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CONVERGENCE ANALYSIS OF A BDF2 / MIXED FINITE ELEMENT
DISCRETIZATION OF A DARCY–NERNST–PLANCK–POISSON SYSTEM
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Abstract. This paper presents an a priori error analysis of a fully discrete scheme for the numerical
solution of the transient, nonlinear Darcy–Nernst–Planck–Poisson system. The scheme uses the second
order backward difference formula (BDF2) in time and the mixed finite element method with Raviart–
Thomas elements in space. In the first step, we show that the solution of the underlying weak continuous
problem is also a solution of a third problem for which an existence result is already established. Thereby
a stability estimate arises, which provides an L∞ bound of the concentrations /masses of the system.
This bound is used as a level for a cut-off operator that enables a proper formulation of the fully
discrete scheme. The error analysis works without semi-discrete intermediate formulations and reveals
convergence rates of optimal orders in time and space. Numerical simulations validate the theoretical
results for lowest order finite element spaces in two dimensions.
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1. Introduction

The Stokes–Nernst–Planck–Poisson (SNPP) system is a well known continuum model describing the dynam-
ics of dilute electrolytes and dissolved charged particles in small channels (e.g., [19, 22]) and thus also within
a porous medium at the pore scale. [32] used the method of two-scale convergence (e.g., [10]) in a periodic
setting to derive averaged systems that are valid on an averaged scale, one of which is the subject of this pa-
per. The main tasks of periodic homogenization is the study and the averaging of partial differential equations
with rapidly oscillating coefficients, in our case, induced by an idealized, periodic microstructure. By means of
a limiting process, effective partial differential equations are obtained that describe the average macroscopic
behavior of the considered quantities. The derived equations contain smooth effective coefficients, which are
determined by means of the solutions of auxiliary problems defined on reference cells representing the local
heterogeneities of the microscale. With an equivalent system at hand, valid on a larger scale, one may conclude
microscopic processes from macroscopic observations or investigate the impact of microscale phenomena on
large-scale behavior.
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The SNPP system and related models are the topic of ongoing research in numerics [2,16], numerical analy-
sis [26], analysis [5, 18, 33], and homogenization theory [32, 23, 24, 34, 21, 2].

The considered mathematical model reads as follows: Let Ω ⊂ R
d, d ∈ {2, 3} be a polygonally bounded

convex domain with boundary ∂Ω, let ν denote the outward unit normal, and let J := ]0, T [ be a time interval,
where T > 0 denotes the end time. The system (1.1) that we refer to as the Darcy–Nernst–Planck–Poisson
(DNPP) system reads

u = −K∇p + KD−1E(c+ − c−) in J × Ω, (1.1a)
∇ · u = 0 in J × Ω, (1.1b)

j± = −D∇c± + uc± ± Ec± in J × Ω, (1.1c)
∂tc

± + ∇ · j± = r±(t, x, c+, c−) in J × Ω, (1.1d)
E = −D∇φ in J × Ω, (1.1e)

∇ · E = c+ − c− + σ in J × Ω, (1.1f)
u · ν = 0 on J × ∂Ω, (1.1g)

c± = 0 on J × ∂Ω, (1.1h)
φ = φD on J × ∂Ω, (1.1i)

c± = c±,0 on {0} × Ω (1.1j)

with c±,0 satisfying the boundary conditions (1.1h). The notation ± (and ∓) is used as an abbreviation in
order to formulate equations for j+ and j− (and c+ and c−, respectively) in one line: all the corresponding
upper signs have to be interpreted as the first equation and all the lower signs as the second equation. The
averaged physical quantities in (1.1) are the fluid velocity u, the pressure p, the mass fluxes j+, j− of positively
and negatively charged dissolved chemical species, which are represented by their concentrations c+ and c−,
respectively, the electric field E and the electric potential φ. Note that the pressure (pressure head) is defined
only up to a constant due to the Neumann condition (1.1g). The stationary, constant coefficients D, K are
effective (symmetric) tensors of second order, the closed-form expression of which is provided by averaging the
solutions of so-called cell problems [16, 32]. These can be interpreted as diffusion and permeability tensors,
respectively. Here, we consider these two coefficients given. The reaction rates r± = r±(t, x, c+, c−) depend on
(t, x) ∈ J × Ω since potential source or sink terms are incorporated in this term.

An outline of this article is as follows: In Section 2, the mixed weak formulation of the DNPP system (1.1) is
introduced. The equivalence of this formulation to another weak (semi-mixed) formulation under additional
mild regularity assumptions is shown. For the latter, the well-posedness and essential boundedness of the
concentrations has been established in literature. This boundedness allows the definition of a cut-off operator
that is used to define the discrete scheme, which is the topic of Section 3. The approximation quality of this
numerical scheme is investigated in terms of an a priori analysis of the discretization error in Section 4. The
main result of this article is given in Theorem 4.6: the estimate of the discretization errors in terms of time
step size and mesh fineness. Section 5 compares numerically estimated orders of convergence with those derived
from utilizing the BDF1 and BDF2 approximation in time with the lowest Raviart–Thomas elements in space.

2. Weak problem

In this section, we introduce the mixed weak formulation of the DNPP system (1.1) on which our discrete
scheme will be based, cf. Figure 1. Subsequently, we prove that the solution of this mixed problem satisfies
another weak (semi-mixed) formulation; well-posedness and essential boundedness of the concentrations has
been shown in this context [18]. This boundedness allows the definition of a cut-off operator used in defining
the discrete scheme.
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Figure 1. Roadmap for proof of well-posedness of Problem 2.2 and definition of Problem 3.3.

2.1. Preliminaries

We use the standard notation for Sobolev spaces [1,14]. Let Lp(Ω) denote the space of Lebesgue-measurable
functions, which pth power is Lebesgue-integrable on Ω. Moreover, in the quotient space L2(Ω)/R two elements
of L2(Ω) are identified if and only if their difference is constant. For k ∈ N0, let Hk(Ω) be the set of k-times
weakly differentiable functions in L2(Ω) with weak derivatives in L2(Ω), equipped with the usual scalar prod-
uct ( · , · )Hk(Ω), associated norm ‖ · ‖Hk(Ω), and seminorm | · |Hk(Ω) ([13], cf., p. 483). Let the space H1/2(∂Ω)
contain those functions on the boundary ∂Ω for which the norm (cf. [11])

‖v‖2
H1/2(∂Ω) :=

∫
∂Ω

|v(x)|2 dsx +
∫

∂Ω

∫
∂Ω

|v(x) − v(y)|2

|x − y|d
dsx dsy

is finite, let H−1/2(∂Ω) denote its dual space, and let the duality pairing be denoted by 〈 · , · 〉H−1/2(∂Ω),H1/2(∂Ω).

We define by Hk(Ω) := (Hk(Ω))d = Hk(Ω; Rd) the space of vector-valued functions v = (v1, . . . , vd)
T : Ω → R

d,
whose components are in Hk(Ω) equipped with the norm and the scalar product

‖v‖2
Hk(Ω)

:=
d∑

i=1

‖vi‖2
Hk(Ω) and (v , w)Hk(Ω) :=

d∑
i=1

(vi , wi)Hk(Ω), (2.1)

respectively. Furthermore, let Hdiv(Ω) := {v ∈ L2(Ω); ∇ · v ∈ L2(Ω)}. With the scalar product
(v1 , v2)Hdiv(Ω) = (v1 , v2)L2(Ω) + (∇ · v1 , ∇ · v2)L2(Ω) and the induced norm ‖ · ‖2

Hdiv(Ω)
= (· , ·)Hdiv(Ω),

the space Hdiv(Ω) is a Hilbert space. For L2(Ω) or L2(Ω) we simply write ‖ · ‖ and (· , ·) .
We continue with the definition of spaces containing time-dependent functions. With V being a Banach space,

the space Lp(J ; V ) consists of Bochner-measurable, V -valued functions v : J 	 t 
→ v(t) ∈ V such that the norm

‖v‖Lp(J;V ) :=

{(∫
J ‖v(t)‖p

V dt
)1/p

, 1 ≤ p < ∞
ess supt∈J ‖v(t)‖V , p = ∞

}

is finite, which makes Lp(J ; V ) a Banach space. For the case of V = Lp(Ω), we identify Lp(J ×Ω) = Lp(J ; V ).
For k ∈ N0, let Hk(J ; V ) be the set of functions in L2(J ; V ) that are k-times weakly differentiable with respect
to time with weak derivatives ∂k

t v in L2(J ; V ). Its norm is given by

‖v‖2
Hk(J;V ) :=

k∑
j=0

∫
J

‖∂k
t v(t)‖2

V dt.

