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Abstract. We present the first systematic work for deriving a posteriori error estimates for gen-
eral non-polynomial basis functions in an interior penalty discontinuous Galerkin (DG) formulation
for solving eigenvalue problems associated with second order linear operators. Eigenvalue problems of
such types play important roles in scientific and engineering applications, particularly in theoretical
chemistry, solid state physics and material science. Based on the framework developed in [L. Lin and
B. Stamm, ESAIM: M2AN 50 (2016) 1193–1222] for second order PDEs, we develop residual type up-
per and lower bound error estimates for measuring the a posteriori error for eigenvalue problems. The
main merit of our method is that the method is parameter-free, in the sense that all but one solution-
dependent constants appearing in the upper and lower bound estimates are explicitly computable by
solving local and independent eigenvalue problems, and the only non-computable constant can be rea-
sonably approximated by a computable one without affecting the overall effectiveness of the estimates
in practice. Compared to the PDE case, we find that a posteriori error estimators for eigenvalue prob-
lems must neglect certain terms, which involves explicitly the exact eigenvalues or eigenfunctions that
are not accessible in numerical simulations. We define such terms carefully, and justify numerically that
the neglected terms are indeed numerically high order terms compared to the computable estimators.
Numerical results for a variety of problems in 1D and 2D demonstrate that both the upper bound and
lower bound are effective for measuring the error of eigenvalues and eigenfunctions in the symmetric
DG formulation. Our numerical results also demonstrate the sub-optimal convergence properties of
eigenvalues when the non-symmetric DG formulation is used, while in such case the upper and lower
bound estimators are still effective for measuring the error of eigenfunctions.
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1. Introduction

Let Ω be a rectangular, bounded domain. We consider the following linear eigenvalue problem of finding an
eigenvalue λ and the corresponding eigenfunction u, with ‖u‖Ω = 1, such that

−Δu + V u = λu, in Ω, (1.1)

where V is a bounded, smooth potential. Such eigenvalue problem arises in many scientific and engineering
problems. One notable example is the Kohn−Sham density functional theory [30], which is widely used in
theoretical chemistry, solid state physics and material science. In order to solve equation (1.1) in practice,
it is desirable to reduce the number of degrees of freedom for discretizing equation (1.1) to have a smaller
algebraic problem to solve. While standard polynomial basis functions and piecewise polynomial basis functions
can approach a complete basis set which is versatile enough to represent almost any function of interest, the
resulting number of degrees of freedom is usually large even when high order polynomials are used. Non-
polynomial basis functions are therefore often employed to reduce the number of degrees of freedom. Examples
include the various non-polynomial basis sets used in quantum chemistry such as the Gaussian basis set [17],
atomic orbital basis set [27], adaptive local basis set [35], planewave discretization [8]. Similar techniques also
appear in other contexts, such as the planewave basis set for solving the eigenvalue problems in photonic
crystals [26], Helmholtz equations [22,44], and heterogeneous multiscale method (HMM) [14] and the multiscale
finite element method [23] for solving multiscale elliptic equations.

1.1. Previous work on a posteriori estimates

Concerning the Laplace eigenvalue problem (Eq. (1.1) with V = 0), there has been important progress in
particular in obtaining guaranteed lower bounds for the first eigenvalue using polynomial-based versions of
the finite element method: Armentano and Durán [2], Hu et al. [24, 25], Carstensen and Gedicke [11], and
Yang et al. [47] achieve so via the lowest-order nonconforming finite element method. Kuznetsov and Repin [33],
and Šebestová and Vejchodský [42] give numerical-method-independent estimates based on flux (functional)
estimates, and Liu and Oishi [37] elaborate a priori approximation estimates for lowest-order conforming finite
elements. Cancès et al. [10] present guaranteed bounds for the eigenvalue error for the classical conforming finite
element method. A posteriori estimates for the polynomial discontinuous Galerkin (DG) method are developed
by Antonietti et al. [1] and by Giani and Hall [18] in the hp-context. This DG-framework has also been extended
to Maxwell’s equation in [6,7]. Earlier work on the Laplace equation in a general context comprises Kato [28],
Forsythe [15], Weinberger [46], Bazley and Fox [4], Fox and Rheinboldt [16], Moler and Payne [39], Kuttler and
Sigillito [31, 32], Still [43], Goerisch and He [19], and Plum [40].

The question of accuracy for both eigenvalues and eigenvectors has also been investigated previously. For
conforming finite elements, relying on the a priori error estimates resumed in Babuška and Osborn [3], Boffi [5]
and references therein, a posteriori error estimates have been obtained by Verfürth [45], Maday and Patera [38],
Larson [34], Heuveline and Rannacher [21], Durán et al. [12], Grubǐsić and Ovall [20], Rannacher et al. [41], and
Cancès et al. [10].

For non-polynomial basis functions, the literature is much sparser. A posteriori estimates for planewave
discretization of non-linear Schrödinger eigenvalue problems are presented in Dusson and Maday [13], and
Cancès et al. [9]. Kaye et al. [29] developed upper bound error estimates for solving linear eigenvalue problems
using non-polynomial basis functions in a DG framework, which generalizes the work of Giani et al. [18] for
polynomial basis functions.

1.2. Contribution

We present a systematic way of deriving residual-based a posteriori error estimates for the discontinuous
Galerkin (DG) discretization of problem (1.1) using non-polynomial basis functions. More precisely, we de-
rive computable upper and lower bounds for both the error of eigenvalues and eigenvectors, up to some terms
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that are asymptotically of higher order. This extends the framework introduced in the companion paper [36]
on second order PDEs. The main difficulty can be reduced to the non-existence of inverse estimates for arbi-
trary non-polynomial basis functions and the non-existence of an accurate conforming subspace. In the present
approach, all but one basis-dependent constant appearing in the upper and lower bound estimates are ex-
plicitly computable by solving local eigenvalue problems. For solutions with sufficient regularity (for instance
u ∈ H2(Ω)), the only non-computable constant can be reasonably approximated by a computable one without
affecting the overall effectiveness of the estimates. While the requirement of H2(Ω) regularity appears to be a
formal drawback in the context of a posteriori error estimates, the main goal of this work is to develop a poste-
riori error estimates for general basis sets rather than for h-refinement, and the difficulty of general basis sets
holds even if the solution has C∞(Ω) regularity. Therefore we think our method can have important practical
values.

Our estimators for eigenfunctions are very similar to those for second order PDEs, and our estimators for
eigenvalues are derived from the eigenfunction estimators. By leveraging the same constant related to the
regularity of the eigenfunction u ∈ H2(Ω), we arrive at simpler treatment for upper and lower estimators for
eigenvalues. Compared to the treatment in literature [18], our treatment does not involve the usage of lifting
operators. Compared to the PDE case, we find that a posteriori error estimators for eigenvalue problems must
neglect certain terms, which involve explicitly the exact eigenvalues and eigenfunctions that are not accessible
in numerical simulation. We define such terms carefully, and justify numerically that the neglected terms are
indeed high order terms compared to the computable estimators. Our numerical results in 1D and 2D illustrate
the effectiveness of the estimators.

