(Ē − Ẽ)|ω,ε.
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6.2. Lower bounds

To get a lower bound, we use the simple relation in a Hilbert space

∀x |x|2 = max
y

(
2 〈x, y〉 − |y|2

)
= max

y
〈2x− y, y〉 .

Note that the maximum is attained at y = x. Looking at

|||(H̄ − H̃, j̄ − j̃)|||2 = |H̄ − H̃ |2Ω,μ + κ|j̄ − j̃|2ω,ε = | rot(Ē − Ẽ)|2Ω,μ−1 + κ|j̄ − j̃|2ω,ε

we obtain with H := rotΦ and j := ζ∗Φ for some Φ ∈
◦
R by (5.8)

|||(H̄ − H̃, j̄ − j̃)|||2

= | rot(Ē − Ẽ)|2Ω,μ−1 + κ−1|πωζ
∗Ē − ζ∗Ẽ −∇ṽ|2ω,ε

= max
H∈L2

〈2 rot(Ē − Ẽ) −H,H〉Ω,μ−1 + κ−1 max
j∈L2(ω)

〈2(πωζ
∗Ē − ζ∗Ẽ −∇ṽ) − j, j〉ω,ε

≥ 〈2 rot Ē − rot(2Ẽ + Φ), rotΦ〉Ω,μ−1 + κ−1〈2(πωζ
∗Ē − ζ∗Ẽ −∇ṽ) − ζ∗Φ, ζ∗Φ〉ω,ε

= 〈2(jd − κ−1∇ṽ) − κ−1ζ∗(2Ẽ + Φ), ζ∗Φ〉ω,ε + 2〈J, Φ〉Ω,ε − 〈2μHd + rot(2Ẽ + Φ), rotΦ〉Ω,μ−1

= 〈2(ζjd + J − κ−1ζ∇ṽ) − κ−1ζζ∗(2Ẽ + Φ), Φ〉Ω,ε − 〈2μHd + rot(2Ẽ + Φ), rotΦ〉Ω,μ−1

= 〈2(ζj̃ + J) − κ−1ζζ∗Φ,Φ〉Ω,ε − 〈2H̃ + μ−1 rotΦ, rotΦ〉Ω
=: M−(H̃, j̃;Φ).

The maxima are attained at Ĥ := rot(Ē − Ẽ) and ĵ := πωζ
∗Ē − ζ∗Ẽ −∇ṽ. We conclude that the lower bound

is sharp. For this, let ˇ̄v, ˇ̃v ∈ H1 be H1-extensions to Ω of v̄, ṽ. Note that Calderon’s extension theorem holds

since ω is Lipschitz. With a cut-off function χ ∈
◦
C∞(Ω) satisfying χ|ω = 1 we define

Φ := Ē − Ẽ + ∇(χ(ˇ̄v − ˇ̃v)) ∈
◦
R.

Then, rotΦ = rot(Ē − Ẽ) = Ĥ and

ζ∗Φ = ζ∗(Ē − Ẽ) + ∇ζ∗(χ(ˇ̄v − ˇ̃v)) = ζ∗(Ē − Ẽ) + ∇ζ∗(ˇ̄v − ˇ̃v)

= ζ∗(Ē − Ẽ) + ∇(v̄ − ṽ) = πωζ
∗Ē − ζ∗Ẽ −∇ṽ = ĵ.

Alternatively, we can insert j := πωζ
∗Φ into the second maximum, yielding

|||(H̄ − H̃, j̄ − j̃)|||2 ≥ 〈2 rot Ē − rot(2Ẽ + Φ), rotΦ〉Ω,μ−1 + κ−1〈2(πωζ
∗Ē − ζ∗Ẽ −∇ṽ) − πωζ

∗Φ, πωζ
∗Φ〉ω,ε

= 〈2 rot Ē − rot(2Ẽ + Φ), rotΦ〉Ω,μ−1 + κ−1〈2πωζ
∗(Ē − Ẽ) − πωζ

∗Φ, πωζ
∗Φ〉ω,ε

= 〈2(ζjd + J) − κ−1ζπωζ
∗(2Ẽ + Φ), Φ〉Ω,ε − 〈2μHd + rot(2Ẽ + Φ), rotΦ〉Ω,μ−1

= 〈2(ζjd + J) − κ−1ζπωζ
∗(2Ẽ + Φ), Φ〉Ω,ε − 〈2H̃ + μ−1 rotΦ, rotΦ〉Ω

=: M−,πω(Ẽ, H̃;Φ).