The notation v(t, x) is identified with v(t)(x).
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We recall the trace operator γ0 : H1(Ω) 	 w 
→ w|∂Ω ∈ H1/2(∂Ω) and the normal trace operator γν :
Hdiv(Ω) 	 v 
→ v · ν|∂Ω ∈ H−1/2(∂Ω), which are both linear, continuous, and surjective. We also recall
Green’s formula: let v ∈ Hdiv(Ω), then v · ν|∂Ω ∈ H−1/2(∂Ω) and there holds

∀w ∈ H1(Ω), (∇ · v , w) + (v , ∇w) = 〈v · ν , w〉H−1/2(∂Ω),H1/2(∂Ω). (2.2)

If, in addition, v · ν|∂Ω ∈ L2(∂Ω) the duality pairing in (2.2) can be identified by
∫

∂Ω
v ·ν w = (v · ν , w)L2(∂Ω).

We define the following constrained ansatz spaces:

Hdiv
a (Ω) :=

{
v ∈ Hdiv(Ω); v · ν = a on ∂Ω

}
, H1

b (Ω) :=
{

w ∈ H1(Ω); w = b on ∂Ω
}

,

where a ∈ H−1/2(∂Ω) and b ∈ H1/2(∂Ω). The spaces Hdiv
0 (Ω) and H1

0 (Ω) therefore consist of functions with
vanishing normal trace and vanishing trace, respectively.

We make frequent use of the identity (a + b)2 ≤ 2a2 + 2b2 and the inequality ab ≤ δ
2a2 + 1

2δ b2 for positive
numbers a, b, and δ > 0. Furthermore, we tacitly apply the Hölder and Cauchy–Schwarz inequalities.

2.2. Continuous formulation

The hypotheses imposed on the data of system (1.1) are as follows:

Hypotheses 2.1 (Hypotheses on the data).

(H1) The inverse of the (constant) coefficient D ∈ R
d,d is symmetric, positive definite, and bounded, i.e., there

exist strictly positive constants Dα, D∞, such that

∀ξ ∈ R
d, ξ ·D−1 ξ ≥ Dα |ξ|2 ,

∀ξ1, ξ2 ∈ R
d, ξ1 · D−1 ξ2 ≤ D∞ |ξ1| |ξ2| .

(H2) Hypothesis (H1) holds for the (constant) coefficient K with the constants Kα, K∞.
(H3) The (possibly nonlinear) coefficients r± are globally Lipschitz continuous in (c+, c−).
(H4) The initial data c±,0 are bounded and nonnegative, i.e., c±,0 ∈ L∞(Ω) and c±,0(x) ≥ 0 for a.e. x ∈ Ω.
(H5) The coefficient φD is bounded in H1(J ; H1/2(∂Ω)).
(H6) The coefficient σ is bounded in L∞(J × Ω).

With (1.1) being a model obtained by periodic homogenization, the coefficients D and K have closed-form
expressions and can be obtained by solving auxiliary problems on a reference cell [16, 32]. The symmetry and
positive definiteness of these upscaled tensors as postulated in (H1) and (H2) is naturally satisfied [10]. Note
that the symmetry and positive definiteness of the matrices in hypotheses (H1) and (H2) imply the symmetry
and positive definiteness of their inverses (cf. [20], Thm. 4.135). Hypothesis (H3) is reasonable, since on the
one hand, rates obeying the law of mass action are polynomials in c+ and c−, and on the other hand, c± is
nonnegative and essentially bounded, as shown below. The continuity in time of φD, i.e. φD ∈ C(J ; H1/2(∂Ω)) ⊂
H1(J ; H1/2(∂Ω)) as implicitly postulated in (H5), will be required in the discrete problem in order to make
a point-wise evaluation at tn ∈ J meaningful. In the homogenization context, σ is also an effective coefficient, the
boundedness of which as postulated in (H6) directly follows from the boundedness of its associated pore-scale
quantity.

The error analysis of this article deals with the discretization of the following mixed weak continuous problem
that is derived by multiplication of the flux equations of (1.1) by the inverse tensors and using the Green
formula (2.2):

Problem 2.2 (Mixed weak continuous DNPP problem).
Let D, K, r±, c±,0, φD, σ be given and let (H1)–(H6) hold. Seek (u, p, j+, c+, j−, c−, E, φ) with

u ∈ L2(J ; Hdiv
0 (Ω)), p ∈ L2(J ; L2(Ω)/R), j± ∈ L2(J ; Hdiv(Ω)), c± ∈ L∞(J × Ω) ∩ H1(J ; L2(Ω)),
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E ∈ L∞(J ; Hdiv(Ω)), φ ∈ L∞(J ; L2(Ω)) such that for a.e. t ∈ J , ∀v ∈ Hdiv(Ω), ∀y ∈ Hdiv
0 (Ω), w ∈ L2(Ω),

−
(
K−1u(t) , y

)
+ (∇ · y , p(t)) = −

(
D−1E(t)

(
c+(t) − c−(t)

)
, y
)
, (2.3a)

(∇ · u(t) , w) = 0, (2.3b)
−
(
D−1j±(t) , v

)
+
(∇ · v , c±(t)

)
+
(
D−1

(
u(t) ± E(t)

)
c±(t) , v

)
= 0, (2.3c)(

∂tc
±(t) , w

)
+
(∇ · j±(t) , w

)
=
(
r±(t, x, c+(t), c−(t)) , w

)
, (2.3d)

−
(
D−1E(t) , v

)
+ (∇ · v , φ(t)) = 〈v · ν , φD(t)〉H−1/2(∂Ω),H1/2(∂Ω), (2.3e)

(∇ · E(t) , w) =
(
c+(t) − c−(t) + σ(t) , w

)
(2.3f)

with c± satisfying ∀w ∈ L2(Ω),
(
c±(0) − c±,0 , w

)
= 0.

System (2.3) is the dual mixed formulation of the DNPP system (1.1). At this point it is not clear whether
Problem 2.2 is well-posed. To handle this situation, we first introduce another weak problem for which well-
posedness has been shown in [18] and subsequently prove the equivalence of both problems. The second weak
problem derives from the semi-mixed formulation of (1.1c), (1.1d), (1.1e), (1.1f) and reads as follows:

Problem 2.3 (Semi-mixed weak continuous DNPP problem).
Let D, K, r±, c±,0, φD, σ be given and let (H1)–(H6) hold. Seek (u, p, c+, c−, φ) with u ∈ L2(J ; Hdiv

0 (Ω)),
p ∈ L2(J ; L2(Ω)/R), c± ∈ L∞(J × Ω) ∩ L2(J ; H1

0 (Ω)) ∩ H1(J ; H−1(Ω)), φ ∈ L∞(J ; H2(Ω) ∩ H1
φD

(Ω)) such
that for a.e. t ∈ J , ∀y ∈ Hdiv

0 (Ω), ∀w ∈ L2(Ω), ∀z ∈ H1
0 (Ω),

−
(
K−1u(t) , y

)
+ (∇ · y , p(t)) =

(
(c+(t) − c−(t))∇φ , y

)
, (2.4a)

(∇ · u(t) , w) = 0, (2.4b)〈
∂tc

±(t) , z
〉

H−1(Ω),H1
0 (Ω)

+
(
D∇c±(t) , ∇z

)
−
(
u(t) c±(t) , ∇z

)
±
(
c±(t)D∇φ(t) , ∇z

)
(2.4c)

±
(
c±(t)D∇φ(t) , ∇z

)
=
(
r±(t, x, c+(t), c−(t)) , z

)
,

−(∇ · D∇φ(t) , w) =
(
c+(t) − c−(t) + σ(t) , w

)
(2.4d)

with c± satisfying ∀w ∈ L2(Ω),
(
c±(0) − c±,0 , w

)
= 0.

We summarize the most important results of [18] in the following theorem, which, in particular, provides an ex-
plicit bound for

∑
i∈{+,−} ‖c±‖L∞(J×Ω) that is required for the definition of the discrete scheme of Problem 2.2:

Theorem 2.4 (Well-posedness, nonnegativity, and explicit bound). Let (u, p, c+, c−, φ) be the solution of Prob-
lem 2.3 and let (H1)−(H6) hold. Then the following statements hold:

(i) The solution (u, p, c+, c−, φ) uniquely exists.
(ii) The partial solutions c± are nonnegative, i.e., c±(t, x) ≥ 0 for a.e. (t, x) ∈ J × Ω.
(iii) The following estimate holds for arbitrary end time T ∈ ]0,∞[ :

∑
i∈{+,−}

‖ci‖L∞(J×Ω) ≤ C(c±,0, σ, Ω, T ), (2.5)

with C(c±,0, σ, Ω, T ) > 0 depending only on ‖c±,0‖L∞(Ω), on ‖σ‖L∞(J×Ω), on coefficients of the Sobolev
embedding theorem, and on the end time T .
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Proof. (See [18], Thms. 3.4, 3.10, 3.11 and Rems. 2.2, 3.7). Item (iii) can be deduced as follows: from [18],
Theorem 3.5, we have∑

i∈{+,−}
‖ci‖L∞(J×Ω) ≤ CM

∑
i∈{+,−}

‖ci‖L2(J×Ω) + 4
∑

i∈{+,−}
‖ci,0‖L∞(Ω)

with a constant CM > 0 depending only on ‖σ‖L∞(J×Ω) and on coefficients of the Sobolev embedding theorem.
Application of Gronwall’s lemma to the parabolic estimate ([18], Rem. 3.6)

dt

∑
i∈{+,−}

‖ci(t)‖ +
∑

i∈{+,−}
‖∇ci(t)‖ ≤ 2

Dα
‖σ‖L∞(J×Ω)

∑
i∈{+,−}

‖ci(t)‖

yields

∀t ∈ J,
∑

i∈{+,−}
‖ci(t)‖ ≤ exp

(
2T ‖σ‖L∞(J×Ω)

Dα

) ∑
i∈{+,−}

‖ci,0‖,

which, inserted in the first equation, closes the proof. �

In the next two propositions, we show that the solution of the mixed weak continuous DNPP problem solves
the semi-mixed version and vice versa under additional mild regularity assumptions for c±. We conclude that
Theorem 2.4, in particular the essential boundedness of the concentrations (iii), holds for the solution of the
mixed continuous problem. The idea stems from the paper of [28].