1.3. Outline

We introduce in Section 2 preliminary results that are needed to introduce the discontinuous Galerkin dis-
cretization of the eigenvalue problem (1.1) and the following a posteriori analysis that are both presented in
Section 3. Section 4 is devoted to numerical tests, followed by the conclusion in Section 5.

2. Preliminary results

2.1. Mesh, broken spaces, jump and average operators

Let Ω = (0, 1)d, d = 1, 2, 3 and let K be a regular partition of Ω into elements κ ∈ K. That is, we assume that
the interior of κ ∩ κ′, for any κ, κ′ ∈ K, is either an element of K, a common face, edge, vertex of the partition
or the empty set. For simplicity, we identify the boundary of Ω in a periodical manner. That means, that we
also assume the partition to be regular across the boundary ∂Ω. We remark that although the assumption of
a rectangular domain with periodic boundary condition appears to be restrictive, such setup already directly
finds its application in important areas such as quantum chemistry and materials science. However, the analysis
below is not restricted to equations with periodic boundary condition. Other boundary conditions, such as
Dirichlet or Neumann boundary conditions can be employed as well with minor modification. Generalization to
non-rectangular domain does not introduce conceptual difficulties either, but may lead to changes in numerical
schemes for estimating relevant constants, if the tensorial structure of the grid points is not preserved.

Let N = (Nκ)κ∈K denote the vector of the local number of degrees of freedom Nκ on each element κ ∈ K. Let
VN =

⊕
κ∈K VN (κ) by any piecewise discontinuous, possibly complex, approximation space on a partition K of

the domain Ω. It is important to highlight that little is assumed about the a priori information of VN except
that we assume that each VN (κ) contains constant functions and that VN (κ) ⊂ H

3
2 (κ), so that the traces of

∇vN on the boundary ∂κ are well-defined for all vN ∈ VN (κ), for all κ ∈ K.
We denote by Hs(κ) the standard Sobolev space of L2(κ)-functions such that all partial derivatives of order

s ∈ N or less lie as well in L2(κ). By Hs(K), we denote the set of piecewise Hs-functions defined by

Hs(K) =
{
v ∈ L2(Ω) | v|κ ∈ Hs(κ), ∀κ ∈ K} ,
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also referred to as the broken Sobolev space. We denote by H1
#(Ω) the space of periodic H1-functions on Ω.

We further define the element-wise resp. face-wise scalar-products and norms as

(v, w)K =
∑
κ∈K

(v, w)κ and ‖v‖K = (v, v)
1
2
K.

The L2-norm on κ and Ω are denoted by ‖ · ‖κ and ‖ · ‖Ω, respectively. The jump and average operators on a
face F = κ ∩ κ′ are defined in a standard manner by

{{v}} =
1
2
(v|κ + v|κ′), and [[v]] = v|κnκ + v|κ′nκ′ ,

{{∇v}} =
1
2
(∇v|κ + ∇v|κ′), and [[∇v]] = ∇v|κ · nκ + ∇v|κ′ · nκ′ ,

where nκ denotes the exterior unit normal of the element κ. Finally we recall the standard result of piecewise
integration by parts formula that will be employed several times in the upcoming analysis.

Lemma 2.1. Let v, w ∈ H2(K). Then, there holds∑
κ∈K

[
(Δv, w)κ + (∇v,∇w)κ

]
=

1
2

∑
κ∈K

[
([[∇v]], w)∂κ + (∇v, [[w]])∂κ

]
.

2.2. Projections

For any element κ ∈ K, let us denote by Πκ
0 : L2(κ) → R the L2(κ)-projection onto constant functions

defined by
(Πκ

0 v, w)κ = (v, w)κ, ∀w ∈ R,

that is explicitly given by Πκ
0 v = 1

|κ|
∫

κ
v dx. On H1(κ) we define the following scalar product and norm

(v, w)�,κ = (Πκ
0 v, Πκ

0 w)κ + (∇v,∇w)κ, (2.1)

‖v‖�,κ = (v, v)
1
2
�,κ,

for all v, w ∈ H1(κ) and the corresponding projection Πκ
N : H1(κ) → VN(κ) by

(Πκ
Nv, wN )�,κ = (v, wN )�,κ ∀wN ∈ VN (κ). (2.2)

Then, it is easy to see that this projection satisfies the following properties

(v − Πκ
Nv, c)κ = 0, ∀c ∈ R, ∀v ∈ H1(κ),

or equivalently expressed as Πκ
0 (v − Πκ

Nv) = 0. This implies that

(∇(v − Πκ
Nv),∇wN )κ = 0, ∀wN ∈ VN (κ), ∀v ∈ H1(κ), (2.3)

‖∇(v − Πκ
Nv)‖κ ≤ ‖∇v‖κ, ∀v ∈ H1(κ), (2.4)

‖v − Πκ
Nv‖�,κ ≤ ‖v‖�,κ, ∀v ∈ H1(κ).

2.3. Local scaling constants

In this section, we recall some local constants that will be used in the upcoming a posteriori error analysis
and that were introduced in [36]. We start with recalling the local trace inverse inequality constant dκ for each
κ ∈ K defined by

dκ ≡ sup
vN∈VN (κ)

‖∇vN ·nκ‖∂κ

‖vN‖�,κ
> 0.
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Further, we consider

aκ ≡ sup
v∈H1(κ),
v⊥VN (κ)

‖v‖κ

‖v‖�,κ
and bκ ≡ sup

v∈H1(κ),
v⊥VN (κ)

‖v‖∂κ

‖v‖�,κ
,

where ⊥ is in the sense of the scalar product (·, ·)�,κ defined by (2.1).

Remark 2.2 (The computation of the constants aκ, bκ and dκ). More details on how these local constants can
be approximated by solving local eigenvalue problems is explained in detail in ([36], Sect. 5)

3. Eigenvalue problem

We first assume that the smallest eigenvalue λ ∈ R is non-degenerate. Consider the problem of finding this
smallest eigenvalue λ and the corresponding eigenfunction u ∈ H1

#(Ω) ∩ H2(K) with ‖u‖Ω = 1 such that

−Δu + V u = λu, in Ω. (3.1)

We assume that V is bounded and smooth. Observing that adding any constant to the potential results in a
modified eigenvalue which is shifted by the same value, we can assume that V is positive. The choice of the
constant only affects the high order terms that is absent in the leading computable upper and lower bound
estimators. We remark that the terminology “high order terms” in the estimators are simply borrowed from
standard a posteriori error analysis for hp-refinement, where a priori results prove that these terms are indeed
of higher order in this setting. For general non-polynomial basis functions as considered in the present work, no
such a priori error analysis is readily available. Nonetheless we justify from numerical results that these term
are indeed less important compared to the leading terms in the estimators.