In general, this lower bound is not sharp. On the other hand, it is sharp, if and only if ζ∗Ẽ + ∇ṽ ∈ R(πω), if
and only if ζ∗Ẽ + ∇ṽ = πωζ

∗Ẽ, since then we can choose Φ := Ē − Ẽ yielding rotΦ = Ĥ and πωζ
∗Φ = ĵ.

Lemma 6.8. Let Ẽ ∈
◦
R and ṽ ∈ H1(ω). Then

|||(H̄ − H̃, j̄ − j̃)|||2 = max
Φ∈

◦
R

M−(H̃, j̃;Φ) ≥ sup
Φ∈

◦
R

M−,πω(Ẽ, H̃;Φ).
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6.3. Two-sided bounds

Combining Theorem 6.6 and Lemma 6.8, we have

Theorem 6.9. Let Ẽ ∈
◦
R and ṽ ∈ H1(ω). Then

sup
Φ∈

◦
R

M−,πω(Ẽ, H̃ ;Φ) ≤ max
Φ∈

◦
R

M−(H̃, j̃;Φ) = |||(H̄ − H̃, j̄ − j̃)|||2 = |H̄ − H̃|2Ω,μ + κ|j̄ − j̃|2ω,ε

≤
(

inf
Ψ∈R

M+,rot(H̃, j̃;Ψ) + (κ−1ĉm,Ω + κ−1/2) inf
Υ∈ε−1

◦
D(ω)

M+,πω(Ẽ, ṽ;Υ )
)2
,

where

M+,rot(H̃, j̃;Ψ) = |H̃ − Ψ |Ω,μ + ĉm,Ω|ζj̃ + J − ε−1 rotΨ |Ω,ε,

M+,πω(Ẽ, ṽ;Υ ) = |ζ∗Ẽ + ∇ṽ − Υ |ω,ε + ĉp,ω| div εΥ |ω,
M−(H̃, j̃;Φ) = 〈2(ζj̃ + J) − κ−1ζζ∗Φ,Φ〉Ω,ε − 〈2H̃ + μ−1 rotΦ, rotΦ〉Ω .

If Hd ∈ R, M+,rot can be replaced by M̃+,rot with

M̃+,rot(Ẽ, j̃;Ψ) = | rot Ẽ − μΨ |Ω,μ−1 + ĉm,Ω|ζj̃ + J − ε−1 rot(Ψ +Hd)|Ω,ε.

7. Adaptive finite element method

Based on the a posteriori error estimate proven in Theorem 6.6 of the previous section, we present now an
adaptive finite element method (AFEM) for solving the optimal control problem. The method consists of a
successive loop of the sequence

SOLVE → ESTIMATE → MARK → REFINE . (7.1)

For solving the optimal control problem, we employ a mixed finite method based on the lowest-order edge
elements of Nédélec’s first family and piecewise linear continuous elements. Furthermore, the marking of elements
for refinement is carried out by means of the Dörfler marking.

7.1. Finite element approximation

From now on, Ω and ω are additionally assumed to be polyhedral. For simplicity we set ε := 1. Let (hn)
denote a monotonically decreasing sequence of positive real numbers and let

(
Th(Ω)

)
hn

be a nested shape-regular
family of simplicial triangulations of Ω. The nested family is constructed in such a way that μ is elementwise
polynomial on Th(Ω), and that there exists a subset Th(ω) ⊂ Th(Ω) such that

ω =
⋃

T∈Th(ω)

T.