Proposition 2.5 (Solution of Problem 2.2 solves Problem 2.3).
Let (u, p, j+, c+, j−, c−, E, φ) be a solution of Problem 2.2. Then the partial solution (u, p, c+, c−, φ) is a so-

lution of Problem 2.3. In particular, c± ∈ L2(J ; H1
0 (Ω)) and φ ∈ L∞(J ; H2(Ω) ∩ H1

φD
(Ω)) holds.

In what follows, we denote by D(Ω) the space of infinitely differentiable functions with compact support
on Ω, and by D′(Ω) the space of distributions (cf., [13], Sect. B.2).

Proof of Proposition 2.5. Testing (2.3e) with v ∈ D(Ω)d ⊂ Hdiv(Ω) yields

∀v ∈ D(Ω)d,
(
D−1E(t) , v

)
=

(2.3e)
(φ(t) , ∇ · v) = −〈∇φ(t) , v〉D′(Ω)d,D(Ω)d , (2.6)

which is the defining equation for ∇φ(t), i.e., ∇φ(t) in the distributional sense is a function: ∀t ∈ J ,
−∇φ(t) = D−1E(t). Since ‖D−1E‖L∞(J;L2(Ω)) < ∞ due to E ∈ L∞(J ; L2(Ω)) and (H1), it follows that
∇φ ∈ L∞(J ; L2(Ω)). From φ ∈ L∞(J ; L2(Ω)) given, we consequently infer that φ ∈ L∞(J ; H1(Ω)). Owing to
D(Ω) ⊂ L2(Ω) dense (cf. [13], Thm. B.14 and [39], Cor. 1.1.1), the variational equation

∀v ∈ L2(Ω),
(
D−1E(t) , v

)
= −(∇φ(t) , v) (2.7)

holds. Next, we show that φ(t) = φD(t) on ∂Ω for a.e. t ∈ J , which was demanded implicitly in Problem 2.3
by the constrained ansatz space H1

φD
(Ω) and explicitly in Problem 2.2 by a boundary integral: using the fact

that (2.7) also holds for v ∈ Hdiv(Ω) ⊂ L2(Ω) and application of Green’s formula yields

∀v ∈ Hdiv(Ω), 〈v · ν , φ(t)〉H−1/2(∂Ω),H1/2(∂Ω) =
(2.2)

(φ(t) , ∇ · v) + (∇φ(t) , v)

=
(2.7)

(φ(t) , ∇ · v) −
(
D−1E(t) , v

)
=

(2.3e)
〈v · ν , φD(t)〉H−1/2(∂Ω),H1/2(∂Ω).

In order to prove that φ(t) is also in H2(Ω), we test (2.3f) with w ∈ D(Ω) ⊂ L2(Ω):

∀w ∈ D(Ω),
(
c+(t) − c−(t) + σ(t) , w

)
=

(2.3f)
(∇ · E(t) , w)

= −(E(t) , ∇w) =
(2.7)

(D∇φ(t) , ∇w) = −〈∇ ·D∇φ(t) , w〉D′(Ω),D(Ω),
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which shows that the distributional divergence of D∇φ(t) is a function. Because c± and σ are element of
L∞(J ; L2(Ω)) from assumption and due to (H6), respectively, we conclude—taking the previous considerations
into account—that φ ∈ L∞(J ; H2(Ω) ∩ H1

φD
(Ω)). Thus φ(t) is a partial solution of (2.4d) for a.e. t ∈ J .

With (2.7) and the fact that c± ∈ L∞(J×Ω), the mixed variational subsystems (2.4a), (2.4b) and (2.3a), (2.3b)
coincide. Hence, (u(t), p(t)) ∈ Hdiv

0 (Ω) × L2(Ω)/R is also a partial solution of (2.4a), (2.4b).
It remains to show that c±(t) are partial solutions of (2.4c). We test (2.3c) with v ∈ D(Ω)d ⊂ Hdiv(Ω):

∀v ∈ D(Ω)d,
(
D−1

(
j±(t) −

(
u(t) ± E(t)

)
c±(t)

)
, v
)

=
(2.3c)

(
c±(t) , ∇ · v

)
= −

〈∇c±(t) , v
〉
D′(Ω)d,D(Ω)d ,

(2.8)
i.e., ∇c±(t) in the distributional sense is a function. It holds ∇c±(t) ∈ L2(Ω) and thus c±(t) ∈ H1(Ω) for
a.e. t ∈ J due to (H1) and c±(t) ∈ L∞(Ω) for a.e. t ∈ J . In particular, (2.8) also holds in the L2(Ω) sense.
With this result, c± ∈ L2(J ; H1(Ω)) can be shown:

‖c±‖2
L2(J;H1(Ω)) =

(2.8)
‖c±‖2

L2(J×Ω) +
∫

J

∥∥∥D−1
(
j± −

(
u ± E

)
c±
)
(s)
∥∥∥2

ds

≤ ‖c±‖2
L2(J×Ω) + 2‖D−1‖2

L∞(Ω)

(
‖j±‖2

L2(J×Ω) + ‖u ± E‖2
L2(J×Ω)‖c

±(t)‖2
L∞(J×Ω)

)
< ∞.

It remains to show that c± satisfies the homogeneous Dirichlet boundary conditions: Testing (2.8) with v ∈
Hdiv(Ω) ⊂ L2(Ω) and using Green’s formula yields

∀v ∈ Hdiv(Ω),
〈
v · ν , c±(t)

〉
H−1/2(∂Ω),H1/2(∂Ω)

= 0,

i.e. c±(t) ∈ H1
0 (Ω) holds for a. e. t ∈ J .

Equation (2.3c) also holds for v ∈ D(Ω)d ⊂ Hdiv
0 (Ω). We test (2.3c) with v = DT∇w, where w ∈ D(Ω),

use (H1), and apply Green’s formula to the first and the second term:

∀w ∈ D(Ω),
(∇ · j±(t) , w

)
=
(
D∇c±(t) , ∇w

)
−
(
(u(t) ± E(t))c±(t) , ∇w

)
. (2.9)

Note that the second scalar product is meaningful due to the above shown regularity. Since D(Ω) ⊂ L2(Ω), we
may substitute (2.9) into (2.3d):

∀w ∈ D(Ω),
(
∂tc

±(t) , w
)

+
(
D∇c±(t) , ∇w

)
−
(
(u(t) ± E(t))c±(t) , ∇w

)
=
(
r±(t) , w

)
(2.10)

for a.e. t ∈ J . Since D(Ω) ⊂ H1
0 (Ω) dense with respect to ‖ · ‖H1(Ω) ([14], Sect. 5.2.2), (2.10) also holds

for w ∈ H1
0 (Ω). Using that E(t) = −D∇φ(t) holds in L2(Ω) for a.e. t ∈ J , as shown above, and noting that

∀w ∈ H1
0 (Ω),

(
∂tc

±(t) , w
)

=
〈
∂tc

±(t) , w
〉

H−1(Ω),H1
0 (Ω)

,

since ∂tc
±(t) ∈ L2(Ω) by the definition of Problem 2.2 and (H1

0 (Ω), L2(Ω), H−1(Ω)) is a Gelfand triple, it
follows that the partial solutions c±(t) of Problem 2.2 solve the semi-mixed variational equation (2.4c) of
Problem 2.3. �

For the reverse direction of Proposition 2.5—i.e. the solution of Problem 2.2 solves Problem 2.3—we need to
ask for additional regularity on the concentrations c±:

Hypotheses 2.6 (Hypothesis on the concentrations).

(H7) The partial solution c± of Problem 2.3 is bounded in L2(J ; H2(Ω)).

