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APPROXIMATION: A PRIORI ESTIMATES
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Abstract. We present a new two–step method based on the hybridization of mesh sizes in the tra-
ditional mixed finite element method. On a coarse mesh, the primary variable is approximated by a
standard Galerkin method, whose computational cost is very low. Then, on a fine mesh, an H(div)
projection of the dual variable is sought as an accurate approximation for the flux variable. Our method
does not rely on the framework of traditional mixed formulations, the choice of pair of finite element
spaces is, therefore, free from the requirement of inf-sup stability condition. More precisely, our method
is formulated in a fully decoupled manner, still achieving an optimal error convergence order. This
leads to a computational strategy much easier and wider to implement than the mixed finite element
method. Additionally, the independently posed solution strategy allows to use different meshes as well
as different discretization schemes in the calculation of the primary and flux variables. We show that
the finer mesh size h can be taken as the square of the coarse mesh size H , or a higher order power with
a proper choice of parameter δ. This means that the computational cost for the coarse-grid solution is
negligible compared to that for the fine-grid solution. In fact, numerical experiments show an advan-
tage of using our strategy compared to the mixed finite element method. Some guidelines to choose an
optimal parameter δ are also given. In addition, our approach is shown to provide an asymptotically
exact a posteriori error estimator for the primary variable p in H1 norm.

Mathematics Subject Classification. 65N30, 65N15.

Received December 7, 2014. Revised May 15, 2016. Accepted September 8, 2016.

1. Introduction

The purpose of this paper is to develop a very efficient and easy-to-implement finite element method for the
approximation of the flux variable based on a system of first-order equations for second-order elliptic differential
equations. It is well-known that if the standard mixed method is applied to the system, the pair of finite element
spaces for the primary function and the flux variable should satisfy the discrete inf-sup condition, which limits
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the choice of wide variety of finite element spaces to few available pairs. Moreover, the nature of saddle point
problem for the mixed formulation narrows the applicability of efficient linear solvers.

The main purpose of this work is to propose a new method which does not require the inf-sup condition
and any conforming finite element spaces can be used for approximation spaces for the primary and flux(dual)
variables. Some relevant works can be found at [10, 18].

Our main motivation is to obtain the approximate solutions for the flux variable accurately. The flux variable
is the quantity of interest in many engineering applications: see [1, 3, 13, 16, 20] and the references therein. For
an efficient computation of the flux variable, a simple but important observation in this paper is that we can
obtain an approximate solution for the primary function on a coarse mesh and use it to obtain the approximate
solutions for the flux variable on a finer mesh. Therefore, our method is built upon a two-grid procedure. Namely,
in the first stage, we use the standard Galerkin method on a very coarse mesh to obtain an approximate the
primary variable p, denoted by p.

HG In the second stage, we apply a finite element method on a finer mesh to
obtain an approximate solution uh for the flux variable u(= −A∇ p) using pG

H .

We show that optimal convergence for the flux variable can be achieved by using the target mesh size h for
the finer mesh while the coarse mesh can still be quite coarse. The typical case corresponds to the choice δ = 1
in (2.6), and in this case our analysis shows that if pG

H is found from the piecewise linear finite element and uh

is found from the lowest-degree Raviart−Thomas mixed finite element space, then H can be chosen as large as
h1/2, still preserving optimal convergence. Moreover, by choosing a parameter δ small, the ratio between the
coarse mesh H and fine mesh h could be larger. For smaller δ, the computational cost for the primary variable
is negligible while the resulting algebraic equation becomes closer to a singular system.

The solution to the system defined on a finer mesh can be obtained very efficiently by using well-known
efficient multi-grid solvers for the H(div) projection. A classical geometric multi-grid method has been proposed
by Arnold, Falk and Winther [2]. More recently Hiptmair and Xu [17] proposed an auxiliary space preconditioner
for the H(div) system, which can be efficiently applied to the algebraic multi-grid methods [4].

Numerically, our method is shown to be comparable or outperform that from the mixed finite element method
in accuracy while keeping total degrees of freedom lower than those of the mixed finite element method. Namely,
while keeping the computational cost for the coarse-grid solution negligible compared to that for the fine-grid
solution, we can achieve a highly accurate flux variable. For example, when Brezzi−Douglas−Marini type
elements are used, our method clearly outperforms the mixed finite element method; see Table 4 in Section 6.

Furthermore, similarly to the least-squares method applied to first-order systems, our method has a built-in
a posteriori error estimators. The a posteriori error estimator has a very similar structure to the one developed
for the least-squares method in [11]. We show that our error estimator is an asymptotically exact a posteriori
error estimator; i.e. the ratio of true error and the estimator converges to 1 as the underlying mesh size converges
to 0.

Previously, the flux variable is obtained by using postprocessing similar to our approach, i.e. [12]. Their
goal was a construction of (recovery type) a posteriori error estimators, and the primary and flux variables are
obtained on the same meshes. Our motivation is different from that of [12] in the following sense. Our goal is
obtaining an accurate approximation for the flux variable and we use much finer meshes for the approximation
of the flux variable compared to the ones for the primary variable. As a by-product, we obtain asymptotically
exact a posteriori error estimators for the primary variable.