For an element T ∈ Th(Ω), we denote by δT the diameter of T and set δ := max
{
hT : T ∈ Th(Ω)

}
for the

maximal diameter. We consider the lowest-order edge elements of Nédélec’s first family

N1(T ) :=
{
Φ : T → R

3 : Φ(x) = a+ b× x with a, b ∈ R
3
}
,

which give rise to the rot-conforming Nédélec edge element space [13]

◦
Rh :=

{
Φh ∈

◦
R(Ω) : Φh|T ∈ N1(T ) ∀T ∈ Th(Ω)

}
.
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Furthermore, we denote the space of piecewise linear continuous elements by

◦
H1

h :=
{
ϕh ∈

◦
H1(Ω) : ϕh|T (x) = aT + bT · x with aT ∈ R, bT ∈ R

3 ∀T ∈ Th(Ω)
}

and
H1

ω,h :=
{
φh ∈ H1(ω) : φh|T (x) = aT + bT · x with aT ∈ R, bT ∈ R

3 ∀T ∈ Th(ω)
}
.

We formulate now the mixed finite element approximation of the necessary and sufficient optimality condi-

tion (5.16)−(5.18), see also (5.22)−(5.24) resp. (5.25), as follows: Find (Ēh, ūh, v̄h) ∈
◦
Rh ×

◦
H1

h ×H1
ω,h such that,

for all (Φh, ϕh, φh) ∈
◦
Rh ×

◦
H1

h × H1
ω,h, there holds

ã(Ēh, Φh) + b(Φh, ūh) + c(Φh, v̄h) = f(Φh), (7.2)
b(Ēh, ϕh) = 0, (7.3)

c(Ēh, φh) + d(v̄h, φh) = 0, (7.4)

where

ã(Ēh, Φh) = 〈rot Ēh, rotΦh〉Ω,μ−1 + κ−1〈ζ∗Ēh, ζ
∗Φh〉ω, f(Φh) = 〈ζjd + J, Φh〉Ω,ε − 〈Hd, rotΦh〉Ω,

and
b(Φh, ūh) = 〈Φh,∇ūh〉Ω, c(Φh, v̄h) = κ−1〈ζ∗Φh,∇v̄h〉ω, d(v̄h, φh) = κ−1〈∇v̄h,∇φh〉ω .

As in the continuous case (see Rem. 5.7), the existence of a unique solution (Ēh, v̄h, v̄h) ∈
◦
Rh ×

◦
H1

h × H1
ω,h for

the discrete system (7.2)–(7.4) follows from the discrete Ladyzhenskaya–Babuška–Brezzi condition

inf
0�=ϕh∈

◦
H1

h

sup
(Φh,φh)∈

◦
Rh×H1

ω,h

b
(
Φh, ϕh

)
|(Φh, φh)|

R×H1
⊥(ω)

|ϕh|◦
H1

≥ 1, (7.5)

which is obtained, analogously to the continuous case, by setting Φh = ∇ϕh and φh = 0. Note that the inclusion

∇
◦
H1

h ⊂
◦
Rh holds such that every gradient field ∇ϕh of a piecewise linear continuous function ϕh ∈

◦
H1

h is an

element of
◦
Rh. Let us also remark that on the discrete solenoidal subspace of

◦
Rh the following discrete Maxwell

estimate holds:

∃ c > 0 ∀Φh ∈
{
Ψh ∈

◦
Rh : 〈Ψh,∇ψh〉Ω = 0 ∀ψh ∈

◦
H1

h

}
|Φh|Ω ≤ c | rotΦh|Ω

Note that c is independent of h, see e.g. [5]. Having solved the discrete system (7.2)-(7.4), we obtain the finite
element approximations for the optimal control and the optimal magnetic field as follows

j̄h := jd,h − κ−1(Ēh|ω + ∇v̄h) H̄h := μ−1 rot Ēh +Hd,h, (7.6)

see (6.1), where jd,h and Hd,h are appropriate finite element approximations of the shift control jd and the
desired magnetic field Hd, respectively.