If Hypothesis (H7) follows naturally from Problem 2.3 is unclear at this point. The smoothness as of (H7)
is contained in (H9) in the case of optimal convergence for c± in the numerical scheme except for lowest-order
elements.
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Proposition 2.7 (Solution of Problem 2.3 solves Problem 2.2). Let (u, p, c+, c−, φ) be a solution of Problem 2.3
and let

j± := −D∇c± + uc± ± Ec± , E := −D∇φ

in the L∞(J ; L2(Ω)) sense, and let (H7) hold. Then (u, p, j+, c+, j−, c−, E, φ) is a solution of Problem 2.2. In
particular, c± ∈ H1(J ; L2(Ω)).

Proof. The regularity E ∈ L∞(J ; Hdiv(Ω)) follows immediately from that of φ and (H1). Substituting the
definition of the flux E into (2.4d) yields (2.3f). Testing the definition of E pointwise in t ∈ J with v ∈
Hdiv(Ω) ⊂ L2(Ω) yields

∀v ∈ Hdiv(Ω),
(
D−1E(t) , v

)
= −(∇φ(t) , v) = (φ(t) , ∇ · v) − 〈v · ν , φ(t)〉H−1/2(∂Ω),H1/2(∂Ω) ,

where (H1) and Green’s formula was used. This gives (2.3e) since φ(t) ∈ H1
φD

(Ω). Equations (2.3a), (2.3b)
are identical to (2.4a), (2.4b) when inserting E. It remains to derive (2.3c), (2.3d) and to show that c± ∈
H1(J ; L2(Ω)). The regularity of j± follows immediately from that of c±, u, E, (H1), and (H7). Testing the
definition of j± with v ∈ Hdiv(Ω) ⊂ L2(Ω) and using (H1) yields (2.3c). Inserting the definitions of j± and E
into (2.4c) yields

∀z ∈ H1
0 (Ω),

〈
∂tc

±(t) , z
〉
H−1(Ω),H1

0 (Ω)
−
(
r±(t) , z

)
=
(
j±(t) , ∇z

)
= −

(∇ · j±(t) , z
)
−
〈
j± · ν , z

〉
H−1/2(∂Ω),H1/2(∂Ω)

,

where the last term vanishes due to z ∈ H1
0 (Ω). Testing the above equation with v ∈ D(Ω) ⊂ H1

0 (Ω) yields

∀v ∈ D(Ω),
〈
∂tc

±(t) , z
〉
D′(Ω),D(Ω)

=
〈
r±(t) , z

〉
D′(Ω),D(Ω)

−
〈∇ · j±(t) , z

〉
D′(Ω),D(Ω)

,

i.e. ∂tc
±(t) = r±(t) − ∇ · j±(t) in the distributional sense. Since D(Ω) ⊂ L2(Ω) dense and r±(t)− ∇ · j±(t) ∈

L2(Ω), it follows ∂tc
±(t) ∈ L2(Ω) and we obtain (2.3d). �

From Proposition 2.5 and 2.7 it follows immediately the following corollary stating the well-posedness of
Problem 1:

Corollary 2.8. Let (H7) hold. Then Theorem 2.4 holds true for the solution (u, p, j+, c+, j−, c−, E, φ) of Prob-
lem 2.2.

3. Numerical scheme

This section defines the numerical setting and scheme for the a priori error analysis in Section 4. We set
up the Raviart–Thomas spaces of arbitrary order and outline their main properties as well as properties of
associated projectors in Section 3.1. Furthermore, the BDF stencils used for time discretization are defined.
Section 3.2 introduces the cut-off operator used to define the discrete scheme approximating Problem 2.2.

3.1. Preliminaries

Let Th be a regular family of decompositions ([9], (H1), p. 131) into closed d-simplices T of characteristic
size h such that Ω = ∪T .

We denote by Pk(T ) the space of polynomials of degree at most k on a triangle T ∈ Th and define by

RTk(T ) := Pk(T )d ⊕ xPk(T ) =
{
vh : T → R

d; vh(x) = ax + b, a ∈ Pk(T ), b ∈ Pk(T )d
}

the local Raviart–Thomas space of order k ∈ N0 [36, 31, 25]. We define by Pk(Th) := {wh : Ω → R; ∀T ∈
Th, wh|T ∈ Pk(T )} the global polynomial spaces on the triangulation Th. Clearly, Pk(Th) ⊂ L2(Ω). The global
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Raviart–Thomas space of order k is defined by RTk(Th) := Hdiv(Ω)∩
∏

T∈Th
RTk(T ). The inclusion RTk(Th) ⊂

Hdiv(Ω) ensures that the normal components of vh are continuous across the interior edges. Note that in general
these functions are not continuous in each component.

Let the projectors Πk
h : Hdiv(Ω) ∩

∏
T∈Th

H1(T ) 	 v 
→ Πk
hv ∈ RTk(Th) and P k

h : L2(Ω) 	 w 
→ P k
h w ∈

Pk(Th) be the global interpolation operators due to Raviart and Thomas [12,6]. The projectors fulfill the following
well-known properties [12, 31, 8, 6, 27]:

(P1) ∇ · Πk
h = P k

h ∇· and ∇ · RTk(Th) = Pk(Th).
(P2) For w ∈ L2(Ω) given, ∀wh ∈ Pk(Th),

(
P k

h w , wh

)
= (w , wh).

(P3) For v ∈ Hdiv(Ω) ∩
∏

T∈Th
H1(T ) given, ∀wh ∈ Pk(Th),

(
∇ · Πk

hv , wh

)
= (∇ · v , wh).

(P4) Given wh ∈ Pk(Th), there exists vh ∈ RTk(Th) such that ∇ · vh = wh and ‖vh‖Hdiv(Ω) ≤ CΩ‖wh‖ holds
with a constant CΩ depending only on Ω.

(P5) For any v ∈ H l(Ω) and w ∈ H l(Ω), for l ∈ {1, . . . , k + 1},

‖(Πk
h − I)v‖ � hl |v|Hl(Ω), ‖(P k

h − I)w‖ � hl |w|Hl(Ω).

Here and in the following, the symbol � indicates inequalities that are valid up to a multiplicative constant
which is independent of the discretization parameters τ and h.

Let 0 =: t0 < t1 < . . . < tN := T be an equidistant decomposition of the time interval J and let τ := T/N
denote the time step size. For discrete functions vn

h ∈ Pk(Th), the first and the second order backward difference
quotient is defined by

∂1v
n
h :=

1
τ

(
vn

h − vn−1
h

)
, ∂2v

n
h :=

3
2
∂1v

n
h − 1

2
∂1v

n−1
h =

1
τ

(
3
2
vn

h − 2vn−1
h +

1
2
vn−2

h

)
(3.1)

for admissible n. This notation applies to continuous functions analogously.
We use the following notation associated with the discretization error of v and of w, respectively, at the

time tn ∈ J :

ηn
v := vn

h − v(tn), ηn
w := wn

h − w(tn) (3.2)

for time and space continuous, vector-valued functions v and corresponding fully discrete approximations vn
h ∈

RTk(Th) and for time and space continuous, scalar-valued functions w and corresponding fully discrete ap-
proximations wn

h ∈ Pk(Th), respectively. In the analysis that follows, we make frequent use of the identities
ηn

v = Πk
hηn

v + (Πk
h − I)v and ηn

w = P k
h ηn

w + (P k
h − I)w.

3.2. Fully discrete formulation

In the formulation of the fully discrete counterpart of Problem 2.2, we make use of the following cut-off
operator [35, 4]:

Definition 3.1 (Cut-off operator). For w ∈ Lp(Ω), 1 ≤ p ≤ ∞ and fixed M ∈ R
+, let

M : Lp(Ω) 	 w 
→ M(w) ∈ L∞(Ω) be an operator such that for a.e. x ∈ Ω, M(w)(x) = min
{
|w(x)| , M

}
holds.
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Lemma 3.2 (Properties of the cut-off operator). Let 1 ≤ p ≤ ∞. The following statements hold:

(i) ∀w ∈ Lp(Ω), ‖M(w)‖L∞(Ω) ≤ M .
(ii) Let w ∈ L∞(Ω). If M satisfies ‖w‖L∞(Ω) ≤ M , then M(w) = |w| .
(iii) The operator M(·) is globally Lipschitz continuous on Lp(Ω) with a Lipschitz constant equal to one, i.e.,

∀v, w ∈ Lp(Ω), ‖M(v) −M(w)‖Lp(Ω) ≤ ‖v − w‖Lp(Ω) .