The rest of the paper is organized as follows. Section 2 introduces mathematical equations for the second-
order elliptic equations and the H(div) least-squares formulation is described for the equations. In Section 3,
finite element spaces are introduced and our parameter-dependent two-step hybrid finite element method is
defined. In Section 4, we establish an error estimate for ‖u − uh‖0 by establishing a super-closeness of uh. We
also give some guidelines to choose optimal parameter δ. In Section 5, superconvergence of uh to the interpolant
Πhu is discussed. Also we develop an equivalent a posterior error estimator for ‖A1/2∇(p−ph)‖0. In Section 6,
we present numerical examples confirming the theoretical results in this paper.
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2. Parameter-dependent hybrid two-step formulation

Let Ω be a bounded domain in R
d, d = 2, 3, with boundary ∂Ω and A be a d × d symmetric and uniformly

positive definite matrix. For f ∈ H−1(Ω) and g ∈ H
1
2 (∂Ω), we are interested in the approximation of the flux

u = −A∇ p where the primary variable p fulfills the elliptic boundary value problem:

−∇ · (A∇ p) = f in Ω, p = g on ∂Ω. (2.1)

Let p̃ ∈ H1(Ω) be an extension of g to Ω. Then a weak form equivalent to (2.1) is to find p ∈ H1(Ω) such that
p − p̃ ∈ H1

0 (Ω) fulfilling

(A∇ p,∇ q) = (f, q) + (A∇ p̃,∇ q) ∀ q ∈ H1
0 (Ω). (2.2)

We assume that the domain Ω and the coefficient A are sufficiently smooth such that, for f ∈ Hr−1(∂Ω) and
g ∈ Hr− 1

2+α(∂Ω) for some integer r ≥ 1 and α ∈ (0, 1], the unique solution p ∈ H1
0 (Ω) belongs to Hr+α(Ω).

Here, and in what follows, Hs(K) and Hs
0(K) denote the Sobolev spaces of order s defined on K with norm

‖ · ‖s,K and inner-product (·, ·)s,K . In case K = Ω, we employ the convention to omit Ω from the subindex;
moreover, the subscript s will be dropped if s = 0.

The flux variable can be well-approximated by the standard mixed formulation:

A−1u + ∇ p = 0 in Ω, (2.3a)
∇ · u = f in Ω, (2.3b)

p = g on ∂Ω. (2.3c)

Set
V = H(div; Ω) and W = L2(Ω), M = V × W,

where H(div; K) = {v ∈ (L2(K))d : ∇ · v ∈ L2(K)}, with norm ‖v‖2
H(div; K) = (∇ · v,∇ · v)K + (v,v)K . Often

we will use the following notation:

‖v‖2
H(div; K,A−1) = (∇ · v,∇ · v)K +

(A−1v,v
)

K
∀v ∈ H(div; K).

Since A is uniformly positive definite, we have

c‖v‖H(div; K) ≤ ‖v‖H(div; K,A−1) ≤ C‖v‖H(div; K) ∀v ∈ H(div; K). (2.4)

The standard mixed weak formulation of (2.3) is then to find (u, p) ∈ M = V × W such that

(A−1u,v) − (p,∇ · v) = −〈g, ν · v〉∂Ω ∀v ∈ V, (2.5a)

(∇ · u, q) = (f, q) ∀ q ∈ W. (2.5b)

It is well-known that the above mixed formulation (2.5) is a saddle point problem and it requires certain cares
to adopt a suitable pair of finite element spaces and stable numerical solvers. For this reason we seek a different
approach from the classical mixed finite element method.

Instead of approximating (2.5) directly, we propose an approach by a parameter–dependent hybrid mixed
formulation by adding δ times (2.5a) to (2.5b) with the choice of q = ∇ · v :

(∇ · u,∇ · v) + δ(A−1u,v) = (f + δp,∇ · v)−δ 〈g, ν · v〉∂Ω. (2.6)

Our hybrid numerical approximation scheme is composed of two steps, based on (2.2) and (2.6) on two grids of
size H and h with 0 < h ≤ H < 1.

Step 1. Obtain a coarse-grid solution pG
H which approximates p of (2.2);

Step 2. Utilizing pG
H , find a fine-grid solution uh which approximates u of (2.6).
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3. Two-step hybrid finite element approximation

In this section we review in brief some preliminaries on the classical mixed finite element spaces as these will
be the motivation of our approach. Utilizing mixed finite element spaces, our parameter-dependent two-step
hybrid finite element method will be introduced.

Let (Th)0<h≤1 be a family of shape regular triangulations of Ω (see [7]) by triangular/tetrahedral or rectan-
gular elements, where h = maxK∈Th

hK , hK = diam(K).

3.1. Preliminaries on the classic mixed finite element spaces

Denote by RT
(k)
h , k ≥ 0, and BDM

(k)
h , k ≥ 1, the Raviart−Thomas or Nedelec space [21, 22] and the

Brezzi−Douglas−Marini or Brezzi–Douglas–Duran–Fortin space of index k [8, 9] defined as follows:

{
RT

(k)
h := {v ∈ V : v|K ∈ [Pk(K)]d ⊕ Span{xPk(K)}, K ∈ Th},

BDM
(k)
h := {v ∈ V : v|K ∈ [Pk(K)]d, K ∈ Th},

where Pk(K) denotes the space of all polynomials up to degree k defined on K. Denote by C0(P (k)
h ) the standard

C0-conforming finite element space of piecewise polynomials of degree ≤ k on mesh Th. We also designate by
“C−1(P (k)

h )” the space of piecewise polynomials of degree ≤ k on mesh Th, namely, C−1(P (k)
h ) = {q ∈ L2(Ω) :

q|K ∈ Pk(K), K ∈ Th}.
Then the family of RTN/BDM-BDDF mixed finite element spaces of index ι(k), k = 0, 1, . . . , are given by

M
(k)
h := V(k)

h × W
(k)
h :=

{
RT

ι(k)
h × C−1(P (k)

h ),
BDM

ι(k)
h × C−1(P (k)

h ).

where

ι(k) =

{
k, if V(k)

h = RT
ι(k)
h ,

k + 1, if V(k)
h = BDM

ι(k)
h .