For some θ ∈ R and γ : Ω → R such that γ|κ = γκ ∈ R and using the bilinear form

a(w, v) =
∑
κ∈K

[
(∇w,∇v)κ + (V w, v)κ

]
+

1
2

∑
κ∈K

[
− (∇w, [[v]])∂κ − θ([[w]],∇v)∂κ + γκ([[w]], [[v]])∂κ

]
,

the approximated eigenvalue problem can be stated as: Find the smallest eigenvalue λN ∈ C with smallest real
part and corresponding uN ∈ VN with ‖uN‖Ω = 1 such that

a(uN , vN ) = λN (uN , vN )Ω , ∀vN ∈ VN . (3.2)

Remark 3.1. For the sake of simplicity, we only discuss here formally the case for the smallest and non-
degenerate eigenvalue. The a posteriori analysis and estimators can be generalized to the approximation of
multiple eigenvalues and degenerate eigenvalues by comparing the subspaces spanned by the eigenfunctions
(see [1, 18] for an example of such procedure, as well as numerical tests presented in Sect. 4).

In order to quantify the error, we introduce the broken energy norm

|||v|||2=
∑
κ∈K

|||v|||2κ :=
∑
κ∈K

[
‖∇v‖2

κ +
γκ

2
‖[[v]]‖2

∂κ + ‖V 1
2 v‖2

κ

]
, ∀v ∈ H1(K).

As usual, the penalty parameter γ needs to be chosen sufficiently large to ensure coercivity of the bilinear form,
and the energy norm error for eigenfunctions is defined to be |||u − uN |||.

Following the technique introduced in [36] we obtain the following result.

Lemma 3.2. If γκ ≥ 1
2 (1 + θ)2 (dκ)2, then the bilinear form is coercive on VN , i.e., there holds

1
2
|||vN |||2 ≤ |a(vN , vN )|, ∀vN ∈ VN .

Proof. The proof is basically identical with the one presented in ([36], Lem. 3.1). The only slight difference is
that the broken energy norm as well as the bilinear form have now the positive contribution ‖V 1

2 vN‖2
κ. �

Remarkably, this lemma provides a computable and sharp value for each γκ such that the bilinear form is
coercive.
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3.1. A posteriori estimates of eigenfunctions

We adapt here the residual type estimators obtained in [36] to the case of eigenvalue problems.

3.1.1. Error representation

Recall that we assumed that u ∈ H2(κ), we introduce the constant du
κ(uN) defined by

du
κ(uN ) =

‖∇(u − uN )·nκ‖∂κ

‖∇(u − uN )‖κ
,

and define the constant cκ by
cκ = du

κ(uN) + dκ|θ|.
Without slight abuse of notation we may use du

κ ≡ du
κ(uN), and neglect the dependence on the numerical solution

uN . We note that in practice, the constant du
κ(uN ) can not be evaluated since u is unknown. Theoretically the

value du
κ(uN ) can be large. However, our previous numerical studies indicate that in many cases du

κ(uN ) can be
relatively well approximately by the computable constant dκ.

We start with defining the residual type quantities

ηR,κ ≡ aκ‖λNuN + ΔuN − V uN‖κ,

ηF,κ ≡ bκ

2
‖[[∇uN ]]‖∂κ,

ηJ,κ ≡
(
bκ γ̂κ +

cκ

2

)
‖[[uN ]]‖∂κ,

where
γ̂κ = max

F⊂∂κ
{{γ}}|F ,

and F any face of the element κ. Introducing the normalized error function

ϕ =
u − uN

|||u − uN ||| ,

and following the same strategy as in Section 3.2 of [36], we develop the following error representation equation.

|||u − uN ||| =
∑
κ∈K

[
(λNuN + ΔuN − V uN , ϕ−ϕN )κ − 1

2
([[∇uN ]], ϕ−ϕN )∂κ (3.3)

− ({{γ}}[[uN ]], (ϕ−ϕN )nκ)∂κ − 1
2
([[uN ]],∇ϕ+θ∇ϕN )∂κ

]
+ hotub,

for any ϕN ∈ VN . In the following, we will use the particular choice ϕN = Πκ
Nϕ.

The high order term for the upper bound estimator, denoted by hotub, is defined as

hotub := |(λu − λNuN , ϕ)Ω |.
Using the normalization condition for eigenfunctions ‖u‖Ω = ‖uN‖Ω = 1, the term hotub can be simplified as

hotub =
∣∣∣λ + λN

2
(u − uN , ϕ)Ω

∣∣∣ =
|λ + λN |

2

(‖u − uN‖Ω

|||u − uN |||
)2

|||u − uN |||.

Asymptotically as uN converges to u, ‖u−uN‖Ω

|||u−uN ||| characterizes the ratio between the error measured in L2 and
H1 norms, and converges to 0. Therefore hotub converges to 0 faster than the energy norm |||u − uN |||, and is
neglected in the practically computed upper bound estimator.
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3.1.2. Upper bounds

Theorem 3.3. Let u ∈ H1
#(Ω) ∩ H2(K) be the solution of (3.1) and uN ∈ VN the DG-approximation defined

by (3.2). Then, we have the following a posteriori upper bound for the approximation error in the eigenfunction

|||u − uN ||| ≤
(∑

κ∈K

[
ηR,κ + ηF,κ + ηJ,κ

]2
) 1

2

+ hotub.

Proof. One can proceeding as in the proof of Theorem 3.3 in [36] based on the slightly modified error represen-
tation formula (3.3). �
Remark 3.4. Note that even when the smallest eigenvalue λN is a non-degenerate eigenvalue, the corresponding
eigenfunction uN still has an arbitrary phase factor eiθ, θ ∈ [0, 2π). If such phase factors from u and uN do
not match, the error u − uN must be of order 1. Since u − uN never appears in the upper or lower bound
estimators, such phase factors will not affect the computation of the estimators, and only arise when comparing
the estimators with the true error |||u − uN |||. In such case, the phase factor can be eliminated by a “subspace
alignment” procedure to be discussed in Section 4. The same procedure can be applied to align eigenfunctions
when more eigenvalues and eigenfunctions are to be computed, even when some of the eigenvalues are degenerate.
Below we assume that u and uN are aligned eigenfunctions so that the error |||u − uN ||| converges to 0 as the
basis function refines.