Proof. The properties (i) and (ii) are obvious. Property (iii) follows from the pointwise Lipschitz continuity
|M(v)(x) −M(w)(x)| ≤ |v(x) − w(x)| for a.e. x ∈ Ω taking the essential supremum on both sides for p =∞
and taking both sides to the power p and integration over Ω for 1 ≤ p < ∞. �

The cut-off operator M is a crucial tool in the error analysis that follows. However, the associated numerical
scheme is not defined properly as long as the cut-off level M is not fixed in terms of data, i.e. not depending on
the solution itself. Especially, it has to be ensured that M is chosen sufficiently large such that the property (ii)
of Lemma 3.2 holds for the partial solutions c±(t). This means, in particular, that an L∞(Ω) a priori estimate
is necessary providing an L∞(Ω) bound depending only on the data. To this end, we show that solutions of
Problem 2.2 also solve Problem 2.3 in order to allow the exploitation of the estimate (iii) of Theorem 2.4 yielding
the demanded explicit bound. The so obtained validity of Theorem 2.4 yields furthermore the existence and
uniqueness of solutions of Problem 2.2 and also the nonnegativity of concentrations.

We continue with the formulation of the fully discrete problem. We assume that the (stationary) upscaled
coefficients, namely D, K, and σ and the data φD are sufficiently precisely precomputed such that a discretization
error in these coefficients is negligible. Owing to Corollary 2.8, the use of the cut-off operator M according
to Definition 3.1 is now admissible for the definition of the fully discrete weak problem:

Problem 3.3 (Mixed weak discrete DNPP problem). Let q ∈ {1, 2}, k ∈ N0. Let D, K, r±, φD, σ, c±,0
h ,

c±,q−1
h be given. For n ∈ {q, . . . , N}, seek (un

h, pn
h, j+,n

h , c+,n
h , j−,n

h , c−,n
h , En

h, φn
h) ∈ (RTk(Th) × Pk(Th))4 such

that ∀vh ∈ RTk(Th), wh ∈ Pk(Th),

−
(
K−1un

h , vh

)
+ (∇ · vh , pn

h) = −
(
D−1En

h M(c+,n
h − c−,n

h ) , vh

)
, (3.3a)

(∇ · un
h , wh) = 0, (3.3b)

−
(
D−1j±,n

h , vh

)
+
(∇ · vh , c±,n

h

)
+
(
D−1(un

h ± En
h)M(c±,n

h ) , vh

)
= 0 , (3.3c)(

∂qc
±,n
h , wh

)
+
(∇ · j±,n

h , wh

)
=
(
r±(tn, x, c+,n

h , c−,n
h ) , wh

)
, (3.3d)

−
(
D−1En

h , vh

)
+ (∇ · vh , φn

h) = (vh · ν , φD(tn))L2(∂Ω), (3.3e)

(∇ · En
h , wh) =

(
c+,n
h − c−,n

h + σ(tn) , wh

)
, (3.3f)

where the cut-off level M for the cut-off operator M is set equal to the right-hand side of (2.5).

The cutting off of the terms in (3.3a), (3.3c) is necessary here in order to bound the respective scalar products
uniformly in h. Note that it would also be possible to cut off the fluxes un

h and En
h. However, we could not

access analytical results that provide L∞(Ω) a priori estimates for u or E.

4. A priori error analysis

This section addresses the approximation quality investigation of the numerical scheme presented in Prob-
lem 3.3 in terms of an a priori analysis of the discretization error. In Propositions 4.2, 4.3, and 4.5 the discretiza-
tion errors of the partial solutions is bounded by data and the discretization errors of other partial solutions.
Those propositions are combined in Theorem 4.6, which is the main result of this paper.
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In the context of a priori error analysis it is admissible to make further assumptions on the regularity of the
solution that is to be approximated:

Hypotheses 4.1 (Hypotheses on the solution of Problem 2.2).
Let l1, . . . , l6 ∈ {1, . . . , k + 1} be fixed integers (k and q as in Problem 3.3).

(H8) For the partial solution (u, p) it holds that u ∈ L2(J ; L∞(Ω)) ∩ H1(J ; H l1(Ω)), p ∈ H1(J ; H l2(Ω)).
(H9) For the partial solutions (j±, c±) it holds that j±∈H1(J ; H l3(Ω)), c±∈Hq+1(J ; L2(Ω))∩H1(J ; H l4(Ω)).

(H10) For the partial solution (E, φ) it holds that E ∈ L2(J ; L∞(Ω)) ∩ H1(J ; H l5(Ω)), φ ∈ H1(J ; H l6(Ω)).

The H1 regularity in time was postulated as the definition of the discretization error (3.2) requires a point-wise
evaluation in time.

Proposition 4.2. Let (E, φ, c+, c−) and (En
h, φn

h, c+
h , c−h ) be partial solutions of Problem 2.2 and Problem 3.3,

respectively. Then, if in addition the regularity requirements of (H7) and (H10) are satisfied, for n ∈ {q, . . . , N},

‖ηn
E‖2 + ‖ηn

φ‖2 � h2l5 |E(tn)|2Hl5(Ω) + h2l6 |φ(tn)|2Hl6 (Ω) +
∑

i∈{+,−}
‖ηn

ci‖2. (4.1)

The errors ηv, ηw have been defined in (3.2).

Proof. Subtraction of (2.3e), (2.3f) from (3.3e), (3.3f) yields the error equations

(
D−1ηn

E , vh

)
=
(∇ · vh , ηn

φ

) (P1), (P2)
=

(∇ · vh , P k
h ηn

φ

)
, (4.2a)

(∇ · ηn
E , wh) = (ηn

c+ , wh) − (ηn
c− , wh)

(P3)
=
(
∇ · Πk

hηn
E , wh

)
(4.2b)

for all vh ∈ RTk(Th) and for all wh ∈ Pk(Th). The choice of vh = Πk
hηn

E ∈ RTk(Th) and wh = P k
h ηn

φ ∈ Pk(Th),
subtraction of the resulting equations, and (H1) yields

Dα‖ηn
E‖2 ≤

(
D−1ηn

E , (Πk
h − I)E(tn)

)
+
(
ηn

φ − (P k
h − I)φ(tn) , ηn

c+ − ηn
c−
)

≤ δ

2
‖ηn

E‖2

+
1
2δ

D2
∞‖(Πk

h − I)E(tn)‖2 + δ‖ηn
φ‖2 + δ‖(P k

h − I)φ(tn)‖2 +
1
δ

∑
i∈{+,−}

‖ηn
ci‖2 (4.3)

with 0 < δ < 2Dα. Having the estimate (4.3) for ‖ηn
E‖ at hand, an estimate for ‖ηn

φ‖ needs to be derived:
according to (P4), we may choose vh ∈ RTk(Th) in (4.2a) such that ∇ · vh = P k

h ηn
φ ∈ Pk(Th):

(
P k

h ηn
φ , ηn

φ

)
=
(∇ · vh , ηn

φ

) (4.2a)
=

(
D−1ηn

E , vh

)
.

With (H1) and ‖vh‖ ≤ ‖vh‖Hdiv(Ω)

(P4)

≤ CΩ‖P k
h ηn

φ‖ it follows

‖ηn
φ‖2 =

(
D−1 ηn

E , vh

)
+
(
(P k

h − I)φ(tn) , ηn
φ

)
≤ CΩD∞‖ηn

E‖ ‖P k
h ηn

φ‖ + ‖(P k
h − I)φ(tn)‖ ‖ηn

φ‖

≤ 1
2δ′

C2
ΩD2

∞‖ηn
E‖2 +

δ′

2
(
‖ηn

φ‖ + ‖(P k
h − I)φ(tn)‖

)2
+

1
2δ′′

‖(P k
h − I)φ(tn)‖2 +

δ′′

2
‖ηn

φ‖2,

which is equivalent to(
1 − δ′ − δ′′

2

)
‖ηn

φ‖2 ≤ 1
2δ′

C2
ΩD2

∞‖ηn
E‖2 +

(
δ′ +

1
2δ′′

)
‖(P k

h − I)φ(tn)‖2
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with 1 > δ′ + δ′′/2, δ′ > 0, δ′′ > 0. With δ′ := 1/4 and δ′′ := 1/2, we obtain

‖ηn
φ‖2 ≤ 4C2

ΩD2
∞‖ηn

E‖2 +
5
2
‖(P k

h − I)φ(tn)‖2 . (4.4)

Substituting (4.4) into (4.3) yields(
Dα−δ

(1
2
+4C2

ΩD2
∞

))
‖ηn

E‖2 ≤ 1
2δ

D2
∞‖(Πk

h−I)E(tn)‖2+
7
2
δ‖(P k

h−I)φ(tn)‖2+
1
δ

∑
i∈{+,−}

‖ηn
ci‖2 (4.5)

with the constraint 0 < δ < Dα/
(
1/2 + 4C2

ΩD2
∞
)
. Fixing δ, inserting the estimate (4.5) into (4.4), summing up

the resulting equation with (4.5), and using (P5) ends the proof. �

Proposition 4.3. Let (u, p, j+, c+, j−, c−, E, φ) and (un
h, pn

h, j+,n
h , c+,n

h , j−,n
h , c−,n

h , En
h, φn

h) be solutions of
Problem 2.2 and Problem 3.3, respectively. Then, if in addition the regularity requirements of (H7) and (H9)
are satisfied, for q ∈ {1, 2}, n ∈ {q, . . . , N}, and sufficiently small τ ,

‖ηn
c±‖2 + τ

n∑
m=q

‖ηm
j±‖2 �

q−1∑
j=0

‖ηj
c±‖

2 + τ2q‖∂q+1
t c±‖2

L2(]0,tn[×Ω) + h2l3τ
n∑

m=q

|j±(tm)|2Hl3 (Ω)

+ h2l4
(∫ tn

0

|∂sc
±(s)|2Hl4 (Ω) ds + τ

n∑
m=q

|c±(tm)|2Hl4 (Ω)

)
+ τ

n∑
m=q

(
‖ηm

E‖2 + ‖ηm
u ‖2 + ‖ηm

c∓‖2
)
. (4.6)

In the proof that follows we make use of the following version of discrete Gronwall lemma:

Lemma 4.4 (Discrete Gronwall). Let (ak)k∈N, (bk)k∈N be nonnegative sequences of real numbers, (bn) non-
decreasing, and c be a (fixed) positive constant. If (an) satisfies

∀n ∈ N, an ≤ bn + c

n−1∑
m=q

am, then ∀n ∈ N, an ≤ (1 + c)nbn.