Denote by Πh×Ph : V×W → V(k)
h ×W

(k)
h the RTN/BDM-BDDF projection operator fulfilling the following

commutativity property:
∇ · Πh = Ph∇· : V onto−→ W

(k)
h , (3.1)

where Ph : W → W
(r)
h is the L2-projection from W to W

(r)
h such that

(p − Php, qh) = 0, qh ∈ W
(r)
h , p ∈ W. (3.2)

The following estimates are valid [9], ([14], p. 41), ([9], p. 221), ([8], p. 241) ([21], p. 330):

‖q − Phq‖−s ≤ C

( ∑
K∈Th

h
2(r+s)
K ‖q‖2

r,K

) 1
2

, 0 ≤ r, s ≤ k + 1, (3.3a)

‖v − Πhv‖0 ≤ C

( ∑
K∈Th

h2r
K ‖v‖2

r,K

) 1
2

, 0 ≤ r ≤ ι(k) + 1, (3.3b)

‖∇ · (v − Πhv)‖−s ≤ C

( ∑
K∈Th

h
2(r+s)
K ‖∇ · v‖2

r,K

) 1
2

, 0 ≤ r, s ≤ k + 1, (3.3c)

Here, and in what follows, we use C to denote a generic positive constant, which is independent of the mesh
size h.
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The mixed finite element approximation (2.5) is then to find (uM
h , pM

h ) ∈ M
(k)
h such that

(A−1uM
h ,vh) − (pM

h ,∇ · vh) = −〈g, ν · vh〉∂Ω ∀vh ∈ V(k)
h , (3.4a)

(∇ · uM
h , qh) = (f, qh) ∀ qh ∈ W

(k)
h . (3.4b)

Let pG
H ∈ C0(P (r)

H ) be the standard Galerkin approximation to p of (2.2) such that

(A∇ pG
H ,∇ qH) = (f, qH) + (A∇ p̃G

H ,∇ qH) ∀ qH ∈ C0(P (r)
H ), (3.5)

where p̃G
H denotes the C0(P (r)

H )–interpolant of p̃. Since p is Hr+α(Ω)–regular (r ≥ 1), the following estimate
holds:

‖pG
H − p‖0 + Hα‖pG

H − p‖1 ≤ CH2α|p|1+α. (3.6)

Although BDM
(k)
h lies between RT

(k−1)
h and RT

(k)
h , the vector-valued approximate solution by BDM

(k)
h is

asymptotically of same convergent rate as that obtained by RT
(k)
h ; moreover, the scalar-valued approximate so-

lution by BDM
(k)
h is asymptotically of same convergence as that employed by RT

(k)
h once a standard hybridization

procedure is applied [8, 9]. For instance, the solution p̃
(0)
h obtained by using the M

(0)
h = BDM

(0)
h × W

(0)
h with

hybridization fulfills ‖p − p̃
(0)
h ‖0 ≤ Ch2α‖p‖1+α.

3.2. Parameter-dependent two-step hybrid finite element method

We propose a new two-step hybrid finite element method to approximate the flux variable in a mixed formu-
lation setting, relaxing the constraint on the pair of mixed finite element spaces. First, the standard Galerkin
method is applied on a coarse mesh TH , to obtain an approximate solution pG

H . Then, by using pG
H , an ap-

proximate flux variable uh is obtained on a finer mesh Th. We remark that h can be taken as H1+α when
lower-order approximation spaces are employed, i.e. r = 1 and k = 0. Thus, the computational cost to obtain
pG

H is negligible compared to that required on finer meshes. Moreover, in order to find approximate solutions on
finer meshes, one can use any suitable fast solvers such as multigrid methods.

In this section, we will omit the superscript if no confusion arises; instead, we will stress the subscript which
represent the size of mesh Th and TH .

We will designate by (uh, pG
H) ∈ V(k)

h ×̃C0(P (r)
H ) the solution of the following Steps 1 and 2 based on the

hybrid spaces V(k)
h and C0(P (r)

H ) with parameter δ:

Step 1 (Coarse-grid solution). On a coarse mesh TH , obtain a standard Galerkin solution pG
H ∈ C0(P (r)

H )
satisfying (3.5).

Step 2 (Fine-grid solution). On a finer mesh Th, find the H(div; Ω,A−1) projection uh ∈ V(k)
h for the given

data f + δpG
H , i.e.

(∇ · uh,∇ · vh) + δ(A−1uh,vh) = (f + δpG
H ,∇ · vh)−δ 〈g, ν · vh〉∂Ω ∀vh ∈ V(k)

h . (3.7)

Remark 3.1. Plugging qh = ∇ · vh ∈ W
(k)
h in (3.4b) and adding it to (3.4a), we have

(∇ · uM
h ,∇ · vh) + δ(A−1uM

h ,vh) = (f + δpM
h ,∇ · vh)−δ 〈g, ν · vh〉∂Ω ∀vh ∈ V(k)

h . (3.8)

Subtracting (3.7) from (3.8), we see that(∇ · (uM
h − uh),∇ · vh

)
+ δ

(
A−1(uM

h − uh),vh

)
= δ

(
pM

h − pG
H ,∇ · vh

)
, (3.9)

for all vh ∈ V(k)
h . Thus the differences uM

h −uh and ∇·(uM
h −uh) are tamed by the factor

√
δ and δ, respectively.