3.1.3. Lower bounds

We establish here lower bounds for the error in the eigenvector approximation following the strategy estab-
lished in Section 4.2 of [36]. We only explain the details when the technique differs in the case of eigenvalue
approximations and summarize otherwise the results. Observe that

ηJ,κ =
(
bκ γ̂κ +

cκ

2

)
‖[[uN ]]‖∂κ ≤

√
2
γκ

(
bκ γ̂κ +

cκ

2

)
|||u − uN |||κ,

and that

η2
F,κ ≤ b2

κ

2

(
max

κ′∈ω(κ)
du

κ′(uN )
)2 ∑

κ′∈ω(κ)

‖∇(u − uN )‖2
κ′ ,

where ω(κ) is the patch consisting of κ and its adjacent elements sharing one face.
Further, let gκ be a smooth real-valued non-negative bubble function with supx∈κ gκ(x) = 1 and local

support, i.e. supp(gκ) ⊂ κ, which in turn implies that gκ|∂κ = 0. Let us denote the residual by R = λNuN +
ΔuN − V uN and define

σκ = aκ
‖R‖κ

‖g 1
2
κ R‖2

κ

·

Denote by ϕκ ∈ H1
0 (κ) the local solution to equation (3.4)

−Δϕκ = gκ R V, on κ, (3.4)

so that

ηR,κ = aκ‖R‖κ = σκ‖g
1
2
κ R‖2

κ = σκ

∫
κ

gκ R
[
− Δ(u − uN ) + V (u − uN ) + λNuN − λu

]
= −σκ

∫
κ

[
gκ R Δ(u − uN ) − Δϕκ(u − uN ) + gκ R (λNuN − λu)

]
= σκ

∫
κ

[
∇(u − uN) · ∇(gκ R) −∇(u − uN ) · ∇ϕκ + gκ R (λNuN − λu)

]
≤ σκ‖∇(u − uN )‖κ‖∇(gκ R − ϕκ)‖κ + σκ

∫
κ

gκ R (λNuN − λu),
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and in consequence

ηR,κ ≤ σκ‖∇(gκ R − ϕκ)‖κ|||u − uN |||κ + σκ‖λNuN − λu‖κ ‖gκR‖κ.

We define

hotlbκ = ‖λNuN − λu‖κ
‖gκR‖κ

‖∇(gκ R − ϕκ)‖κ
·

Numerical results indicate that hotlb can be much smaller compared to the lower bound estimator as the basis
set refines. The results above indicate that

|||u − uN |||κ ≥ ηJ,κ
cJ,κ

, |||u − uN |||ω(κ) ≥ ηF,κ
cF,κ

and |||u − uN |||κ + hotlbκ ≥ ηR,κ
cR,κ

· (3.5)

where |ω(κ)| the cardinality of the set ω(κ), and

cR,κ = aκ
‖R‖κ‖∇(gκ R − ϕκ)‖κ

‖g1/2
κ R‖2

κ

,

cF,κ = bκ

√
|ω(κ)|

2
max

κ′∈ω(κ)
du

κ′(uN ),

cJ,κ =
√

2
γκ

(
bκ γ̂κ +

cκ

2

)
·

We summarize the results in the following proposition.

Proposition 3.5 (Local lower bound). Let u ∈ H1
#(Ω) ∩ H2(K) be the solution of (3.1) and uN ∈ VN the

DG-approximation defined by (3.2). Then, the quantity

ξκ = max
{

ηR,κ
cR,κ

,
ηF,κ
cF,κ

,
ηJ,κ
cJ,κ

}
,

is a local lower bound of the local error

max
{|||u − uN |||κ + hotlbκ , |||u − uN |||ω(κ)

}
.

Here
|||v|||2ω(κ) =

1
|ω(κ)|

∑
κ′∈ω(κ)

‖∇v‖2
κ′ +

γκ

2
‖[[v]]‖2

∂κ,

Remark 3.6. In practice, sometimes both ηF,κ and cF,κ can become very small. Since cF,κ is computed inac-
curately with iterative methods, the ratio ηF,κ

cF,κ
can become numerically unreliable. This can be addressed by

defining

ξκ =
ηR,κ + ηF,κ + ηJ,κ
cR,κ + cF,κ + cJ,κ

. (3.6)

Since
ηR,κ + ηF,κ + ηJ,κ
cR,κ + cF,κ + cJ,κ

≤ max
{

ηR,κ
cR,κ

,
ηF,κ
cF,κ

,
ηJ,κ
cJ,κ

}
,

Equation (3.6) is still a local lower error bound, but is more robust when cF,κ becomes small. Furthermore,
among the three terms ηR,κ

cR,κ
,

ηF,κ

cF,κ
,

ηJ,κ

cJ,κ
, one term (usually the residual or the jump term) is often in practice

larger than the rest of the two terms combined. In this case the use of (3.6) leads to little loss of efficiency.

On a global level, the following result holds.



A POSTERIORI ERROR ESTIMATES FOR NON-POLYNOMIAL BASIS FUNCTIONS. PART II: EIGENPROBLEM 1741

Proposition 3.7 (Global lower bound). Let u ∈ H1
#(Ω) ∩ H2(K) be the solution of (3.1) and uN ∈ VN the

DG-approximation defined by (3.2). Then, there holds that

ξ2 =

∑
κ∈K

[
ηR,κ + ηF,κ + ηJ,κ

]2
3 maxκ∈K

(
c2
R,κ + b2

ω(κ)d
u
κ(uN )2 + c2

J,κ

) ≤ |||u − uN |||2 + (hotlb)2,

where

b2
ω(κ) = max

F∈∂κ
{{b2

κ}}|F = max
F∈∂κ

(
b2

κ

2
+

b2
κ′

2

) ∣∣∣∣∣
F

,

hotlb =

(∑
κ∈K

(hotlbκ )2
) 1

2

.

Proof. Observe that as explained in Section 4.2 of [36]∑
κ∈K

η2
F,κ ≤

∑
κ∈K

b2
ω(κ)d

u
κ(uN)2‖∇(u − uN)‖2

κ,

and then using the other local estimates for ηR,κ and ηJ,κ given by (3.5) yields

∑
κ∈K

[
ηR,κ + ηF,κ + ηJ,κ

]2
≤ 3

∑
κ∈K

(
η2
R,κ + η2

F,κ + η2
J,κ

)
≤ 3

∑
κ∈K

(
c2
R,κ + b2

ω(κ)d
u
κ(uN)2 + c2

J,κ

)(
|||u − uN |||2κ + (hotlbκ )2

)
≤ 3 max

κ∈K

(
c2
R,κ + b2

ω(κ)d
u
κ(uN )2 + c2

J,κ

)(
|||u − uN |||2 + (hotlb)2

)
. �

3.2. A posteriori estimates of eigenvalues

Unlike the error of eigenfunctions u − uN of which the definition requires a subspace alignment procedure
in the general case, the definition of the error of eigenvalues λ − λN is directly well defined. Our strategy for
obtaining the upper and lower bound estimators for eigenvalues is to relate λ − λN with the bilinear form
a(u − uN , u − uN ), and then bound errors of eigenvalues by errors of eigenfunctions. Compared to treatment
in literature [18], our treatment is slightly simpler and does not involve lifting operators due to regularity
assumptions.