7.2. Evaluation of the error estimator

By virtue of Theorem 6.6, the total error in the finite element solution can be estimated by

|||(H̄ − H̄h, j̄ − j̄h)||| ≤ M+,rot(H̄h, j̄h;Ψ) + (κ−1ĉm,Ω + κ−1/2)M+,πω(Ēh, v̄h;Υ ), (7.7)
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for every (Ψ, Υ ) ∈ R(Ω) ×
◦
D(ω), where

M+,rot(H̄h, j̄h;Ψ) = |H̄h − Ψ |Ω,μ + ĉm,Ω|ζj̄h + J − rotΨ |Ω, (7.8)
M+,πω(Ēh, v̄h;Υ ) = |ζ∗Ēh + ∇v̄h − Υ |ω + ĉp,ω| div Υ |ω. (7.9)

We point out that (Ψ, Υ ) ∈ R(Ω)×
◦
D(ω) should be suitably chosen in order to avoid big over estimation in (7.7).

Our strategy is to find appropriate finite element functions for Ψ and Υ , which minimize functionals related to
M+,rot and M+,πω . To this aim, we make use of the rot-conforming Nédélec edge element space without the
vanishing tangential trace condition

Rh :=
{
Ψh ∈ R(Ω) : Ψh|T ∈ N1(T ) ∀T ∈ Th(Ω)

}
and the div-conforming Raviart–Thomas finite element space on the control domain

◦
Dω,h :=

{
Υh ∈

◦
D(ω) : Υh|T ∈ RT 1(T ) ∀T ∈ Th(ω)

}
,

where
RT 1(T ) := {Υ : T → R

3 : Υ (x) = a+ bx with a ∈ R
3, b ∈ R}.

Now, we look for solutions of the finite-dimensional minimization problems

min
Ψh∈Rh

(
|H̄h − Ψh|2Ω,μ + ĉ2m,Ω|ζj̄h + J − rotΨh|2Ω

)
(7.10)

and
min

Υh∈
◦
Dω,h

(
|ζ∗Ēh + ∇v̄h − Υh|2ω + ĉ2p,ω| div Υh|2ω

)
. (7.11)

Evidently, the optimization problems (7.10) and (7.11) admit unique solutions Ψ̄h ∈ Rh and Ῡh ∈
◦
Dω,h. Fur-

thermore, the corresponding necessary and sufficient optimality conditions are given by the coercive variational
equalities

∀Ψh ∈ Rh ĉ2m,Ω〈rot Ψ̄h, rotΨh〉Ω + 〈Ψ̄h, Ψh〉Ω,μ = 〈H̄h, Ψh〉Ω,μ + ĉ2m,Ω〈ζj̄h + J, rotΨh〉Ω

∀Υh ∈
◦
Dω,h ĉ2p,ω〈div Ῡh, div Υh〉ω + 〈Ῡh, Υh〉ω = 〈ζ∗Ēh + ∇v̄h, Υh〉ω .

Taking the optimal solutions of (7.10)–(7.11) into account, we introduce

Mh := M+,rot(H̄h, j̄h; Ψ̄h) + (κ−1ĉm,Ω + κ−1/2)M+,πω(Ēh, v̄h; Ῡh). (7.12)

Then, (7.7) yields
|||(H̄ − H̄h, j̄ − j̄h)||| ≤ Mh. (7.13)

7.3. Dörfler marking

In the step MARK of the sequence (7.1), elements of the simplicial triangulation Th(Ω) are marked for
refinement according to the information provided by the estimator Mh. With regard to convergence and quasi-
optimality of AFEMs, the bulk criterion by Dörfler [3] is a reasonable choice for the marking strategy, which
we pursue here. More precisely, we select a set E of elements such that for some θ ∈ (0, 1) there holds∑

T∈E
MT ≥ θ

∑
T∈Th(Ω)

MT , (7.14)
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where

MT :=|H̄h − Ψ̄h|T,μ + ĉm,Ω|ζj̄h + J − ε−1 rot Ψ̄h|T +
(
κ−1ĉm,Ω + κ−1/2

)
Mω,T

Mω,T :=
{
|ζ∗Ēh + ∇v̄h − Ῡh|T + ĉp,ω| div Ῡh|T if T ∈ Th(ω),
0 if T /∈ Th(ω).

Elements of the triangulation Th(Ω) that have been marked for refinement are subdivided by the newest vertex
bisection.

7.4. Analytical solution

To test the numerical performance of the previously introduced adaptive method, we construct an analytical
solution for the optimal control problem (1.1). Here, the computational domain and the control domain are
specified by

Ω := (−0.5, 1)3 and ω := (0, 0.5)3.