Indeed, if C0(P (r)
H ) is replaced by W

(k)
h , the differences uM

h − uh and ∇ · (uM
h − uh) are zeroes since pM

h = pG
H

in this case. We will come back to this point in Theorem 4.2, which clarifies what the difference is.
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Remark 3.2. Especially, if δ = 1 and the two underlying meshes used to approximate both primary and
flux variables are identical, our method reduces to the H(div) recovery procedure of Cai and Zhang [12]. Our
approach allows to take finer meshes to approximate the flux variables with optimal rate of convergence. This
is due to our formulation using (pG

H ,∇ · vh)−〈g, ν · vh〉∂Ω instead of −(∇pG
H ,vH) and the choice of δ.

Remark 3.3. The existence and uniqueness result of uh in Step 2 is guaranteed by the Lax−Milgram lemma.
Moreover, the resulting algebraic equations involve symmetric positive definite matrices and thus such systems
can be solved efficiently by well-developed linear solvers. As mentioned earlier, fast multigrid solvers are available
for computing the H(div; Ω,A−1) projections (see, for example, [2, 17]).

By subtracting (3.7) from (2.6) for vh ∈ V(k)
h , we obtain the following quasi-orthogonality property:

(∇ · (u − uh),∇ · vh) + δ(A−1(u − uh),vh) = δ(p − pG
H ,∇ · vh) ∀vh ∈ V(k)

h . (3.10)

Remark 3.4. It will be shown that h can be taken as H2 when the lowest-order approximation spaces are used
with an appropriate degree of polynomials for the approximation pG

H to p. For example, RT
(0)
h can be combined

with C0(P (1)
H ) in order to obtain numerical solutions with optimal rate of convergence: see Remark 4.8.

4. Error analysis and guidelines for optimal choice of the parameter δ

In this section we analyze the errors of (uh, pG
j ) ∈ V(k)

h ×̃ C0(P (r)
j ), which solve (3.5) and (3.7) with j = h, H,

respectively. Based on optimal error estimates, we provide some guideline to choose optimal parameter values
for δ.

The following lemma, slightly modified one from ([19], Thm. 4.1) is useful.

Lemma 4.1. Let Ph be the (local) L2(Ω)-projection defined by (3.2). Then,

‖Ph(pM
h − pG

h )‖ ≤ Chα
(
‖u− Πhu‖H(div; Ω) + ‖p − pG

h ‖1

)
.

We are now in a position to state and prove the first of our main results.

Theorem 4.2. For k, r ≥ 0, let (uh, pG
j ) ∈ V(k)

h ×̃C0(P (r)
j ), be the solutions of (3.7) and (3.5) with j = h, H,

respectively, and (uM
h , pM

h ) ∈ M
(k)
h the mixed finite element solution fulfilling (3.4). Then, the following estimate

is valid:

‖uh − uM
h ‖H(div; Ω) ≤ C

√
δ
[
hα
(‖p − pG

h ‖1 + ‖u− Πhu‖H(div; Ω)

)
+ Hα‖p − pG

H‖1

]
. (4.1)

Proof. Plugging vh = uM
h − uh ∈ V(k)

h in (3.9), one sees that(∇ · (uM
h − uh),∇ · (uM

h − uh)
)

+ δ
(
A−1(uM

h − uh), (uM
h − uh)

)
= δ

(
pM

h − pG
H ,∇ · (uM

h − uh)
)

= δ
(
Ph(pM

h − pG
H),∇ · (uM

h − uh)
)

≤ δ‖Ph(pM
h − pG

H)‖ ‖∇ · (uM
h − uh)‖.

Hence, one has

‖∇ · (uM
h − uh)‖ ≤ δ‖Ph(pM

h − pG
H)‖, (4.2a)

‖uM
h − uh‖ ≤ C

√
δ‖Ph(pM

h − pG
H)‖. (4.2b)

Now, the triangle inequality, ‖Phq‖0 ≤ ‖q‖0, and (3.6) lead to

‖Ph(pM
h − pG

H)‖ ≤ ‖Ph(pM
h − pG

h )‖ + ‖Ph(pG
h − p)‖ + ‖Ph(p − pG

H)‖
≤ ‖Ph(pM

h − pG
h )‖ + ‖p− pG

h ‖ + ‖p − pG
H‖

≤ ‖Ph(pM
h − pG

h )‖ + C
(
hα‖p − pG

h ‖1 + Hα‖p− pG
H‖1

)
. (4.3)

An application of Lemma 4.1 to (4.3) combined with (4.2) shows (4.1). This completes the proof. �
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We now have the second main result of this paper.

Theorem 4.3. Let uh, pG
j , j = h, H,uM

h , and pM
h be as in Theorem 4.2. Then, we have

‖uh − u‖ ≤ C‖Πhu− u‖ + C
√

δ
[
hα
(‖pG

h − p‖1 + ‖∇ · (Πhu− u)‖)+ Hα‖pG
H − p‖1

]
.

Proof. Using the triangle inequality, we have

‖u− uh‖ ≤ ‖u− uM
h ‖ + ‖uM

h − uh‖ ≤ ‖u− Πhu‖ + ‖uM
h − uh‖.