Remark 3.8. The following results of Theorem 3.10 and 3.9 only hold for the symmetric version of the method
(θ = 1) as we make explicit use of the symmetry of the bilinear form. In non-symmetric DG formulation (i.e.
θ 
= 1), the bilinear form can be decomposed into a symmetric and an anti-symmetric part. The anti-symmetric
part of the bilinear form leads to an error term that scales as |||ui−ui,N ||| instead of |||ui−ui,N |||2 in the eigenvalues,
and hence the convergence properties of eigenvalues are suboptimal. This phenomena has been observed for the
Laplace problem in the context of h-refinement [1], and is confirmed by our numerical results in Section 4.
We also find that this additional anti-symmetric term is difficult to be effectively estimated with computable
constants.

Theorem 3.9. Let u ∈ H1
#(Ω) ∩ H2(K) and λ be the solution of (3.1) and uN ∈ VN and λN the

DG-approximation defined by (3.2) with θ = 1. Then, we have the following a posteriori upper bound
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for the approximation error in the eigenvalue

|λN − λ| ≤ max
κ∈K

(
1 +

du
κ|1 + θ|
2γ

1
2
κ

)(
η + hotub

)2 + λ ‖u − uN‖2
Ω,

where

η =

(∑
κ∈K

[
ηR,κ + ηF,κ + ηJ,κ

]2
) 1

2

.

Proof. Observe that
a(u − uN , u − uN) = λ + λN − 2a(u, uN),

using symmetry (i.e. θ = 1) of the bilinear form. We also use the fact that

a(u, uN) = λ(u, uN),

and that
2 (u, uN) = ‖u‖2

Ω + ‖uN‖2
Ω − ‖u − uN‖2

Ω = 2 − ‖u − uN‖2
Ω,

to derive
a(u − uN , u − uN) = λN − λ + λ ‖u − uN‖2

Ω. (3.7)

In consequence, we obtain the estimate

|λN − λ| ≤ |a(u − uN , u − uN )| + λ ‖u − uN‖2
Ω.

Use that

a(u−uN , u−uN) =
∑
κ∈K

[
‖∇(u−uN)‖2

κ +‖V 1
2 (u−uN )‖2

κ

]
+

1
2

∑
κ∈K

[
(1+θ)(∇(u−uN ), [[uN ]])∂κ +γκ‖[[uN ]]‖2

∂κ

]
.

The Cauchy−Schwarz inequality and the definition of du
κ yields

|(∇(u − uN ), [[uN ]])∂κ| ≤ ‖∇(u − uN )‖∂κ‖[[uN ]]‖∂κ ≤ du
κ‖∇(u − uN )‖κ‖[[uN ]]‖∂κ,

and thus

|a(u−uN , u−uN)| ≤
∑
κ∈K

[
‖∇(u − uN)‖2

κ+‖V 1
2 (u − uN)‖2

κ+
du

κ|1 + θ|
2

‖∇(u − uN )‖κ‖[[uN ]]‖∂κ+
γκ

2
‖[[uN ]]‖2

∂κ

]
·

(3.8)
Applying now Young’s inequality, we get

‖∇(u − uN)‖κ‖[[uN ]]‖∂κ ≤ 1
(2γκ)

1
2
‖∇(u − uN )‖2

κ +
(2γκ)

1
2

4
‖[[uN ]]‖2

∂κ.

Inserting this into (3.8) yields

|a(u − uN , u − uN)|

≤
∑
κ∈K

[
‖∇(u − uN)‖2

κ + ‖V 1
2 (u − uN )‖2

κ+
du

κ|1 + θ|
(8γκ)

1
2

‖∇(u − uN)‖2
κ+

du
κ|1 + θ|(2γκ)

1
2

8
‖[[uN ]]‖2

∂κ+
γκ

2
‖[[uN ]]‖2

∂κ

]

=
∑
κ∈K

[(
1 +

du
κ|1 + θ|
(8γκ)

1
2

)
‖∇(u − uN )‖2

κ + ‖V 1
2 (u − uN )‖2

κ +
γκ

2

(
1 +

du
κ|1 + θ|
(8γκ)

1
2

)
‖[[uN ]]‖2

∂κ

]
≤ max

κ∈K

(
1 +

du
κ|1 + θ|
(8γκ)

1
2

)
|||u − uN |||2.
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Applying now the result of Theorem 3.3, we get

|a(u − uN , u − uN)| ≤ max
κ∈K

(
1 +

du
κ|1 + θ|
(8γκ)

1
2

)
|||u − uN |||2

≤ max
κ∈K

(
1 +

du
κ|1 + θ|
(8γκ)

1
2

)⎛⎝(∑
κ∈K

[
ηR,κ + ηF,κ + ηJ,κ

]2) 1
2

+ hotub

⎞⎠2

,

which leads to the final result. �

Theorem 3.10. Let u ∈ H1
#(Ω) ∩ H2(K) and λ be the solution of (3.1) and uN ∈ VN and λN the DG-

approximation defined by (3.2) with θ = 1. Then, if the stabilization parameter γκ is large enough, i.e. γκ ≥
1
2 (1 + θ)2(du

κ)2, and the high order terms not dominating, i.e. 2 λ ‖u − uN‖2
Ω < |||u − uN |||2, then, we have the

following a posteriori lower bound for the approximation error in the eigenvalue

1
2
ξ2 ≤ |λN − λ| + λ ‖u − uN‖2

Ω +
1
2
(hotlb)2.

Proof. We first observe that

|a(u − uN , u − uN )| ≥ 1
2
|||u − uN |||2,

under the first assumption, i.e. that γκ ≥ 1
2 (1+ θ)2(du

κ)2. Indeed, the proof is identical to the one of Lemma 3.1
of [36] by replacing the arbitrary discrete function vN by the error function u − uN and using the constant du

κ

instead of dκ.
Then, starting from (3.7) we see that

|λN − λ| =
∣∣a(u − uN , u − uN ) − λ ‖u − uN‖2

Ω

∣∣.
Now, observing that the second assumption of the Theorem implies that

|a(u − uN , u − uN )| ≥ 1
2
|||u − uN |||2 ≥ λ ‖u − uN‖2

Ω,

we deduce that

|λN − λ| ≥ |a(u − uN , u − uN)| − λ ‖u − uN‖2
Ω ≥ 1

2
|||u − uN |||2 − λ ‖u − uN‖2

Ω.

Finally, we deduce the final result by applying Proposition 3.7 to obtain a lower bound of the energy error. �

4. Numerical results

In this section we test the effectiveness of the a posteriori error estimators. The test program is written in
MATLAB, and all results are obtained on a 2.7 GHz Intel processor with 16 GB memory. All numerical results
are performed using the symmetric bilinear form (θ = 1).