Proof. (See [17], Lem. 2.4). �

Note that for n = 1 the sum is zero by definition. We continue with the proof of Proposition 4.3. Some ideas of
the proof stem from [29,30].

Proof of Proposition 4.3. We abbreviate c±(tn) by c±,n (and also analogously further quantities) keeping in
mind that c± is a function existing everywhere in J . Subtraction of (2.3c), (2.3d) from (3.3c), (3.3d) yields the
following error equations for n ∈ {q, . . . , N}:

−
(
D−1ηn

j± , vh

)
+
(∇ · vh , ηn

c±
)

+
(
D−1

(
(un

h ± En
h)M(c±,n

h ) − (un ± En)c±,n
)
, vh

)
= 0,(

∂qc
±,n
h − ∂tc

±,n , wh

)
+
(
∇ · ηn

j± , wh

)
=
(
r±(tn, x, c+,n

h , c−,n
h ) − r±(tn, x, c+,n, c−,n) , wh

)
for all vh ∈ RTk(Th) and for all wh ∈ Pk(Th). We proceed analogously to the proof of (4.1) in order to eliminate
the divergence terms by using the projector properties (P1), (P2), (P3) and choosing vh = Πk

hηn
j± ∈ RTk(Th)

and wh = P k
h ηn

c± ∈ Pk(Th). The resulting equation reads

(
∂qc

±,n
h − ∂tc

±,n , P k
h ηn

c±
)

+
(
D−1ηn

j± , Πk
hηn

j±

)
=
(
D−1

(
(un

h ± En
h)M(c±,n

h ) − (un ± En)c±,n
)
, Πk

hηn
j±

)
+
(
r±(tn, x, c+,n

h , c−,n
h ) − r±(tn, x, c+,n, c−,n) , P k

h ηn
c±
)
.

(4.7)
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Following the idea of [3], we use the projector property (P2) and the fact that ∂q commutes with P k
h to

decompose the first term as follows:(
∂qc

±,n
h −∂tc

±,n , P k
h ηn

c±
)

=
(
∂qc

±,n
h , P k

h ηn
c±
)
−
(
∂tc

±,n , P k
h ηn

c±
)

=
(
∂qη

n
c± , P k

h ηn
c±
)

+
(
∂qc

±,n , P k
h ηn

c±
)
−
(
∂tc

±,n , P k
h ηn

c±
)

=
(
∂qP

k
h ηn

c± , ηn
c±
)

+
(
(∂q − ∂t)c±,n , P k

h ηn
c±
)

=
(
∂qη

n
c± , ηn

c±
)
−
(
∂q(P k

h−I)c±,n , ηn
c±
)

+
(
(∂q−∂t)c±,n , P k

h ηn
c±
)
.

With this decomposition, the combined error equation (4.7) becomes(
∂qη

n
c± , ηn

c±
)

+ Dα‖ηn
j±‖2 ≤

(
∂q(P k

h − I)c±,n , ηn
c±
)
−
(
(∂q − ∂t)c±,n , P k

h ηn
c±
)

+
(
D−1ηn

j± , (Πk
h − I)j±,n

)
+
(
D−1

(
(un

h ± En
h)M(c±,n

h ) − (un ± En)c±,n
)
, Πk

hηn
j±

)
+
(
r±(tn, x, c+,n

h , c−,n
h ) − r±(tn, x, c+,n, c−,n) , P k

h ηn
c±
)
, (4.8)

where the ellipticity of D−1 according to (H1) was used. Next up, consider the term (∂qη
n
c± , ηn

c±). The following
identities are required [7]:

2(a − b)a = a2 − b2 + (a − b)2, (4.9a)
2(3a− 4b + c)a = a2 − b2 + (2a − b)2 − (2b − c)2 + (a − 2b + c)2. (4.9b)

Using the definition of ∂q, we see that if we replace n by m, for the sum from q to n multiplied by 2qτ , there
holds

2qτ

n∑
m=q

(
∂qη

m
c± , ηm

c±
)

= 2
n∑

m=q

{ (
ηm

c± − ηm−1
c± , ηm

c±
)
, q=1(

3ηm
c± − 4ηm−1

c± + ηm−2
c± , ηm

c±
)
, q=2

}

(4.9)

≥ ‖ηn
c±‖2 −

{
‖η0

c±‖2, q=1
‖η1

c±‖2 + ‖2η1
c± − η0

c±‖2, q=2

}
.

Multiplication of (4.8) by 2qτ , replacing n by m, summing up from q to n, and using the latter result yields

‖ηn
c±‖2 + 2Dαqτ

n∑
m=q

‖ηm
j±‖2 ≤

{
‖η0

c±‖2, q=1
‖η1

c±‖2 + ‖2η1
c± − η0

c±‖2, q=2

}
+ 2qτ

n∑
m=q

(
∂q(P k

h − I)c±,m , ηm
c±
)

− 2qτ

n∑
m=q

(
(∂q − ∂t)c±,m , P k

h ηm
c±
)

+ 2qτ

n∑
m=q

(
D−1ηm

j± , (Πk
h − I)j±,m

)

+ 2qτ
n∑

m=q

(
D−1

(
(um

h ± Em
h )M(c±,m

h ) − (um ± Em)c±,m
)
, Πk

hηm
j±

)

+ 2qτ

n∑
m=q

(
r±(tm, x, c+,m

h , c−,m
h ) − r±(tm, x, c+,m, c−,m) , P k

h ηm
c±
)
. (4.10)

We denote the terms on the right side of (4.10) by I to VI and estimate II to VI in terms of time truncation and
projection errors. Consider a function v ∈ L2(J × Ω). By application of the fundamental theorem of calculus
and of the Jensen inequality, we have for q = 1:

τ

n∑
m=1

‖∂1v
m‖2 = τ

n∑
m=1

∥∥∥∥∥1
τ

∫ tm

tm−1

∂sv(s) ds

∥∥∥∥∥
2

≤
n∑

m=1

∫ tm

tm−1

‖∂sv(s)‖2 ds = ‖∂tv‖2
L2(]0,tn[×Ω) .
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Recalling (3.1), we get for q = 2:

τ

n∑
m=2

‖∂2v
m‖2 ≤

n∑
m=2

(
3
∫ tm

tm−1

‖∂sv(s)‖2 ds +
∫ tm−1

tm−2

‖∂sv(s)‖2 ds

)
≤ 4‖∂tv‖2

L2(]0,tn[×Ω) ,

i.e., τ
∑n

m=q ‖∂qv
m‖2 ≤ q2‖∂tv‖2

L2(]0,tn[×Ω). With this and the fact that P k
h commutes with the time derivative

we conclude

II ≤ δ2qτ

n∑
m=q

‖ηm
c±‖2 +

q3

δ2
‖(P k

h − I) ∂tc
±‖2

L2(]0,tn[×Ω).

For the third term we have

|III| ≤ δ3qτ

n∑
m=q

‖P k
h ηm

c±‖2 +
q

δ3
τ

n∑
m=q

‖(∂q − ∂t)c±,m‖2.

By Taylor expansion around tm−q, the truncation error on the right can be expressed by the truncation error
of the corresponding integral remainder ([37], cf., p. 169):

τ
n∑

m=q

‖(∂q − ∂t)c±,m‖2 = τ
n∑

m=q

∥∥∥∥∥(∂q − ∂t)
1
q!