Now, using Theorem 4.2 in the above inequality, we obtain the desired result. This completes the proof. �

The following result is an immediate consequence of Theorems 4.3 and (3.3). It can be used to determine the
fine mesh size h in Step 2 with respect to the coarse mesh size H in Step 1.

Theorem 4.4. Assume that the solution (u, p) ∈ M to (2.5) belongs to Hr−1+α(Ω)×Hr+α(Ω). For ι(k)+1 ≤ r

and � ≤ r, let (uh, pG
H) ∈ V(k)

h ×̃C0(P (�)
H ), be the pair of solutions to (3.7) and (3.5), respectively. Assume that

0 < δ ≤ 1. Then, the following estimate is valid:

‖u− uh‖ ≤ C
[
hι(k)+α(1 +

√
δhα−1)‖u‖ι(k)+α +

√
δH�+2α−1‖p‖�+α

]
. (4.4)

Moreover, if ∇ · u ∈ Hι(k)(Ω) in addition, then one has

‖u− uh‖ ≤ C
[
hι(k)+α‖u‖ι(k)+α +

√
δH�+2α−1‖p‖�+α

]
. (4.5)

Proof. Under the stated assumptions, we estimate each term in the right side of Theorem 4.3 using (3.3) and
the standard error estimate of Galerkin approximation as follows: for 0 ≤ ι(k) + 1 ≤ r and 0 ≤ � ≤ r,

‖u− uh‖ ≤ C‖u− Πhu‖ + C
√

δ
[
hα
(‖p − pG

h ‖1 + ‖∇ · (u − Πhu)‖)+ Hα‖p− pG
H‖1

]
≤ Chι(k)+α‖u‖ι(k)+α + C

√
δ
[
h�+2α−1‖p‖�+α + hι(k)+2α−1‖∇ · u‖ι(k)−1+α

]
+ C

√
δH�+2α−1‖p‖�+α

≤ Chι(k)+α
[
‖u‖ι(k)+α +

√
δhα−1‖∇ · u‖ι(k)−1+α

]
+ C

√
δH�+2α−1‖p‖�+α

≤ Chι(k)+α(1 +
√

δhα−1)‖u‖ι(k)+α + C
√

δH�+2α−1‖p‖�+α.

This proves (4.4).
Under the additional assumption ∇·u ∈ Hι(k)(Ω), in the above second line, the term hι(k)+2α−1‖∇·u‖ι(k)−1+α

is replaced by hι(k)+α‖∇ · u‖ι(k). Then, invoking the assumption 0 < δ ≤ 1, trivial modifications in the above
inequalities show (4.4). �

In Theorem 4.4, the following guideline of δ–choices is given.

Corollary 4.5. Under the assumptions given in Theorem 4.4, further assume that ι(k) ≤ �. Then an optimal
choice for δ can be given as follows:

δ =
(

hι(k)+α

H�+2α−1 − hι(k)+2α−1

)2

, (4.6)

and if, in addition ∇ · u ∈ Hι(k)+1(Ω),

δ =
(

hι(k)+α

H�+2α−1

)2

· (4.7)

With these choices of δ, we have the corresponding maximal convergence order:

‖u− uh‖ ≤ Chι(k)+α.
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Proof. The value of δ in (4.6) is obtained by equating the two terms in (4.4), and by solving for δ. Similarly
that in (4.7) follows by equating the terms (4.5). �

The following is an immediate consequence of the above result.

Corollary 4.6. Under the assumptions given in Corollary 4.5, choose k and � such that ι(k) = r−1 and � = r.
Then an optimal choice for δ are given as follows:

δ =
(

hr−1+α

Hr+2α−1 − hr+2α−2

)2

,

and if, in addition, ∇ · u ∈ Hι(k)+1(Ω),

δ =
(

hr−1+α

Hr+2α−1

)2

· (4.8)

With these choices of δ the following optimal order convergence is expected:

‖u− uh‖ ≤ Chr−1+α. (4.9)

Remark 4.7. In order to approximate u ∈ Hα(Ω) and p ∈ H1+α(Ω) assuming that ‖∇ · u‖1 < ∞. Using the
RTN family, choose k = 0 and � = 1 to take the hybrid space RT

(0)
h ×̃C0(P (1)

H ). Recall that ι(k) = 0 in this case.
Then from (4.4), one sees that h can be taken as H2 to obtain an optimal order of convergence, O(hα) in the
typical case δ = 1 as stated in (4.9) and (4.8).

Remark 4.8. Assume that ‖∇ · u‖2 < ∞. In order to approximate u ∈ H2(Ω) and p ∈ H3(Ω) using the
BDM/BDDF family, one can choose k = 0 and � = 2 to take the hybrid space BDM

(1)
h ×̃C0(P (2)

H ). (Recall
ι(0) = 1 in this case). Then, it follows from (4.4) that h can be taken as H3/2 to achieve an optimal convergence
rate, O(h2) with δ = 1, as stated in (4.9) and (4.8).

Remark 4.9. Using RTN family with k = 0 and � = 1, to take the hybrid space RT
(0)
h ×̃C0(P (1)

H ) (ι(k) = 0
in this case), we consider to solve the problem defined on the L-shaped domain, in which p ∈ H1+α(Ω) with
α = 2

3 and ∇ · u = 0. See Section 6.2. If h = H2 is fixed, one can choose δ = 1 for an optimal convergence rate
O(hα), as stated in (4.9) and (4.8). These formulae suggest that if h = H4, we choose δ = hα to get the same
optimal convergence rate.