The error in the energy norm of the ith eigenfunction is denoted by |||ui − ui,N |||. We will compare |||ui −
ui,N ||| with our parameter-free upper bound estimator ηi and lower bound estimator ξi, respectively. For the
eigenvalues, our theory in Section 3 indicates that after neglecting the high order terms, the upper bound for the
error of the ith eigenvalue |λi − λi,N | can be taken as C1η

2
i , and the lower bound should be ξ2

i /C2, where C1,
C2 are positive constants larger than 1. However, our estimate of the error of the eigenvalues is based on the
estimate of the error of the eigenfunctions, and hence the upper and lower bound estimators for eigenvalues may
deviate further from the true error of eigenvalues. Numerical results below indicate that it is possible to choose
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and use η2
i and ξ2

i as the numerical upper and lower bound estimator, for the error of the ith eigenvalue,
respectively, i.e. setting C1 = C2 = 1.

The definition of the energy norm contains the term ‖V 1
2 (ui−ui,N )‖2

κ. This term characterizes a weighted L2

error of the eigenfunction, and hence is asymptotically less important than the rest of the terms in the energy
error. Nonetheless we include this term explicitly in the computation, where V

1
2 is replaced by (V −Vm)

1
2 , and

Vm the minimum of the potential V in Ω. As mentioned in Section 3, such shift is possible since the addition
of a constant only shifts all eigenvalues by a constant, without changing the eigenfunctions. In the numerical
computation, the intuitively high order terms hotub and hotlb that are part of the upper and lower bound
estimators, which were derived in Section 3, are neglected. Although we do not have a priori error analysis
for general non-polynomial basis functions to justify that such terms are indeed of higher order compared to
the upper and lower bound estimators, respectively, we compute these terms explicitly. As we will see in the
numerical examples, hotub, hotlb can indeed be much smaller than the upper and lower bound estimators,
respectively, when the approximate solution converges to the true solution as the basis set is enriched.

Our test systems are selected from the same set as those used in Part I of this manuscript [36]. Numerical
results indicate that our estimators for eigenfunctions capture the true error within a factor 2 ∼ 5, across a
wide range of accuracy. Since the error of eigenvalues is on the order of magnitude of the square of the error of
eigenfunctions, our upper and lower bound estimators for eigenvalues is generally within an order of magnitude
of the error of the eigenvalues.

As discussed in Section 3, it is straightforward to measure the error of eigenvalues. Special care should be
taken when measuring the error of eigenfunctions. Even when all eigenvalues are simple (i.e. non-degenerate),
the computed eigenfunctions may carry an arbitrary phase factor ±1. If the multiplicity of an eigenvalue is larger
than 1, the resulting eigenfunctions may be an arbitrary normalized vector in the corresponding eigenspace.
Therefore when measuring the error of eigenfunctions, a “subspace alignment” procedure is first performed.
Assume we would like to compute the first m eigenfunctions. In each element κ, we represent the solution on
a fine set of Legendre-Gauss-Lobatto (LGL) grid points. With some abuse of notation, we denote by ui, for
i = 1, . . . , m, a column vector, and each entry of the vector is the value of the true eigenfunction evaluated on
one such LGL grid point. This setup is the same as that used in [36]. We also denote by W a diagonal matrix
with each diagonal entry being the quadrature weight associated with a LGL grid point, such that the discrete
normalization condition can be written as

u�
i Wuj = δij , 1 ≤ i, j ≤ m.

Here δij is the Kronecker δ-symbol. Similarly ui,N denotes the column vector with each entry being the value of
the approximate eigenfunction in the DG method evaluated on a LGL grid point, and satisfies the normalization
condition

u�
i,NWuj,N = δij , 1 ≤ i, j ≤ m.

Define the matrix U = [u1, . . . , um] and UN = [u1,N , . . . , um,N ]. Then we define the aligned eigenfunctions,
denoted by ŨN = [ũ1,N , . . . , ũm,N ], as

ŨN = UN (U�
NWU). (4.1)

When m = 1, equation (4.1) reduces to

ũ1,N = u1,N(u�
1,NWu1),

and the subspace alignment procedure can clearly recover the potential phase factor discrepancy when u1 and
u1,N . Equation (4.1) can be further used when certain eigenvalues are degenerate. Then in practice, |||ui −ui,N |||
is computed from |||ui − ũi,N |||. With slight abuse of notation, in the discussion below ui,N refers to the aligned
eigenfunction ũi,N . All eigenfunctions have normalized 2-norm in the real space, and therefore the order of
magnitude of absolute errors of eigenfunctions is also comparable to that of the relative errors.
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The quality of the upper and lower bound estimators for the ith eigenfunction is measured by

Ci,η =
ηi

|||ui − ui,N ||| , Ci,ξ =
ξi

|||ui − ui,N ||| ,

respectively. The estimators are strictly upper and lower bound of the error if Ci,η > 1 and Ci,ξ < 1, and the
estimators are considered to be effective if they are close to 1. Similarly, the estimators for the eigenfunctions
are defined to be

Cλ
i,η =

η2
i

|λi − λi,N | , Cλ
i,ξ =

ξ2
i

|λi − λi,N | ·

Our test problems include both one dimensional (1D) and two dimensional (2D) domains with periodic
boundary conditions. The numerical examples are chosen to be the two difficult cases in our previous publica-
tion [36]. Our non-polynomial basis functions are generated from the adaptive local basis (ALB) set [35] in the
DG framework. The ALB set was proposed to systematically reduce the number of basis functions used to solve
Kohn−Sham density functional theory calculations, which involves large scale eigenvalue computations.

We denote by N the number of ALBs per element. For operators in the form of A = −Δ + V with periodic
boundary condition, the basic idea of the ALB set is to use eigenfunctions computed from local domains as
basis functions corresponding to the lowest few eigenvalues. The eigenfunctions are associated with the same
operator A, but with modified boundary conditions on the local domain. More specifically, in a d-dimensional
space, for each element κ, we form an extended element κ̃ consisting of κ and its 3d − 1 neighboring elements
in the sense of periodic boundary condition. On κ̃ we solve the eigenvalue problem

−Δϕ̃i + V ϕ̃i = λi, ϕ̃i. (4.2)

with periodic boundary condition on ∂κ̃. The collection of eigenfunctions (corresponding to lowest N eigenvalues)
are restricted from κ̃ to κ, i.e.

ϕi(x) =

{
ϕ̃i(x), x ∈ κ;
0, otherwise.

After orthonormalizing the set of basis functions {ϕi}N
i=1 locally on each element κ and removing the linearly

dependent functions, the resulting set of orthonormal functions are called the ALB functions.
Since periodic boundary conditions are used on the global domain Ω, the reference solution is solved using

a planewave basis set with a sufficiently large number of planewaves. The ALB set is also computed using a
sufficiently large number of planewaves on the extended element κ̃. Then a Fourier interpolation procedure is
carried out from κ̃ to the local element LGL for accurate numerical integration.