Furthermore, we put ε := 1, κ := 1, and the magnetic permeability is set to be piecewise constant, i.e.

μ :=

{
10 in (−0.5, 0)× (−0.5, 0)× (−0.5, 1),

1 elsewhere.

We introduce the vector field

E(x) :=
μ2(x)
8π2

sin2(2πx1) sin2(2πx2)

⎡
⎣0

0
1

⎤
⎦ ∀x ∈ Ω,

and set
Ē := χ

Ωs
E and H̄ := μ−1 rotE,

where χ
Ωs

stands for the characteristic function on the subset Ωs := Ω \
{
(0, 0.5) × (0, 0.5) × (−0.5, 1)

}
. By

construction, it holds that Ē ∈
◦
R(Ω) ∩ D0(Ω) and H̄ ∈ R(Ω) ∩ μ−1

◦
D0(Ω). The desired magnetic field is set to

be
Hd := χ

Ω\Ωs
H̄ ∈ R(Ω).

Finally, we define the optimal control j̄ ∈
◦
D0(ω) as

j̄(x) := 100

⎡
⎣ sin(2πx1) cos(2πx2)
− sin(2πx2) cos(2πx1)

0

⎤
⎦ ∀x ∈ ω,

and the shift control jd as well as the applied electric current J as

jd := j̄ and J :=

{
rot H̄ − j̄ in ω,

rot H̄ elsewhere.

By construction, we have

rot H̄ = ζj̄ + J, rot Ē = μ(H̄ −Hd) in Ω,

div μH̄ = 0, div Ē = 0 in Ω,

n · μH̄ = 0, n× Ē = 0 on Γ,
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Figure 1. Total error for uniform (green line) and adaptive mesh refinement (blue line). (color
online)

and
◦
D0(ω) � j̄ = jd = jd −

1
κ
πωζ

∗Ē,

from which it follows that j̄ is the optimal control of (1.1) with the associated optimal magnetic field H̄ and
the adjoint field Ē.

7.5. Numerical results

With the constructed analytical solution at hand, we can now demonstrate the numerical performance of
the adaptive method using the proposed error estimator Mh defined in (7.12). Here, we used a moderate value
θ = 0.5 for the bulk criterion in the Dörfler marking. Let us also point out that all numerical results were
implemented by a Python script using the Dolphin Finite Element Library [11]. In the first experiment, we
carried out a thorough comparison between the total error |||(H̄ − H̄h, j̄− j̄h)||| resulting from the adaptive mesh
refinement strategy and the one based on the uniform mesh refinement. The result is plotted in Figure 1, where
DoF stands for the degrees of freedom in the finite element space. Based on this result, we conclude a better
convergence performance of the adaptive method over the standard uniform mesh refinement. Next, in Table 1,
we report on the detailed convergence history for the total error including the value for Mh computed in every
step of the adaptive mesh refinement method. It should be underlined that the Maxwell and Poincaré constants
ĉm,Ω and ĉp,ω appear in the proposed estimator Mh (see (7.8) and (7.9) and (7.12)). We do not neglect these
constants in our computation, and there is no further unknown or hidden constant in Mh. By the choice of the
magnetic permeability μ and the computational domains Ω,ω (see Rem. 6.3), the constants ĉm,Ω, ĉp,ω can be
estimated as follows:

ĉm,Ω ≤ 15
√

3
π

and ĉp,ω ≤
√

3
2π

·

These values were used in the computation of Mh.
Let us give a detailed explanation for our numerical computation: Using the iterative MinRes-FEniCS-solver,

we solved the linear system (7.2)−(7.4). Then, the optimal current density j̄h and the optimal magnetic field
H̄h were computed by the formula (7.6), where jd,h and Hd,h were obtained by the projection of jd and Hd to
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Figure 2. Adaptive mesh.

the Nédélec edge element space. Hereafter, we computed Ψ̄h ∈ Rh and Ῡh ∈
◦
Dω,h by solving

∀Ψh ∈ Rh 〈rot Ψ̄h, rotΨh〉Ω +
π2

675
〈Ψ̄h, Ψh〉Ω,μ =

π2

675
〈H̄h, Ψh〉Ω,μ + 〈ζj̄h + J, rotΨh〉Ω

∀Υh ∈
◦
Dω,h 〈div Ῡh, div Υh〉ω +

4π2

3
〈Ῡh, Υh〉ω =

4π2

3
〈ζ∗Ēh + ∇v̄h, Υh〉ω .