∫ t

tm−q

(t − s)q∂q+1
s c±(s) ds

∣∣∣∣∣
t=tm

∥∥∥∥∥
2

� 1
τ

n∑
m=q

m∑
j=m−q

∥∥∥∥∥
∫ tj

tj−q

(tj − s)q∂q+1
s c±(s) ds

∥∥∥∥∥
2

+ τ

n∑
m=q

∥∥∥∥∥
∫ tm

tm−q

q(tm − s)q−1∂q+1
s c±(s) ds

∥∥∥∥∥
2

� τ2q−1
n∑

m=q

∥∥∥∥∥
∫ tm

tm−q

∂q+1
s c±(s) ds

∥∥∥∥∥
2

� τ2q‖∂q+1
t c±‖2

L2(]0,tn[×Ω),

where we used the fact that ‖∂qv
m‖ ≤ q

τ

∑m
j=m−q ‖vj‖, the Leibniz integral rule, and the Jensen inequality. We

eventually obtain

|III| ≤ δ32qτ

n∑
m=q

‖ηm
c±‖2 + δ32qτ

n∑
m=q

‖(P k
h − I)c±,m‖2 +

q

δ3
τ2q‖∂q+1

t c±‖2
L2(]0,tn[×Ω).

For the fourth term, we immediately get

IV ≤ δ4D∞qτ
n∑

m=q

‖ηm
j±‖2 +

q

δ4
D∞τ

n∑
m=q

‖(Πk
h − I)j±,m‖2

due to (H1). We continue estimating the term V . We derive the following estimate using (H1), the boundedness
of um and Em in L∞(Ω) due to (H8) and (H10), and Lemma 3.2:

∥∥D−1
(
(um

h ± Em
h )M(c±,m

h ) − (um ± Em)c±,m
) ∥∥ ≤ D∞

(
‖(ηm

u ± ηm
E )M(c±,m

h )‖

+ ‖(um ± Em)
(
M(c±,m

h ) −M(c±,m)
)
‖
)

≤ D∞

(
M
(
‖ηm

u ‖ + ‖ηm
E‖
)

+ C5‖ηm
c±‖
)

with C5 := ‖um ± Em‖L∞(Ω). The above estimate yields the estimate for the fifth term:

V ≤ 2qD∞ τ

n∑
m=q

(
δ5

(
‖ηm

j±‖2+‖(Πk
h − I)j±,m‖2

)
+

1
δ5

(
2M2

(
‖ηm

u ‖2 + ‖ηm
E‖2

)
+C2

5‖ηm
c±‖2

))
.
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Lastly, we estimate the sixth term VI. Due to (H3) the inequality

‖r±(tm, x, c+,m
h , c−,m

h ) − r±(tm, x, c+,m, c−,m)‖ ≤ rL

∥∥∥∥∥
(

c+,m
h

c−,m
h

)
−
(

c+,m

c−,m

)∥∥∥∥∥ ≤ rL‖ηm
c+‖ + rL‖ηm

c−‖

holds, where rL denotes the Lipschitz constant. Hence,

VI ≤
( 1

δ6
+ δ6

)
2qrL τ

n∑
m=q

‖ηm
c±‖2 + δ62qrL τ

n∑
m=q

‖ηm
c∓‖2 +

1
δ6

2qrL τ

n∑
m=q

‖(P k
h − I)c±,m‖2.

With the estimates of II to VI, it follows from (4.10) that

‖ηn
c±‖2 + 2q

(
Dα−

δ4

2
D∞−δ5D∞

)
τ

n∑
m=q

‖ηm
j±‖2 ≤

{
‖η0

c±‖2, q=1
2‖η0

c±‖2 + 5‖η1
c±‖2, q=2

}

+
q3

δ2
‖(P k

h − I) ∂tc
±‖2

L2(]0,tn[×Ω) +
q

δ3
τ2q‖∂q+1

t c±‖2
L2(]0,tn[×Ω)

+ 2q

(
δ2

2
+δ3+

C2
5

δ5
D∞+

(
δ6+

1
δ6

)
rL

)
τ

n∑
m=q

‖ηm
c±‖2

+ 2qD∞

(
1

2δ4
+δ5

)
τ

n∑
m=q

‖(Πk
h − I)j±,m‖2 + 2q

(
δ3 +

rL

δ6

)
τ

n∑
m=q

‖(P k
h − I)c±,m‖2

+
4q

δ5
D∞M2 τ

n∑
m=q

‖ηm
E‖2 +

4q

δ5
D∞M2 τ

n∑
m=q

‖ηm
u ‖2 + δ62qrLτ

n∑
m=q

‖ηm
c∓‖2

with the constraint that δ4, δ5 > 0 have to be chosen small enough. The discretization error in c± at time level tn
on the right side can be absorbed for sufficiently small τ . In doing so, application of the discrete Gronwall lemma
yields

‖ηn
c±‖2 + τ

n∑
m=q

‖ηm
j±‖2 �

q−1∑
j=0

‖ηj
c±‖

2 + τ2q‖∂q+1
t c±‖2

L2(]0,tn[×Ω) + ‖(P k
h − I) ∂tc

±‖2
L2(]0,tn[×Ω)

+ τ

n∑
m=q

‖(Πk
h − I)j±,m‖2 + τ

n∑
m=q

‖(P k
h − I)c±,m‖2 + τ

n∑
m=q

‖ηm
E‖2 + τ

n∑
m=q

‖ηm
u ‖2 + τ

n∑
m=q

‖ηm
c∓‖2.

Conclude by accounting for the initial conditions (1.1j) and by using the projection error estimates of (P5). �
Proposition 4.5. Let (u, p, j+, c+, j−, c−, E, φ) and (un

h, pn
h, j+,n

h , c+,n
h , j−,n

h , c−,n
h , En

h, φn
h) be solutions of

Problem 2.2 and Problem 3.3, respectively. Then, if in addition the regularity requirements of (H7), (H8),
and (H10) are satisfied, for n ∈ {q, . . . , N},

‖ηn
u‖2 + ‖ηn

p ‖2 � h2l1 |u(tn)|2Hl1 (Ω) + h2l2 |p(tn)|2Hl2 (Ω) + h2l5 |E(tn)|2Hl5(Ω) + h2l6 |φ(tn)|2Hl6 (Ω) +
∑

i∈{+,−}
‖ηn

ci‖2.

(4.11)

Proof. The proof can be accomplished analogously to that of Proposition 4.2 with minor modifications. We sup-
press the time index n and the argument for the evaluation at tn in this proof. Due to (2.3a), (2.3b), (3.3a), (3.3b),
the error equations read

−
(
K−1ηu , vh

)
+
(∇ · vh , ηp

)
= −

(
D−1

(
EhM(c+

h − c−h ) − E(c+ − c−)
)
, vh

)
, (4.12a)

(∇ · ηu , wh) = 0 (4.12b)
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for all vh ∈ RTk(Th) and for all wh ∈ Pk(Th). The arising force term in (4.12a) requires a special treatment.
Recalling the chosen cut-off level M for the cut-off operator M (cf. Proposition 3.3), Lemma 3.2, and (H10),
we see that

‖EhM(c+
h − c−h ) − E(c+ − c−)‖ ≤ M ‖ηE‖ + ‖E‖L∞(Ω)

∑
i∈{+,−}

‖ηci‖. (4.13)

The choice of wh = P k
h ηp ∈ Pk(Th) in (4.12b) and the use of the projector property (P3) yields

(
∇ · Πk

hηu , P k
h ηp

)
= 0. (4.14)

Choosing the test function vh = Πk
hηu ∈ RTk(Th) in (4.12a), using (P1), (P2), and (4.14), we obtain(

K−1ηu , Πk
hηu

)
=
(
D−1

(
EhM(c+

h − c−h ) − E(c+ − c−)
)
, Πk

hηu

)
.

With (H1), (H2), (4.13), we arrive at the estimate

Kα‖ηu‖2 ≤ K∞‖ηu‖ ‖(Πk
h − I)u‖ + D∞

(
M ‖ηE‖ + ‖E‖L∞(Ω)

∑
i∈{+,−}

‖ηci‖
)(

‖ηu‖ + ‖(Πk
h − I)u‖

)
.

Equation (4.1) and the projection error estimates of (P5) yield

‖ηn
u‖2 � h2l1 |u(tn)|2Hl1(Ω) + h2l5 |E(tn)|2Hl5 (Ω) + h2l6 |φ(tn)|2Hl6 (Ω) +

∑
i∈{+,−}

‖ηn
ci‖2.

With a similar treatment of the additional force term, the error estimate for ‖ηn
p ‖ is obtained analogously to

the second part of the proof of Proposition 4.2. �

Theorem 4.6 (A priori error estimate). Let (u, p, j+, c+, j−, c−, E, φ) and (un
h, pn

h, j+,n
h , c+,n

h , j−,n
h , c−,n

h , En
h,

φn
h) be solutions of Problem 2.2 and Problem 3.3, respectively. Then, if in addition the regularity requirements

of (H7)–(H10) are satisfied, for q ∈ {1, 2} and sufficiently small τ ,

max
m∈{q,...,N}

‖ηm
u ‖2 + max

m∈{q,...,N}
‖ηm

p ‖2 +
∑

i∈{+,−}
τ

N∑
m=q

‖ηm
ji‖2 +

∑
i∈{+,−}

max
m∈{q,...,N}

‖ηm
ci ‖2

+ max
m∈{q,...,N}

‖ηm
E‖2 + max

m∈{q,...,N}
‖ηm

φ ‖2 �
∑

i∈{+,−}

q−1∑
j=0

‖ηj
ci‖2 + τ2q +

∑
i∈{1,...,6}

h2li .