4.1. Symmetric case

We first demonstrate the effectiveness of the a posteriori error estimates for the symmetric case (θ = 1) for a
second order operator on a 1D domain Ω = (0, 2π), using the ALB set as non-polynomial basis functions. The
potential function V (x) is given by the sum of three Gaussian functions with negative magnitude, as shown in
Figure 1a. The operator A = −Δ + V has 3 negative eigenvalues and is indefinite. The domain is partitioned
into 7 elements for the ALB calculation. Figure 1b shows the first eigenfunction u1, and Figure 1c shows the
point-wise error u1 − u1,N using N = 6 ALBs per element.

Figure 2a, 2b compare the error of the first 11 eigenvalues and the corresponding eigenfunctions, together
with the upper and lower estimators, respectively, using a relatively small number of 6 basis functions per
element. For the eigenfunctions, Ci,η ranges from 1.50 to 2.82. Hence ηi is indeed an effective upper bound
for |||ui − ui,N |||. The lower bound estimator Ci,ξ ranges from 0.32 to 0.58, and therefore is effective as well. In
terms of eigenvalues, the upper bound estimator Cλ

i,η ranges from 3.16 and 9.70, and the lower bound estimator
for eigenvalues Cλ

i,ξ ranges from 0.17 to 0.40. While the upper and lower bound of the eigenvalues remains to
be true upper and lower bound, respectively, we note that the eigenvalue estimator is less effective compared
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Figure 1. (a) The potential V (x) given by the sum of three Gaussians with negative mag-
nitude. (b) The first eigenfunction u1(x). (c) Point-wise error between the first eigenfunction
u1(x) and the numerical solution u1,N(x) calculated using the ALB set with 7 elements and
N = 6 basis functions per element. The symmetric DG-formulation (θ = 1) is used.
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Figure 2. Error of the (a) eigenvalues and (b) eigenfunctions together with upper and lower
bound estimator for the first 11 eigenfunctions, using 6 basis functions per element. (c),(d)
are the same as (a),(b) respectively but with 10 basis functions per element. The symmetric
DG-formulation (θ = 1) is used.
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Figure 3. (a) The potential V (x, y). (b) The first eigenfunction u1(x). (c) Point-wise error
between the first eigenfunction u1(x) and the numerical solution u1,N(x) calculated using the
ALB set with 5 × 5 elements and N = 11 basis functions per element. The symmetric DG-
formulation (θ = 1) is used.
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Figure 4. Error of the (a) eigenvalues and (b) eigenfunctions together with upper and lower
bound estimator for the first 11 eigenfunctions, using 11 basis functions per element. (c), (d)
are the same as (a), (b) respectively but with 41 basis functions per element. The symmetric
DG-formulation (θ = 1) is used.
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Table 1. Eigenvalues for the one dimensional problem and the error using the symmetric
formulation (θ = 1).

Index λi λi − λi,N (6 basis) λi − λi,N (10 basis)
1 −28.769721209605 0.000000599162 0.000000005437
2 −24.316960338928 0.000001523922 0.000000003829
3 −18.093325393003 0.000001204386 0.000000003990
4 0.429402086919 0.000016479855 0.000000002661
5 1.421976889726 0.000626889542 0.000000021264
6 3.763168591992 0.000018860116 0.000000002333
7 5.172902892020 0.000929598392 0.000000013525
8 9.971205174959 0.000219531016 0.000000015005
9 10.617071494660 0.000638368716 0.000000010922
10 18.445320809895 0.000842602569 0.000000007909
11 18.458167300455 0.021496721486 0.000000088702

Table 2. Eigenvalues for the two dimensional problem and the error using the symmetric
formulation (θ = 1).

Index λi λi − λi,N (11 basis) λi − λi,N (41 basis)
1 −33.312132781264 0.000003615853 0.000000245650
2 −32.619818634309 0.000003832614 0.000000278437
3 −32.051647752501 0.000004713754 0.000000283053
4 −32.051532842464 0.000006148064 0.000000168021
5 −21.015438855377 0.000064077581 0.000000975524
6 −17.703202689587 0.000116116354 0.000001280220
7 −16.759588877909 0.000102327115 0.000001335829
8 −16.452393188275 0.000164654453 0.000000797606
9 −16.446040727849 0.000224122915 0.000001243918
10 −16.444972684293 0.000419743637 0.000000749203
11 −16.439012478540 0.000289115591 0.000002582337

to that of the eigenfunctions, and the upper (lower) bound estimator can overestimate (underestimate) the error
by around one order of magnitude. Nonetheless, we note in Figure 2a that the error of eigenvalues spans over 4
orders of magnitude, and our upper and lower estimators well captures such inhomogeneity in terms of accuracy
among the different eigenvalues. The same trend is observed for eigenfunctions in Figure 2b. Figure 2b also
reports the terms hotub, hotlb defined in Section 3. We find that hotubi and hotlbi are significantly smaller than
ηi and ξi, respectively, and thus justify numerically that such terms are indeed high order terms.

Figure 2c, 2d demonstrate the error of eigenvalues and eigenfunctions and the associated estimators using
a more refined basis set, with 10 basis functions per element. Despite the small increase of the number of
basis functions, the error of eigenvalues is reduced to as low as 10−8. Ci,η for eigenfunctions is between 2.19
and 2.45, and Ci,ξ is between 0.64 and 0.67. The effectiveness parameters are remarkably homogeneous for all
eigenfunctions computed. Correspondingly Cλ

i,η for eigenvalues is between 5.27 and 7.37, and Cλ
i,ξ for eigenvalues

is between 0.45 and 0.58. The difference between ηi, ξi compared to hotubi , hotlbi is amplified even further in
Figure 2d as the basis set refines, and therefore justifies that hotubi , hotlbi are indeed of higher order.

Our second example is a 2D problem on Ω = (0, 2π) × (0, 2π) with periodic boundary condition and the
symmetric formulation (θ = 1). The potential V is given by the sum of four Gaussians with negative magnitude,
as illustrated in Figure 3a. Figure 3b shows the first eigenfunction u1 and Figure 3c shows the point-wise error
u1 − u1,N using N = 11 ALBs per element. In the ALB computation, the domain is partitioned into 5 × 5
elements, indicated by black dashed lines.
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Figure 5. Error of the eigenfunctions together with upper and lower bound estimators for the
first 11 eigenfunctions of the one dimensional problem as in Figure 1, using (a) 6 and (b) 10
basis functions per element. The non-symmetric DG formulation is used (θ = −1).
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Figure 6. Error of the eigenfunctions together with upper and lower bound estimator for the
first 11 eigenfunctions of the two dimensional problem as in Figure 3, using (a) 11 and (b) 41
basis functions per element. The non-symmetric DG formulation is used (θ = −1).