5. Applications

In this section, we present two applications of our error estimate. The results show that our new method
inherits some of the desirable properties of the least-squares method and the mixed finite element method. In
particular, our method inherits super-closeness from the mixed finite element method and a posteriori estimates
from the least-squares method.

5.1. Asymptotically exact a posteriori error estimator

In what follows, we show that ‖A−1/2(uh + A∇pG
H)‖ is an asymptotically exact a posteriori error estimator

for ‖A1/2∇(p − pG
H)‖ under a mild condition. The estimator can be used in adaptive procedures for efficient

computations of approximate solutions. Note that similar error estimators are used in [11], where the least-
squares finite element method is considered. In this section, we fix h = CH2, δ = 1 and we use the lowest-order
mixed finite element space pair, i.e. RT

(0)
h ×̃C0(P (1)

h ). We only assume that p is H1+α–regular, for 1/2 < α ≤ 1.
To the best of our knowledge, our estimator is the first asymptotically exact a posteriori error estimator without
assuming smoother solutions.
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We first define a function m(H) which satisfies the following inequality:

‖A−1/2(u − uh)‖ ≤ m(H)‖A1/2∇(p − pG
H)‖. (5.1)

Remark 5.1. Theorem 4.4 with h = CH2 implies ‖A−1/2(u − uh)‖ � O(hα) = O(H2α) for p ∈ H1+α(Ω).
On the other hand, we have ‖A1/2∇(p − pG

H)‖ � O(Hα). Thus, choosing m(H) = CHα, the inequality (5.1) is
satisfied. Also, note that m(H) → 0 as H → 0.

Let
E(uh) = ‖A−1/2(uh + A∇pG

H)‖.
The following Theorem is standard, whose proof can be found in [11] for example. We provide the sketch of

proof for completeness.

Theorem 5.2. Let m(H) be a function defined in (5.1), and H is sufficiently small. Then,

1
1 + m(H)

E(uh) ≤ ‖A1/2∇(p − pG
H)‖ ≤ 1

1 − m(H)
E(uh).

Proof. Using the triangle inequality, (2.3a), and (5.1), we have

‖A1/2∇(p − pG
H)‖ ≤ ‖A1/2∇(p − pG

H) + A−1/2(u − uh)‖ + ‖A−1/2(u − uh)‖
= ‖A−1/2(uh + A∇pG

H)‖ + ‖A−1/2(u − uh)‖
≤ ‖A−1/2(uh + A∇pG

H)‖ + m(H)‖A1/2∇(p − pG
H)‖.

Thus, we have
(1 − m(H))‖A1/2∇(p − pG

H)‖ ≤ ‖A−1/2(uh + A∇pG
H)‖.

This proves the upper bound. The lower bound can be obtained similarly. This completes the proof. �

5.2. Superconvergence

Here, we present a superconvergence result of uh to Πhu as an elementary consequence of Theorem 4.2. We
define that uh ∈ V(k)

h is superconvergent with order θs if

‖uh − Πhu‖0 = O(hk+1+θs),

where θs > 0 and hk+1 is the optimal convergence rate for the approximation space V(k)
h defined in (3.3).

We take advantage of the known superconvergence result of the mixed finite element solutions uM
h . There are

rather severe restrictions in order to have a superconvergence result for uM
h . For example, the underlying mesh

needs to be of uniform triangulation. Also, the known superconvergence results for the mixed finite element
solutions assumes that the underlying true solutions belong to H3-space. Hence, we take α = 1 in the estimate
of Theorem 4.2, i.e. we assume the true solution belongs to at least H2-space. For more details we refer the
reader to [5, 6, 15, 23] and references therein.

Theorem 5.3. Assume that the mixed finite element solution uM
h is superconvergent to Πhu with order θs, for

some θs > 0. Let the mesh sizes h, H, and the parameter δ satisfy
√

δH2 = hk+1+θs . (5.2)

Then,
‖uh − Πhu‖ = O(hk+1+θs).
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Proof. By the triangle inequality and Theorem 4.2 with (5.2), we have

‖uh − Πhu‖ ≤ ‖uh − uM
h ‖ + ‖uM

h − Πhu‖
≤ C(p)

√
δH2 + ‖uM

h − Πhu‖
≤ C(p)hk+1+θs + ‖uM

h − Πhu‖.
From this we can conclude that uh is superconvergent with order θs if uM

h is superconvergent with order θs

under the condition (5.2). This completes the proof. �

Our numerical experiments in Section 6 with the choice of k = 0, h = H3/2, and δ = 1 on uniform meshes
show the order of superconvergence a little higher than θs = 1

3 . The corresponding results with the choice of
k = 0, h = H2, and δ = h on uniform meshes show the order of superconvergence a little higher than θs = 1

2 ;
indeed, θs is nearly 1 (see Tab. 8). The theoretical investigation on this superconvergence behavior will be an
interesting subject to be developed.

6. Numerical examples

In this section, we present sample results from numerical experiments to confirm our theoretical results as
well as to demonstrate the effectivity and the robustness of our algorithm. The first example is a simple example
for which the full regularity of the solution is given. The second example treats the case of corner singularity.
In particular, the primary focus in this section is on investigating the effectiveness of theoretical choice of the
coarse grid size H or the size of δ for an optimal convergence rate of the flux variable.

For all the numerical examples, in order to look at convergence behaviors closely, uniform meshes are used
instead of adaptive meshes. Also a direct solver(superLU) is employed in solving linear systems and the 16-
point quadrature rule is used on each triangle. On the other hand, the small parameter δ makes the system
of equations nearly singular, for which round-off errors are observed to cause accuracy deterioration. In our
numerical computation, we use defect corrections to overcome round-off errors. Namely, using a solution obtained
by the direct solver, we obtain a residual and calculate correction by solving the system once more. The improved
accuracy of the solution is reported in our numerical tables.