Proof. We sum up (4.6) for both signs, eliminate the discretization errors of c± on the right-hand side as
performed at the end of the proof of Proposition 4.3 to obtain

∑
i∈{+,−}

‖ηn
ci‖2 +

∑
i∈{+,−}

τ

n∑
m=q

‖ηm
ji‖2 �

∑
i∈{+,−}

q−1∑
j=0

‖ηj
ci‖2 + τ2q

∑
i∈{+,−}

‖∂q+1
t ci‖2

L2(]0,tn[×Ω)

+ h2l3
∑

i∈{+,−}
τ

n∑
m=q

|ji(tm)|2Hl3 (Ω) + h2l4
∑

i∈{+,−}

(∫ tn

0

|∂sc
i(s)|2Hl4 (Ω) ds + τ

n∑
m=q

|ci(tm)|2Hl4 (Ω)

)

+
∑

i∈{+,−}
τ

n∑
m=q

(
‖ηm

E‖2 + ‖ηm
u ‖2

)
. (4.15)
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Substitution of
∑

i∈{+,−} ‖ηn
ci‖2 from (4.15) into (4.1), (4.11) and summation yields

‖ηn
u‖2 + ‖ηn

p ‖2 + ‖ηn
E‖2 + ‖ηn

φ‖2 �
∑

i∈{+,−}

q−1∑
j=0

‖ηj
ci‖2 + τ2q

∑
i∈{+,−}

‖∂q+1
t ci‖2

L2(]0,tn[×Ω) + h2l1 |u(tn)|2Hl1(Ω)

+ h2l2 |p(tn)|2Hl2 (Ω) + h2l3
∑

i∈{+,−}
τ

n∑
m=q

|ji(tm)|2Hl3(Ω)

+ h2l4
∑

i∈{+,−}

(∫ tn

0

|∂sc
i(s)|2Hl4 (Ω) ds + τ

n∑
m=q

|ci(tm)|2Hl4 (Ω)

)

+ h2l5 |E(tn)|2Hl5(Ω) + h2l6 |φ(tn)|2Hl6 (Ω) + τ

n∑
m=q

‖ηm
u ‖2 + τ

n∑
m=q

‖ηm
E ‖2.

(4.16)

Adding (4.15) to (4.16) and eliminating the discretization errors of u and E on the right-hand side bounds the
discretization errors in terms of the solution. We conclude by bounding the right-hand side by the respective
maximum on J (admissible due to (H8)–(H10)) yielding a right-hand side that is independent of n such that
the estimate holds for every n ∈ {q, . . . , N}. �

Loosely speaking, Theorem 4.6 states that if Raviart–Thomas elements of kth order and BDFq are used then
the L2(Ω) discretization error of each of the eight partial solutions is of order O(τq +hk+1) when the regularity
requirements are met.

5. Numerical results

The numerical scheme of Section 3 for the lowest-order Raviart–Thomas elements was implemented using the
software platform /programming language MATLAB [38]. This section compares numerically estimated orders
of convergence with the respective ones revealed by the presented analysis for the case of BDF1 and BDF2,
and lowest Raviart–Thomas elements, i.e., q = 1, 2, k = 0. The cut-off operator used to define Problem 3.3 is
an analytical tool. The implementation uses an iterative operator splitting approach analogously to [16, Alg. 1].
Implementation details are found in [15].

Consider the time–space cylinder J ×Ω := ]0, T [× ]0, 1[2 with T := 0.1. In order to be able to use the method
of manufactured solutions, we consider system (1.1) with c± = c±D instead of (1.1h). We choose D and K equal
to the unit matrix and

r+ := −e−t sinh x sin y
(
xe−2t−e−t cosx cosh y

)
− e−t coshx cos y

(
ye−2t+e−t sin x sinh y

)
− c+,

r− := −e−t coshx cos y
(
xe−2t+e−t cosx cosh y

)
+ e−t sinh x sin y

(
ye−2t−e−t sin x sinh y

)
− c−,

where (x, y)T = x ∈ Ω. We prescribe a solution by

u := exp(−2t)
(
y, x
)T

, p := exp(−2t) sin(x) cosh(y) , φ := e−t cos(x) sinh(y) ,

c+ := e−t sinh(x) cos(y) , c− := e−t cosh(x) sin(y)

and fluxes j±, E such that (1.1c) and (1.1e) hold. In order to obtain a unique pressure p, we additionally
demand that

∫
Ω pn

h =
∫

Ω p(tn) is satisfied for each time level. The equations (1.1b) and (1.1d) hold by definition
and (1.1a), (1.1f) are balanced by additional source/sink functions on the right-hand sides. The initial and
boundary data are determined by the manufactured solution.

We start a refinement sequence with a time step size of τ = T = 0.1 using a triangulation with h = 1/2,
while halving τ and dividing h by four in each refinement level, since the L2(Ω) discretization error of each
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Table 1. Discretization errors at end time T = 0.1 measured in L2(Ω) (top list) and corre-
sponding reduction ratios (bottom list). For the ith refinement level we have h = (1/2)(1/4)i,
τ = T (1/2)i.

i ‖ηu‖ ‖ηp‖ ‖ηj+‖ ‖ηc+‖ ‖ηj−‖ ‖ηc−‖ ‖ηE‖ ‖ηφ‖
0 3.34E–1 1.82E–1 3.83E–1 2.43E–1 7.50E–1 2.01E–1 3.36E–1 2.43E–1

1 1.04E–1 4.63E–2 1.11E–1 6.25E–2 1.86E–1 5.04E–2 8.69E–2 6.25E–2

2 2.22E–2 1.14E–2 2.82E–2 1.57E–2 4.93E–2 1.26E–2 2.27E–2 1.56E–2

3 5.30E–3 2.84E–3 7.07E–3 3.91E–3 1.24E–2 3.14E–3 5.70E–3 3.91E–3

4 1.31E–3 7.11E–4 1.78E–3 9.79E–4 3.10E–3 7.88E–4 1.42E–3 9.78E–4

0–1 1.69 1.97 1.78 1.96 2.01 1.99 1.95 1.96

1–2 2.22 2.02 1.98 2.00 1.91 2.00 1.94 2.00

2–3 2.07 2.00 2.00 2.00 2.00 2.00 1.99 2.00

3–4 2.02 2.00 1.99 2.00 2.00 2.00 2.00 2.00

of the partial solutions u, p, j±, c±, E, φ is expected to be of order O(τ2 + h). Hence, this convergence order
is considered confirmed if we observe an overall quadratic decrease of errors. We successively compute the
L2(Ω) discretization errors at the end time T for the partial solutions. For the first step, BDF1, i.e. the implicit
Euler method, is used. As predicted by Theorem 4.6, we obtain a reduction factor of two, which means that we
have a linear order of convergence in space and a second order of convergence in time in each partial unknown,
cf. Table 1. This would also hold true if the chosen setting was dominated by the spatial error for all evaluated
time points. However, this is not the case here: using BDF1, the reduction factor drops to of one for the overall
discretization error.

6. Conclusion

This paper focuses on the a priori error analysis of a mixed finite element scheme for the DNPP system,
which is a homogenized version of a nonlinear Stokes–Nernst–Planck–Poisson-type system. The latter describes
the dynamics of dilute electrolytes and of dissolved charged particles at a small scale. The interest in the
homogenized versions is to obtain an equivalent system valid on a larger scale that can be used to extrapolate
from macroscopic to microscopic processes or vice versa. The discrete model uses Raviart–Thomas elements of
fixed order in space and up to second order backward difference time-stepping formula (BDF2).

A mixed weak formulation of the DNPP system is presented and it is proven that its solution satisfies
another weak formulation whose well-posedness has already been established. Essential boundedness of the
concentrations are shown thereby allowing the usage of a cut-off operator, which is used to define the discrete
scheme. The main result is the a priori error estimate stating that the discretization error is second order in
time for BDF2 and first order in time for BDF1, and optimal in space.

To validate this result, a numerical experiment is presented using lowest order Raviart–Thomas elements and
BDF2, which is initialized with one BDF1 step. The computed orders of convergence match with the a priori
result: second order in time and first order in space is obtained.

The mixed approach of the DNPP system is attractive for practical simulations, as, on the one hand, it ensures
local mass conservation (in particular of the solutes’ concentrations, which are the quantities of interest). On
the other hand, every subproblem can be discretized using the same pair of mixed finite element space.

Acknowledgements. The authors want to thank Matthias Herz, Florin Radu, and Béatrice Rivière for their precious
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