These discrete systems were solved by the FEniCS direct solver MUMPS (MUltifrontal Massively Parallel sparse
direct Solver). Finally, we obtain the estimator

Mh := M+,rot(H̄h, j̄h; Ψ̄h) +

(
15

√
3
π

+ 1

)
M+,πω(Ēh, v̄h; Ῡh),

where M+,rot and M+,πω are defined as in (7.8) and (7.9).
As we can observe in Table 1, Mh severs as an upper bound for the total error. This is in accordance with

our theoretical findings.
In Figure 2, we plot the finest mesh as the result of the adaptive method. It is noticeable that the adaptive

mesh refinement is mainly concentrated in the control domain. Moreover, the computed optimal control and
optimal magnetic field are depicted in Figure 3. We see that they are already close to the optimal one.

In our second test, we carried out a numerical experiment by making use of the exact total error given by
the term |||(H̄− H̄h, j̄− j̄h)||| as the estimator (exact estimator) in the adaptive mesh refinement. More precisely,
we replaced MT in the Dörfler marking strategy (7.14) by the exact total error over each element T ∈ Th(Ω).
Figure 4 depicts the computed total error resulting from this adaptive technique compared with our method.
Here, the convergence performance of the mesh refinement strategy using the exact estimator turns out to be
quite similar to the one based on the estimator Mh. Also, the resulting adaptive meshes from these two methods
exhibit a similar structure, see Figure 5. Based on these numerical results, we finally conclude that the proposed
a posteriori estimator Mh is indeed suitable for an adaptive mesh refinement strategy, in order to improve the
convergence performance of the finite element solution towards the optimal one.
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Table 1. Convergence history.

D.o.f. Error in H Error in j Total error Mh

4940 0.86 3.16 3.27 63.44
5436 0.69 3.03 3.11 58.52
6280 0.56 2.47 2.53 46.16
7480 0.52 1.67 1.75 29.98
9506 0.49 1.84 1.90 33.78

16 593 0.41 1.80 1.85 27.78
27 622 0.32 1.67 1.70 22.18
42 000 0.28 1.60 1.62 20.13
62 424 0.23 1.33 1.35 16.75
92 730 0.20 0.96 0.98 12.41
150 802 0.17 0.87 0.87 10.62
248 269 0.14 0.75 0.76 9.10
414 395 0.12 0.63 0.64 7.62
674 856 0.10 0.51 0.52 6.31

Table 2. Convergence history for the adaptive refinement using the exact estimator.

D.o.f. Error in H Error in j Total error
4940 0.86 3.16 3.27
5372 0.70 3.03 3.11
5956 0.57 2.59 2.65
6866 0.53 1.65 1.74
7975 0.49 1.80 1.87

13 420 0.46 1.69 1.75
21 122 0.47 1.77 1.83
31 404 0.46 1.66 1.72
44 722 0.49 1.42 1.48
62 092 0.38 1.09 1.16
88 972 0.30 0.88 0.93
129 694 0.27 0.84 0.88
215 804 0.21 0.72 0.75
334 072 0.19 0.59 0.62
538 189 0.16 0.49 0.52

Figure 3. Computed optimal control (left plot) and optimal magnetic field (right plot) on the
finest adaptive mesh.
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Figure 4. Total error for the adaptive refinement strategies based on the exact estimator (red
line) and the estimator Mh (blue line). (color online)

Figure 5. Adaptive mesh resulting from the estimator Mh (upper plot) and the exact estimator
(lower plot). (color online)
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[12] O. Mali, P. Neittaanmäki and S. Repin, Accuracy verification methods, theory and algorithms. Springer (2014).
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[15] S. Nicaise, S. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields. Comput. Methods Appl. Math.
14 (2014) 555–573.
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