6.1. The case of full elliptic regularity

The first example is given as follows. The domain is taken as Ω = (0, 1)2, and the following Dirichlet boundary
value problem is considered:

−Δp = f in Ω with p = 0 on ∂Ω,

where f is generated by the analytic solution p(x, y) = sin(πx)ey(y2−y). For this example, uniform triangulations
of Ω are adopted in our numerical simulation (Fig. 1). The fine-grid approximation of the flux variable, RT

(0)
h

and BDM
(1)
h spaces are employed, while C0(P (1)

H ) and C0(P (2)
H ) are adopted to calculate the coarse-grid Galerkin

approximations, respectively.
Tables 1 and 3 show errors in the computation of the primary variable using both coarser- and finer-grid

Galerkin methods, and those in the calculation of the flux variable applying the fine-grid H(div; Ω,A−1)-
projection. Both mixed elements give optimal convergence rates in the approximation of the flux variable. An
a posteriori error estimator has also been computed and it is shown to be asymptotically exact.

Table 2 shows numerical results with δ = h2, corresponding to the results with δ = 1 in Table 1. The choice
of parameter δ = h2 allows to use the approximation of pG

H at the coarsest mesh level H = 1/4 as an input to
compute the flux uh up to h = 1/1024, still achieving optimal convergence. Table 4 also shows effectivity in
using δ. Namely, by simply choosing δ = h4/3, without using the conforming P2 finite element approximation pG

H

for the approximation of p at coarse levels (as shown in Tab. 3), we can achieve optimal convergence for the flux
variable uh using the conforming P1 finite element approximation pG

H for the approximation of p at coarse levels.
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Figure 1. Typical uniform mesh used for triangulation of Ω, H = 1/26 and pG
H .

Table 1. Errors and their reduction ratios of (uh, pG
H) ∈ RT

(0)
h ×̃C0(P (1)

H ); The parameter δ is
chosen as 1.

1/H |p − pG
H |1 1/h ‖u − uh‖ Rate ‖uh + ∇pG

H‖0
‖uh+∇pG

H‖0
|p−pG

H
|1

4 0.405D+00 16 0.728D-01 × 0.407D+00 1.01

8 0.208D+00 64 0.183D-01 1.00 0.208D+00 1.00

16 0.105D+00 256 0.458D-02 1.00 0.105D+00 1.00

32 0.523D-01 1024 0.115D-02 1.00 0.523D-01 1.00

Table 2. Errors and their reduction ratios of (uh, pG
H) ∈ RT

(0)
h ×̃C0(P (1)

H ); The parameter δ is
chosen as h2.

1/H |p − pG
H |1 1/h ‖u − uh‖ Rate ‖uh + ∇pG

H‖0
‖uh+∇pG

H‖0
|p−pG

H
|1

4 0.405D+00 16 0.727D-01 × 0.410D+00 1.01

4 0.405D+00 64 0.182D-01 1.00 0.405D+00 1.00

4 0.405D+00 256 0.456D-02 1.00 0.405D+00 1.00

4 0.405D+00 1024 0.115D-02 0.99 0.405D+00 1.00

Table 3. Errors and their reduction ratios of (uh, pG
H) ∈ BDM

(1)
h ×̃C0(P (2)

H ); The parameter δ
is chosen as 1.

1/H |p − pG
H |1 1/h ‖u − uh‖ Rate ‖uh + ∇pG

H‖0
‖uh+∇pG

H‖0
|p−pG

H
|1

4 0.686D-01 8 0.193D-01 x 0.693D-01 1.01

16 0.445D-02 64 0.311D-03 1.99 0.445D-02 1.00

64 0.279D-03 512 0.488D-05 2.00 0.279D-03 1.00

Table 4. Errors and their reduction ratios of (uh, pG
H) ∈ BDM

(1)
h ×̃C0(P (1)

H ); The parameter δ

is chosen as h4/3.

1/H |p − pG
H |1 1/h ‖u − uh‖ Rate ‖uh + ∇pG

H‖0
‖uh+∇pG

H‖0
|p−pG

H
|1

4 0.405D+00 8 0.197D-01 x 0.401D+00 0.99

16 0.105D+00 64 0.316D-03 1.99 0.105D+00 1.00

64 0.261D-01 512 0.498D-05 2.00 0.261D-01 1.00
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Table 5. Comparisons of errors, their reduction ratios and DOFs between the hybrid and
the RT mixed finite element solutions, (uh, pG

H) ∈ RT
(0)
h ×̃C0(P (1)

H ) and (uM
h , pM

h ) ∈ RT
(0)
h ×

C−1(P (0)
h ). The parameter δ is chosen as 1.

1/H ‖p − pG
H‖ 1/h ‖u − uh‖ DOF ‖p − pM

h ‖ ‖u − uM
h ‖ DOF

4 0.40479D+00 16 0.72762D-01 841 0.4932D-01 0.72599D-01 1312

8 0.20784D+00 64 0.18305D-01 12 705 0.37350D-02 0.18243D-01 20 608

16 0.10446D+00 256 0.45801D-02 198 577 0.93379D-03 0.45622D-02 328 192

Table 6. Comparisons of errors, their reduction ratios and DOFs between the hybrid and the
BDM mixed finite element solutions, (uh, pG

H) ∈ BDM
(1)
h ×̃C0(P (2)

H ) and (uM
h , pM

h ) ∈ BDM
(1)
h ×

C−1(P (0)
h ). The parameter δ is chosen as 1.