Similar to the 1D case, Figure 4a, 4b compare the error of the first 11 eigenvalues and the corresponding
eigenfunctions, together with the upper and lower estimators, respectively, using 11 basis functions per element.
The effectiveness parameter for eigenfunctions Ci,η ranges from 2.78 to 4.59, and the Ci,ξ ranges from 0.22
to 0.36. For the eigenvalues, the upper bound estimator Cλ

i,η is between 12.73 and 21.68, and the lower bound
estimator for eigenvalues Cλ

i,ξ is between 0.08 to 0.14. Similarly, we observe that Cλ
i,η and Cλ

i,ξ are roughly on the
order of magnitude of the square of the Ci,η and Ci,ξ, respectively. Again our upper and lower bound estimator
well captures the large inhomogeneity in terms of accuracy among different eigenvalues and eigenfunctions.

Figure 4c, 4d show the error of eigenvalues and eigenfunctions and the associated estimators using a large
number of 41 basis functions per element. Ci,η for eigenfunctions is between 2.00 and 2.41, and Ci,ξ is between



1750 L. LIN AND B. STAMM

Table 3. Eigenvalues for the one dimensional problem and the error using the non-symmetric
formulation (θ = −1).

Index λi λi − λi,N (6 basis) λi − λi,N (10 basis)
1 −28.769721209605 0.000054167318 0.000007176109
2 −24.316960338928 −0.001223064582 −0.000032336520
3 −18.093325393003 0.000213562178 −0.000021964134
4 0.429402086919 −0.000284954010 −0.000004373391
5 1.421976889726 −0.007174862162 −0.000012774753
6 3.763168591992 −0.000848276188 −0.000002355145
7 5.172902892020 −0.009685074808 −0.000009572386
8 9.971205174959 −0.001088150213 −0.000001524626
9 10.617071494660 0.021697628598 0.000096130779
10 18.445320809895 0.016588454586 −0.000006665521
11 18.458167300455 0.187835357748 0.000309878510

Table 4. Eigenvalues for the two dimensional problem and the error using the non-symmetric
formulation (θ = −1).

Index λi λi − λi,N (11 basis) λi − λi,N (41 basis)
1 −33.312132781264 −0.000697462994 −0.000034886213
2 −32.619818634309 0.000302508862 −0.000169802313
3 −32.051647752501 −0.000869605496 −0.000047347400
4 −32.051532842464 0.000127256391 −0.000063786863
5 −21.015438855377 −0.000517303819 0.000090315228
6 −17.703202689587 −0.000366181027 −0.000008262798
7 −16.759588877909 0.004727576634 0.000047094936
8 −16.452393188275 −0.001611687442 −0.000037672775
9 −16.446040727849 −0.002480975717 0.000089419810
10 −16.444972684293 0.003652483520 −0.000022676293
11 −16.439012478540 0.004305753629 0.000155704993

0.23 and 0.32. The effectiveness parameters are remarkably homogeneous for all eigenfunctions computed. Cor-
respondingly Cλ

i,η for eigenvalues is between 4.45 and 6.85, and Cλ
i,ξ for eigenvalues is between 0.06 and 0.11.

The high order terms hotubi , hotlbi are reported in Figure 4b and 4d. Again we find that such terms are smaller
than the upper and lower estimators, and the difference become more enhanced as the basis set refines.

Tables 1 and 2 reports the value of the eigenvalues and the errors in the one and two dimensional cases,
respectively. We obtain highly accurate eigenvalues compared to the numerically exact solution, which also
confirms the effectiveness of our upper and lower bound estimators.

4.2. Non-symmetric case

In this section we demonstrate that the a posteriori error estimator is equally applicable to the non-symmetric
DG-formulation using the same examples in one and two dimensions, respectively. We choose θ = −1. According
to Lemma 3.2, the advantage of the choice of θ = −1 is that there is no formal constraint on the penalty
parameter γκ other than that γκ > 0. In all calculations we choose γκ ≡ 1. The disadvantage is that the
reduced eigenvalue problem corresponds to a non-symmetric matrix, and the eigenvalues and eigenfunctions
can in principle have real as well as imaginary components [1]. However, in all calculations below, we find
that the reported eigenvalues and eigenfunctions have imaginary components that are below machine precision,
and hence can be considered to be real.

For the one dimensional problem as presented in Figure 1 for the symmetric case, we report the error of the
eigenfunctions together with upper and lower bound estimators for the first 11 eigenfunctions in Figure 5. The
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behavior of the solution together with the estimators is similar to that of the symmetric solver. The effectiveness
parameter for the upper bound Ci,η ranges from 1.92 to 3.80 when N = 6, and ranges from 2.43 to 2.97 when
N = 10. For the lower bound estimator Ci,ξ, the range is 0.13 to 0.29 for N = 6, and 0.14 to 0.17 for N = 10.

Similarly for the two dimensional problem in Figure 3, the error of the eigenfunctions together with upper
and lower bound estimators for the first 11 eigenfunctions are given in Figure 6. When N = 11, the true error
of the eigenfunctions are larger than that of the upper bound for eigenfunctions 9 and 10. This is due to the
fact that the asymptotic regime has not been reached and the “high order terms” are still important. When
the number of basis functions increase as in the case of N = 41, the error of all eigenfunctions is bounded by
the corresponding upper and lower bound estimators. The range of the effectiveness parameter for the upper
bound Ci,η is 0.35 to 3.50 when N = 11, and is 1.34 to 2.32 when N = 41. For the lower bound estimator Ci,ξ,
the range is 0.03 to 0.26 for N = 11, and 0.10 to 0.17 for N = 41.

Table 3 and 4 report the value of the eigenvalues and the errors in the one and two dimensional cases, respec-
tively, for the non-symmetric solver with θ = −1. Compared to Tables 1 and 2, the error of the eigenvalues is
significantly increased, while the error of the eigenfunctions is comparable to that in the symmetric formulation.
As mentioned in Remark 3.8, this increase of error is due to that the bilinear form a(u, v) is not symmetric,
which contributes a leading term that is in the order of |||ui − ui,N ||| instead of |||ui − ui,N |||2. Our numerical
observation also agrees with the result in [1], where suboptimal convergence rate of the eigenvalues for the
Laplace problem is observed for h-refinement.

5. Conclusion

In this paper, we extend the framework that was introduced in the companion paper (Part I) [36] to linear
eigenvalue problems for second order partial differential operators in a discontinuous Galerkin (DG) framework.
Our method provides residual type a posteriori upper and lower bounds estimators for estimating the error of
the numerically computed eigenvalues and eigenfunctions. The key-feature of our approach is that in absence
of a priori inverse type inequalities for non-polynomial basis functions, local eigenvalue problems are solved
and subsequently embedded in the a posteriori estimates. Hence our estimate is tailored for each new set of
basis functions, and numerical results illustrate the effectiveness of our approach. Our numerical results also
indicate that the quality of the eigenfunctions and the associated a posteriori error estimators is comparable in
the symmetric and non-symmetric DG formulation. However, the symmetric formulation leads to more accurate
eigenvalues, and should be used to solve eigenvalue problems when possible.

Future developments will naturally concern the extension to non-linear eigenvalue problems and in particular
the Kohn−Sham equations in the framework density functional theory.
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