1/H ‖p − pG
H‖ 1/h ‖u − uh‖ DOF ‖p − pM

h ‖ ‖u − uM
h ‖ DOF

4 0.68632D-01 8 0.19299D-01 817 0.30114D-01 0.31285D-01 544

16 0.44493D-02 64 0.31130D-03 35 121 0.37357D-02 0.50196D-03 33 024

64 0.27861D-03 512 0.48772D-05 1 757 233 0.46690D-03 0.78554D-05 2 099 200

Table 7. Superconvergence results for uh to Πhu; the solution uh is obtained using the hybrid
space RT

(0)
h ×̃C0(P (1)

H ). The parameter δ is chosen as 1.

1/H for pG
H 1/h ‖Πhu − uh‖ Rate

4 8 0.194D-01 ×
16 64 0.510D-03 1.75

64 512 0.262D-04 1.43

Tables 5 and 6 demonstrate some comparison results between our method and the classical mixed finite
element method. It is evident that the solution (uh, pG

H) obtained by using the hybrid space BDM
(1)
h ×̃C0(P (2)

H )
converges faster than the solution (uM

h , pM
h ) obtained by the classical mixed method BDM

(1)
h × C−1(P (0)

h ) in
both accuracy and efficiency considering the total degrees of freedom. On the other hand, accuracy in the
approximation of the flux variable by using RT

(0)
h ×̃C0(P (1)

H ) is comparable with that by using the standard
mixed method by using RT

(0)
h × C−1(P (0)

h ) while the hybrid approach uses less degrees of freedom than the
latter.

Tables 7 and 8 show superconvergence results for the approximation of uh using the hybrid space
RT

(0)
h ×̃C0(P (1)

H ). Numerical results in Table 7 with the choice of k = 0, h = H3/2, and δ = 1 on uniform
meshes show the order of superconvergence a little higher than θs = 1

3 . The corresponding results in Table 8
with the choice of k = 0, h = H2, and δ = h on uniform meshes show the order of superconvergence much
higher than θs = 1

2 ; indeed, θs is nearly 1.
Comparing the results for 1/h = 64 in both tables, one sees that the numerical approximation with δ = h

is much closer to the exact solution than that with δ = 1, although a cheaper coarser-grid approximation to
pG

H in Table 8 is employed than the corresponding one in Table 7. This suggests to use δ = h instead of δ = 1.
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Table 8. Superconvergence results for uh to Πhu; the solution uh is obtained using the hybrid
space RT

(0)
h ×̃C0(P (1)

H ). The parameter δ is chosen as h.

1/H for pG
H 1/h ‖Πhu − uh‖ Rate

4 16 0.47095D-02 ×
8 64 0.29624D-03 2.00

16 256 0.18515D-04 2.00

32 1024 0.12172D-05 1.96

This sort of observation can be found also for the numerical result for 1/H = 64, 1/h = 512 in Table 7 and that
for 1/H = 1, 1/h = 256 in Table 8.

6.2. The case of partial elliptic regularity

We next consider (2.1) with constant coefficient in the non–convex domain Ω = (−1, 1)2 \ [0, 1)× (0,−1] with
nonhomogeneous Dirichlet boundary data g. As an exact solution, the harmonic function p(r, θ) = rα sin (αθ)
is taken, where α = 2

3 so that p ∈ H
5
3 (Ω) and g ∈ H

7
6 (Γ ).

We approximate (uh, pG
H) ∈ RT

(0)
h ×̃C0(P (1)

H ) using uniform meshes. For the choices of δ, we attempted to
use δ = 1, 0.01 and a variable δ. A coarsest grid and a primary variable approximation on that grid, are given
in Figure 2. The finest level grid used in this test, has the mesh size h = 1/29 while the coarsest level grid
size is H = 1/22. If one wants to use the coarsest grid size for the primary variable to obtain an optimal L2

convergence rate for the flux variable on the finest grid, then by (4.8), the theoretical δ should be chosen with
α = 2

3 as follows:

δ =
(

h

H2

)2α

≈ 0.01.

We provide three results in Table 9, the computation of the flux variable, one obtained with δ = 1, another
with δ = 0.01, and the other with δ = (h/H2)2α. We observe optimal L2–convergence rates are achieved with
both δ = 0.01 and δ = (h/H2)2α as shown in Table 9.

 

 0
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1
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Figure 2. The mesh configuration used as TH and the coarse grid solution pG
H .
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Table 9. Errors and their reduction ratios of (uh, pG
H) ∈ RT

(0)
h ×̃C0(P (1)

H ); The parameter
δ is chosen as 1, 0.01, and (h/H2)2α. The optimal convergence rate for the flux variable is
2/3 = 0.667.

1/H |p − pG
H |1 1/h ‖u − u1

h‖ Rate ‖u − u0.01
h ‖ Rate ‖u − u

(h/H2)2α

h ‖ Rate

4 0.116D+00 64 0.496D-01 × 0.491D-01 × 0.490D-01 ×
4 0.116D+00 128 0.327D-01 0.600 0.311D-01 0.658 0.311D-01 0.658

4 0.116D+00 256 0.226D-01 0.536 0.197D-01 0.661 0.197D-01 0.661

4 0.116D+00 512 0.169D-01 0.421 0.124D-01 0.663 0.124D-01 0.663
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